vfs_subr.c revision 254446
1183840Sraj/*-
2183840Sraj * Copyright (c) 1989, 1993
3183840Sraj *	The Regents of the University of California.  All rights reserved.
4183840Sraj * (c) UNIX System Laboratories, Inc.
5183840Sraj * All or some portions of this file are derived from material licensed
6183840Sraj * to the University of California by American Telephone and Telegraph
7183840Sraj * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8183840Sraj * the permission of UNIX System Laboratories, Inc.
9183840Sraj *
10183840Sraj * Redistribution and use in source and binary forms, with or without
11183840Sraj * modification, are permitted provided that the following conditions
12183840Sraj * are met:
13183840Sraj * 1. Redistributions of source code must retain the above copyright
14183840Sraj *    notice, this list of conditions and the following disclaimer.
15183840Sraj * 2. Redistributions in binary form must reproduce the above copyright
16183840Sraj *    notice, this list of conditions and the following disclaimer in the
17183840Sraj *    documentation and/or other materials provided with the distribution.
18183840Sraj * 4. Neither the name of the University nor the names of its contributors
19183840Sraj *    may be used to endorse or promote products derived from this software
20183840Sraj *    without specific prior written permission.
21183840Sraj *
22183840Sraj * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23183840Sraj * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24183840Sraj * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25183840Sraj * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26183840Sraj * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27183840Sraj * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28183840Sraj * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29183840Sraj * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30183840Sraj * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31183840Sraj * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32183840Sraj * SUCH DAMAGE.
33183840Sraj *
34183840Sraj *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35183840Sraj */
36183840Sraj
37183840Sraj/*
38183840Sraj * External virtual filesystem routines
39183840Sraj */
40209131Sraj
41183840Sraj#include <sys/cdefs.h>
42183840Sraj__FBSDID("$FreeBSD: head/sys/kern/vfs_subr.c 254446 2013-08-17 14:13:45Z pjd $");
43183840Sraj
44194072Smarcel#include "opt_compat.h"
45183840Sraj#include "opt_ddb.h"
46209131Sraj#include "opt_watchdog.h"
47186932Sraj
48185089Sraj#include <sys/param.h>
49185089Sraj#include <sys/systm.h>
50185089Sraj#include <sys/bio.h>
51185089Sraj#include <sys/buf.h>
52185089Sraj#include <sys/condvar.h>
53183840Sraj#include <sys/conf.h>
54183840Sraj#include <sys/dirent.h>
55185089Sraj#include <sys/event.h>
56185089Sraj#include <sys/eventhandler.h>
57185089Sraj#include <sys/extattr.h>
58185089Sraj#include <sys/file.h>
59185089Sraj#include <sys/fcntl.h>
60186932Sraj#include <sys/jail.h>
61183840Sraj#include <sys/kdb.h>
62185089Sraj#include <sys/kernel.h>
63185089Sraj#include <sys/kthread.h>
64183840Sraj#include <sys/lockf.h>
65209131Sraj#include <sys/malloc.h>
66183840Sraj#include <sys/mount.h>
67186909Sraj#include <sys/namei.h>
68183840Sraj#include <sys/pctrie.h>
69183840Sraj#include <sys/priv.h>
70183840Sraj#include <sys/reboot.h>
71183840Sraj#include <sys/rwlock.h>
72183840Sraj#include <sys/sched.h>
73183840Sraj#include <sys/sleepqueue.h>
74183840Sraj#include <sys/smp.h>
75183840Sraj#include <sys/stat.h>
76183840Sraj#include <sys/sysctl.h>
77209131Sraj#include <sys/syslog.h>
78183840Sraj#include <sys/vmmeter.h>
79183840Sraj#include <sys/vnode.h>
80209131Sraj#include <sys/watchdog.h>
81186899Sraj
82186899Sraj#include <machine/stdarg.h>
83186899Sraj
84186899Sraj#include <security/mac/mac_framework.h>
85186899Sraj
86186899Sraj#include <vm/vm.h>
87186899Sraj#include <vm/vm_object.h>
88186899Sraj#include <vm/vm_extern.h>
89186899Sraj#include <vm/pmap.h>
90186899Sraj#include <vm/vm_map.h>
91209131Sraj#include <vm/vm_page.h>
92209131Sraj#include <vm/vm_kern.h>
93186899Sraj#include <vm/uma.h>
94186899Sraj
95186899Sraj#ifdef DDB
96186899Sraj#include <ddb/ddb.h>
97186899Sraj#endif
98186899Sraj
99186899Srajstatic void	delmntque(struct vnode *vp);
100186899Srajstatic int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
101186899Sraj		    int slpflag, int slptimeo);
102186899Srajstatic void	syncer_shutdown(void *arg, int howto);
103static int	vtryrecycle(struct vnode *vp);
104static void	v_incr_usecount(struct vnode *);
105static void	v_decr_usecount(struct vnode *);
106static void	v_decr_useonly(struct vnode *);
107static void	v_upgrade_usecount(struct vnode *);
108static void	vnlru_free(int);
109static void	vgonel(struct vnode *);
110static void	vfs_knllock(void *arg);
111static void	vfs_knlunlock(void *arg);
112static void	vfs_knl_assert_locked(void *arg);
113static void	vfs_knl_assert_unlocked(void *arg);
114static void	destroy_vpollinfo(struct vpollinfo *vi);
115
116/*
117 * Number of vnodes in existence.  Increased whenever getnewvnode()
118 * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode.
119 */
120static unsigned long	numvnodes;
121
122SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
123    "Number of vnodes in existence");
124
125/*
126 * Conversion tables for conversion from vnode types to inode formats
127 * and back.
128 */
129enum vtype iftovt_tab[16] = {
130	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
131	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
132};
133int vttoif_tab[10] = {
134	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
135	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
136};
137
138/*
139 * List of vnodes that are ready for recycling.
140 */
141static TAILQ_HEAD(freelst, vnode) vnode_free_list;
142
143/*
144 * Free vnode target.  Free vnodes may simply be files which have been stat'd
145 * but not read.  This is somewhat common, and a small cache of such files
146 * should be kept to avoid recreation costs.
147 */
148static u_long wantfreevnodes;
149SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
150/* Number of vnodes in the free list. */
151static u_long freevnodes;
152SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0,
153    "Number of vnodes in the free list");
154
155static int vlru_allow_cache_src;
156SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW,
157    &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode");
158
159/*
160 * Various variables used for debugging the new implementation of
161 * reassignbuf().
162 * XXX these are probably of (very) limited utility now.
163 */
164static int reassignbufcalls;
165SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0,
166    "Number of calls to reassignbuf");
167
168/*
169 * Cache for the mount type id assigned to NFS.  This is used for
170 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
171 */
172int	nfs_mount_type = -1;
173
174/* To keep more than one thread at a time from running vfs_getnewfsid */
175static struct mtx mntid_mtx;
176
177/*
178 * Lock for any access to the following:
179 *	vnode_free_list
180 *	numvnodes
181 *	freevnodes
182 */
183static struct mtx vnode_free_list_mtx;
184
185/* Publicly exported FS */
186struct nfs_public nfs_pub;
187
188static uma_zone_t buf_trie_zone;
189
190/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
191static uma_zone_t vnode_zone;
192static uma_zone_t vnodepoll_zone;
193
194/*
195 * The workitem queue.
196 *
197 * It is useful to delay writes of file data and filesystem metadata
198 * for tens of seconds so that quickly created and deleted files need
199 * not waste disk bandwidth being created and removed. To realize this,
200 * we append vnodes to a "workitem" queue. When running with a soft
201 * updates implementation, most pending metadata dependencies should
202 * not wait for more than a few seconds. Thus, mounted on block devices
203 * are delayed only about a half the time that file data is delayed.
204 * Similarly, directory updates are more critical, so are only delayed
205 * about a third the time that file data is delayed. Thus, there are
206 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
207 * one each second (driven off the filesystem syncer process). The
208 * syncer_delayno variable indicates the next queue that is to be processed.
209 * Items that need to be processed soon are placed in this queue:
210 *
211 *	syncer_workitem_pending[syncer_delayno]
212 *
213 * A delay of fifteen seconds is done by placing the request fifteen
214 * entries later in the queue:
215 *
216 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
217 *
218 */
219static int syncer_delayno;
220static long syncer_mask;
221LIST_HEAD(synclist, bufobj);
222static struct synclist *syncer_workitem_pending;
223/*
224 * The sync_mtx protects:
225 *	bo->bo_synclist
226 *	sync_vnode_count
227 *	syncer_delayno
228 *	syncer_state
229 *	syncer_workitem_pending
230 *	syncer_worklist_len
231 *	rushjob
232 */
233static struct mtx sync_mtx;
234static struct cv sync_wakeup;
235
236#define SYNCER_MAXDELAY		32
237static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
238static int syncdelay = 30;		/* max time to delay syncing data */
239static int filedelay = 30;		/* time to delay syncing files */
240SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
241    "Time to delay syncing files (in seconds)");
242static int dirdelay = 29;		/* time to delay syncing directories */
243SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
244    "Time to delay syncing directories (in seconds)");
245static int metadelay = 28;		/* time to delay syncing metadata */
246SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
247    "Time to delay syncing metadata (in seconds)");
248static int rushjob;		/* number of slots to run ASAP */
249static int stat_rush_requests;	/* number of times I/O speeded up */
250SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
251    "Number of times I/O speeded up (rush requests)");
252
253/*
254 * When shutting down the syncer, run it at four times normal speed.
255 */
256#define SYNCER_SHUTDOWN_SPEEDUP		4
257static int sync_vnode_count;
258static int syncer_worklist_len;
259static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
260    syncer_state;
261
262/*
263 * Number of vnodes we want to exist at any one time.  This is mostly used
264 * to size hash tables in vnode-related code.  It is normally not used in
265 * getnewvnode(), as wantfreevnodes is normally nonzero.)
266 *
267 * XXX desiredvnodes is historical cruft and should not exist.
268 */
269int desiredvnodes;
270SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
271    &desiredvnodes, 0, "Maximum number of vnodes");
272SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
273    &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
274static int vnlru_nowhere;
275SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
276    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
277
278/*
279 * Macros to control when a vnode is freed and recycled.  All require
280 * the vnode interlock.
281 */
282#define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
283#define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
284#define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
285
286/* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
287static int vnsz2log;
288
289/*
290 * Support for the bufobj clean & dirty pctrie.
291 */
292static void *
293buf_trie_alloc(struct pctrie *ptree)
294{
295
296	return uma_zalloc(buf_trie_zone, M_NOWAIT);
297}
298
299static void
300buf_trie_free(struct pctrie *ptree, void *node)
301{
302
303	uma_zfree(buf_trie_zone, node);
304}
305PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free);
306
307/*
308 * Initialize the vnode management data structures.
309 *
310 * Reevaluate the following cap on the number of vnodes after the physical
311 * memory size exceeds 512GB.  In the limit, as the physical memory size
312 * grows, the ratio of physical pages to vnodes approaches sixteen to one.
313 */
314#ifndef	MAXVNODES_MAX
315#define	MAXVNODES_MAX	(512 * (1024 * 1024 * 1024 / (int)PAGE_SIZE / 16))
316#endif
317static void
318vntblinit(void *dummy __unused)
319{
320	u_int i;
321	int physvnodes, virtvnodes;
322
323	/*
324	 * Desiredvnodes is a function of the physical memory size and the
325	 * kernel's heap size.  Generally speaking, it scales with the
326	 * physical memory size.  The ratio of desiredvnodes to physical pages
327	 * is one to four until desiredvnodes exceeds 98,304.  Thereafter, the
328	 * marginal ratio of desiredvnodes to physical pages is one to
329	 * sixteen.  However, desiredvnodes is limited by the kernel's heap
330	 * size.  The memory required by desiredvnodes vnodes and vm objects
331	 * may not exceed one seventh of the kernel's heap size.
332	 */
333	physvnodes = maxproc + cnt.v_page_count / 16 + 3 * min(98304 * 4,
334	    cnt.v_page_count) / 16;
335	virtvnodes = vm_kmem_size / (7 * (sizeof(struct vm_object) +
336	    sizeof(struct vnode)));
337	desiredvnodes = min(physvnodes, virtvnodes);
338	if (desiredvnodes > MAXVNODES_MAX) {
339		if (bootverbose)
340			printf("Reducing kern.maxvnodes %d -> %d\n",
341			    desiredvnodes, MAXVNODES_MAX);
342		desiredvnodes = MAXVNODES_MAX;
343	}
344	wantfreevnodes = desiredvnodes / 4;
345	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
346	TAILQ_INIT(&vnode_free_list);
347	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
348	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
349	    NULL, NULL, UMA_ALIGN_PTR, 0);
350	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
351	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
352	/*
353	 * Preallocate enough nodes to support one-per buf so that
354	 * we can not fail an insert.  reassignbuf() callers can not
355	 * tolerate the insertion failure.
356	 */
357	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
358	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
359	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
360	uma_prealloc(buf_trie_zone, nbuf);
361	/*
362	 * Initialize the filesystem syncer.
363	 */
364	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
365	    &syncer_mask);
366	syncer_maxdelay = syncer_mask + 1;
367	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
368	cv_init(&sync_wakeup, "syncer");
369	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
370		vnsz2log++;
371	vnsz2log--;
372}
373SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
374
375
376/*
377 * Mark a mount point as busy. Used to synchronize access and to delay
378 * unmounting. Eventually, mountlist_mtx is not released on failure.
379 *
380 * vfs_busy() is a custom lock, it can block the caller.
381 * vfs_busy() only sleeps if the unmount is active on the mount point.
382 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
383 * vnode belonging to mp.
384 *
385 * Lookup uses vfs_busy() to traverse mount points.
386 * root fs			var fs
387 * / vnode lock		A	/ vnode lock (/var)		D
388 * /var vnode lock	B	/log vnode lock(/var/log)	E
389 * vfs_busy lock	C	vfs_busy lock			F
390 *
391 * Within each file system, the lock order is C->A->B and F->D->E.
392 *
393 * When traversing across mounts, the system follows that lock order:
394 *
395 *        C->A->B
396 *              |
397 *              +->F->D->E
398 *
399 * The lookup() process for namei("/var") illustrates the process:
400 *  VOP_LOOKUP() obtains B while A is held
401 *  vfs_busy() obtains a shared lock on F while A and B are held
402 *  vput() releases lock on B
403 *  vput() releases lock on A
404 *  VFS_ROOT() obtains lock on D while shared lock on F is held
405 *  vfs_unbusy() releases shared lock on F
406 *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
407 *    Attempt to lock A (instead of vp_crossmp) while D is held would
408 *    violate the global order, causing deadlocks.
409 *
410 * dounmount() locks B while F is drained.
411 */
412int
413vfs_busy(struct mount *mp, int flags)
414{
415
416	MPASS((flags & ~MBF_MASK) == 0);
417	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
418
419	MNT_ILOCK(mp);
420	MNT_REF(mp);
421	/*
422	 * If mount point is currenly being unmounted, sleep until the
423	 * mount point fate is decided.  If thread doing the unmounting fails,
424	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
425	 * that this mount point has survived the unmount attempt and vfs_busy
426	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
427	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
428	 * about to be really destroyed.  vfs_busy needs to release its
429	 * reference on the mount point in this case and return with ENOENT,
430	 * telling the caller that mount mount it tried to busy is no longer
431	 * valid.
432	 */
433	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
434		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
435			MNT_REL(mp);
436			MNT_IUNLOCK(mp);
437			CTR1(KTR_VFS, "%s: failed busying before sleeping",
438			    __func__);
439			return (ENOENT);
440		}
441		if (flags & MBF_MNTLSTLOCK)
442			mtx_unlock(&mountlist_mtx);
443		mp->mnt_kern_flag |= MNTK_MWAIT;
444		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
445		if (flags & MBF_MNTLSTLOCK)
446			mtx_lock(&mountlist_mtx);
447		MNT_ILOCK(mp);
448	}
449	if (flags & MBF_MNTLSTLOCK)
450		mtx_unlock(&mountlist_mtx);
451	mp->mnt_lockref++;
452	MNT_IUNLOCK(mp);
453	return (0);
454}
455
456/*
457 * Free a busy filesystem.
458 */
459void
460vfs_unbusy(struct mount *mp)
461{
462
463	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
464	MNT_ILOCK(mp);
465	MNT_REL(mp);
466	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
467	mp->mnt_lockref--;
468	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
469		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
470		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
471		mp->mnt_kern_flag &= ~MNTK_DRAINING;
472		wakeup(&mp->mnt_lockref);
473	}
474	MNT_IUNLOCK(mp);
475}
476
477/*
478 * Lookup a mount point by filesystem identifier.
479 */
480struct mount *
481vfs_getvfs(fsid_t *fsid)
482{
483	struct mount *mp;
484
485	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
486	mtx_lock(&mountlist_mtx);
487	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
488		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
489		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
490			vfs_ref(mp);
491			mtx_unlock(&mountlist_mtx);
492			return (mp);
493		}
494	}
495	mtx_unlock(&mountlist_mtx);
496	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
497	return ((struct mount *) 0);
498}
499
500/*
501 * Lookup a mount point by filesystem identifier, busying it before
502 * returning.
503 */
504struct mount *
505vfs_busyfs(fsid_t *fsid)
506{
507	struct mount *mp;
508	int error;
509
510	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
511	mtx_lock(&mountlist_mtx);
512	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
513		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
514		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
515			error = vfs_busy(mp, MBF_MNTLSTLOCK);
516			if (error) {
517				mtx_unlock(&mountlist_mtx);
518				return (NULL);
519			}
520			return (mp);
521		}
522	}
523	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
524	mtx_unlock(&mountlist_mtx);
525	return ((struct mount *) 0);
526}
527
528/*
529 * Check if a user can access privileged mount options.
530 */
531int
532vfs_suser(struct mount *mp, struct thread *td)
533{
534	int error;
535
536	/*
537	 * If the thread is jailed, but this is not a jail-friendly file
538	 * system, deny immediately.
539	 */
540	if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred))
541		return (EPERM);
542
543	/*
544	 * If the file system was mounted outside the jail of the calling
545	 * thread, deny immediately.
546	 */
547	if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
548		return (EPERM);
549
550	/*
551	 * If file system supports delegated administration, we don't check
552	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
553	 * by the file system itself.
554	 * If this is not the user that did original mount, we check for
555	 * the PRIV_VFS_MOUNT_OWNER privilege.
556	 */
557	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
558	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
559		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
560			return (error);
561	}
562	return (0);
563}
564
565/*
566 * Get a new unique fsid.  Try to make its val[0] unique, since this value
567 * will be used to create fake device numbers for stat().  Also try (but
568 * not so hard) make its val[0] unique mod 2^16, since some emulators only
569 * support 16-bit device numbers.  We end up with unique val[0]'s for the
570 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
571 *
572 * Keep in mind that several mounts may be running in parallel.  Starting
573 * the search one past where the previous search terminated is both a
574 * micro-optimization and a defense against returning the same fsid to
575 * different mounts.
576 */
577void
578vfs_getnewfsid(struct mount *mp)
579{
580	static uint16_t mntid_base;
581	struct mount *nmp;
582	fsid_t tfsid;
583	int mtype;
584
585	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
586	mtx_lock(&mntid_mtx);
587	mtype = mp->mnt_vfc->vfc_typenum;
588	tfsid.val[1] = mtype;
589	mtype = (mtype & 0xFF) << 24;
590	for (;;) {
591		tfsid.val[0] = makedev(255,
592		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
593		mntid_base++;
594		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
595			break;
596		vfs_rel(nmp);
597	}
598	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
599	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
600	mtx_unlock(&mntid_mtx);
601}
602
603/*
604 * Knob to control the precision of file timestamps:
605 *
606 *   0 = seconds only; nanoseconds zeroed.
607 *   1 = seconds and nanoseconds, accurate within 1/HZ.
608 *   2 = seconds and nanoseconds, truncated to microseconds.
609 * >=3 = seconds and nanoseconds, maximum precision.
610 */
611enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
612
613static int timestamp_precision = TSP_SEC;
614SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
615    &timestamp_precision, 0, "File timestamp precision (0: seconds, "
616    "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to ms, "
617    "3+: sec + ns (max. precision))");
618
619/*
620 * Get a current timestamp.
621 */
622void
623vfs_timestamp(struct timespec *tsp)
624{
625	struct timeval tv;
626
627	switch (timestamp_precision) {
628	case TSP_SEC:
629		tsp->tv_sec = time_second;
630		tsp->tv_nsec = 0;
631		break;
632	case TSP_HZ:
633		getnanotime(tsp);
634		break;
635	case TSP_USEC:
636		microtime(&tv);
637		TIMEVAL_TO_TIMESPEC(&tv, tsp);
638		break;
639	case TSP_NSEC:
640	default:
641		nanotime(tsp);
642		break;
643	}
644}
645
646/*
647 * Set vnode attributes to VNOVAL
648 */
649void
650vattr_null(struct vattr *vap)
651{
652
653	vap->va_type = VNON;
654	vap->va_size = VNOVAL;
655	vap->va_bytes = VNOVAL;
656	vap->va_mode = VNOVAL;
657	vap->va_nlink = VNOVAL;
658	vap->va_uid = VNOVAL;
659	vap->va_gid = VNOVAL;
660	vap->va_fsid = VNOVAL;
661	vap->va_fileid = VNOVAL;
662	vap->va_blocksize = VNOVAL;
663	vap->va_rdev = VNOVAL;
664	vap->va_atime.tv_sec = VNOVAL;
665	vap->va_atime.tv_nsec = VNOVAL;
666	vap->va_mtime.tv_sec = VNOVAL;
667	vap->va_mtime.tv_nsec = VNOVAL;
668	vap->va_ctime.tv_sec = VNOVAL;
669	vap->va_ctime.tv_nsec = VNOVAL;
670	vap->va_birthtime.tv_sec = VNOVAL;
671	vap->va_birthtime.tv_nsec = VNOVAL;
672	vap->va_flags = VNOVAL;
673	vap->va_gen = VNOVAL;
674	vap->va_vaflags = 0;
675}
676
677/*
678 * This routine is called when we have too many vnodes.  It attempts
679 * to free <count> vnodes and will potentially free vnodes that still
680 * have VM backing store (VM backing store is typically the cause
681 * of a vnode blowout so we want to do this).  Therefore, this operation
682 * is not considered cheap.
683 *
684 * A number of conditions may prevent a vnode from being reclaimed.
685 * the buffer cache may have references on the vnode, a directory
686 * vnode may still have references due to the namei cache representing
687 * underlying files, or the vnode may be in active use.   It is not
688 * desireable to reuse such vnodes.  These conditions may cause the
689 * number of vnodes to reach some minimum value regardless of what
690 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
691 */
692static int
693vlrureclaim(struct mount *mp)
694{
695	struct vnode *vp;
696	int done;
697	int trigger;
698	int usevnodes;
699	int count;
700
701	/*
702	 * Calculate the trigger point, don't allow user
703	 * screwups to blow us up.   This prevents us from
704	 * recycling vnodes with lots of resident pages.  We
705	 * aren't trying to free memory, we are trying to
706	 * free vnodes.
707	 */
708	usevnodes = desiredvnodes;
709	if (usevnodes <= 0)
710		usevnodes = 1;
711	trigger = cnt.v_page_count * 2 / usevnodes;
712	done = 0;
713	vn_start_write(NULL, &mp, V_WAIT);
714	MNT_ILOCK(mp);
715	count = mp->mnt_nvnodelistsize / 10 + 1;
716	while (count != 0) {
717		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
718		while (vp != NULL && vp->v_type == VMARKER)
719			vp = TAILQ_NEXT(vp, v_nmntvnodes);
720		if (vp == NULL)
721			break;
722		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
723		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
724		--count;
725		if (!VI_TRYLOCK(vp))
726			goto next_iter;
727		/*
728		 * If it's been deconstructed already, it's still
729		 * referenced, or it exceeds the trigger, skip it.
730		 */
731		if (vp->v_usecount ||
732		    (!vlru_allow_cache_src &&
733			!LIST_EMPTY(&(vp)->v_cache_src)) ||
734		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
735		    vp->v_object->resident_page_count > trigger)) {
736			VI_UNLOCK(vp);
737			goto next_iter;
738		}
739		MNT_IUNLOCK(mp);
740		vholdl(vp);
741		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
742			vdrop(vp);
743			goto next_iter_mntunlocked;
744		}
745		VI_LOCK(vp);
746		/*
747		 * v_usecount may have been bumped after VOP_LOCK() dropped
748		 * the vnode interlock and before it was locked again.
749		 *
750		 * It is not necessary to recheck VI_DOOMED because it can
751		 * only be set by another thread that holds both the vnode
752		 * lock and vnode interlock.  If another thread has the
753		 * vnode lock before we get to VOP_LOCK() and obtains the
754		 * vnode interlock after VOP_LOCK() drops the vnode
755		 * interlock, the other thread will be unable to drop the
756		 * vnode lock before our VOP_LOCK() call fails.
757		 */
758		if (vp->v_usecount ||
759		    (!vlru_allow_cache_src &&
760			!LIST_EMPTY(&(vp)->v_cache_src)) ||
761		    (vp->v_object != NULL &&
762		    vp->v_object->resident_page_count > trigger)) {
763			VOP_UNLOCK(vp, LK_INTERLOCK);
764			vdrop(vp);
765			goto next_iter_mntunlocked;
766		}
767		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
768		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
769		vgonel(vp);
770		VOP_UNLOCK(vp, 0);
771		vdropl(vp);
772		done++;
773next_iter_mntunlocked:
774		if (!should_yield())
775			goto relock_mnt;
776		goto yield;
777next_iter:
778		if (!should_yield())
779			continue;
780		MNT_IUNLOCK(mp);
781yield:
782		kern_yield(PRI_USER);
783relock_mnt:
784		MNT_ILOCK(mp);
785	}
786	MNT_IUNLOCK(mp);
787	vn_finished_write(mp);
788	return done;
789}
790
791/*
792 * Attempt to keep the free list at wantfreevnodes length.
793 */
794static void
795vnlru_free(int count)
796{
797	struct vnode *vp;
798
799	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
800	for (; count > 0; count--) {
801		vp = TAILQ_FIRST(&vnode_free_list);
802		/*
803		 * The list can be modified while the free_list_mtx
804		 * has been dropped and vp could be NULL here.
805		 */
806		if (!vp)
807			break;
808		VNASSERT(vp->v_op != NULL, vp,
809		    ("vnlru_free: vnode already reclaimed."));
810		KASSERT((vp->v_iflag & VI_FREE) != 0,
811		    ("Removing vnode not on freelist"));
812		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
813		    ("Mangling active vnode"));
814		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
815		/*
816		 * Don't recycle if we can't get the interlock.
817		 */
818		if (!VI_TRYLOCK(vp)) {
819			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
820			continue;
821		}
822		VNASSERT(VCANRECYCLE(vp), vp,
823		    ("vp inconsistent on freelist"));
824		freevnodes--;
825		vp->v_iflag &= ~VI_FREE;
826		vholdl(vp);
827		mtx_unlock(&vnode_free_list_mtx);
828		VI_UNLOCK(vp);
829		vtryrecycle(vp);
830		/*
831		 * If the recycled succeeded this vdrop will actually free
832		 * the vnode.  If not it will simply place it back on
833		 * the free list.
834		 */
835		vdrop(vp);
836		mtx_lock(&vnode_free_list_mtx);
837	}
838}
839/*
840 * Attempt to recycle vnodes in a context that is always safe to block.
841 * Calling vlrurecycle() from the bowels of filesystem code has some
842 * interesting deadlock problems.
843 */
844static struct proc *vnlruproc;
845static int vnlruproc_sig;
846
847static void
848vnlru_proc(void)
849{
850	struct mount *mp, *nmp;
851	int done;
852	struct proc *p = vnlruproc;
853
854	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
855	    SHUTDOWN_PRI_FIRST);
856
857	for (;;) {
858		kproc_suspend_check(p);
859		mtx_lock(&vnode_free_list_mtx);
860		if (freevnodes > wantfreevnodes)
861			vnlru_free(freevnodes - wantfreevnodes);
862		if (numvnodes <= desiredvnodes * 9 / 10) {
863			vnlruproc_sig = 0;
864			wakeup(&vnlruproc_sig);
865			msleep(vnlruproc, &vnode_free_list_mtx,
866			    PVFS|PDROP, "vlruwt", hz);
867			continue;
868		}
869		mtx_unlock(&vnode_free_list_mtx);
870		done = 0;
871		mtx_lock(&mountlist_mtx);
872		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
873			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
874				nmp = TAILQ_NEXT(mp, mnt_list);
875				continue;
876			}
877			done += vlrureclaim(mp);
878			mtx_lock(&mountlist_mtx);
879			nmp = TAILQ_NEXT(mp, mnt_list);
880			vfs_unbusy(mp);
881		}
882		mtx_unlock(&mountlist_mtx);
883		if (done == 0) {
884#if 0
885			/* These messages are temporary debugging aids */
886			if (vnlru_nowhere < 5)
887				printf("vnlru process getting nowhere..\n");
888			else if (vnlru_nowhere == 5)
889				printf("vnlru process messages stopped.\n");
890#endif
891			vnlru_nowhere++;
892			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
893		} else
894			kern_yield(PRI_USER);
895	}
896}
897
898static struct kproc_desc vnlru_kp = {
899	"vnlru",
900	vnlru_proc,
901	&vnlruproc
902};
903SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
904    &vnlru_kp);
905
906/*
907 * Routines having to do with the management of the vnode table.
908 */
909
910/*
911 * Try to recycle a freed vnode.  We abort if anyone picks up a reference
912 * before we actually vgone().  This function must be called with the vnode
913 * held to prevent the vnode from being returned to the free list midway
914 * through vgone().
915 */
916static int
917vtryrecycle(struct vnode *vp)
918{
919	struct mount *vnmp;
920
921	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
922	VNASSERT(vp->v_holdcnt, vp,
923	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
924	/*
925	 * This vnode may found and locked via some other list, if so we
926	 * can't recycle it yet.
927	 */
928	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
929		CTR2(KTR_VFS,
930		    "%s: impossible to recycle, vp %p lock is already held",
931		    __func__, vp);
932		return (EWOULDBLOCK);
933	}
934	/*
935	 * Don't recycle if its filesystem is being suspended.
936	 */
937	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
938		VOP_UNLOCK(vp, 0);
939		CTR2(KTR_VFS,
940		    "%s: impossible to recycle, cannot start the write for %p",
941		    __func__, vp);
942		return (EBUSY);
943	}
944	/*
945	 * If we got this far, we need to acquire the interlock and see if
946	 * anyone picked up this vnode from another list.  If not, we will
947	 * mark it with DOOMED via vgonel() so that anyone who does find it
948	 * will skip over it.
949	 */
950	VI_LOCK(vp);
951	if (vp->v_usecount) {
952		VOP_UNLOCK(vp, LK_INTERLOCK);
953		vn_finished_write(vnmp);
954		CTR2(KTR_VFS,
955		    "%s: impossible to recycle, %p is already referenced",
956		    __func__, vp);
957		return (EBUSY);
958	}
959	if ((vp->v_iflag & VI_DOOMED) == 0)
960		vgonel(vp);
961	VOP_UNLOCK(vp, LK_INTERLOCK);
962	vn_finished_write(vnmp);
963	return (0);
964}
965
966/*
967 * Wait for available vnodes.
968 */
969static int
970getnewvnode_wait(int suspended)
971{
972
973	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
974	if (numvnodes > desiredvnodes) {
975		if (suspended) {
976			/*
977			 * File system is beeing suspended, we cannot risk a
978			 * deadlock here, so allocate new vnode anyway.
979			 */
980			if (freevnodes > wantfreevnodes)
981				vnlru_free(freevnodes - wantfreevnodes);
982			return (0);
983		}
984		if (vnlruproc_sig == 0) {
985			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
986			wakeup(vnlruproc);
987		}
988		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
989		    "vlruwk", hz);
990	}
991	return (numvnodes > desiredvnodes ? ENFILE : 0);
992}
993
994void
995getnewvnode_reserve(u_int count)
996{
997	struct thread *td;
998
999	td = curthread;
1000	mtx_lock(&vnode_free_list_mtx);
1001	while (count > 0) {
1002		if (getnewvnode_wait(0) == 0) {
1003			count--;
1004			td->td_vp_reserv++;
1005			numvnodes++;
1006		}
1007	}
1008	mtx_unlock(&vnode_free_list_mtx);
1009}
1010
1011void
1012getnewvnode_drop_reserve(void)
1013{
1014	struct thread *td;
1015
1016	td = curthread;
1017	mtx_lock(&vnode_free_list_mtx);
1018	KASSERT(numvnodes >= td->td_vp_reserv, ("reserve too large"));
1019	numvnodes -= td->td_vp_reserv;
1020	mtx_unlock(&vnode_free_list_mtx);
1021	td->td_vp_reserv = 0;
1022}
1023
1024/*
1025 * Return the next vnode from the free list.
1026 */
1027int
1028getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1029    struct vnode **vpp)
1030{
1031	struct vnode *vp;
1032	struct bufobj *bo;
1033	struct thread *td;
1034	int error;
1035
1036	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1037	vp = NULL;
1038	td = curthread;
1039	if (td->td_vp_reserv > 0) {
1040		td->td_vp_reserv -= 1;
1041		goto alloc;
1042	}
1043	mtx_lock(&vnode_free_list_mtx);
1044	/*
1045	 * Lend our context to reclaim vnodes if they've exceeded the max.
1046	 */
1047	if (freevnodes > wantfreevnodes)
1048		vnlru_free(1);
1049	error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag &
1050	    MNTK_SUSPEND));
1051#if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1052	if (error != 0) {
1053		mtx_unlock(&vnode_free_list_mtx);
1054		return (error);
1055	}
1056#endif
1057	numvnodes++;
1058	mtx_unlock(&vnode_free_list_mtx);
1059alloc:
1060	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
1061	/*
1062	 * Setup locks.
1063	 */
1064	vp->v_vnlock = &vp->v_lock;
1065	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
1066	/*
1067	 * By default, don't allow shared locks unless filesystems
1068	 * opt-in.
1069	 */
1070	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE | LK_IS_VNODE);
1071	/*
1072	 * Initialize bufobj.
1073	 */
1074	bo = &vp->v_bufobj;
1075	bo->__bo_vnode = vp;
1076	rw_init(BO_LOCKPTR(bo), "bufobj interlock");
1077	bo->bo_ops = &buf_ops_bio;
1078	bo->bo_private = vp;
1079	TAILQ_INIT(&bo->bo_clean.bv_hd);
1080	TAILQ_INIT(&bo->bo_dirty.bv_hd);
1081	/*
1082	 * Initialize namecache.
1083	 */
1084	LIST_INIT(&vp->v_cache_src);
1085	TAILQ_INIT(&vp->v_cache_dst);
1086	/*
1087	 * Finalize various vnode identity bits.
1088	 */
1089	vp->v_type = VNON;
1090	vp->v_tag = tag;
1091	vp->v_op = vops;
1092	v_incr_usecount(vp);
1093	vp->v_data = NULL;
1094#ifdef MAC
1095	mac_vnode_init(vp);
1096	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1097		mac_vnode_associate_singlelabel(mp, vp);
1098	else if (mp == NULL && vops != &dead_vnodeops)
1099		printf("NULL mp in getnewvnode()\n");
1100#endif
1101	if (mp != NULL) {
1102		bo->bo_bsize = mp->mnt_stat.f_iosize;
1103		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1104			vp->v_vflag |= VV_NOKNOTE;
1105	}
1106	rangelock_init(&vp->v_rl);
1107
1108	/*
1109	 * For the filesystems which do not use vfs_hash_insert(),
1110	 * still initialize v_hash to have vfs_hash_index() useful.
1111	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1112	 * its own hashing.
1113	 */
1114	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1115
1116	*vpp = vp;
1117	return (0);
1118}
1119
1120/*
1121 * Delete from old mount point vnode list, if on one.
1122 */
1123static void
1124delmntque(struct vnode *vp)
1125{
1126	struct mount *mp;
1127	int active;
1128
1129	mp = vp->v_mount;
1130	if (mp == NULL)
1131		return;
1132	MNT_ILOCK(mp);
1133	VI_LOCK(vp);
1134	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1135	    ("Active vnode list size %d > Vnode list size %d",
1136	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1137	active = vp->v_iflag & VI_ACTIVE;
1138	vp->v_iflag &= ~VI_ACTIVE;
1139	if (active) {
1140		mtx_lock(&vnode_free_list_mtx);
1141		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1142		mp->mnt_activevnodelistsize--;
1143		mtx_unlock(&vnode_free_list_mtx);
1144	}
1145	vp->v_mount = NULL;
1146	VI_UNLOCK(vp);
1147	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1148		("bad mount point vnode list size"));
1149	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1150	mp->mnt_nvnodelistsize--;
1151	MNT_REL(mp);
1152	MNT_IUNLOCK(mp);
1153}
1154
1155static void
1156insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1157{
1158
1159	vp->v_data = NULL;
1160	vp->v_op = &dead_vnodeops;
1161	vgone(vp);
1162	vput(vp);
1163}
1164
1165/*
1166 * Insert into list of vnodes for the new mount point, if available.
1167 */
1168int
1169insmntque1(struct vnode *vp, struct mount *mp,
1170	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1171{
1172
1173	KASSERT(vp->v_mount == NULL,
1174		("insmntque: vnode already on per mount vnode list"));
1175	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1176	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1177
1178	/*
1179	 * We acquire the vnode interlock early to ensure that the
1180	 * vnode cannot be recycled by another process releasing a
1181	 * holdcnt on it before we get it on both the vnode list
1182	 * and the active vnode list. The mount mutex protects only
1183	 * manipulation of the vnode list and the vnode freelist
1184	 * mutex protects only manipulation of the active vnode list.
1185	 * Hence the need to hold the vnode interlock throughout.
1186	 */
1187	MNT_ILOCK(mp);
1188	VI_LOCK(vp);
1189	if (((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1190	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1191	    mp->mnt_nvnodelistsize == 0)) &&
1192	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1193		VI_UNLOCK(vp);
1194		MNT_IUNLOCK(mp);
1195		if (dtr != NULL)
1196			dtr(vp, dtr_arg);
1197		return (EBUSY);
1198	}
1199	vp->v_mount = mp;
1200	MNT_REF(mp);
1201	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1202	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1203		("neg mount point vnode list size"));
1204	mp->mnt_nvnodelistsize++;
1205	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1206	    ("Activating already active vnode"));
1207	vp->v_iflag |= VI_ACTIVE;
1208	mtx_lock(&vnode_free_list_mtx);
1209	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1210	mp->mnt_activevnodelistsize++;
1211	mtx_unlock(&vnode_free_list_mtx);
1212	VI_UNLOCK(vp);
1213	MNT_IUNLOCK(mp);
1214	return (0);
1215}
1216
1217int
1218insmntque(struct vnode *vp, struct mount *mp)
1219{
1220
1221	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1222}
1223
1224/*
1225 * Flush out and invalidate all buffers associated with a bufobj
1226 * Called with the underlying object locked.
1227 */
1228int
1229bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1230{
1231	int error;
1232
1233	BO_LOCK(bo);
1234	if (flags & V_SAVE) {
1235		error = bufobj_wwait(bo, slpflag, slptimeo);
1236		if (error) {
1237			BO_UNLOCK(bo);
1238			return (error);
1239		}
1240		if (bo->bo_dirty.bv_cnt > 0) {
1241			BO_UNLOCK(bo);
1242			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1243				return (error);
1244			/*
1245			 * XXX We could save a lock/unlock if this was only
1246			 * enabled under INVARIANTS
1247			 */
1248			BO_LOCK(bo);
1249			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1250				panic("vinvalbuf: dirty bufs");
1251		}
1252	}
1253	/*
1254	 * If you alter this loop please notice that interlock is dropped and
1255	 * reacquired in flushbuflist.  Special care is needed to ensure that
1256	 * no race conditions occur from this.
1257	 */
1258	do {
1259		error = flushbuflist(&bo->bo_clean,
1260		    flags, bo, slpflag, slptimeo);
1261		if (error == 0 && !(flags & V_CLEANONLY))
1262			error = flushbuflist(&bo->bo_dirty,
1263			    flags, bo, slpflag, slptimeo);
1264		if (error != 0 && error != EAGAIN) {
1265			BO_UNLOCK(bo);
1266			return (error);
1267		}
1268	} while (error != 0);
1269
1270	/*
1271	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1272	 * have write I/O in-progress but if there is a VM object then the
1273	 * VM object can also have read-I/O in-progress.
1274	 */
1275	do {
1276		bufobj_wwait(bo, 0, 0);
1277		BO_UNLOCK(bo);
1278		if (bo->bo_object != NULL) {
1279			VM_OBJECT_WLOCK(bo->bo_object);
1280			vm_object_pip_wait(bo->bo_object, "bovlbx");
1281			VM_OBJECT_WUNLOCK(bo->bo_object);
1282		}
1283		BO_LOCK(bo);
1284	} while (bo->bo_numoutput > 0);
1285	BO_UNLOCK(bo);
1286
1287	/*
1288	 * Destroy the copy in the VM cache, too.
1289	 */
1290	if (bo->bo_object != NULL &&
1291	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0) {
1292		VM_OBJECT_WLOCK(bo->bo_object);
1293		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1294		    OBJPR_CLEANONLY : 0);
1295		VM_OBJECT_WUNLOCK(bo->bo_object);
1296	}
1297
1298#ifdef INVARIANTS
1299	BO_LOCK(bo);
1300	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0 &&
1301	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1302		panic("vinvalbuf: flush failed");
1303	BO_UNLOCK(bo);
1304#endif
1305	return (0);
1306}
1307
1308/*
1309 * Flush out and invalidate all buffers associated with a vnode.
1310 * Called with the underlying object locked.
1311 */
1312int
1313vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1314{
1315
1316	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1317	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1318	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1319}
1320
1321/*
1322 * Flush out buffers on the specified list.
1323 *
1324 */
1325static int
1326flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1327    int slptimeo)
1328{
1329	struct buf *bp, *nbp;
1330	int retval, error;
1331	daddr_t lblkno;
1332	b_xflags_t xflags;
1333
1334	ASSERT_BO_WLOCKED(bo);
1335
1336	retval = 0;
1337	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1338		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1339		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1340			continue;
1341		}
1342		lblkno = 0;
1343		xflags = 0;
1344		if (nbp != NULL) {
1345			lblkno = nbp->b_lblkno;
1346			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
1347		}
1348		retval = EAGAIN;
1349		error = BUF_TIMELOCK(bp,
1350		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
1351		    "flushbuf", slpflag, slptimeo);
1352		if (error) {
1353			BO_LOCK(bo);
1354			return (error != ENOLCK ? error : EAGAIN);
1355		}
1356		KASSERT(bp->b_bufobj == bo,
1357		    ("bp %p wrong b_bufobj %p should be %p",
1358		    bp, bp->b_bufobj, bo));
1359		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1360			BUF_UNLOCK(bp);
1361			BO_LOCK(bo);
1362			return (EAGAIN);
1363		}
1364		/*
1365		 * XXX Since there are no node locks for NFS, I
1366		 * believe there is a slight chance that a delayed
1367		 * write will occur while sleeping just above, so
1368		 * check for it.
1369		 */
1370		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1371		    (flags & V_SAVE)) {
1372			bremfree(bp);
1373			bp->b_flags |= B_ASYNC;
1374			bwrite(bp);
1375			BO_LOCK(bo);
1376			return (EAGAIN);	/* XXX: why not loop ? */
1377		}
1378		bremfree(bp);
1379		bp->b_flags |= (B_INVAL | B_RELBUF);
1380		bp->b_flags &= ~B_ASYNC;
1381		brelse(bp);
1382		BO_LOCK(bo);
1383		if (nbp != NULL &&
1384		    (nbp->b_bufobj != bo ||
1385		     nbp->b_lblkno != lblkno ||
1386		     (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1387			break;			/* nbp invalid */
1388	}
1389	return (retval);
1390}
1391
1392/*
1393 * Truncate a file's buffer and pages to a specified length.  This
1394 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1395 * sync activity.
1396 */
1397int
1398vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize)
1399{
1400	struct buf *bp, *nbp;
1401	int anyfreed;
1402	int trunclbn;
1403	struct bufobj *bo;
1404
1405	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1406	    vp, cred, blksize, (uintmax_t)length);
1407
1408	/*
1409	 * Round up to the *next* lbn.
1410	 */
1411	trunclbn = (length + blksize - 1) / blksize;
1412
1413	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1414restart:
1415	bo = &vp->v_bufobj;
1416	BO_LOCK(bo);
1417	anyfreed = 1;
1418	for (;anyfreed;) {
1419		anyfreed = 0;
1420		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1421			if (bp->b_lblkno < trunclbn)
1422				continue;
1423			if (BUF_LOCK(bp,
1424			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1425			    BO_LOCKPTR(bo)) == ENOLCK)
1426				goto restart;
1427
1428			bremfree(bp);
1429			bp->b_flags |= (B_INVAL | B_RELBUF);
1430			bp->b_flags &= ~B_ASYNC;
1431			brelse(bp);
1432			anyfreed = 1;
1433
1434			BO_LOCK(bo);
1435			if (nbp != NULL &&
1436			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1437			    (nbp->b_vp != vp) ||
1438			    (nbp->b_flags & B_DELWRI))) {
1439				BO_UNLOCK(bo);
1440				goto restart;
1441			}
1442		}
1443
1444		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1445			if (bp->b_lblkno < trunclbn)
1446				continue;
1447			if (BUF_LOCK(bp,
1448			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1449			    BO_LOCKPTR(bo)) == ENOLCK)
1450				goto restart;
1451			bremfree(bp);
1452			bp->b_flags |= (B_INVAL | B_RELBUF);
1453			bp->b_flags &= ~B_ASYNC;
1454			brelse(bp);
1455			anyfreed = 1;
1456
1457			BO_LOCK(bo);
1458			if (nbp != NULL &&
1459			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1460			    (nbp->b_vp != vp) ||
1461			    (nbp->b_flags & B_DELWRI) == 0)) {
1462				BO_UNLOCK(bo);
1463				goto restart;
1464			}
1465		}
1466	}
1467
1468	if (length > 0) {
1469restartsync:
1470		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1471			if (bp->b_lblkno > 0)
1472				continue;
1473			/*
1474			 * Since we hold the vnode lock this should only
1475			 * fail if we're racing with the buf daemon.
1476			 */
1477			if (BUF_LOCK(bp,
1478			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1479			    BO_LOCKPTR(bo)) == ENOLCK) {
1480				goto restart;
1481			}
1482			VNASSERT((bp->b_flags & B_DELWRI), vp,
1483			    ("buf(%p) on dirty queue without DELWRI", bp));
1484
1485			bremfree(bp);
1486			bawrite(bp);
1487			BO_LOCK(bo);
1488			goto restartsync;
1489		}
1490	}
1491
1492	bufobj_wwait(bo, 0, 0);
1493	BO_UNLOCK(bo);
1494	vnode_pager_setsize(vp, length);
1495
1496	return (0);
1497}
1498
1499static void
1500buf_vlist_remove(struct buf *bp)
1501{
1502	struct bufv *bv;
1503
1504	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1505	ASSERT_BO_WLOCKED(bp->b_bufobj);
1506	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1507	    (BX_VNDIRTY|BX_VNCLEAN),
1508	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1509	if (bp->b_xflags & BX_VNDIRTY)
1510		bv = &bp->b_bufobj->bo_dirty;
1511	else
1512		bv = &bp->b_bufobj->bo_clean;
1513	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
1514	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1515	bv->bv_cnt--;
1516	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1517}
1518
1519/*
1520 * Add the buffer to the sorted clean or dirty block list.
1521 *
1522 * NOTE: xflags is passed as a constant, optimizing this inline function!
1523 */
1524static void
1525buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1526{
1527	struct bufv *bv;
1528	struct buf *n;
1529	int error;
1530
1531	ASSERT_BO_WLOCKED(bo);
1532	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1533	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1534	bp->b_xflags |= xflags;
1535	if (xflags & BX_VNDIRTY)
1536		bv = &bo->bo_dirty;
1537	else
1538		bv = &bo->bo_clean;
1539
1540	/*
1541	 * Keep the list ordered.  Optimize empty list insertion.  Assume
1542	 * we tend to grow at the tail so lookup_le should usually be cheaper
1543	 * than _ge.
1544	 */
1545	if (bv->bv_cnt == 0 ||
1546	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
1547		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1548	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
1549		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
1550	else
1551		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
1552	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
1553	if (error)
1554		panic("buf_vlist_add:  Preallocated nodes insufficient.");
1555	bv->bv_cnt++;
1556}
1557
1558/*
1559 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1560 * shadow buffers used in background bitmap writes.
1561 *
1562 * This code isn't quite efficient as it could be because we are maintaining
1563 * two sorted lists and do not know which list the block resides in.
1564 *
1565 * During a "make buildworld" the desired buffer is found at one of
1566 * the roots more than 60% of the time.  Thus, checking both roots
1567 * before performing either splay eliminates unnecessary splays on the
1568 * first tree splayed.
1569 */
1570struct buf *
1571gbincore(struct bufobj *bo, daddr_t lblkno)
1572{
1573	struct buf *bp;
1574
1575	ASSERT_BO_LOCKED(bo);
1576	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
1577	if (bp != NULL)
1578		return (bp);
1579	return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno);
1580}
1581
1582/*
1583 * Associate a buffer with a vnode.
1584 */
1585void
1586bgetvp(struct vnode *vp, struct buf *bp)
1587{
1588	struct bufobj *bo;
1589
1590	bo = &vp->v_bufobj;
1591	ASSERT_BO_WLOCKED(bo);
1592	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1593
1594	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1595	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1596	    ("bgetvp: bp already attached! %p", bp));
1597
1598	vhold(vp);
1599	bp->b_vp = vp;
1600	bp->b_bufobj = bo;
1601	/*
1602	 * Insert onto list for new vnode.
1603	 */
1604	buf_vlist_add(bp, bo, BX_VNCLEAN);
1605}
1606
1607/*
1608 * Disassociate a buffer from a vnode.
1609 */
1610void
1611brelvp(struct buf *bp)
1612{
1613	struct bufobj *bo;
1614	struct vnode *vp;
1615
1616	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1617	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1618
1619	/*
1620	 * Delete from old vnode list, if on one.
1621	 */
1622	vp = bp->b_vp;		/* XXX */
1623	bo = bp->b_bufobj;
1624	BO_LOCK(bo);
1625	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1626		buf_vlist_remove(bp);
1627	else
1628		panic("brelvp: Buffer %p not on queue.", bp);
1629	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1630		bo->bo_flag &= ~BO_ONWORKLST;
1631		mtx_lock(&sync_mtx);
1632		LIST_REMOVE(bo, bo_synclist);
1633		syncer_worklist_len--;
1634		mtx_unlock(&sync_mtx);
1635	}
1636	bp->b_vp = NULL;
1637	bp->b_bufobj = NULL;
1638	BO_UNLOCK(bo);
1639	vdrop(vp);
1640}
1641
1642/*
1643 * Add an item to the syncer work queue.
1644 */
1645static void
1646vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1647{
1648	int slot;
1649
1650	ASSERT_BO_WLOCKED(bo);
1651
1652	mtx_lock(&sync_mtx);
1653	if (bo->bo_flag & BO_ONWORKLST)
1654		LIST_REMOVE(bo, bo_synclist);
1655	else {
1656		bo->bo_flag |= BO_ONWORKLST;
1657		syncer_worklist_len++;
1658	}
1659
1660	if (delay > syncer_maxdelay - 2)
1661		delay = syncer_maxdelay - 2;
1662	slot = (syncer_delayno + delay) & syncer_mask;
1663
1664	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1665	mtx_unlock(&sync_mtx);
1666}
1667
1668static int
1669sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1670{
1671	int error, len;
1672
1673	mtx_lock(&sync_mtx);
1674	len = syncer_worklist_len - sync_vnode_count;
1675	mtx_unlock(&sync_mtx);
1676	error = SYSCTL_OUT(req, &len, sizeof(len));
1677	return (error);
1678}
1679
1680SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1681    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1682
1683static struct proc *updateproc;
1684static void sched_sync(void);
1685static struct kproc_desc up_kp = {
1686	"syncer",
1687	sched_sync,
1688	&updateproc
1689};
1690SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1691
1692static int
1693sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1694{
1695	struct vnode *vp;
1696	struct mount *mp;
1697
1698	*bo = LIST_FIRST(slp);
1699	if (*bo == NULL)
1700		return (0);
1701	vp = (*bo)->__bo_vnode;	/* XXX */
1702	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1703		return (1);
1704	/*
1705	 * We use vhold in case the vnode does not
1706	 * successfully sync.  vhold prevents the vnode from
1707	 * going away when we unlock the sync_mtx so that
1708	 * we can acquire the vnode interlock.
1709	 */
1710	vholdl(vp);
1711	mtx_unlock(&sync_mtx);
1712	VI_UNLOCK(vp);
1713	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1714		vdrop(vp);
1715		mtx_lock(&sync_mtx);
1716		return (*bo == LIST_FIRST(slp));
1717	}
1718	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1719	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1720	VOP_UNLOCK(vp, 0);
1721	vn_finished_write(mp);
1722	BO_LOCK(*bo);
1723	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1724		/*
1725		 * Put us back on the worklist.  The worklist
1726		 * routine will remove us from our current
1727		 * position and then add us back in at a later
1728		 * position.
1729		 */
1730		vn_syncer_add_to_worklist(*bo, syncdelay);
1731	}
1732	BO_UNLOCK(*bo);
1733	vdrop(vp);
1734	mtx_lock(&sync_mtx);
1735	return (0);
1736}
1737
1738/*
1739 * System filesystem synchronizer daemon.
1740 */
1741static void
1742sched_sync(void)
1743{
1744	struct synclist *next, *slp;
1745	struct bufobj *bo;
1746	long starttime;
1747	struct thread *td = curthread;
1748	int last_work_seen;
1749	int net_worklist_len;
1750	int syncer_final_iter;
1751	int first_printf;
1752	int error;
1753
1754	last_work_seen = 0;
1755	syncer_final_iter = 0;
1756	first_printf = 1;
1757	syncer_state = SYNCER_RUNNING;
1758	starttime = time_uptime;
1759	td->td_pflags |= TDP_NORUNNINGBUF;
1760
1761	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1762	    SHUTDOWN_PRI_LAST);
1763
1764	mtx_lock(&sync_mtx);
1765	for (;;) {
1766		if (syncer_state == SYNCER_FINAL_DELAY &&
1767		    syncer_final_iter == 0) {
1768			mtx_unlock(&sync_mtx);
1769			kproc_suspend_check(td->td_proc);
1770			mtx_lock(&sync_mtx);
1771		}
1772		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1773		if (syncer_state != SYNCER_RUNNING &&
1774		    starttime != time_uptime) {
1775			if (first_printf) {
1776				printf("\nSyncing disks, vnodes remaining...");
1777				first_printf = 0;
1778			}
1779			printf("%d ", net_worklist_len);
1780		}
1781		starttime = time_uptime;
1782
1783		/*
1784		 * Push files whose dirty time has expired.  Be careful
1785		 * of interrupt race on slp queue.
1786		 *
1787		 * Skip over empty worklist slots when shutting down.
1788		 */
1789		do {
1790			slp = &syncer_workitem_pending[syncer_delayno];
1791			syncer_delayno += 1;
1792			if (syncer_delayno == syncer_maxdelay)
1793				syncer_delayno = 0;
1794			next = &syncer_workitem_pending[syncer_delayno];
1795			/*
1796			 * If the worklist has wrapped since the
1797			 * it was emptied of all but syncer vnodes,
1798			 * switch to the FINAL_DELAY state and run
1799			 * for one more second.
1800			 */
1801			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1802			    net_worklist_len == 0 &&
1803			    last_work_seen == syncer_delayno) {
1804				syncer_state = SYNCER_FINAL_DELAY;
1805				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1806			}
1807		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1808		    syncer_worklist_len > 0);
1809
1810		/*
1811		 * Keep track of the last time there was anything
1812		 * on the worklist other than syncer vnodes.
1813		 * Return to the SHUTTING_DOWN state if any
1814		 * new work appears.
1815		 */
1816		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1817			last_work_seen = syncer_delayno;
1818		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1819			syncer_state = SYNCER_SHUTTING_DOWN;
1820		while (!LIST_EMPTY(slp)) {
1821			error = sync_vnode(slp, &bo, td);
1822			if (error == 1) {
1823				LIST_REMOVE(bo, bo_synclist);
1824				LIST_INSERT_HEAD(next, bo, bo_synclist);
1825				continue;
1826			}
1827
1828			if (first_printf == 0)
1829				wdog_kern_pat(WD_LASTVAL);
1830
1831		}
1832		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1833			syncer_final_iter--;
1834		/*
1835		 * The variable rushjob allows the kernel to speed up the
1836		 * processing of the filesystem syncer process. A rushjob
1837		 * value of N tells the filesystem syncer to process the next
1838		 * N seconds worth of work on its queue ASAP. Currently rushjob
1839		 * is used by the soft update code to speed up the filesystem
1840		 * syncer process when the incore state is getting so far
1841		 * ahead of the disk that the kernel memory pool is being
1842		 * threatened with exhaustion.
1843		 */
1844		if (rushjob > 0) {
1845			rushjob -= 1;
1846			continue;
1847		}
1848		/*
1849		 * Just sleep for a short period of time between
1850		 * iterations when shutting down to allow some I/O
1851		 * to happen.
1852		 *
1853		 * If it has taken us less than a second to process the
1854		 * current work, then wait. Otherwise start right over
1855		 * again. We can still lose time if any single round
1856		 * takes more than two seconds, but it does not really
1857		 * matter as we are just trying to generally pace the
1858		 * filesystem activity.
1859		 */
1860		if (syncer_state != SYNCER_RUNNING ||
1861		    time_uptime == starttime) {
1862			thread_lock(td);
1863			sched_prio(td, PPAUSE);
1864			thread_unlock(td);
1865		}
1866		if (syncer_state != SYNCER_RUNNING)
1867			cv_timedwait(&sync_wakeup, &sync_mtx,
1868			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1869		else if (time_uptime == starttime)
1870			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
1871	}
1872}
1873
1874/*
1875 * Request the syncer daemon to speed up its work.
1876 * We never push it to speed up more than half of its
1877 * normal turn time, otherwise it could take over the cpu.
1878 */
1879int
1880speedup_syncer(void)
1881{
1882	int ret = 0;
1883
1884	mtx_lock(&sync_mtx);
1885	if (rushjob < syncdelay / 2) {
1886		rushjob += 1;
1887		stat_rush_requests += 1;
1888		ret = 1;
1889	}
1890	mtx_unlock(&sync_mtx);
1891	cv_broadcast(&sync_wakeup);
1892	return (ret);
1893}
1894
1895/*
1896 * Tell the syncer to speed up its work and run though its work
1897 * list several times, then tell it to shut down.
1898 */
1899static void
1900syncer_shutdown(void *arg, int howto)
1901{
1902
1903	if (howto & RB_NOSYNC)
1904		return;
1905	mtx_lock(&sync_mtx);
1906	syncer_state = SYNCER_SHUTTING_DOWN;
1907	rushjob = 0;
1908	mtx_unlock(&sync_mtx);
1909	cv_broadcast(&sync_wakeup);
1910	kproc_shutdown(arg, howto);
1911}
1912
1913/*
1914 * Reassign a buffer from one vnode to another.
1915 * Used to assign file specific control information
1916 * (indirect blocks) to the vnode to which they belong.
1917 */
1918void
1919reassignbuf(struct buf *bp)
1920{
1921	struct vnode *vp;
1922	struct bufobj *bo;
1923	int delay;
1924#ifdef INVARIANTS
1925	struct bufv *bv;
1926#endif
1927
1928	vp = bp->b_vp;
1929	bo = bp->b_bufobj;
1930	++reassignbufcalls;
1931
1932	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1933	    bp, bp->b_vp, bp->b_flags);
1934	/*
1935	 * B_PAGING flagged buffers cannot be reassigned because their vp
1936	 * is not fully linked in.
1937	 */
1938	if (bp->b_flags & B_PAGING)
1939		panic("cannot reassign paging buffer");
1940
1941	/*
1942	 * Delete from old vnode list, if on one.
1943	 */
1944	BO_LOCK(bo);
1945	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1946		buf_vlist_remove(bp);
1947	else
1948		panic("reassignbuf: Buffer %p not on queue.", bp);
1949	/*
1950	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1951	 * of clean buffers.
1952	 */
1953	if (bp->b_flags & B_DELWRI) {
1954		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1955			switch (vp->v_type) {
1956			case VDIR:
1957				delay = dirdelay;
1958				break;
1959			case VCHR:
1960				delay = metadelay;
1961				break;
1962			default:
1963				delay = filedelay;
1964			}
1965			vn_syncer_add_to_worklist(bo, delay);
1966		}
1967		buf_vlist_add(bp, bo, BX_VNDIRTY);
1968	} else {
1969		buf_vlist_add(bp, bo, BX_VNCLEAN);
1970
1971		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1972			mtx_lock(&sync_mtx);
1973			LIST_REMOVE(bo, bo_synclist);
1974			syncer_worklist_len--;
1975			mtx_unlock(&sync_mtx);
1976			bo->bo_flag &= ~BO_ONWORKLST;
1977		}
1978	}
1979#ifdef INVARIANTS
1980	bv = &bo->bo_clean;
1981	bp = TAILQ_FIRST(&bv->bv_hd);
1982	KASSERT(bp == NULL || bp->b_bufobj == bo,
1983	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1984	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1985	KASSERT(bp == NULL || bp->b_bufobj == bo,
1986	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1987	bv = &bo->bo_dirty;
1988	bp = TAILQ_FIRST(&bv->bv_hd);
1989	KASSERT(bp == NULL || bp->b_bufobj == bo,
1990	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1991	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1992	KASSERT(bp == NULL || bp->b_bufobj == bo,
1993	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1994#endif
1995	BO_UNLOCK(bo);
1996}
1997
1998/*
1999 * Increment the use and hold counts on the vnode, taking care to reference
2000 * the driver's usecount if this is a chardev.  The vholdl() will remove
2001 * the vnode from the free list if it is presently free.  Requires the
2002 * vnode interlock and returns with it held.
2003 */
2004static void
2005v_incr_usecount(struct vnode *vp)
2006{
2007
2008	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2009	vp->v_usecount++;
2010	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2011		dev_lock();
2012		vp->v_rdev->si_usecount++;
2013		dev_unlock();
2014	}
2015	vholdl(vp);
2016}
2017
2018/*
2019 * Turn a holdcnt into a use+holdcnt such that only one call to
2020 * v_decr_usecount is needed.
2021 */
2022static void
2023v_upgrade_usecount(struct vnode *vp)
2024{
2025
2026	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2027	vp->v_usecount++;
2028	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2029		dev_lock();
2030		vp->v_rdev->si_usecount++;
2031		dev_unlock();
2032	}
2033}
2034
2035/*
2036 * Decrement the vnode use and hold count along with the driver's usecount
2037 * if this is a chardev.  The vdropl() below releases the vnode interlock
2038 * as it may free the vnode.
2039 */
2040static void
2041v_decr_usecount(struct vnode *vp)
2042{
2043
2044	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2045	VNASSERT(vp->v_usecount > 0, vp,
2046	    ("v_decr_usecount: negative usecount"));
2047	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2048	vp->v_usecount--;
2049	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2050		dev_lock();
2051		vp->v_rdev->si_usecount--;
2052		dev_unlock();
2053	}
2054	vdropl(vp);
2055}
2056
2057/*
2058 * Decrement only the use count and driver use count.  This is intended to
2059 * be paired with a follow on vdropl() to release the remaining hold count.
2060 * In this way we may vgone() a vnode with a 0 usecount without risk of
2061 * having it end up on a free list because the hold count is kept above 0.
2062 */
2063static void
2064v_decr_useonly(struct vnode *vp)
2065{
2066
2067	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2068	VNASSERT(vp->v_usecount > 0, vp,
2069	    ("v_decr_useonly: negative usecount"));
2070	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2071	vp->v_usecount--;
2072	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2073		dev_lock();
2074		vp->v_rdev->si_usecount--;
2075		dev_unlock();
2076	}
2077}
2078
2079/*
2080 * Grab a particular vnode from the free list, increment its
2081 * reference count and lock it.  VI_DOOMED is set if the vnode
2082 * is being destroyed.  Only callers who specify LK_RETRY will
2083 * see doomed vnodes.  If inactive processing was delayed in
2084 * vput try to do it here.
2085 */
2086int
2087vget(struct vnode *vp, int flags, struct thread *td)
2088{
2089	int error;
2090
2091	error = 0;
2092	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2093	    ("vget: invalid lock operation"));
2094	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2095
2096	if ((flags & LK_INTERLOCK) == 0)
2097		VI_LOCK(vp);
2098	vholdl(vp);
2099	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2100		vdrop(vp);
2101		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2102		    vp);
2103		return (error);
2104	}
2105	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2106		panic("vget: vn_lock failed to return ENOENT\n");
2107	VI_LOCK(vp);
2108	/* Upgrade our holdcnt to a usecount. */
2109	v_upgrade_usecount(vp);
2110	/*
2111	 * We don't guarantee that any particular close will
2112	 * trigger inactive processing so just make a best effort
2113	 * here at preventing a reference to a removed file.  If
2114	 * we don't succeed no harm is done.
2115	 */
2116	if (vp->v_iflag & VI_OWEINACT) {
2117		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2118		    (flags & LK_NOWAIT) == 0)
2119			vinactive(vp, td);
2120		vp->v_iflag &= ~VI_OWEINACT;
2121	}
2122	VI_UNLOCK(vp);
2123	return (0);
2124}
2125
2126/*
2127 * Increase the reference count of a vnode.
2128 */
2129void
2130vref(struct vnode *vp)
2131{
2132
2133	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2134	VI_LOCK(vp);
2135	v_incr_usecount(vp);
2136	VI_UNLOCK(vp);
2137}
2138
2139/*
2140 * Return reference count of a vnode.
2141 *
2142 * The results of this call are only guaranteed when some mechanism other
2143 * than the VI lock is used to stop other processes from gaining references
2144 * to the vnode.  This may be the case if the caller holds the only reference.
2145 * This is also useful when stale data is acceptable as race conditions may
2146 * be accounted for by some other means.
2147 */
2148int
2149vrefcnt(struct vnode *vp)
2150{
2151	int usecnt;
2152
2153	VI_LOCK(vp);
2154	usecnt = vp->v_usecount;
2155	VI_UNLOCK(vp);
2156
2157	return (usecnt);
2158}
2159
2160#define	VPUTX_VRELE	1
2161#define	VPUTX_VPUT	2
2162#define	VPUTX_VUNREF	3
2163
2164static void
2165vputx(struct vnode *vp, int func)
2166{
2167	int error;
2168
2169	KASSERT(vp != NULL, ("vputx: null vp"));
2170	if (func == VPUTX_VUNREF)
2171		ASSERT_VOP_LOCKED(vp, "vunref");
2172	else if (func == VPUTX_VPUT)
2173		ASSERT_VOP_LOCKED(vp, "vput");
2174	else
2175		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2176	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2177	VI_LOCK(vp);
2178
2179	/* Skip this v_writecount check if we're going to panic below. */
2180	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2181	    ("vputx: missed vn_close"));
2182	error = 0;
2183
2184	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2185	    vp->v_usecount == 1)) {
2186		if (func == VPUTX_VPUT)
2187			VOP_UNLOCK(vp, 0);
2188		v_decr_usecount(vp);
2189		return;
2190	}
2191
2192	if (vp->v_usecount != 1) {
2193		vprint("vputx: negative ref count", vp);
2194		panic("vputx: negative ref cnt");
2195	}
2196	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2197	/*
2198	 * We want to hold the vnode until the inactive finishes to
2199	 * prevent vgone() races.  We drop the use count here and the
2200	 * hold count below when we're done.
2201	 */
2202	v_decr_useonly(vp);
2203	/*
2204	 * We must call VOP_INACTIVE with the node locked. Mark
2205	 * as VI_DOINGINACT to avoid recursion.
2206	 */
2207	vp->v_iflag |= VI_OWEINACT;
2208	switch (func) {
2209	case VPUTX_VRELE:
2210		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2211		VI_LOCK(vp);
2212		break;
2213	case VPUTX_VPUT:
2214		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2215			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
2216			    LK_NOWAIT);
2217			VI_LOCK(vp);
2218		}
2219		break;
2220	case VPUTX_VUNREF:
2221		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
2222			error = EBUSY;
2223		break;
2224	}
2225	if (vp->v_usecount > 0)
2226		vp->v_iflag &= ~VI_OWEINACT;
2227	if (error == 0) {
2228		if (vp->v_iflag & VI_OWEINACT)
2229			vinactive(vp, curthread);
2230		if (func != VPUTX_VUNREF)
2231			VOP_UNLOCK(vp, 0);
2232	}
2233	vdropl(vp);
2234}
2235
2236/*
2237 * Vnode put/release.
2238 * If count drops to zero, call inactive routine and return to freelist.
2239 */
2240void
2241vrele(struct vnode *vp)
2242{
2243
2244	vputx(vp, VPUTX_VRELE);
2245}
2246
2247/*
2248 * Release an already locked vnode.  This give the same effects as
2249 * unlock+vrele(), but takes less time and avoids releasing and
2250 * re-aquiring the lock (as vrele() acquires the lock internally.)
2251 */
2252void
2253vput(struct vnode *vp)
2254{
2255
2256	vputx(vp, VPUTX_VPUT);
2257}
2258
2259/*
2260 * Release an exclusively locked vnode. Do not unlock the vnode lock.
2261 */
2262void
2263vunref(struct vnode *vp)
2264{
2265
2266	vputx(vp, VPUTX_VUNREF);
2267}
2268
2269/*
2270 * Somebody doesn't want the vnode recycled.
2271 */
2272void
2273vhold(struct vnode *vp)
2274{
2275
2276	VI_LOCK(vp);
2277	vholdl(vp);
2278	VI_UNLOCK(vp);
2279}
2280
2281/*
2282 * Increase the hold count and activate if this is the first reference.
2283 */
2284void
2285vholdl(struct vnode *vp)
2286{
2287	struct mount *mp;
2288
2289	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2290	vp->v_holdcnt++;
2291	if (!VSHOULDBUSY(vp))
2292		return;
2293	ASSERT_VI_LOCKED(vp, "vholdl");
2294	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
2295	VNASSERT(vp->v_op != NULL, vp, ("vholdl: vnode already reclaimed."));
2296	/*
2297	 * Remove a vnode from the free list, mark it as in use,
2298	 * and put it on the active list.
2299	 */
2300	mtx_lock(&vnode_free_list_mtx);
2301	TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
2302	freevnodes--;
2303	vp->v_iflag &= ~(VI_FREE|VI_AGE);
2304	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
2305	    ("Activating already active vnode"));
2306	vp->v_iflag |= VI_ACTIVE;
2307	mp = vp->v_mount;
2308	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
2309	mp->mnt_activevnodelistsize++;
2310	mtx_unlock(&vnode_free_list_mtx);
2311}
2312
2313/*
2314 * Note that there is one less who cares about this vnode.
2315 * vdrop() is the opposite of vhold().
2316 */
2317void
2318vdrop(struct vnode *vp)
2319{
2320
2321	VI_LOCK(vp);
2322	vdropl(vp);
2323}
2324
2325/*
2326 * Drop the hold count of the vnode.  If this is the last reference to
2327 * the vnode we place it on the free list unless it has been vgone'd
2328 * (marked VI_DOOMED) in which case we will free it.
2329 */
2330void
2331vdropl(struct vnode *vp)
2332{
2333	struct bufobj *bo;
2334	struct mount *mp;
2335	int active;
2336
2337	ASSERT_VI_LOCKED(vp, "vdropl");
2338	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2339	if (vp->v_holdcnt <= 0)
2340		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2341	vp->v_holdcnt--;
2342	if (vp->v_holdcnt > 0) {
2343		VI_UNLOCK(vp);
2344		return;
2345	}
2346	if ((vp->v_iflag & VI_DOOMED) == 0) {
2347		/*
2348		 * Mark a vnode as free: remove it from its active list
2349		 * and put it up for recycling on the freelist.
2350		 */
2351		VNASSERT(vp->v_op != NULL, vp,
2352		    ("vdropl: vnode already reclaimed."));
2353		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2354		    ("vnode already free"));
2355		VNASSERT(VSHOULDFREE(vp), vp,
2356		    ("vdropl: freeing when we shouldn't"));
2357		active = vp->v_iflag & VI_ACTIVE;
2358		vp->v_iflag &= ~VI_ACTIVE;
2359		mp = vp->v_mount;
2360		mtx_lock(&vnode_free_list_mtx);
2361		if (active) {
2362			TAILQ_REMOVE(&mp->mnt_activevnodelist, vp,
2363			    v_actfreelist);
2364			mp->mnt_activevnodelistsize--;
2365		}
2366		if (vp->v_iflag & VI_AGE) {
2367			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_actfreelist);
2368		} else {
2369			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
2370		}
2371		freevnodes++;
2372		vp->v_iflag &= ~VI_AGE;
2373		vp->v_iflag |= VI_FREE;
2374		mtx_unlock(&vnode_free_list_mtx);
2375		VI_UNLOCK(vp);
2376		return;
2377	}
2378	/*
2379	 * The vnode has been marked for destruction, so free it.
2380	 */
2381	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2382	mtx_lock(&vnode_free_list_mtx);
2383	numvnodes--;
2384	mtx_unlock(&vnode_free_list_mtx);
2385	bo = &vp->v_bufobj;
2386	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2387	    ("cleaned vnode still on the free list."));
2388	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2389	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
2390	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2391	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2392	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2393	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2394	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2395	    ("clean blk trie not empty"));
2396	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2397	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2398	    ("dirty blk trie not empty"));
2399	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
2400	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
2401	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
2402	VI_UNLOCK(vp);
2403#ifdef MAC
2404	mac_vnode_destroy(vp);
2405#endif
2406	if (vp->v_pollinfo != NULL)
2407		destroy_vpollinfo(vp->v_pollinfo);
2408#ifdef INVARIANTS
2409	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
2410	vp->v_op = NULL;
2411#endif
2412	rangelock_destroy(&vp->v_rl);
2413	lockdestroy(vp->v_vnlock);
2414	mtx_destroy(&vp->v_interlock);
2415	rw_destroy(BO_LOCKPTR(bo));
2416	uma_zfree(vnode_zone, vp);
2417}
2418
2419/*
2420 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2421 * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2422 * OWEINACT tracks whether a vnode missed a call to inactive due to a
2423 * failed lock upgrade.
2424 */
2425void
2426vinactive(struct vnode *vp, struct thread *td)
2427{
2428	struct vm_object *obj;
2429
2430	ASSERT_VOP_ELOCKED(vp, "vinactive");
2431	ASSERT_VI_LOCKED(vp, "vinactive");
2432	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2433	    ("vinactive: recursed on VI_DOINGINACT"));
2434	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2435	vp->v_iflag |= VI_DOINGINACT;
2436	vp->v_iflag &= ~VI_OWEINACT;
2437	VI_UNLOCK(vp);
2438	/*
2439	 * Before moving off the active list, we must be sure that any
2440	 * modified pages are on the vnode's dirty list since these will
2441	 * no longer be checked once the vnode is on the inactive list.
2442	 * Because the vnode vm object keeps a hold reference on the vnode
2443	 * if there is at least one resident non-cached page, the vnode
2444	 * cannot leave the active list without the page cleanup done.
2445	 */
2446	obj = vp->v_object;
2447	if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0) {
2448		VM_OBJECT_WLOCK(obj);
2449		vm_object_page_clean(obj, 0, 0, OBJPC_NOSYNC);
2450		VM_OBJECT_WUNLOCK(obj);
2451	}
2452	VOP_INACTIVE(vp, td);
2453	VI_LOCK(vp);
2454	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2455	    ("vinactive: lost VI_DOINGINACT"));
2456	vp->v_iflag &= ~VI_DOINGINACT;
2457}
2458
2459/*
2460 * Remove any vnodes in the vnode table belonging to mount point mp.
2461 *
2462 * If FORCECLOSE is not specified, there should not be any active ones,
2463 * return error if any are found (nb: this is a user error, not a
2464 * system error). If FORCECLOSE is specified, detach any active vnodes
2465 * that are found.
2466 *
2467 * If WRITECLOSE is set, only flush out regular file vnodes open for
2468 * writing.
2469 *
2470 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2471 *
2472 * `rootrefs' specifies the base reference count for the root vnode
2473 * of this filesystem. The root vnode is considered busy if its
2474 * v_usecount exceeds this value. On a successful return, vflush(, td)
2475 * will call vrele() on the root vnode exactly rootrefs times.
2476 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2477 * be zero.
2478 */
2479#ifdef DIAGNOSTIC
2480static int busyprt = 0;		/* print out busy vnodes */
2481SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
2482#endif
2483
2484int
2485vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
2486{
2487	struct vnode *vp, *mvp, *rootvp = NULL;
2488	struct vattr vattr;
2489	int busy = 0, error;
2490
2491	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
2492	    rootrefs, flags);
2493	if (rootrefs > 0) {
2494		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2495		    ("vflush: bad args"));
2496		/*
2497		 * Get the filesystem root vnode. We can vput() it
2498		 * immediately, since with rootrefs > 0, it won't go away.
2499		 */
2500		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
2501			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
2502			    __func__, error);
2503			return (error);
2504		}
2505		vput(rootvp);
2506	}
2507loop:
2508	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
2509		vholdl(vp);
2510		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2511		if (error) {
2512			vdrop(vp);
2513			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2514			goto loop;
2515		}
2516		/*
2517		 * Skip over a vnodes marked VV_SYSTEM.
2518		 */
2519		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2520			VOP_UNLOCK(vp, 0);
2521			vdrop(vp);
2522			continue;
2523		}
2524		/*
2525		 * If WRITECLOSE is set, flush out unlinked but still open
2526		 * files (even if open only for reading) and regular file
2527		 * vnodes open for writing.
2528		 */
2529		if (flags & WRITECLOSE) {
2530			if (vp->v_object != NULL) {
2531				VM_OBJECT_WLOCK(vp->v_object);
2532				vm_object_page_clean(vp->v_object, 0, 0, 0);
2533				VM_OBJECT_WUNLOCK(vp->v_object);
2534			}
2535			error = VOP_FSYNC(vp, MNT_WAIT, td);
2536			if (error != 0) {
2537				VOP_UNLOCK(vp, 0);
2538				vdrop(vp);
2539				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2540				return (error);
2541			}
2542			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2543			VI_LOCK(vp);
2544
2545			if ((vp->v_type == VNON ||
2546			    (error == 0 && vattr.va_nlink > 0)) &&
2547			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2548				VOP_UNLOCK(vp, 0);
2549				vdropl(vp);
2550				continue;
2551			}
2552		} else
2553			VI_LOCK(vp);
2554		/*
2555		 * With v_usecount == 0, all we need to do is clear out the
2556		 * vnode data structures and we are done.
2557		 *
2558		 * If FORCECLOSE is set, forcibly close the vnode.
2559		 */
2560		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2561			VNASSERT(vp->v_usecount == 0 ||
2562			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2563			    ("device VNODE %p is FORCECLOSED", vp));
2564			vgonel(vp);
2565		} else {
2566			busy++;
2567#ifdef DIAGNOSTIC
2568			if (busyprt)
2569				vprint("vflush: busy vnode", vp);
2570#endif
2571		}
2572		VOP_UNLOCK(vp, 0);
2573		vdropl(vp);
2574	}
2575	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2576		/*
2577		 * If just the root vnode is busy, and if its refcount
2578		 * is equal to `rootrefs', then go ahead and kill it.
2579		 */
2580		VI_LOCK(rootvp);
2581		KASSERT(busy > 0, ("vflush: not busy"));
2582		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2583		    ("vflush: usecount %d < rootrefs %d",
2584		     rootvp->v_usecount, rootrefs));
2585		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2586			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2587			vgone(rootvp);
2588			VOP_UNLOCK(rootvp, 0);
2589			busy = 0;
2590		} else
2591			VI_UNLOCK(rootvp);
2592	}
2593	if (busy) {
2594		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
2595		    busy);
2596		return (EBUSY);
2597	}
2598	for (; rootrefs > 0; rootrefs--)
2599		vrele(rootvp);
2600	return (0);
2601}
2602
2603/*
2604 * Recycle an unused vnode to the front of the free list.
2605 */
2606int
2607vrecycle(struct vnode *vp)
2608{
2609	int recycled;
2610
2611	ASSERT_VOP_ELOCKED(vp, "vrecycle");
2612	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2613	recycled = 0;
2614	VI_LOCK(vp);
2615	if (vp->v_usecount == 0) {
2616		recycled = 1;
2617		vgonel(vp);
2618	}
2619	VI_UNLOCK(vp);
2620	return (recycled);
2621}
2622
2623/*
2624 * Eliminate all activity associated with a vnode
2625 * in preparation for reuse.
2626 */
2627void
2628vgone(struct vnode *vp)
2629{
2630	VI_LOCK(vp);
2631	vgonel(vp);
2632	VI_UNLOCK(vp);
2633}
2634
2635static void
2636notify_lowervp_vfs_dummy(struct mount *mp __unused,
2637    struct vnode *lowervp __unused)
2638{
2639}
2640
2641/*
2642 * Notify upper mounts about reclaimed or unlinked vnode.
2643 */
2644void
2645vfs_notify_upper(struct vnode *vp, int event)
2646{
2647	static struct vfsops vgonel_vfsops = {
2648		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
2649		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
2650	};
2651	struct mount *mp, *ump, *mmp;
2652
2653	mp = vp->v_mount;
2654	if (mp == NULL)
2655		return;
2656
2657	MNT_ILOCK(mp);
2658	if (TAILQ_EMPTY(&mp->mnt_uppers))
2659		goto unlock;
2660	MNT_IUNLOCK(mp);
2661	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
2662	mmp->mnt_op = &vgonel_vfsops;
2663	mmp->mnt_kern_flag |= MNTK_MARKER;
2664	MNT_ILOCK(mp);
2665	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
2666	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
2667		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
2668			ump = TAILQ_NEXT(ump, mnt_upper_link);
2669			continue;
2670		}
2671		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
2672		MNT_IUNLOCK(mp);
2673		switch (event) {
2674		case VFS_NOTIFY_UPPER_RECLAIM:
2675			VFS_RECLAIM_LOWERVP(ump, vp);
2676			break;
2677		case VFS_NOTIFY_UPPER_UNLINK:
2678			VFS_UNLINK_LOWERVP(ump, vp);
2679			break;
2680		default:
2681			KASSERT(0, ("invalid event %d", event));
2682			break;
2683		}
2684		MNT_ILOCK(mp);
2685		ump = TAILQ_NEXT(mmp, mnt_upper_link);
2686		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
2687	}
2688	free(mmp, M_TEMP);
2689	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
2690	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
2691		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
2692		wakeup(&mp->mnt_uppers);
2693	}
2694unlock:
2695	MNT_IUNLOCK(mp);
2696}
2697
2698/*
2699 * vgone, with the vp interlock held.
2700 */
2701void
2702vgonel(struct vnode *vp)
2703{
2704	struct thread *td;
2705	int oweinact;
2706	int active;
2707	struct mount *mp;
2708
2709	ASSERT_VOP_ELOCKED(vp, "vgonel");
2710	ASSERT_VI_LOCKED(vp, "vgonel");
2711	VNASSERT(vp->v_holdcnt, vp,
2712	    ("vgonel: vp %p has no reference.", vp));
2713	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2714	td = curthread;
2715
2716	/*
2717	 * Don't vgonel if we're already doomed.
2718	 */
2719	if (vp->v_iflag & VI_DOOMED)
2720		return;
2721	vp->v_iflag |= VI_DOOMED;
2722
2723	/*
2724	 * Check to see if the vnode is in use.  If so, we have to call
2725	 * VOP_CLOSE() and VOP_INACTIVE().
2726	 */
2727	active = vp->v_usecount;
2728	oweinact = (vp->v_iflag & VI_OWEINACT);
2729	VI_UNLOCK(vp);
2730	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
2731
2732	/*
2733	 * Clean out any buffers associated with the vnode.
2734	 * If the flush fails, just toss the buffers.
2735	 */
2736	mp = NULL;
2737	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2738		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2739	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0)
2740		vinvalbuf(vp, 0, 0, 0);
2741
2742	/*
2743	 * If purging an active vnode, it must be closed and
2744	 * deactivated before being reclaimed.
2745	 */
2746	if (active)
2747		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2748	if (oweinact || active) {
2749		VI_LOCK(vp);
2750		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2751			vinactive(vp, td);
2752		VI_UNLOCK(vp);
2753	}
2754	if (vp->v_type == VSOCK)
2755		vfs_unp_reclaim(vp);
2756	/*
2757	 * Reclaim the vnode.
2758	 */
2759	if (VOP_RECLAIM(vp, td))
2760		panic("vgone: cannot reclaim");
2761	if (mp != NULL)
2762		vn_finished_secondary_write(mp);
2763	VNASSERT(vp->v_object == NULL, vp,
2764	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2765	/*
2766	 * Clear the advisory locks and wake up waiting threads.
2767	 */
2768	(void)VOP_ADVLOCKPURGE(vp);
2769	/*
2770	 * Delete from old mount point vnode list.
2771	 */
2772	delmntque(vp);
2773	cache_purge(vp);
2774	/*
2775	 * Done with purge, reset to the standard lock and invalidate
2776	 * the vnode.
2777	 */
2778	VI_LOCK(vp);
2779	vp->v_vnlock = &vp->v_lock;
2780	vp->v_op = &dead_vnodeops;
2781	vp->v_tag = "none";
2782	vp->v_type = VBAD;
2783}
2784
2785/*
2786 * Calculate the total number of references to a special device.
2787 */
2788int
2789vcount(struct vnode *vp)
2790{
2791	int count;
2792
2793	dev_lock();
2794	count = vp->v_rdev->si_usecount;
2795	dev_unlock();
2796	return (count);
2797}
2798
2799/*
2800 * Same as above, but using the struct cdev *as argument
2801 */
2802int
2803count_dev(struct cdev *dev)
2804{
2805	int count;
2806
2807	dev_lock();
2808	count = dev->si_usecount;
2809	dev_unlock();
2810	return(count);
2811}
2812
2813/*
2814 * Print out a description of a vnode.
2815 */
2816static char *typename[] =
2817{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2818 "VMARKER"};
2819
2820void
2821vn_printf(struct vnode *vp, const char *fmt, ...)
2822{
2823	va_list ap;
2824	char buf[256], buf2[16];
2825	u_long flags;
2826
2827	va_start(ap, fmt);
2828	vprintf(fmt, ap);
2829	va_end(ap);
2830	printf("%p: ", (void *)vp);
2831	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2832	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2833	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2834	buf[0] = '\0';
2835	buf[1] = '\0';
2836	if (vp->v_vflag & VV_ROOT)
2837		strlcat(buf, "|VV_ROOT", sizeof(buf));
2838	if (vp->v_vflag & VV_ISTTY)
2839		strlcat(buf, "|VV_ISTTY", sizeof(buf));
2840	if (vp->v_vflag & VV_NOSYNC)
2841		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2842	if (vp->v_vflag & VV_ETERNALDEV)
2843		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
2844	if (vp->v_vflag & VV_CACHEDLABEL)
2845		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2846	if (vp->v_vflag & VV_TEXT)
2847		strlcat(buf, "|VV_TEXT", sizeof(buf));
2848	if (vp->v_vflag & VV_COPYONWRITE)
2849		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2850	if (vp->v_vflag & VV_SYSTEM)
2851		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2852	if (vp->v_vflag & VV_PROCDEP)
2853		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2854	if (vp->v_vflag & VV_NOKNOTE)
2855		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2856	if (vp->v_vflag & VV_DELETED)
2857		strlcat(buf, "|VV_DELETED", sizeof(buf));
2858	if (vp->v_vflag & VV_MD)
2859		strlcat(buf, "|VV_MD", sizeof(buf));
2860	if (vp->v_vflag & VV_FORCEINSMQ)
2861		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
2862	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
2863	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2864	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
2865	if (flags != 0) {
2866		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2867		strlcat(buf, buf2, sizeof(buf));
2868	}
2869	if (vp->v_iflag & VI_MOUNT)
2870		strlcat(buf, "|VI_MOUNT", sizeof(buf));
2871	if (vp->v_iflag & VI_AGE)
2872		strlcat(buf, "|VI_AGE", sizeof(buf));
2873	if (vp->v_iflag & VI_DOOMED)
2874		strlcat(buf, "|VI_DOOMED", sizeof(buf));
2875	if (vp->v_iflag & VI_FREE)
2876		strlcat(buf, "|VI_FREE", sizeof(buf));
2877	if (vp->v_iflag & VI_ACTIVE)
2878		strlcat(buf, "|VI_ACTIVE", sizeof(buf));
2879	if (vp->v_iflag & VI_DOINGINACT)
2880		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2881	if (vp->v_iflag & VI_OWEINACT)
2882		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2883	flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2884	    VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT);
2885	if (flags != 0) {
2886		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2887		strlcat(buf, buf2, sizeof(buf));
2888	}
2889	printf("    flags (%s)\n", buf + 1);
2890	if (mtx_owned(VI_MTX(vp)))
2891		printf(" VI_LOCKed");
2892	if (vp->v_object != NULL)
2893		printf("    v_object %p ref %d pages %d\n",
2894		    vp->v_object, vp->v_object->ref_count,
2895		    vp->v_object->resident_page_count);
2896	printf("    ");
2897	lockmgr_printinfo(vp->v_vnlock);
2898	if (vp->v_data != NULL)
2899		VOP_PRINT(vp);
2900}
2901
2902#ifdef DDB
2903/*
2904 * List all of the locked vnodes in the system.
2905 * Called when debugging the kernel.
2906 */
2907DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2908{
2909	struct mount *mp;
2910	struct vnode *vp;
2911
2912	/*
2913	 * Note: because this is DDB, we can't obey the locking semantics
2914	 * for these structures, which means we could catch an inconsistent
2915	 * state and dereference a nasty pointer.  Not much to be done
2916	 * about that.
2917	 */
2918	db_printf("Locked vnodes\n");
2919	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2920		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2921			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
2922				vprint("", vp);
2923		}
2924	}
2925}
2926
2927/*
2928 * Show details about the given vnode.
2929 */
2930DB_SHOW_COMMAND(vnode, db_show_vnode)
2931{
2932	struct vnode *vp;
2933
2934	if (!have_addr)
2935		return;
2936	vp = (struct vnode *)addr;
2937	vn_printf(vp, "vnode ");
2938}
2939
2940/*
2941 * Show details about the given mount point.
2942 */
2943DB_SHOW_COMMAND(mount, db_show_mount)
2944{
2945	struct mount *mp;
2946	struct vfsopt *opt;
2947	struct statfs *sp;
2948	struct vnode *vp;
2949	char buf[512];
2950	uint64_t mflags;
2951	u_int flags;
2952
2953	if (!have_addr) {
2954		/* No address given, print short info about all mount points. */
2955		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2956			db_printf("%p %s on %s (%s)\n", mp,
2957			    mp->mnt_stat.f_mntfromname,
2958			    mp->mnt_stat.f_mntonname,
2959			    mp->mnt_stat.f_fstypename);
2960			if (db_pager_quit)
2961				break;
2962		}
2963		db_printf("\nMore info: show mount <addr>\n");
2964		return;
2965	}
2966
2967	mp = (struct mount *)addr;
2968	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
2969	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
2970
2971	buf[0] = '\0';
2972	mflags = mp->mnt_flag;
2973#define	MNT_FLAG(flag)	do {						\
2974	if (mflags & (flag)) {						\
2975		if (buf[0] != '\0')					\
2976			strlcat(buf, ", ", sizeof(buf));		\
2977		strlcat(buf, (#flag) + 4, sizeof(buf));			\
2978		mflags &= ~(flag);					\
2979	}								\
2980} while (0)
2981	MNT_FLAG(MNT_RDONLY);
2982	MNT_FLAG(MNT_SYNCHRONOUS);
2983	MNT_FLAG(MNT_NOEXEC);
2984	MNT_FLAG(MNT_NOSUID);
2985	MNT_FLAG(MNT_NFS4ACLS);
2986	MNT_FLAG(MNT_UNION);
2987	MNT_FLAG(MNT_ASYNC);
2988	MNT_FLAG(MNT_SUIDDIR);
2989	MNT_FLAG(MNT_SOFTDEP);
2990	MNT_FLAG(MNT_NOSYMFOLLOW);
2991	MNT_FLAG(MNT_GJOURNAL);
2992	MNT_FLAG(MNT_MULTILABEL);
2993	MNT_FLAG(MNT_ACLS);
2994	MNT_FLAG(MNT_NOATIME);
2995	MNT_FLAG(MNT_NOCLUSTERR);
2996	MNT_FLAG(MNT_NOCLUSTERW);
2997	MNT_FLAG(MNT_SUJ);
2998	MNT_FLAG(MNT_EXRDONLY);
2999	MNT_FLAG(MNT_EXPORTED);
3000	MNT_FLAG(MNT_DEFEXPORTED);
3001	MNT_FLAG(MNT_EXPORTANON);
3002	MNT_FLAG(MNT_EXKERB);
3003	MNT_FLAG(MNT_EXPUBLIC);
3004	MNT_FLAG(MNT_LOCAL);
3005	MNT_FLAG(MNT_QUOTA);
3006	MNT_FLAG(MNT_ROOTFS);
3007	MNT_FLAG(MNT_USER);
3008	MNT_FLAG(MNT_IGNORE);
3009	MNT_FLAG(MNT_UPDATE);
3010	MNT_FLAG(MNT_DELEXPORT);
3011	MNT_FLAG(MNT_RELOAD);
3012	MNT_FLAG(MNT_FORCE);
3013	MNT_FLAG(MNT_SNAPSHOT);
3014	MNT_FLAG(MNT_BYFSID);
3015#undef MNT_FLAG
3016	if (mflags != 0) {
3017		if (buf[0] != '\0')
3018			strlcat(buf, ", ", sizeof(buf));
3019		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3020		    "0x%016jx", mflags);
3021	}
3022	db_printf("    mnt_flag = %s\n", buf);
3023
3024	buf[0] = '\0';
3025	flags = mp->mnt_kern_flag;
3026#define	MNT_KERN_FLAG(flag)	do {					\
3027	if (flags & (flag)) {						\
3028		if (buf[0] != '\0')					\
3029			strlcat(buf, ", ", sizeof(buf));		\
3030		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3031		flags &= ~(flag);					\
3032	}								\
3033} while (0)
3034	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3035	MNT_KERN_FLAG(MNTK_ASYNC);
3036	MNT_KERN_FLAG(MNTK_SOFTDEP);
3037	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
3038	MNT_KERN_FLAG(MNTK_DRAINING);
3039	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3040	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3041	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3042	MNT_KERN_FLAG(MNTK_NO_IOPF);
3043	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
3044	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
3045	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
3046	MNT_KERN_FLAG(MNTK_MARKER);
3047	MNT_KERN_FLAG(MNTK_NOASYNC);
3048	MNT_KERN_FLAG(MNTK_UNMOUNT);
3049	MNT_KERN_FLAG(MNTK_MWAIT);
3050	MNT_KERN_FLAG(MNTK_SUSPEND);
3051	MNT_KERN_FLAG(MNTK_SUSPEND2);
3052	MNT_KERN_FLAG(MNTK_SUSPENDED);
3053	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
3054	MNT_KERN_FLAG(MNTK_NOKNOTE);
3055#undef MNT_KERN_FLAG
3056	if (flags != 0) {
3057		if (buf[0] != '\0')
3058			strlcat(buf, ", ", sizeof(buf));
3059		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3060		    "0x%08x", flags);
3061	}
3062	db_printf("    mnt_kern_flag = %s\n", buf);
3063
3064	db_printf("    mnt_opt = ");
3065	opt = TAILQ_FIRST(mp->mnt_opt);
3066	if (opt != NULL) {
3067		db_printf("%s", opt->name);
3068		opt = TAILQ_NEXT(opt, link);
3069		while (opt != NULL) {
3070			db_printf(", %s", opt->name);
3071			opt = TAILQ_NEXT(opt, link);
3072		}
3073	}
3074	db_printf("\n");
3075
3076	sp = &mp->mnt_stat;
3077	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
3078	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
3079	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
3080	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
3081	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
3082	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
3083	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
3084	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
3085	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
3086	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
3087	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
3088	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
3089
3090	db_printf("    mnt_cred = { uid=%u ruid=%u",
3091	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
3092	if (jailed(mp->mnt_cred))
3093		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
3094	db_printf(" }\n");
3095	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
3096	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
3097	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
3098	db_printf("    mnt_activevnodelistsize = %d\n",
3099	    mp->mnt_activevnodelistsize);
3100	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
3101	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
3102	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
3103	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
3104	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
3105	db_printf("    mnt_secondary_accwrites = %d\n",
3106	    mp->mnt_secondary_accwrites);
3107	db_printf("    mnt_gjprovider = %s\n",
3108	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
3109
3110	db_printf("\n\nList of active vnodes\n");
3111	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
3112		if (vp->v_type != VMARKER) {
3113			vn_printf(vp, "vnode ");
3114			if (db_pager_quit)
3115				break;
3116		}
3117	}
3118	db_printf("\n\nList of inactive vnodes\n");
3119	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3120		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
3121			vn_printf(vp, "vnode ");
3122			if (db_pager_quit)
3123				break;
3124		}
3125	}
3126}
3127#endif	/* DDB */
3128
3129/*
3130 * Fill in a struct xvfsconf based on a struct vfsconf.
3131 */
3132static int
3133vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
3134{
3135	struct xvfsconf xvfsp;
3136
3137	bzero(&xvfsp, sizeof(xvfsp));
3138	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3139	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3140	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3141	xvfsp.vfc_flags = vfsp->vfc_flags;
3142	/*
3143	 * These are unused in userland, we keep them
3144	 * to not break binary compatibility.
3145	 */
3146	xvfsp.vfc_vfsops = NULL;
3147	xvfsp.vfc_next = NULL;
3148	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3149}
3150
3151#ifdef COMPAT_FREEBSD32
3152struct xvfsconf32 {
3153	uint32_t	vfc_vfsops;
3154	char		vfc_name[MFSNAMELEN];
3155	int32_t		vfc_typenum;
3156	int32_t		vfc_refcount;
3157	int32_t		vfc_flags;
3158	uint32_t	vfc_next;
3159};
3160
3161static int
3162vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
3163{
3164	struct xvfsconf32 xvfsp;
3165
3166	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3167	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3168	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3169	xvfsp.vfc_flags = vfsp->vfc_flags;
3170	xvfsp.vfc_vfsops = 0;
3171	xvfsp.vfc_next = 0;
3172	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3173}
3174#endif
3175
3176/*
3177 * Top level filesystem related information gathering.
3178 */
3179static int
3180sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
3181{
3182	struct vfsconf *vfsp;
3183	int error;
3184
3185	error = 0;
3186	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3187#ifdef COMPAT_FREEBSD32
3188		if (req->flags & SCTL_MASK32)
3189			error = vfsconf2x32(req, vfsp);
3190		else
3191#endif
3192			error = vfsconf2x(req, vfsp);
3193		if (error)
3194			break;
3195	}
3196	return (error);
3197}
3198
3199SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD,
3200    NULL, 0, sysctl_vfs_conflist,
3201    "S,xvfsconf", "List of all configured filesystems");
3202
3203#ifndef BURN_BRIDGES
3204static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
3205
3206static int
3207vfs_sysctl(SYSCTL_HANDLER_ARGS)
3208{
3209	int *name = (int *)arg1 - 1;	/* XXX */
3210	u_int namelen = arg2 + 1;	/* XXX */
3211	struct vfsconf *vfsp;
3212
3213	log(LOG_WARNING, "userland calling deprecated sysctl, "
3214	    "please rebuild world\n");
3215
3216#if 1 || defined(COMPAT_PRELITE2)
3217	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3218	if (namelen == 1)
3219		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3220#endif
3221
3222	switch (name[1]) {
3223	case VFS_MAXTYPENUM:
3224		if (namelen != 2)
3225			return (ENOTDIR);
3226		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3227	case VFS_CONF:
3228		if (namelen != 3)
3229			return (ENOTDIR);	/* overloaded */
3230		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
3231			if (vfsp->vfc_typenum == name[2])
3232				break;
3233		if (vfsp == NULL)
3234			return (EOPNOTSUPP);
3235#ifdef COMPAT_FREEBSD32
3236		if (req->flags & SCTL_MASK32)
3237			return (vfsconf2x32(req, vfsp));
3238		else
3239#endif
3240			return (vfsconf2x(req, vfsp));
3241	}
3242	return (EOPNOTSUPP);
3243}
3244
3245static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
3246    vfs_sysctl, "Generic filesystem");
3247
3248#if 1 || defined(COMPAT_PRELITE2)
3249
3250static int
3251sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3252{
3253	int error;
3254	struct vfsconf *vfsp;
3255	struct ovfsconf ovfs;
3256
3257	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3258		bzero(&ovfs, sizeof(ovfs));
3259		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3260		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3261		ovfs.vfc_index = vfsp->vfc_typenum;
3262		ovfs.vfc_refcount = vfsp->vfc_refcount;
3263		ovfs.vfc_flags = vfsp->vfc_flags;
3264		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3265		if (error)
3266			return error;
3267	}
3268	return 0;
3269}
3270
3271#endif /* 1 || COMPAT_PRELITE2 */
3272#endif /* !BURN_BRIDGES */
3273
3274#define KINFO_VNODESLOP		10
3275#ifdef notyet
3276/*
3277 * Dump vnode list (via sysctl).
3278 */
3279/* ARGSUSED */
3280static int
3281sysctl_vnode(SYSCTL_HANDLER_ARGS)
3282{
3283	struct xvnode *xvn;
3284	struct mount *mp;
3285	struct vnode *vp;
3286	int error, len, n;
3287
3288	/*
3289	 * Stale numvnodes access is not fatal here.
3290	 */
3291	req->lock = 0;
3292	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3293	if (!req->oldptr)
3294		/* Make an estimate */
3295		return (SYSCTL_OUT(req, 0, len));
3296
3297	error = sysctl_wire_old_buffer(req, 0);
3298	if (error != 0)
3299		return (error);
3300	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3301	n = 0;
3302	mtx_lock(&mountlist_mtx);
3303	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3304		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3305			continue;
3306		MNT_ILOCK(mp);
3307		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3308			if (n == len)
3309				break;
3310			vref(vp);
3311			xvn[n].xv_size = sizeof *xvn;
3312			xvn[n].xv_vnode = vp;
3313			xvn[n].xv_id = 0;	/* XXX compat */
3314#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3315			XV_COPY(usecount);
3316			XV_COPY(writecount);
3317			XV_COPY(holdcnt);
3318			XV_COPY(mount);
3319			XV_COPY(numoutput);
3320			XV_COPY(type);
3321#undef XV_COPY
3322			xvn[n].xv_flag = vp->v_vflag;
3323
3324			switch (vp->v_type) {
3325			case VREG:
3326			case VDIR:
3327			case VLNK:
3328				break;
3329			case VBLK:
3330			case VCHR:
3331				if (vp->v_rdev == NULL) {
3332					vrele(vp);
3333					continue;
3334				}
3335				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3336				break;
3337			case VSOCK:
3338				xvn[n].xv_socket = vp->v_socket;
3339				break;
3340			case VFIFO:
3341				xvn[n].xv_fifo = vp->v_fifoinfo;
3342				break;
3343			case VNON:
3344			case VBAD:
3345			default:
3346				/* shouldn't happen? */
3347				vrele(vp);
3348				continue;
3349			}
3350			vrele(vp);
3351			++n;
3352		}
3353		MNT_IUNLOCK(mp);
3354		mtx_lock(&mountlist_mtx);
3355		vfs_unbusy(mp);
3356		if (n == len)
3357			break;
3358	}
3359	mtx_unlock(&mountlist_mtx);
3360
3361	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3362	free(xvn, M_TEMP);
3363	return (error);
3364}
3365
3366SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3367    0, 0, sysctl_vnode, "S,xvnode", "");
3368#endif
3369
3370/*
3371 * Unmount all filesystems. The list is traversed in reverse order
3372 * of mounting to avoid dependencies.
3373 */
3374void
3375vfs_unmountall(void)
3376{
3377	struct mount *mp;
3378	struct thread *td;
3379	int error;
3380
3381	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
3382	td = curthread;
3383
3384	/*
3385	 * Since this only runs when rebooting, it is not interlocked.
3386	 */
3387	while(!TAILQ_EMPTY(&mountlist)) {
3388		mp = TAILQ_LAST(&mountlist, mntlist);
3389		error = dounmount(mp, MNT_FORCE, td);
3390		if (error) {
3391			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3392			/*
3393			 * XXX: Due to the way in which we mount the root
3394			 * file system off of devfs, devfs will generate a
3395			 * "busy" warning when we try to unmount it before
3396			 * the root.  Don't print a warning as a result in
3397			 * order to avoid false positive errors that may
3398			 * cause needless upset.
3399			 */
3400			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3401				printf("unmount of %s failed (",
3402				    mp->mnt_stat.f_mntonname);
3403				if (error == EBUSY)
3404					printf("BUSY)\n");
3405				else
3406					printf("%d)\n", error);
3407			}
3408		} else {
3409			/* The unmount has removed mp from the mountlist */
3410		}
3411	}
3412}
3413
3414/*
3415 * perform msync on all vnodes under a mount point
3416 * the mount point must be locked.
3417 */
3418void
3419vfs_msync(struct mount *mp, int flags)
3420{
3421	struct vnode *vp, *mvp;
3422	struct vm_object *obj;
3423
3424	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
3425	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
3426		obj = vp->v_object;
3427		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
3428		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3429			if (!vget(vp,
3430			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3431			    curthread)) {
3432				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3433					vput(vp);
3434					continue;
3435				}
3436
3437				obj = vp->v_object;
3438				if (obj != NULL) {
3439					VM_OBJECT_WLOCK(obj);
3440					vm_object_page_clean(obj, 0, 0,
3441					    flags == MNT_WAIT ?
3442					    OBJPC_SYNC : OBJPC_NOSYNC);
3443					VM_OBJECT_WUNLOCK(obj);
3444				}
3445				vput(vp);
3446			}
3447		} else
3448			VI_UNLOCK(vp);
3449	}
3450}
3451
3452static void
3453destroy_vpollinfo_free(struct vpollinfo *vi)
3454{
3455
3456	knlist_destroy(&vi->vpi_selinfo.si_note);
3457	mtx_destroy(&vi->vpi_lock);
3458	uma_zfree(vnodepoll_zone, vi);
3459}
3460
3461static void
3462destroy_vpollinfo(struct vpollinfo *vi)
3463{
3464
3465	knlist_clear(&vi->vpi_selinfo.si_note, 1);
3466	seldrain(&vi->vpi_selinfo);
3467	destroy_vpollinfo_free(vi);
3468}
3469
3470/*
3471 * Initalize per-vnode helper structure to hold poll-related state.
3472 */
3473void
3474v_addpollinfo(struct vnode *vp)
3475{
3476	struct vpollinfo *vi;
3477
3478	if (vp->v_pollinfo != NULL)
3479		return;
3480	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3481	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3482	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3483	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
3484	VI_LOCK(vp);
3485	if (vp->v_pollinfo != NULL) {
3486		VI_UNLOCK(vp);
3487		destroy_vpollinfo_free(vi);
3488		return;
3489	}
3490	vp->v_pollinfo = vi;
3491	VI_UNLOCK(vp);
3492}
3493
3494/*
3495 * Record a process's interest in events which might happen to
3496 * a vnode.  Because poll uses the historic select-style interface
3497 * internally, this routine serves as both the ``check for any
3498 * pending events'' and the ``record my interest in future events''
3499 * functions.  (These are done together, while the lock is held,
3500 * to avoid race conditions.)
3501 */
3502int
3503vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3504{
3505
3506	v_addpollinfo(vp);
3507	mtx_lock(&vp->v_pollinfo->vpi_lock);
3508	if (vp->v_pollinfo->vpi_revents & events) {
3509		/*
3510		 * This leaves events we are not interested
3511		 * in available for the other process which
3512		 * which presumably had requested them
3513		 * (otherwise they would never have been
3514		 * recorded).
3515		 */
3516		events &= vp->v_pollinfo->vpi_revents;
3517		vp->v_pollinfo->vpi_revents &= ~events;
3518
3519		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3520		return (events);
3521	}
3522	vp->v_pollinfo->vpi_events |= events;
3523	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3524	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3525	return (0);
3526}
3527
3528/*
3529 * Routine to create and manage a filesystem syncer vnode.
3530 */
3531#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3532static int	sync_fsync(struct  vop_fsync_args *);
3533static int	sync_inactive(struct  vop_inactive_args *);
3534static int	sync_reclaim(struct  vop_reclaim_args *);
3535
3536static struct vop_vector sync_vnodeops = {
3537	.vop_bypass =	VOP_EOPNOTSUPP,
3538	.vop_close =	sync_close,		/* close */
3539	.vop_fsync =	sync_fsync,		/* fsync */
3540	.vop_inactive =	sync_inactive,	/* inactive */
3541	.vop_reclaim =	sync_reclaim,	/* reclaim */
3542	.vop_lock1 =	vop_stdlock,	/* lock */
3543	.vop_unlock =	vop_stdunlock,	/* unlock */
3544	.vop_islocked =	vop_stdislocked,	/* islocked */
3545};
3546
3547/*
3548 * Create a new filesystem syncer vnode for the specified mount point.
3549 */
3550void
3551vfs_allocate_syncvnode(struct mount *mp)
3552{
3553	struct vnode *vp;
3554	struct bufobj *bo;
3555	static long start, incr, next;
3556	int error;
3557
3558	/* Allocate a new vnode */
3559	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
3560	if (error != 0)
3561		panic("vfs_allocate_syncvnode: getnewvnode() failed");
3562	vp->v_type = VNON;
3563	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3564	vp->v_vflag |= VV_FORCEINSMQ;
3565	error = insmntque(vp, mp);
3566	if (error != 0)
3567		panic("vfs_allocate_syncvnode: insmntque() failed");
3568	vp->v_vflag &= ~VV_FORCEINSMQ;
3569	VOP_UNLOCK(vp, 0);
3570	/*
3571	 * Place the vnode onto the syncer worklist. We attempt to
3572	 * scatter them about on the list so that they will go off
3573	 * at evenly distributed times even if all the filesystems
3574	 * are mounted at once.
3575	 */
3576	next += incr;
3577	if (next == 0 || next > syncer_maxdelay) {
3578		start /= 2;
3579		incr /= 2;
3580		if (start == 0) {
3581			start = syncer_maxdelay / 2;
3582			incr = syncer_maxdelay;
3583		}
3584		next = start;
3585	}
3586	bo = &vp->v_bufobj;
3587	BO_LOCK(bo);
3588	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3589	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3590	mtx_lock(&sync_mtx);
3591	sync_vnode_count++;
3592	if (mp->mnt_syncer == NULL) {
3593		mp->mnt_syncer = vp;
3594		vp = NULL;
3595	}
3596	mtx_unlock(&sync_mtx);
3597	BO_UNLOCK(bo);
3598	if (vp != NULL) {
3599		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3600		vgone(vp);
3601		vput(vp);
3602	}
3603}
3604
3605void
3606vfs_deallocate_syncvnode(struct mount *mp)
3607{
3608	struct vnode *vp;
3609
3610	mtx_lock(&sync_mtx);
3611	vp = mp->mnt_syncer;
3612	if (vp != NULL)
3613		mp->mnt_syncer = NULL;
3614	mtx_unlock(&sync_mtx);
3615	if (vp != NULL)
3616		vrele(vp);
3617}
3618
3619/*
3620 * Do a lazy sync of the filesystem.
3621 */
3622static int
3623sync_fsync(struct vop_fsync_args *ap)
3624{
3625	struct vnode *syncvp = ap->a_vp;
3626	struct mount *mp = syncvp->v_mount;
3627	int error, save;
3628	struct bufobj *bo;
3629
3630	/*
3631	 * We only need to do something if this is a lazy evaluation.
3632	 */
3633	if (ap->a_waitfor != MNT_LAZY)
3634		return (0);
3635
3636	/*
3637	 * Move ourselves to the back of the sync list.
3638	 */
3639	bo = &syncvp->v_bufobj;
3640	BO_LOCK(bo);
3641	vn_syncer_add_to_worklist(bo, syncdelay);
3642	BO_UNLOCK(bo);
3643
3644	/*
3645	 * Walk the list of vnodes pushing all that are dirty and
3646	 * not already on the sync list.
3647	 */
3648	mtx_lock(&mountlist_mtx);
3649	if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) != 0) {
3650		mtx_unlock(&mountlist_mtx);
3651		return (0);
3652	}
3653	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3654		vfs_unbusy(mp);
3655		return (0);
3656	}
3657	save = curthread_pflags_set(TDP_SYNCIO);
3658	vfs_msync(mp, MNT_NOWAIT);
3659	error = VFS_SYNC(mp, MNT_LAZY);
3660	curthread_pflags_restore(save);
3661	vn_finished_write(mp);
3662	vfs_unbusy(mp);
3663	return (error);
3664}
3665
3666/*
3667 * The syncer vnode is no referenced.
3668 */
3669static int
3670sync_inactive(struct vop_inactive_args *ap)
3671{
3672
3673	vgone(ap->a_vp);
3674	return (0);
3675}
3676
3677/*
3678 * The syncer vnode is no longer needed and is being decommissioned.
3679 *
3680 * Modifications to the worklist must be protected by sync_mtx.
3681 */
3682static int
3683sync_reclaim(struct vop_reclaim_args *ap)
3684{
3685	struct vnode *vp = ap->a_vp;
3686	struct bufobj *bo;
3687
3688	bo = &vp->v_bufobj;
3689	BO_LOCK(bo);
3690	mtx_lock(&sync_mtx);
3691	if (vp->v_mount->mnt_syncer == vp)
3692		vp->v_mount->mnt_syncer = NULL;
3693	if (bo->bo_flag & BO_ONWORKLST) {
3694		LIST_REMOVE(bo, bo_synclist);
3695		syncer_worklist_len--;
3696		sync_vnode_count--;
3697		bo->bo_flag &= ~BO_ONWORKLST;
3698	}
3699	mtx_unlock(&sync_mtx);
3700	BO_UNLOCK(bo);
3701
3702	return (0);
3703}
3704
3705/*
3706 * Check if vnode represents a disk device
3707 */
3708int
3709vn_isdisk(struct vnode *vp, int *errp)
3710{
3711	int error;
3712
3713	error = 0;
3714	dev_lock();
3715	if (vp->v_type != VCHR)
3716		error = ENOTBLK;
3717	else if (vp->v_rdev == NULL)
3718		error = ENXIO;
3719	else if (vp->v_rdev->si_devsw == NULL)
3720		error = ENXIO;
3721	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3722		error = ENOTBLK;
3723	dev_unlock();
3724	if (errp != NULL)
3725		*errp = error;
3726	return (error == 0);
3727}
3728
3729/*
3730 * Common filesystem object access control check routine.  Accepts a
3731 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3732 * and optional call-by-reference privused argument allowing vaccess()
3733 * to indicate to the caller whether privilege was used to satisfy the
3734 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3735 */
3736int
3737vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3738    accmode_t accmode, struct ucred *cred, int *privused)
3739{
3740	accmode_t dac_granted;
3741	accmode_t priv_granted;
3742
3743	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
3744	    ("invalid bit in accmode"));
3745	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
3746	    ("VAPPEND without VWRITE"));
3747
3748	/*
3749	 * Look for a normal, non-privileged way to access the file/directory
3750	 * as requested.  If it exists, go with that.
3751	 */
3752
3753	if (privused != NULL)
3754		*privused = 0;
3755
3756	dac_granted = 0;
3757
3758	/* Check the owner. */
3759	if (cred->cr_uid == file_uid) {
3760		dac_granted |= VADMIN;
3761		if (file_mode & S_IXUSR)
3762			dac_granted |= VEXEC;
3763		if (file_mode & S_IRUSR)
3764			dac_granted |= VREAD;
3765		if (file_mode & S_IWUSR)
3766			dac_granted |= (VWRITE | VAPPEND);
3767
3768		if ((accmode & dac_granted) == accmode)
3769			return (0);
3770
3771		goto privcheck;
3772	}
3773
3774	/* Otherwise, check the groups (first match) */
3775	if (groupmember(file_gid, cred)) {
3776		if (file_mode & S_IXGRP)
3777			dac_granted |= VEXEC;
3778		if (file_mode & S_IRGRP)
3779			dac_granted |= VREAD;
3780		if (file_mode & S_IWGRP)
3781			dac_granted |= (VWRITE | VAPPEND);
3782
3783		if ((accmode & dac_granted) == accmode)
3784			return (0);
3785
3786		goto privcheck;
3787	}
3788
3789	/* Otherwise, check everyone else. */
3790	if (file_mode & S_IXOTH)
3791		dac_granted |= VEXEC;
3792	if (file_mode & S_IROTH)
3793		dac_granted |= VREAD;
3794	if (file_mode & S_IWOTH)
3795		dac_granted |= (VWRITE | VAPPEND);
3796	if ((accmode & dac_granted) == accmode)
3797		return (0);
3798
3799privcheck:
3800	/*
3801	 * Build a privilege mask to determine if the set of privileges
3802	 * satisfies the requirements when combined with the granted mask
3803	 * from above.  For each privilege, if the privilege is required,
3804	 * bitwise or the request type onto the priv_granted mask.
3805	 */
3806	priv_granted = 0;
3807
3808	if (type == VDIR) {
3809		/*
3810		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3811		 * requests, instead of PRIV_VFS_EXEC.
3812		 */
3813		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3814		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3815			priv_granted |= VEXEC;
3816	} else {
3817		/*
3818		 * Ensure that at least one execute bit is on. Otherwise,
3819		 * a privileged user will always succeed, and we don't want
3820		 * this to happen unless the file really is executable.
3821		 */
3822		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3823		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
3824		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3825			priv_granted |= VEXEC;
3826	}
3827
3828	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
3829	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
3830		priv_granted |= VREAD;
3831
3832	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3833	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3834		priv_granted |= (VWRITE | VAPPEND);
3835
3836	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3837	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3838		priv_granted |= VADMIN;
3839
3840	if ((accmode & (priv_granted | dac_granted)) == accmode) {
3841		/* XXX audit: privilege used */
3842		if (privused != NULL)
3843			*privused = 1;
3844		return (0);
3845	}
3846
3847	return ((accmode & VADMIN) ? EPERM : EACCES);
3848}
3849
3850/*
3851 * Credential check based on process requesting service, and per-attribute
3852 * permissions.
3853 */
3854int
3855extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3856    struct thread *td, accmode_t accmode)
3857{
3858
3859	/*
3860	 * Kernel-invoked always succeeds.
3861	 */
3862	if (cred == NOCRED)
3863		return (0);
3864
3865	/*
3866	 * Do not allow privileged processes in jail to directly manipulate
3867	 * system attributes.
3868	 */
3869	switch (attrnamespace) {
3870	case EXTATTR_NAMESPACE_SYSTEM:
3871		/* Potentially should be: return (EPERM); */
3872		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3873	case EXTATTR_NAMESPACE_USER:
3874		return (VOP_ACCESS(vp, accmode, cred, td));
3875	default:
3876		return (EPERM);
3877	}
3878}
3879
3880#ifdef DEBUG_VFS_LOCKS
3881/*
3882 * This only exists to supress warnings from unlocked specfs accesses.  It is
3883 * no longer ok to have an unlocked VFS.
3884 */
3885#define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
3886	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
3887
3888int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3889SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
3890    "Drop into debugger on lock violation");
3891
3892int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3893SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
3894    0, "Check for interlock across VOPs");
3895
3896int vfs_badlock_print = 1;	/* Print lock violations. */
3897SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
3898    0, "Print lock violations");
3899
3900#ifdef KDB
3901int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3902SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
3903    &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
3904#endif
3905
3906static void
3907vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3908{
3909
3910#ifdef KDB
3911	if (vfs_badlock_backtrace)
3912		kdb_backtrace();
3913#endif
3914	if (vfs_badlock_print)
3915		printf("%s: %p %s\n", str, (void *)vp, msg);
3916	if (vfs_badlock_ddb)
3917		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3918}
3919
3920void
3921assert_vi_locked(struct vnode *vp, const char *str)
3922{
3923
3924	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3925		vfs_badlock("interlock is not locked but should be", str, vp);
3926}
3927
3928void
3929assert_vi_unlocked(struct vnode *vp, const char *str)
3930{
3931
3932	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3933		vfs_badlock("interlock is locked but should not be", str, vp);
3934}
3935
3936void
3937assert_vop_locked(struct vnode *vp, const char *str)
3938{
3939	int locked;
3940
3941	if (!IGNORE_LOCK(vp)) {
3942		locked = VOP_ISLOCKED(vp);
3943		if (locked == 0 || locked == LK_EXCLOTHER)
3944			vfs_badlock("is not locked but should be", str, vp);
3945	}
3946}
3947
3948void
3949assert_vop_unlocked(struct vnode *vp, const char *str)
3950{
3951
3952	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
3953		vfs_badlock("is locked but should not be", str, vp);
3954}
3955
3956void
3957assert_vop_elocked(struct vnode *vp, const char *str)
3958{
3959
3960	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
3961		vfs_badlock("is not exclusive locked but should be", str, vp);
3962}
3963
3964#if 0
3965void
3966assert_vop_elocked_other(struct vnode *vp, const char *str)
3967{
3968
3969	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
3970		vfs_badlock("is not exclusive locked by another thread",
3971		    str, vp);
3972}
3973
3974void
3975assert_vop_slocked(struct vnode *vp, const char *str)
3976{
3977
3978	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
3979		vfs_badlock("is not locked shared but should be", str, vp);
3980}
3981#endif /* 0 */
3982#endif /* DEBUG_VFS_LOCKS */
3983
3984void
3985vop_rename_fail(struct vop_rename_args *ap)
3986{
3987
3988	if (ap->a_tvp != NULL)
3989		vput(ap->a_tvp);
3990	if (ap->a_tdvp == ap->a_tvp)
3991		vrele(ap->a_tdvp);
3992	else
3993		vput(ap->a_tdvp);
3994	vrele(ap->a_fdvp);
3995	vrele(ap->a_fvp);
3996}
3997
3998void
3999vop_rename_pre(void *ap)
4000{
4001	struct vop_rename_args *a = ap;
4002
4003#ifdef DEBUG_VFS_LOCKS
4004	if (a->a_tvp)
4005		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
4006	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
4007	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
4008	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
4009
4010	/* Check the source (from). */
4011	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
4012	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
4013		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
4014	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
4015		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
4016
4017	/* Check the target. */
4018	if (a->a_tvp)
4019		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
4020	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
4021#endif
4022	if (a->a_tdvp != a->a_fdvp)
4023		vhold(a->a_fdvp);
4024	if (a->a_tvp != a->a_fvp)
4025		vhold(a->a_fvp);
4026	vhold(a->a_tdvp);
4027	if (a->a_tvp)
4028		vhold(a->a_tvp);
4029}
4030
4031void
4032vop_strategy_pre(void *ap)
4033{
4034#ifdef DEBUG_VFS_LOCKS
4035	struct vop_strategy_args *a;
4036	struct buf *bp;
4037
4038	a = ap;
4039	bp = a->a_bp;
4040
4041	/*
4042	 * Cluster ops lock their component buffers but not the IO container.
4043	 */
4044	if ((bp->b_flags & B_CLUSTER) != 0)
4045		return;
4046
4047	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
4048		if (vfs_badlock_print)
4049			printf(
4050			    "VOP_STRATEGY: bp is not locked but should be\n");
4051		if (vfs_badlock_ddb)
4052			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4053	}
4054#endif
4055}
4056
4057void
4058vop_lock_pre(void *ap)
4059{
4060#ifdef DEBUG_VFS_LOCKS
4061	struct vop_lock1_args *a = ap;
4062
4063	if ((a->a_flags & LK_INTERLOCK) == 0)
4064		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4065	else
4066		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
4067#endif
4068}
4069
4070void
4071vop_lock_post(void *ap, int rc)
4072{
4073#ifdef DEBUG_VFS_LOCKS
4074	struct vop_lock1_args *a = ap;
4075
4076	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4077	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
4078		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
4079#endif
4080}
4081
4082void
4083vop_unlock_pre(void *ap)
4084{
4085#ifdef DEBUG_VFS_LOCKS
4086	struct vop_unlock_args *a = ap;
4087
4088	if (a->a_flags & LK_INTERLOCK)
4089		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
4090	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
4091#endif
4092}
4093
4094void
4095vop_unlock_post(void *ap, int rc)
4096{
4097#ifdef DEBUG_VFS_LOCKS
4098	struct vop_unlock_args *a = ap;
4099
4100	if (a->a_flags & LK_INTERLOCK)
4101		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
4102#endif
4103}
4104
4105void
4106vop_create_post(void *ap, int rc)
4107{
4108	struct vop_create_args *a = ap;
4109
4110	if (!rc)
4111		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4112}
4113
4114void
4115vop_deleteextattr_post(void *ap, int rc)
4116{
4117	struct vop_deleteextattr_args *a = ap;
4118
4119	if (!rc)
4120		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4121}
4122
4123void
4124vop_link_post(void *ap, int rc)
4125{
4126	struct vop_link_args *a = ap;
4127
4128	if (!rc) {
4129		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
4130		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
4131	}
4132}
4133
4134void
4135vop_mkdir_post(void *ap, int rc)
4136{
4137	struct vop_mkdir_args *a = ap;
4138
4139	if (!rc)
4140		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4141}
4142
4143void
4144vop_mknod_post(void *ap, int rc)
4145{
4146	struct vop_mknod_args *a = ap;
4147
4148	if (!rc)
4149		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4150}
4151
4152void
4153vop_remove_post(void *ap, int rc)
4154{
4155	struct vop_remove_args *a = ap;
4156
4157	if (!rc) {
4158		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4159		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4160	}
4161}
4162
4163void
4164vop_rename_post(void *ap, int rc)
4165{
4166	struct vop_rename_args *a = ap;
4167
4168	if (!rc) {
4169		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
4170		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
4171		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
4172		if (a->a_tvp)
4173			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
4174	}
4175	if (a->a_tdvp != a->a_fdvp)
4176		vdrop(a->a_fdvp);
4177	if (a->a_tvp != a->a_fvp)
4178		vdrop(a->a_fvp);
4179	vdrop(a->a_tdvp);
4180	if (a->a_tvp)
4181		vdrop(a->a_tvp);
4182}
4183
4184void
4185vop_rmdir_post(void *ap, int rc)
4186{
4187	struct vop_rmdir_args *a = ap;
4188
4189	if (!rc) {
4190		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4191		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4192	}
4193}
4194
4195void
4196vop_setattr_post(void *ap, int rc)
4197{
4198	struct vop_setattr_args *a = ap;
4199
4200	if (!rc)
4201		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4202}
4203
4204void
4205vop_setextattr_post(void *ap, int rc)
4206{
4207	struct vop_setextattr_args *a = ap;
4208
4209	if (!rc)
4210		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4211}
4212
4213void
4214vop_symlink_post(void *ap, int rc)
4215{
4216	struct vop_symlink_args *a = ap;
4217
4218	if (!rc)
4219		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4220}
4221
4222static struct knlist fs_knlist;
4223
4224static void
4225vfs_event_init(void *arg)
4226{
4227	knlist_init_mtx(&fs_knlist, NULL);
4228}
4229/* XXX - correct order? */
4230SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4231
4232void
4233vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
4234{
4235
4236	KNOTE_UNLOCKED(&fs_knlist, event);
4237}
4238
4239static int	filt_fsattach(struct knote *kn);
4240static void	filt_fsdetach(struct knote *kn);
4241static int	filt_fsevent(struct knote *kn, long hint);
4242
4243struct filterops fs_filtops = {
4244	.f_isfd = 0,
4245	.f_attach = filt_fsattach,
4246	.f_detach = filt_fsdetach,
4247	.f_event = filt_fsevent
4248};
4249
4250static int
4251filt_fsattach(struct knote *kn)
4252{
4253
4254	kn->kn_flags |= EV_CLEAR;
4255	knlist_add(&fs_knlist, kn, 0);
4256	return (0);
4257}
4258
4259static void
4260filt_fsdetach(struct knote *kn)
4261{
4262
4263	knlist_remove(&fs_knlist, kn, 0);
4264}
4265
4266static int
4267filt_fsevent(struct knote *kn, long hint)
4268{
4269
4270	kn->kn_fflags |= hint;
4271	return (kn->kn_fflags != 0);
4272}
4273
4274static int
4275sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4276{
4277	struct vfsidctl vc;
4278	int error;
4279	struct mount *mp;
4280
4281	error = SYSCTL_IN(req, &vc, sizeof(vc));
4282	if (error)
4283		return (error);
4284	if (vc.vc_vers != VFS_CTL_VERS1)
4285		return (EINVAL);
4286	mp = vfs_getvfs(&vc.vc_fsid);
4287	if (mp == NULL)
4288		return (ENOENT);
4289	/* ensure that a specific sysctl goes to the right filesystem. */
4290	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4291	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4292		vfs_rel(mp);
4293		return (EINVAL);
4294	}
4295	VCTLTOREQ(&vc, req);
4296	error = VFS_SYSCTL(mp, vc.vc_op, req);
4297	vfs_rel(mp);
4298	return (error);
4299}
4300
4301SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
4302    NULL, 0, sysctl_vfs_ctl, "",
4303    "Sysctl by fsid");
4304
4305/*
4306 * Function to initialize a va_filerev field sensibly.
4307 * XXX: Wouldn't a random number make a lot more sense ??
4308 */
4309u_quad_t
4310init_va_filerev(void)
4311{
4312	struct bintime bt;
4313
4314	getbinuptime(&bt);
4315	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4316}
4317
4318static int	filt_vfsread(struct knote *kn, long hint);
4319static int	filt_vfswrite(struct knote *kn, long hint);
4320static int	filt_vfsvnode(struct knote *kn, long hint);
4321static void	filt_vfsdetach(struct knote *kn);
4322static struct filterops vfsread_filtops = {
4323	.f_isfd = 1,
4324	.f_detach = filt_vfsdetach,
4325	.f_event = filt_vfsread
4326};
4327static struct filterops vfswrite_filtops = {
4328	.f_isfd = 1,
4329	.f_detach = filt_vfsdetach,
4330	.f_event = filt_vfswrite
4331};
4332static struct filterops vfsvnode_filtops = {
4333	.f_isfd = 1,
4334	.f_detach = filt_vfsdetach,
4335	.f_event = filt_vfsvnode
4336};
4337
4338static void
4339vfs_knllock(void *arg)
4340{
4341	struct vnode *vp = arg;
4342
4343	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4344}
4345
4346static void
4347vfs_knlunlock(void *arg)
4348{
4349	struct vnode *vp = arg;
4350
4351	VOP_UNLOCK(vp, 0);
4352}
4353
4354static void
4355vfs_knl_assert_locked(void *arg)
4356{
4357#ifdef DEBUG_VFS_LOCKS
4358	struct vnode *vp = arg;
4359
4360	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
4361#endif
4362}
4363
4364static void
4365vfs_knl_assert_unlocked(void *arg)
4366{
4367#ifdef DEBUG_VFS_LOCKS
4368	struct vnode *vp = arg;
4369
4370	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
4371#endif
4372}
4373
4374int
4375vfs_kqfilter(struct vop_kqfilter_args *ap)
4376{
4377	struct vnode *vp = ap->a_vp;
4378	struct knote *kn = ap->a_kn;
4379	struct knlist *knl;
4380
4381	switch (kn->kn_filter) {
4382	case EVFILT_READ:
4383		kn->kn_fop = &vfsread_filtops;
4384		break;
4385	case EVFILT_WRITE:
4386		kn->kn_fop = &vfswrite_filtops;
4387		break;
4388	case EVFILT_VNODE:
4389		kn->kn_fop = &vfsvnode_filtops;
4390		break;
4391	default:
4392		return (EINVAL);
4393	}
4394
4395	kn->kn_hook = (caddr_t)vp;
4396
4397	v_addpollinfo(vp);
4398	if (vp->v_pollinfo == NULL)
4399		return (ENOMEM);
4400	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4401	knlist_add(knl, kn, 0);
4402
4403	return (0);
4404}
4405
4406/*
4407 * Detach knote from vnode
4408 */
4409static void
4410filt_vfsdetach(struct knote *kn)
4411{
4412	struct vnode *vp = (struct vnode *)kn->kn_hook;
4413
4414	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4415	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4416}
4417
4418/*ARGSUSED*/
4419static int
4420filt_vfsread(struct knote *kn, long hint)
4421{
4422	struct vnode *vp = (struct vnode *)kn->kn_hook;
4423	struct vattr va;
4424	int res;
4425
4426	/*
4427	 * filesystem is gone, so set the EOF flag and schedule
4428	 * the knote for deletion.
4429	 */
4430	if (hint == NOTE_REVOKE) {
4431		VI_LOCK(vp);
4432		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4433		VI_UNLOCK(vp);
4434		return (1);
4435	}
4436
4437	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4438		return (0);
4439
4440	VI_LOCK(vp);
4441	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4442	res = (kn->kn_data != 0);
4443	VI_UNLOCK(vp);
4444	return (res);
4445}
4446
4447/*ARGSUSED*/
4448static int
4449filt_vfswrite(struct knote *kn, long hint)
4450{
4451	struct vnode *vp = (struct vnode *)kn->kn_hook;
4452
4453	VI_LOCK(vp);
4454
4455	/*
4456	 * filesystem is gone, so set the EOF flag and schedule
4457	 * the knote for deletion.
4458	 */
4459	if (hint == NOTE_REVOKE)
4460		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4461
4462	kn->kn_data = 0;
4463	VI_UNLOCK(vp);
4464	return (1);
4465}
4466
4467static int
4468filt_vfsvnode(struct knote *kn, long hint)
4469{
4470	struct vnode *vp = (struct vnode *)kn->kn_hook;
4471	int res;
4472
4473	VI_LOCK(vp);
4474	if (kn->kn_sfflags & hint)
4475		kn->kn_fflags |= hint;
4476	if (hint == NOTE_REVOKE) {
4477		kn->kn_flags |= EV_EOF;
4478		VI_UNLOCK(vp);
4479		return (1);
4480	}
4481	res = (kn->kn_fflags != 0);
4482	VI_UNLOCK(vp);
4483	return (res);
4484}
4485
4486int
4487vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4488{
4489	int error;
4490
4491	if (dp->d_reclen > ap->a_uio->uio_resid)
4492		return (ENAMETOOLONG);
4493	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4494	if (error) {
4495		if (ap->a_ncookies != NULL) {
4496			if (ap->a_cookies != NULL)
4497				free(ap->a_cookies, M_TEMP);
4498			ap->a_cookies = NULL;
4499			*ap->a_ncookies = 0;
4500		}
4501		return (error);
4502	}
4503	if (ap->a_ncookies == NULL)
4504		return (0);
4505
4506	KASSERT(ap->a_cookies,
4507	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4508
4509	*ap->a_cookies = realloc(*ap->a_cookies,
4510	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4511	(*ap->a_cookies)[*ap->a_ncookies] = off;
4512	return (0);
4513}
4514
4515/*
4516 * Mark for update the access time of the file if the filesystem
4517 * supports VOP_MARKATIME.  This functionality is used by execve and
4518 * mmap, so we want to avoid the I/O implied by directly setting
4519 * va_atime for the sake of efficiency.
4520 */
4521void
4522vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4523{
4524	struct mount *mp;
4525
4526	mp = vp->v_mount;
4527	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
4528	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
4529		(void)VOP_MARKATIME(vp);
4530}
4531
4532/*
4533 * The purpose of this routine is to remove granularity from accmode_t,
4534 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
4535 * VADMIN and VAPPEND.
4536 *
4537 * If it returns 0, the caller is supposed to continue with the usual
4538 * access checks using 'accmode' as modified by this routine.  If it
4539 * returns nonzero value, the caller is supposed to return that value
4540 * as errno.
4541 *
4542 * Note that after this routine runs, accmode may be zero.
4543 */
4544int
4545vfs_unixify_accmode(accmode_t *accmode)
4546{
4547	/*
4548	 * There is no way to specify explicit "deny" rule using
4549	 * file mode or POSIX.1e ACLs.
4550	 */
4551	if (*accmode & VEXPLICIT_DENY) {
4552		*accmode = 0;
4553		return (0);
4554	}
4555
4556	/*
4557	 * None of these can be translated into usual access bits.
4558	 * Also, the common case for NFSv4 ACLs is to not contain
4559	 * either of these bits. Caller should check for VWRITE
4560	 * on the containing directory instead.
4561	 */
4562	if (*accmode & (VDELETE_CHILD | VDELETE))
4563		return (EPERM);
4564
4565	if (*accmode & VADMIN_PERMS) {
4566		*accmode &= ~VADMIN_PERMS;
4567		*accmode |= VADMIN;
4568	}
4569
4570	/*
4571	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
4572	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
4573	 */
4574	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
4575
4576	return (0);
4577}
4578
4579/*
4580 * These are helper functions for filesystems to traverse all
4581 * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
4582 *
4583 * This interface replaces MNT_VNODE_FOREACH.
4584 */
4585
4586MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
4587
4588struct vnode *
4589__mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
4590{
4591	struct vnode *vp;
4592
4593	if (should_yield())
4594		kern_yield(PRI_USER);
4595	MNT_ILOCK(mp);
4596	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4597	vp = TAILQ_NEXT(*mvp, v_nmntvnodes);
4598	while (vp != NULL && (vp->v_type == VMARKER ||
4599	    (vp->v_iflag & VI_DOOMED) != 0))
4600		vp = TAILQ_NEXT(vp, v_nmntvnodes);
4601
4602	/* Check if we are done */
4603	if (vp == NULL) {
4604		__mnt_vnode_markerfree_all(mvp, mp);
4605		/* MNT_IUNLOCK(mp); -- done in above function */
4606		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
4607		return (NULL);
4608	}
4609	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
4610	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
4611	VI_LOCK(vp);
4612	MNT_IUNLOCK(mp);
4613	return (vp);
4614}
4615
4616struct vnode *
4617__mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
4618{
4619	struct vnode *vp;
4620
4621	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
4622	MNT_ILOCK(mp);
4623	MNT_REF(mp);
4624	(*mvp)->v_type = VMARKER;
4625
4626	vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
4627	while (vp != NULL && (vp->v_type == VMARKER ||
4628	    (vp->v_iflag & VI_DOOMED) != 0))
4629		vp = TAILQ_NEXT(vp, v_nmntvnodes);
4630
4631	/* Check if we are done */
4632	if (vp == NULL) {
4633		MNT_REL(mp);
4634		MNT_IUNLOCK(mp);
4635		free(*mvp, M_VNODE_MARKER);
4636		*mvp = NULL;
4637		return (NULL);
4638	}
4639	(*mvp)->v_mount = mp;
4640	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
4641	VI_LOCK(vp);
4642	MNT_IUNLOCK(mp);
4643	return (vp);
4644}
4645
4646
4647void
4648__mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
4649{
4650
4651	if (*mvp == NULL) {
4652		MNT_IUNLOCK(mp);
4653		return;
4654	}
4655
4656	mtx_assert(MNT_MTX(mp), MA_OWNED);
4657
4658	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4659	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
4660	MNT_REL(mp);
4661	MNT_IUNLOCK(mp);
4662	free(*mvp, M_VNODE_MARKER);
4663	*mvp = NULL;
4664}
4665
4666/*
4667 * These are helper functions for filesystems to traverse their
4668 * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
4669 */
4670static void
4671mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
4672{
4673
4674	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4675
4676	MNT_ILOCK(mp);
4677	MNT_REL(mp);
4678	MNT_IUNLOCK(mp);
4679	free(*mvp, M_VNODE_MARKER);
4680	*mvp = NULL;
4681}
4682
4683static struct vnode *
4684mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
4685{
4686	struct vnode *vp, *nvp;
4687
4688	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
4689	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4690restart:
4691	vp = TAILQ_NEXT(*mvp, v_actfreelist);
4692	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
4693	while (vp != NULL) {
4694		if (vp->v_type == VMARKER) {
4695			vp = TAILQ_NEXT(vp, v_actfreelist);
4696			continue;
4697		}
4698		if (!VI_TRYLOCK(vp)) {
4699			if (mp_ncpus == 1 || should_yield()) {
4700				TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
4701				mtx_unlock(&vnode_free_list_mtx);
4702				pause("vnacti", 1);
4703				mtx_lock(&vnode_free_list_mtx);
4704				goto restart;
4705			}
4706			continue;
4707		}
4708		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
4709		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
4710		    ("alien vnode on the active list %p %p", vp, mp));
4711		if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0)
4712			break;
4713		nvp = TAILQ_NEXT(vp, v_actfreelist);
4714		VI_UNLOCK(vp);
4715		vp = nvp;
4716	}
4717
4718	/* Check if we are done */
4719	if (vp == NULL) {
4720		mtx_unlock(&vnode_free_list_mtx);
4721		mnt_vnode_markerfree_active(mvp, mp);
4722		return (NULL);
4723	}
4724	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
4725	mtx_unlock(&vnode_free_list_mtx);
4726	ASSERT_VI_LOCKED(vp, "active iter");
4727	KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp));
4728	return (vp);
4729}
4730
4731struct vnode *
4732__mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
4733{
4734
4735	if (should_yield())
4736		kern_yield(PRI_USER);
4737	mtx_lock(&vnode_free_list_mtx);
4738	return (mnt_vnode_next_active(mvp, mp));
4739}
4740
4741struct vnode *
4742__mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
4743{
4744	struct vnode *vp;
4745
4746	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
4747	MNT_ILOCK(mp);
4748	MNT_REF(mp);
4749	MNT_IUNLOCK(mp);
4750	(*mvp)->v_type = VMARKER;
4751	(*mvp)->v_mount = mp;
4752
4753	mtx_lock(&vnode_free_list_mtx);
4754	vp = TAILQ_FIRST(&mp->mnt_activevnodelist);
4755	if (vp == NULL) {
4756		mtx_unlock(&vnode_free_list_mtx);
4757		mnt_vnode_markerfree_active(mvp, mp);
4758		return (NULL);
4759	}
4760	TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
4761	return (mnt_vnode_next_active(mvp, mp));
4762}
4763
4764void
4765__mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
4766{
4767
4768	if (*mvp == NULL)
4769		return;
4770
4771	mtx_lock(&vnode_free_list_mtx);
4772	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
4773	mtx_unlock(&vnode_free_list_mtx);
4774	mnt_vnode_markerfree_active(mvp, mp);
4775}
4776