vfs_subr.c revision 248084
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_subr.c 248084 2013-03-09 02:32:23Z attilio $");
43
44#include "opt_compat.h"
45#include "opt_ddb.h"
46#include "opt_watchdog.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/condvar.h>
53#include <sys/conf.h>
54#include <sys/dirent.h>
55#include <sys/event.h>
56#include <sys/eventhandler.h>
57#include <sys/extattr.h>
58#include <sys/file.h>
59#include <sys/fcntl.h>
60#include <sys/jail.h>
61#include <sys/kdb.h>
62#include <sys/kernel.h>
63#include <sys/kthread.h>
64#include <sys/lockf.h>
65#include <sys/malloc.h>
66#include <sys/mount.h>
67#include <sys/namei.h>
68#include <sys/priv.h>
69#include <sys/reboot.h>
70#include <sys/rwlock.h>
71#include <sys/sched.h>
72#include <sys/sleepqueue.h>
73#include <sys/smp.h>
74#include <sys/stat.h>
75#include <sys/sysctl.h>
76#include <sys/syslog.h>
77#include <sys/vmmeter.h>
78#include <sys/vnode.h>
79#include <sys/watchdog.h>
80
81#include <machine/stdarg.h>
82
83#include <security/mac/mac_framework.h>
84
85#include <vm/vm.h>
86#include <vm/vm_object.h>
87#include <vm/vm_extern.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_kern.h>
92#include <vm/uma.h>
93
94#ifdef DDB
95#include <ddb/ddb.h>
96#endif
97
98static void	delmntque(struct vnode *vp);
99static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
100		    int slpflag, int slptimeo);
101static void	syncer_shutdown(void *arg, int howto);
102static int	vtryrecycle(struct vnode *vp);
103static void	v_incr_usecount(struct vnode *);
104static void	v_decr_usecount(struct vnode *);
105static void	v_decr_useonly(struct vnode *);
106static void	v_upgrade_usecount(struct vnode *);
107static void	vnlru_free(int);
108static void	vgonel(struct vnode *);
109static void	vfs_knllock(void *arg);
110static void	vfs_knlunlock(void *arg);
111static void	vfs_knl_assert_locked(void *arg);
112static void	vfs_knl_assert_unlocked(void *arg);
113static void	destroy_vpollinfo(struct vpollinfo *vi);
114
115/*
116 * Number of vnodes in existence.  Increased whenever getnewvnode()
117 * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode.
118 */
119static unsigned long	numvnodes;
120
121SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
122    "Number of vnodes in existence");
123
124/*
125 * Conversion tables for conversion from vnode types to inode formats
126 * and back.
127 */
128enum vtype iftovt_tab[16] = {
129	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
130	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
131};
132int vttoif_tab[10] = {
133	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
134	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
135};
136
137/*
138 * List of vnodes that are ready for recycling.
139 */
140static TAILQ_HEAD(freelst, vnode) vnode_free_list;
141
142/*
143 * Free vnode target.  Free vnodes may simply be files which have been stat'd
144 * but not read.  This is somewhat common, and a small cache of such files
145 * should be kept to avoid recreation costs.
146 */
147static u_long wantfreevnodes;
148SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
149/* Number of vnodes in the free list. */
150static u_long freevnodes;
151SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0,
152    "Number of vnodes in the free list");
153
154static int vlru_allow_cache_src;
155SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW,
156    &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode");
157
158/*
159 * Various variables used for debugging the new implementation of
160 * reassignbuf().
161 * XXX these are probably of (very) limited utility now.
162 */
163static int reassignbufcalls;
164SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0,
165    "Number of calls to reassignbuf");
166
167/*
168 * Cache for the mount type id assigned to NFS.  This is used for
169 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
170 */
171int	nfs_mount_type = -1;
172
173/* To keep more than one thread at a time from running vfs_getnewfsid */
174static struct mtx mntid_mtx;
175
176/*
177 * Lock for any access to the following:
178 *	vnode_free_list
179 *	numvnodes
180 *	freevnodes
181 */
182static struct mtx vnode_free_list_mtx;
183
184/* Publicly exported FS */
185struct nfs_public nfs_pub;
186
187/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
188static uma_zone_t vnode_zone;
189static uma_zone_t vnodepoll_zone;
190
191/*
192 * The workitem queue.
193 *
194 * It is useful to delay writes of file data and filesystem metadata
195 * for tens of seconds so that quickly created and deleted files need
196 * not waste disk bandwidth being created and removed. To realize this,
197 * we append vnodes to a "workitem" queue. When running with a soft
198 * updates implementation, most pending metadata dependencies should
199 * not wait for more than a few seconds. Thus, mounted on block devices
200 * are delayed only about a half the time that file data is delayed.
201 * Similarly, directory updates are more critical, so are only delayed
202 * about a third the time that file data is delayed. Thus, there are
203 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
204 * one each second (driven off the filesystem syncer process). The
205 * syncer_delayno variable indicates the next queue that is to be processed.
206 * Items that need to be processed soon are placed in this queue:
207 *
208 *	syncer_workitem_pending[syncer_delayno]
209 *
210 * A delay of fifteen seconds is done by placing the request fifteen
211 * entries later in the queue:
212 *
213 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
214 *
215 */
216static int syncer_delayno;
217static long syncer_mask;
218LIST_HEAD(synclist, bufobj);
219static struct synclist *syncer_workitem_pending;
220/*
221 * The sync_mtx protects:
222 *	bo->bo_synclist
223 *	sync_vnode_count
224 *	syncer_delayno
225 *	syncer_state
226 *	syncer_workitem_pending
227 *	syncer_worklist_len
228 *	rushjob
229 */
230static struct mtx sync_mtx;
231static struct cv sync_wakeup;
232
233#define SYNCER_MAXDELAY		32
234static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
235static int syncdelay = 30;		/* max time to delay syncing data */
236static int filedelay = 30;		/* time to delay syncing files */
237SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
238    "Time to delay syncing files (in seconds)");
239static int dirdelay = 29;		/* time to delay syncing directories */
240SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
241    "Time to delay syncing directories (in seconds)");
242static int metadelay = 28;		/* time to delay syncing metadata */
243SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
244    "Time to delay syncing metadata (in seconds)");
245static int rushjob;		/* number of slots to run ASAP */
246static int stat_rush_requests;	/* number of times I/O speeded up */
247SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
248    "Number of times I/O speeded up (rush requests)");
249
250/*
251 * When shutting down the syncer, run it at four times normal speed.
252 */
253#define SYNCER_SHUTDOWN_SPEEDUP		4
254static int sync_vnode_count;
255static int syncer_worklist_len;
256static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
257    syncer_state;
258
259/*
260 * Number of vnodes we want to exist at any one time.  This is mostly used
261 * to size hash tables in vnode-related code.  It is normally not used in
262 * getnewvnode(), as wantfreevnodes is normally nonzero.)
263 *
264 * XXX desiredvnodes is historical cruft and should not exist.
265 */
266int desiredvnodes;
267SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
268    &desiredvnodes, 0, "Maximum number of vnodes");
269SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
270    &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
271static int vnlru_nowhere;
272SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
273    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
274
275/*
276 * Macros to control when a vnode is freed and recycled.  All require
277 * the vnode interlock.
278 */
279#define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
280#define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
281#define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
282
283/* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
284static int vnsz2log;
285
286/*
287 * Initialize the vnode management data structures.
288 *
289 * Reevaluate the following cap on the number of vnodes after the physical
290 * memory size exceeds 512GB.  In the limit, as the physical memory size
291 * grows, the ratio of physical pages to vnodes approaches sixteen to one.
292 */
293#ifndef	MAXVNODES_MAX
294#define	MAXVNODES_MAX	(512 * (1024 * 1024 * 1024 / (int)PAGE_SIZE / 16))
295#endif
296static void
297vntblinit(void *dummy __unused)
298{
299	u_int i;
300	int physvnodes, virtvnodes;
301
302	/*
303	 * Desiredvnodes is a function of the physical memory size and the
304	 * kernel's heap size.  Generally speaking, it scales with the
305	 * physical memory size.  The ratio of desiredvnodes to physical pages
306	 * is one to four until desiredvnodes exceeds 98,304.  Thereafter, the
307	 * marginal ratio of desiredvnodes to physical pages is one to
308	 * sixteen.  However, desiredvnodes is limited by the kernel's heap
309	 * size.  The memory required by desiredvnodes vnodes and vm objects
310	 * may not exceed one seventh of the kernel's heap size.
311	 */
312	physvnodes = maxproc + cnt.v_page_count / 16 + 3 * min(98304 * 4,
313	    cnt.v_page_count) / 16;
314	virtvnodes = vm_kmem_size / (7 * (sizeof(struct vm_object) +
315	    sizeof(struct vnode)));
316	desiredvnodes = min(physvnodes, virtvnodes);
317	if (desiredvnodes > MAXVNODES_MAX) {
318		if (bootverbose)
319			printf("Reducing kern.maxvnodes %d -> %d\n",
320			    desiredvnodes, MAXVNODES_MAX);
321		desiredvnodes = MAXVNODES_MAX;
322	}
323	wantfreevnodes = desiredvnodes / 4;
324	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
325	TAILQ_INIT(&vnode_free_list);
326	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
327	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
328	    NULL, NULL, UMA_ALIGN_PTR, 0);
329	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
330	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
331	/*
332	 * Initialize the filesystem syncer.
333	 */
334	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
335	    &syncer_mask);
336	syncer_maxdelay = syncer_mask + 1;
337	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
338	cv_init(&sync_wakeup, "syncer");
339	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
340		vnsz2log++;
341	vnsz2log--;
342}
343SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
344
345
346/*
347 * Mark a mount point as busy. Used to synchronize access and to delay
348 * unmounting. Eventually, mountlist_mtx is not released on failure.
349 *
350 * vfs_busy() is a custom lock, it can block the caller.
351 * vfs_busy() only sleeps if the unmount is active on the mount point.
352 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
353 * vnode belonging to mp.
354 *
355 * Lookup uses vfs_busy() to traverse mount points.
356 * root fs			var fs
357 * / vnode lock		A	/ vnode lock (/var)		D
358 * /var vnode lock	B	/log vnode lock(/var/log)	E
359 * vfs_busy lock	C	vfs_busy lock			F
360 *
361 * Within each file system, the lock order is C->A->B and F->D->E.
362 *
363 * When traversing across mounts, the system follows that lock order:
364 *
365 *        C->A->B
366 *              |
367 *              +->F->D->E
368 *
369 * The lookup() process for namei("/var") illustrates the process:
370 *  VOP_LOOKUP() obtains B while A is held
371 *  vfs_busy() obtains a shared lock on F while A and B are held
372 *  vput() releases lock on B
373 *  vput() releases lock on A
374 *  VFS_ROOT() obtains lock on D while shared lock on F is held
375 *  vfs_unbusy() releases shared lock on F
376 *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
377 *    Attempt to lock A (instead of vp_crossmp) while D is held would
378 *    violate the global order, causing deadlocks.
379 *
380 * dounmount() locks B while F is drained.
381 */
382int
383vfs_busy(struct mount *mp, int flags)
384{
385
386	MPASS((flags & ~MBF_MASK) == 0);
387	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
388
389	MNT_ILOCK(mp);
390	MNT_REF(mp);
391	/*
392	 * If mount point is currenly being unmounted, sleep until the
393	 * mount point fate is decided.  If thread doing the unmounting fails,
394	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
395	 * that this mount point has survived the unmount attempt and vfs_busy
396	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
397	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
398	 * about to be really destroyed.  vfs_busy needs to release its
399	 * reference on the mount point in this case and return with ENOENT,
400	 * telling the caller that mount mount it tried to busy is no longer
401	 * valid.
402	 */
403	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
404		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
405			MNT_REL(mp);
406			MNT_IUNLOCK(mp);
407			CTR1(KTR_VFS, "%s: failed busying before sleeping",
408			    __func__);
409			return (ENOENT);
410		}
411		if (flags & MBF_MNTLSTLOCK)
412			mtx_unlock(&mountlist_mtx);
413		mp->mnt_kern_flag |= MNTK_MWAIT;
414		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
415		if (flags & MBF_MNTLSTLOCK)
416			mtx_lock(&mountlist_mtx);
417		MNT_ILOCK(mp);
418	}
419	if (flags & MBF_MNTLSTLOCK)
420		mtx_unlock(&mountlist_mtx);
421	mp->mnt_lockref++;
422	MNT_IUNLOCK(mp);
423	return (0);
424}
425
426/*
427 * Free a busy filesystem.
428 */
429void
430vfs_unbusy(struct mount *mp)
431{
432
433	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
434	MNT_ILOCK(mp);
435	MNT_REL(mp);
436	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
437	mp->mnt_lockref--;
438	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
439		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
440		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
441		mp->mnt_kern_flag &= ~MNTK_DRAINING;
442		wakeup(&mp->mnt_lockref);
443	}
444	MNT_IUNLOCK(mp);
445}
446
447/*
448 * Lookup a mount point by filesystem identifier.
449 */
450struct mount *
451vfs_getvfs(fsid_t *fsid)
452{
453	struct mount *mp;
454
455	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
456	mtx_lock(&mountlist_mtx);
457	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
458		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
459		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
460			vfs_ref(mp);
461			mtx_unlock(&mountlist_mtx);
462			return (mp);
463		}
464	}
465	mtx_unlock(&mountlist_mtx);
466	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
467	return ((struct mount *) 0);
468}
469
470/*
471 * Lookup a mount point by filesystem identifier, busying it before
472 * returning.
473 */
474struct mount *
475vfs_busyfs(fsid_t *fsid)
476{
477	struct mount *mp;
478	int error;
479
480	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
481	mtx_lock(&mountlist_mtx);
482	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
483		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
484		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
485			error = vfs_busy(mp, MBF_MNTLSTLOCK);
486			if (error) {
487				mtx_unlock(&mountlist_mtx);
488				return (NULL);
489			}
490			return (mp);
491		}
492	}
493	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
494	mtx_unlock(&mountlist_mtx);
495	return ((struct mount *) 0);
496}
497
498/*
499 * Check if a user can access privileged mount options.
500 */
501int
502vfs_suser(struct mount *mp, struct thread *td)
503{
504	int error;
505
506	/*
507	 * If the thread is jailed, but this is not a jail-friendly file
508	 * system, deny immediately.
509	 */
510	if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred))
511		return (EPERM);
512
513	/*
514	 * If the file system was mounted outside the jail of the calling
515	 * thread, deny immediately.
516	 */
517	if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
518		return (EPERM);
519
520	/*
521	 * If file system supports delegated administration, we don't check
522	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
523	 * by the file system itself.
524	 * If this is not the user that did original mount, we check for
525	 * the PRIV_VFS_MOUNT_OWNER privilege.
526	 */
527	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
528	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
529		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
530			return (error);
531	}
532	return (0);
533}
534
535/*
536 * Get a new unique fsid.  Try to make its val[0] unique, since this value
537 * will be used to create fake device numbers for stat().  Also try (but
538 * not so hard) make its val[0] unique mod 2^16, since some emulators only
539 * support 16-bit device numbers.  We end up with unique val[0]'s for the
540 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
541 *
542 * Keep in mind that several mounts may be running in parallel.  Starting
543 * the search one past where the previous search terminated is both a
544 * micro-optimization and a defense against returning the same fsid to
545 * different mounts.
546 */
547void
548vfs_getnewfsid(struct mount *mp)
549{
550	static uint16_t mntid_base;
551	struct mount *nmp;
552	fsid_t tfsid;
553	int mtype;
554
555	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
556	mtx_lock(&mntid_mtx);
557	mtype = mp->mnt_vfc->vfc_typenum;
558	tfsid.val[1] = mtype;
559	mtype = (mtype & 0xFF) << 24;
560	for (;;) {
561		tfsid.val[0] = makedev(255,
562		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
563		mntid_base++;
564		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
565			break;
566		vfs_rel(nmp);
567	}
568	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
569	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
570	mtx_unlock(&mntid_mtx);
571}
572
573/*
574 * Knob to control the precision of file timestamps:
575 *
576 *   0 = seconds only; nanoseconds zeroed.
577 *   1 = seconds and nanoseconds, accurate within 1/HZ.
578 *   2 = seconds and nanoseconds, truncated to microseconds.
579 * >=3 = seconds and nanoseconds, maximum precision.
580 */
581enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
582
583static int timestamp_precision = TSP_SEC;
584SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
585    &timestamp_precision, 0, "File timestamp precision (0: seconds, "
586    "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to ms, "
587    "3+: sec + ns (max. precision))");
588
589/*
590 * Get a current timestamp.
591 */
592void
593vfs_timestamp(struct timespec *tsp)
594{
595	struct timeval tv;
596
597	switch (timestamp_precision) {
598	case TSP_SEC:
599		tsp->tv_sec = time_second;
600		tsp->tv_nsec = 0;
601		break;
602	case TSP_HZ:
603		getnanotime(tsp);
604		break;
605	case TSP_USEC:
606		microtime(&tv);
607		TIMEVAL_TO_TIMESPEC(&tv, tsp);
608		break;
609	case TSP_NSEC:
610	default:
611		nanotime(tsp);
612		break;
613	}
614}
615
616/*
617 * Set vnode attributes to VNOVAL
618 */
619void
620vattr_null(struct vattr *vap)
621{
622
623	vap->va_type = VNON;
624	vap->va_size = VNOVAL;
625	vap->va_bytes = VNOVAL;
626	vap->va_mode = VNOVAL;
627	vap->va_nlink = VNOVAL;
628	vap->va_uid = VNOVAL;
629	vap->va_gid = VNOVAL;
630	vap->va_fsid = VNOVAL;
631	vap->va_fileid = VNOVAL;
632	vap->va_blocksize = VNOVAL;
633	vap->va_rdev = VNOVAL;
634	vap->va_atime.tv_sec = VNOVAL;
635	vap->va_atime.tv_nsec = VNOVAL;
636	vap->va_mtime.tv_sec = VNOVAL;
637	vap->va_mtime.tv_nsec = VNOVAL;
638	vap->va_ctime.tv_sec = VNOVAL;
639	vap->va_ctime.tv_nsec = VNOVAL;
640	vap->va_birthtime.tv_sec = VNOVAL;
641	vap->va_birthtime.tv_nsec = VNOVAL;
642	vap->va_flags = VNOVAL;
643	vap->va_gen = VNOVAL;
644	vap->va_vaflags = 0;
645}
646
647/*
648 * This routine is called when we have too many vnodes.  It attempts
649 * to free <count> vnodes and will potentially free vnodes that still
650 * have VM backing store (VM backing store is typically the cause
651 * of a vnode blowout so we want to do this).  Therefore, this operation
652 * is not considered cheap.
653 *
654 * A number of conditions may prevent a vnode from being reclaimed.
655 * the buffer cache may have references on the vnode, a directory
656 * vnode may still have references due to the namei cache representing
657 * underlying files, or the vnode may be in active use.   It is not
658 * desireable to reuse such vnodes.  These conditions may cause the
659 * number of vnodes to reach some minimum value regardless of what
660 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
661 */
662static int
663vlrureclaim(struct mount *mp)
664{
665	struct vnode *vp;
666	int done;
667	int trigger;
668	int usevnodes;
669	int count;
670
671	/*
672	 * Calculate the trigger point, don't allow user
673	 * screwups to blow us up.   This prevents us from
674	 * recycling vnodes with lots of resident pages.  We
675	 * aren't trying to free memory, we are trying to
676	 * free vnodes.
677	 */
678	usevnodes = desiredvnodes;
679	if (usevnodes <= 0)
680		usevnodes = 1;
681	trigger = cnt.v_page_count * 2 / usevnodes;
682	done = 0;
683	vn_start_write(NULL, &mp, V_WAIT);
684	MNT_ILOCK(mp);
685	count = mp->mnt_nvnodelistsize / 10 + 1;
686	while (count != 0) {
687		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
688		while (vp != NULL && vp->v_type == VMARKER)
689			vp = TAILQ_NEXT(vp, v_nmntvnodes);
690		if (vp == NULL)
691			break;
692		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
693		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
694		--count;
695		if (!VI_TRYLOCK(vp))
696			goto next_iter;
697		/*
698		 * If it's been deconstructed already, it's still
699		 * referenced, or it exceeds the trigger, skip it.
700		 */
701		if (vp->v_usecount ||
702		    (!vlru_allow_cache_src &&
703			!LIST_EMPTY(&(vp)->v_cache_src)) ||
704		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
705		    vp->v_object->resident_page_count > trigger)) {
706			VI_UNLOCK(vp);
707			goto next_iter;
708		}
709		MNT_IUNLOCK(mp);
710		vholdl(vp);
711		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
712			vdrop(vp);
713			goto next_iter_mntunlocked;
714		}
715		VI_LOCK(vp);
716		/*
717		 * v_usecount may have been bumped after VOP_LOCK() dropped
718		 * the vnode interlock and before it was locked again.
719		 *
720		 * It is not necessary to recheck VI_DOOMED because it can
721		 * only be set by another thread that holds both the vnode
722		 * lock and vnode interlock.  If another thread has the
723		 * vnode lock before we get to VOP_LOCK() and obtains the
724		 * vnode interlock after VOP_LOCK() drops the vnode
725		 * interlock, the other thread will be unable to drop the
726		 * vnode lock before our VOP_LOCK() call fails.
727		 */
728		if (vp->v_usecount ||
729		    (!vlru_allow_cache_src &&
730			!LIST_EMPTY(&(vp)->v_cache_src)) ||
731		    (vp->v_object != NULL &&
732		    vp->v_object->resident_page_count > trigger)) {
733			VOP_UNLOCK(vp, LK_INTERLOCK);
734			goto next_iter_mntunlocked;
735		}
736		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
737		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
738		vgonel(vp);
739		VOP_UNLOCK(vp, 0);
740		vdropl(vp);
741		done++;
742next_iter_mntunlocked:
743		if (!should_yield())
744			goto relock_mnt;
745		goto yield;
746next_iter:
747		if (!should_yield())
748			continue;
749		MNT_IUNLOCK(mp);
750yield:
751		kern_yield(PRI_USER);
752relock_mnt:
753		MNT_ILOCK(mp);
754	}
755	MNT_IUNLOCK(mp);
756	vn_finished_write(mp);
757	return done;
758}
759
760/*
761 * Attempt to keep the free list at wantfreevnodes length.
762 */
763static void
764vnlru_free(int count)
765{
766	struct vnode *vp;
767
768	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
769	for (; count > 0; count--) {
770		vp = TAILQ_FIRST(&vnode_free_list);
771		/*
772		 * The list can be modified while the free_list_mtx
773		 * has been dropped and vp could be NULL here.
774		 */
775		if (!vp)
776			break;
777		VNASSERT(vp->v_op != NULL, vp,
778		    ("vnlru_free: vnode already reclaimed."));
779		KASSERT((vp->v_iflag & VI_FREE) != 0,
780		    ("Removing vnode not on freelist"));
781		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
782		    ("Mangling active vnode"));
783		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
784		/*
785		 * Don't recycle if we can't get the interlock.
786		 */
787		if (!VI_TRYLOCK(vp)) {
788			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
789			continue;
790		}
791		VNASSERT(VCANRECYCLE(vp), vp,
792		    ("vp inconsistent on freelist"));
793		freevnodes--;
794		vp->v_iflag &= ~VI_FREE;
795		vholdl(vp);
796		mtx_unlock(&vnode_free_list_mtx);
797		VI_UNLOCK(vp);
798		vtryrecycle(vp);
799		/*
800		 * If the recycled succeeded this vdrop will actually free
801		 * the vnode.  If not it will simply place it back on
802		 * the free list.
803		 */
804		vdrop(vp);
805		mtx_lock(&vnode_free_list_mtx);
806	}
807}
808/*
809 * Attempt to recycle vnodes in a context that is always safe to block.
810 * Calling vlrurecycle() from the bowels of filesystem code has some
811 * interesting deadlock problems.
812 */
813static struct proc *vnlruproc;
814static int vnlruproc_sig;
815
816static void
817vnlru_proc(void)
818{
819	struct mount *mp, *nmp;
820	int done;
821	struct proc *p = vnlruproc;
822
823	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
824	    SHUTDOWN_PRI_FIRST);
825
826	for (;;) {
827		kproc_suspend_check(p);
828		mtx_lock(&vnode_free_list_mtx);
829		if (freevnodes > wantfreevnodes)
830			vnlru_free(freevnodes - wantfreevnodes);
831		if (numvnodes <= desiredvnodes * 9 / 10) {
832			vnlruproc_sig = 0;
833			wakeup(&vnlruproc_sig);
834			msleep(vnlruproc, &vnode_free_list_mtx,
835			    PVFS|PDROP, "vlruwt", hz);
836			continue;
837		}
838		mtx_unlock(&vnode_free_list_mtx);
839		done = 0;
840		mtx_lock(&mountlist_mtx);
841		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
842			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
843				nmp = TAILQ_NEXT(mp, mnt_list);
844				continue;
845			}
846			done += vlrureclaim(mp);
847			mtx_lock(&mountlist_mtx);
848			nmp = TAILQ_NEXT(mp, mnt_list);
849			vfs_unbusy(mp);
850		}
851		mtx_unlock(&mountlist_mtx);
852		if (done == 0) {
853#if 0
854			/* These messages are temporary debugging aids */
855			if (vnlru_nowhere < 5)
856				printf("vnlru process getting nowhere..\n");
857			else if (vnlru_nowhere == 5)
858				printf("vnlru process messages stopped.\n");
859#endif
860			vnlru_nowhere++;
861			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
862		} else
863			kern_yield(PRI_USER);
864	}
865}
866
867static struct kproc_desc vnlru_kp = {
868	"vnlru",
869	vnlru_proc,
870	&vnlruproc
871};
872SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
873    &vnlru_kp);
874
875/*
876 * Routines having to do with the management of the vnode table.
877 */
878
879/*
880 * Try to recycle a freed vnode.  We abort if anyone picks up a reference
881 * before we actually vgone().  This function must be called with the vnode
882 * held to prevent the vnode from being returned to the free list midway
883 * through vgone().
884 */
885static int
886vtryrecycle(struct vnode *vp)
887{
888	struct mount *vnmp;
889
890	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
891	VNASSERT(vp->v_holdcnt, vp,
892	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
893	/*
894	 * This vnode may found and locked via some other list, if so we
895	 * can't recycle it yet.
896	 */
897	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
898		CTR2(KTR_VFS,
899		    "%s: impossible to recycle, vp %p lock is already held",
900		    __func__, vp);
901		return (EWOULDBLOCK);
902	}
903	/*
904	 * Don't recycle if its filesystem is being suspended.
905	 */
906	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
907		VOP_UNLOCK(vp, 0);
908		CTR2(KTR_VFS,
909		    "%s: impossible to recycle, cannot start the write for %p",
910		    __func__, vp);
911		return (EBUSY);
912	}
913	/*
914	 * If we got this far, we need to acquire the interlock and see if
915	 * anyone picked up this vnode from another list.  If not, we will
916	 * mark it with DOOMED via vgonel() so that anyone who does find it
917	 * will skip over it.
918	 */
919	VI_LOCK(vp);
920	if (vp->v_usecount) {
921		VOP_UNLOCK(vp, LK_INTERLOCK);
922		vn_finished_write(vnmp);
923		CTR2(KTR_VFS,
924		    "%s: impossible to recycle, %p is already referenced",
925		    __func__, vp);
926		return (EBUSY);
927	}
928	if ((vp->v_iflag & VI_DOOMED) == 0)
929		vgonel(vp);
930	VOP_UNLOCK(vp, LK_INTERLOCK);
931	vn_finished_write(vnmp);
932	return (0);
933}
934
935/*
936 * Wait for available vnodes.
937 */
938static int
939getnewvnode_wait(int suspended)
940{
941
942	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
943	if (numvnodes > desiredvnodes) {
944		if (suspended) {
945			/*
946			 * File system is beeing suspended, we cannot risk a
947			 * deadlock here, so allocate new vnode anyway.
948			 */
949			if (freevnodes > wantfreevnodes)
950				vnlru_free(freevnodes - wantfreevnodes);
951			return (0);
952		}
953		if (vnlruproc_sig == 0) {
954			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
955			wakeup(vnlruproc);
956		}
957		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
958		    "vlruwk", hz);
959	}
960	return (numvnodes > desiredvnodes ? ENFILE : 0);
961}
962
963void
964getnewvnode_reserve(u_int count)
965{
966	struct thread *td;
967
968	td = curthread;
969	mtx_lock(&vnode_free_list_mtx);
970	while (count > 0) {
971		if (getnewvnode_wait(0) == 0) {
972			count--;
973			td->td_vp_reserv++;
974			numvnodes++;
975		}
976	}
977	mtx_unlock(&vnode_free_list_mtx);
978}
979
980void
981getnewvnode_drop_reserve(void)
982{
983	struct thread *td;
984
985	td = curthread;
986	mtx_lock(&vnode_free_list_mtx);
987	KASSERT(numvnodes >= td->td_vp_reserv, ("reserve too large"));
988	numvnodes -= td->td_vp_reserv;
989	mtx_unlock(&vnode_free_list_mtx);
990	td->td_vp_reserv = 0;
991}
992
993/*
994 * Return the next vnode from the free list.
995 */
996int
997getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
998    struct vnode **vpp)
999{
1000	struct vnode *vp;
1001	struct bufobj *bo;
1002	struct thread *td;
1003	int error;
1004
1005	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1006	vp = NULL;
1007	td = curthread;
1008	if (td->td_vp_reserv > 0) {
1009		td->td_vp_reserv -= 1;
1010		goto alloc;
1011	}
1012	mtx_lock(&vnode_free_list_mtx);
1013	/*
1014	 * Lend our context to reclaim vnodes if they've exceeded the max.
1015	 */
1016	if (freevnodes > wantfreevnodes)
1017		vnlru_free(1);
1018	error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag &
1019	    MNTK_SUSPEND));
1020#if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1021	if (error != 0) {
1022		mtx_unlock(&vnode_free_list_mtx);
1023		return (error);
1024	}
1025#endif
1026	numvnodes++;
1027	mtx_unlock(&vnode_free_list_mtx);
1028alloc:
1029	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
1030	/*
1031	 * Setup locks.
1032	 */
1033	vp->v_vnlock = &vp->v_lock;
1034	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
1035	/*
1036	 * By default, don't allow shared locks unless filesystems
1037	 * opt-in.
1038	 */
1039	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
1040	/*
1041	 * Initialize bufobj.
1042	 */
1043	bo = &vp->v_bufobj;
1044	bo->__bo_vnode = vp;
1045	mtx_init(BO_MTX(bo), "bufobj interlock", NULL, MTX_DEF);
1046	bo->bo_ops = &buf_ops_bio;
1047	bo->bo_private = vp;
1048	TAILQ_INIT(&bo->bo_clean.bv_hd);
1049	TAILQ_INIT(&bo->bo_dirty.bv_hd);
1050	/*
1051	 * Initialize namecache.
1052	 */
1053	LIST_INIT(&vp->v_cache_src);
1054	TAILQ_INIT(&vp->v_cache_dst);
1055	/*
1056	 * Finalize various vnode identity bits.
1057	 */
1058	vp->v_type = VNON;
1059	vp->v_tag = tag;
1060	vp->v_op = vops;
1061	v_incr_usecount(vp);
1062	vp->v_data = NULL;
1063#ifdef MAC
1064	mac_vnode_init(vp);
1065	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1066		mac_vnode_associate_singlelabel(mp, vp);
1067	else if (mp == NULL && vops != &dead_vnodeops)
1068		printf("NULL mp in getnewvnode()\n");
1069#endif
1070	if (mp != NULL) {
1071		bo->bo_bsize = mp->mnt_stat.f_iosize;
1072		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1073			vp->v_vflag |= VV_NOKNOTE;
1074	}
1075	rangelock_init(&vp->v_rl);
1076
1077	/*
1078	 * For the filesystems which do not use vfs_hash_insert(),
1079	 * still initialize v_hash to have vfs_hash_index() useful.
1080	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1081	 * its own hashing.
1082	 */
1083	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1084
1085	*vpp = vp;
1086	return (0);
1087}
1088
1089/*
1090 * Delete from old mount point vnode list, if on one.
1091 */
1092static void
1093delmntque(struct vnode *vp)
1094{
1095	struct mount *mp;
1096	int active;
1097
1098	mp = vp->v_mount;
1099	if (mp == NULL)
1100		return;
1101	MNT_ILOCK(mp);
1102	VI_LOCK(vp);
1103	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1104	    ("Active vnode list size %d > Vnode list size %d",
1105	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1106	active = vp->v_iflag & VI_ACTIVE;
1107	vp->v_iflag &= ~VI_ACTIVE;
1108	if (active) {
1109		mtx_lock(&vnode_free_list_mtx);
1110		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1111		mp->mnt_activevnodelistsize--;
1112		mtx_unlock(&vnode_free_list_mtx);
1113	}
1114	vp->v_mount = NULL;
1115	VI_UNLOCK(vp);
1116	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1117		("bad mount point vnode list size"));
1118	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1119	mp->mnt_nvnodelistsize--;
1120	MNT_REL(mp);
1121	MNT_IUNLOCK(mp);
1122}
1123
1124static void
1125insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1126{
1127
1128	vp->v_data = NULL;
1129	vp->v_op = &dead_vnodeops;
1130	vgone(vp);
1131	vput(vp);
1132}
1133
1134/*
1135 * Insert into list of vnodes for the new mount point, if available.
1136 */
1137int
1138insmntque1(struct vnode *vp, struct mount *mp,
1139	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1140{
1141
1142	KASSERT(vp->v_mount == NULL,
1143		("insmntque: vnode already on per mount vnode list"));
1144	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1145	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1146
1147	/*
1148	 * We acquire the vnode interlock early to ensure that the
1149	 * vnode cannot be recycled by another process releasing a
1150	 * holdcnt on it before we get it on both the vnode list
1151	 * and the active vnode list. The mount mutex protects only
1152	 * manipulation of the vnode list and the vnode freelist
1153	 * mutex protects only manipulation of the active vnode list.
1154	 * Hence the need to hold the vnode interlock throughout.
1155	 */
1156	MNT_ILOCK(mp);
1157	VI_LOCK(vp);
1158	if (((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1159	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1160	    mp->mnt_nvnodelistsize == 0)) &&
1161	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1162		VI_UNLOCK(vp);
1163		MNT_IUNLOCK(mp);
1164		if (dtr != NULL)
1165			dtr(vp, dtr_arg);
1166		return (EBUSY);
1167	}
1168	vp->v_mount = mp;
1169	MNT_REF(mp);
1170	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1171	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1172		("neg mount point vnode list size"));
1173	mp->mnt_nvnodelistsize++;
1174	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1175	    ("Activating already active vnode"));
1176	vp->v_iflag |= VI_ACTIVE;
1177	mtx_lock(&vnode_free_list_mtx);
1178	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1179	mp->mnt_activevnodelistsize++;
1180	mtx_unlock(&vnode_free_list_mtx);
1181	VI_UNLOCK(vp);
1182	MNT_IUNLOCK(mp);
1183	return (0);
1184}
1185
1186int
1187insmntque(struct vnode *vp, struct mount *mp)
1188{
1189
1190	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1191}
1192
1193/*
1194 * Flush out and invalidate all buffers associated with a bufobj
1195 * Called with the underlying object locked.
1196 */
1197int
1198bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1199{
1200	int error;
1201
1202	BO_LOCK(bo);
1203	if (flags & V_SAVE) {
1204		error = bufobj_wwait(bo, slpflag, slptimeo);
1205		if (error) {
1206			BO_UNLOCK(bo);
1207			return (error);
1208		}
1209		if (bo->bo_dirty.bv_cnt > 0) {
1210			BO_UNLOCK(bo);
1211			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1212				return (error);
1213			/*
1214			 * XXX We could save a lock/unlock if this was only
1215			 * enabled under INVARIANTS
1216			 */
1217			BO_LOCK(bo);
1218			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1219				panic("vinvalbuf: dirty bufs");
1220		}
1221	}
1222	/*
1223	 * If you alter this loop please notice that interlock is dropped and
1224	 * reacquired in flushbuflist.  Special care is needed to ensure that
1225	 * no race conditions occur from this.
1226	 */
1227	do {
1228		error = flushbuflist(&bo->bo_clean,
1229		    flags, bo, slpflag, slptimeo);
1230		if (error == 0 && !(flags & V_CLEANONLY))
1231			error = flushbuflist(&bo->bo_dirty,
1232			    flags, bo, slpflag, slptimeo);
1233		if (error != 0 && error != EAGAIN) {
1234			BO_UNLOCK(bo);
1235			return (error);
1236		}
1237	} while (error != 0);
1238
1239	/*
1240	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1241	 * have write I/O in-progress but if there is a VM object then the
1242	 * VM object can also have read-I/O in-progress.
1243	 */
1244	do {
1245		bufobj_wwait(bo, 0, 0);
1246		BO_UNLOCK(bo);
1247		if (bo->bo_object != NULL) {
1248			VM_OBJECT_WLOCK(bo->bo_object);
1249			vm_object_pip_wait(bo->bo_object, "bovlbx");
1250			VM_OBJECT_WUNLOCK(bo->bo_object);
1251		}
1252		BO_LOCK(bo);
1253	} while (bo->bo_numoutput > 0);
1254	BO_UNLOCK(bo);
1255
1256	/*
1257	 * Destroy the copy in the VM cache, too.
1258	 */
1259	if (bo->bo_object != NULL &&
1260	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0) {
1261		VM_OBJECT_WLOCK(bo->bo_object);
1262		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1263		    OBJPR_CLEANONLY : 0);
1264		VM_OBJECT_WUNLOCK(bo->bo_object);
1265	}
1266
1267#ifdef INVARIANTS
1268	BO_LOCK(bo);
1269	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0 &&
1270	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1271		panic("vinvalbuf: flush failed");
1272	BO_UNLOCK(bo);
1273#endif
1274	return (0);
1275}
1276
1277/*
1278 * Flush out and invalidate all buffers associated with a vnode.
1279 * Called with the underlying object locked.
1280 */
1281int
1282vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1283{
1284
1285	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1286	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1287	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1288}
1289
1290/*
1291 * Flush out buffers on the specified list.
1292 *
1293 */
1294static int
1295flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1296    int slptimeo)
1297{
1298	struct buf *bp, *nbp;
1299	int retval, error;
1300	daddr_t lblkno;
1301	b_xflags_t xflags;
1302
1303	ASSERT_BO_LOCKED(bo);
1304
1305	retval = 0;
1306	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1307		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1308		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1309			continue;
1310		}
1311		lblkno = 0;
1312		xflags = 0;
1313		if (nbp != NULL) {
1314			lblkno = nbp->b_lblkno;
1315			xflags = nbp->b_xflags &
1316				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1317		}
1318		retval = EAGAIN;
1319		error = BUF_TIMELOCK(bp,
1320		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1321		    "flushbuf", slpflag, slptimeo);
1322		if (error) {
1323			BO_LOCK(bo);
1324			return (error != ENOLCK ? error : EAGAIN);
1325		}
1326		KASSERT(bp->b_bufobj == bo,
1327		    ("bp %p wrong b_bufobj %p should be %p",
1328		    bp, bp->b_bufobj, bo));
1329		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1330			BUF_UNLOCK(bp);
1331			BO_LOCK(bo);
1332			return (EAGAIN);
1333		}
1334		/*
1335		 * XXX Since there are no node locks for NFS, I
1336		 * believe there is a slight chance that a delayed
1337		 * write will occur while sleeping just above, so
1338		 * check for it.
1339		 */
1340		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1341		    (flags & V_SAVE)) {
1342			BO_LOCK(bo);
1343			bremfree(bp);
1344			BO_UNLOCK(bo);
1345			bp->b_flags |= B_ASYNC;
1346			bwrite(bp);
1347			BO_LOCK(bo);
1348			return (EAGAIN);	/* XXX: why not loop ? */
1349		}
1350		BO_LOCK(bo);
1351		bremfree(bp);
1352		BO_UNLOCK(bo);
1353		bp->b_flags |= (B_INVAL | B_RELBUF);
1354		bp->b_flags &= ~B_ASYNC;
1355		brelse(bp);
1356		BO_LOCK(bo);
1357		if (nbp != NULL &&
1358		    (nbp->b_bufobj != bo ||
1359		     nbp->b_lblkno != lblkno ||
1360		     (nbp->b_xflags &
1361		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1362			break;			/* nbp invalid */
1363	}
1364	return (retval);
1365}
1366
1367/*
1368 * Truncate a file's buffer and pages to a specified length.  This
1369 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1370 * sync activity.
1371 */
1372int
1373vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize)
1374{
1375	struct buf *bp, *nbp;
1376	int anyfreed;
1377	int trunclbn;
1378	struct bufobj *bo;
1379
1380	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1381	    vp, cred, blksize, (uintmax_t)length);
1382
1383	/*
1384	 * Round up to the *next* lbn.
1385	 */
1386	trunclbn = (length + blksize - 1) / blksize;
1387
1388	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1389restart:
1390	bo = &vp->v_bufobj;
1391	BO_LOCK(bo);
1392	anyfreed = 1;
1393	for (;anyfreed;) {
1394		anyfreed = 0;
1395		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1396			if (bp->b_lblkno < trunclbn)
1397				continue;
1398			if (BUF_LOCK(bp,
1399			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1400			    BO_MTX(bo)) == ENOLCK)
1401				goto restart;
1402
1403			BO_LOCK(bo);
1404			bremfree(bp);
1405			BO_UNLOCK(bo);
1406			bp->b_flags |= (B_INVAL | B_RELBUF);
1407			bp->b_flags &= ~B_ASYNC;
1408			brelse(bp);
1409			anyfreed = 1;
1410
1411			BO_LOCK(bo);
1412			if (nbp != NULL &&
1413			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1414			    (nbp->b_vp != vp) ||
1415			    (nbp->b_flags & B_DELWRI))) {
1416				BO_UNLOCK(bo);
1417				goto restart;
1418			}
1419		}
1420
1421		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1422			if (bp->b_lblkno < trunclbn)
1423				continue;
1424			if (BUF_LOCK(bp,
1425			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1426			    BO_MTX(bo)) == ENOLCK)
1427				goto restart;
1428			BO_LOCK(bo);
1429			bremfree(bp);
1430			BO_UNLOCK(bo);
1431			bp->b_flags |= (B_INVAL | B_RELBUF);
1432			bp->b_flags &= ~B_ASYNC;
1433			brelse(bp);
1434			anyfreed = 1;
1435
1436			BO_LOCK(bo);
1437			if (nbp != NULL &&
1438			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1439			    (nbp->b_vp != vp) ||
1440			    (nbp->b_flags & B_DELWRI) == 0)) {
1441				BO_UNLOCK(bo);
1442				goto restart;
1443			}
1444		}
1445	}
1446
1447	if (length > 0) {
1448restartsync:
1449		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1450			if (bp->b_lblkno > 0)
1451				continue;
1452			/*
1453			 * Since we hold the vnode lock this should only
1454			 * fail if we're racing with the buf daemon.
1455			 */
1456			if (BUF_LOCK(bp,
1457			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1458			    BO_MTX(bo)) == ENOLCK) {
1459				goto restart;
1460			}
1461			VNASSERT((bp->b_flags & B_DELWRI), vp,
1462			    ("buf(%p) on dirty queue without DELWRI", bp));
1463
1464			BO_LOCK(bo);
1465			bremfree(bp);
1466			BO_UNLOCK(bo);
1467			bawrite(bp);
1468			BO_LOCK(bo);
1469			goto restartsync;
1470		}
1471	}
1472
1473	bufobj_wwait(bo, 0, 0);
1474	BO_UNLOCK(bo);
1475	vnode_pager_setsize(vp, length);
1476
1477	return (0);
1478}
1479
1480/*
1481 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1482 *		 a vnode.
1483 *
1484 *	NOTE: We have to deal with the special case of a background bitmap
1485 *	buffer, a situation where two buffers will have the same logical
1486 *	block offset.  We want (1) only the foreground buffer to be accessed
1487 *	in a lookup and (2) must differentiate between the foreground and
1488 *	background buffer in the splay tree algorithm because the splay
1489 *	tree cannot normally handle multiple entities with the same 'index'.
1490 *	We accomplish this by adding differentiating flags to the splay tree's
1491 *	numerical domain.
1492 */
1493static
1494struct buf *
1495buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1496{
1497	struct buf dummy;
1498	struct buf *lefttreemax, *righttreemin, *y;
1499
1500	if (root == NULL)
1501		return (NULL);
1502	lefttreemax = righttreemin = &dummy;
1503	for (;;) {
1504		if (lblkno < root->b_lblkno ||
1505		    (lblkno == root->b_lblkno &&
1506		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1507			if ((y = root->b_left) == NULL)
1508				break;
1509			if (lblkno < y->b_lblkno) {
1510				/* Rotate right. */
1511				root->b_left = y->b_right;
1512				y->b_right = root;
1513				root = y;
1514				if ((y = root->b_left) == NULL)
1515					break;
1516			}
1517			/* Link into the new root's right tree. */
1518			righttreemin->b_left = root;
1519			righttreemin = root;
1520		} else if (lblkno > root->b_lblkno ||
1521		    (lblkno == root->b_lblkno &&
1522		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1523			if ((y = root->b_right) == NULL)
1524				break;
1525			if (lblkno > y->b_lblkno) {
1526				/* Rotate left. */
1527				root->b_right = y->b_left;
1528				y->b_left = root;
1529				root = y;
1530				if ((y = root->b_right) == NULL)
1531					break;
1532			}
1533			/* Link into the new root's left tree. */
1534			lefttreemax->b_right = root;
1535			lefttreemax = root;
1536		} else {
1537			break;
1538		}
1539		root = y;
1540	}
1541	/* Assemble the new root. */
1542	lefttreemax->b_right = root->b_left;
1543	righttreemin->b_left = root->b_right;
1544	root->b_left = dummy.b_right;
1545	root->b_right = dummy.b_left;
1546	return (root);
1547}
1548
1549static void
1550buf_vlist_remove(struct buf *bp)
1551{
1552	struct buf *root;
1553	struct bufv *bv;
1554
1555	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1556	ASSERT_BO_LOCKED(bp->b_bufobj);
1557	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1558	    (BX_VNDIRTY|BX_VNCLEAN),
1559	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1560	if (bp->b_xflags & BX_VNDIRTY)
1561		bv = &bp->b_bufobj->bo_dirty;
1562	else
1563		bv = &bp->b_bufobj->bo_clean;
1564	if (bp != bv->bv_root) {
1565		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1566		KASSERT(root == bp, ("splay lookup failed in remove"));
1567	}
1568	if (bp->b_left == NULL) {
1569		root = bp->b_right;
1570	} else {
1571		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1572		root->b_right = bp->b_right;
1573	}
1574	bv->bv_root = root;
1575	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1576	bv->bv_cnt--;
1577	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1578}
1579
1580/*
1581 * Add the buffer to the sorted clean or dirty block list using a
1582 * splay tree algorithm.
1583 *
1584 * NOTE: xflags is passed as a constant, optimizing this inline function!
1585 */
1586static void
1587buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1588{
1589	struct buf *root;
1590	struct bufv *bv;
1591
1592	ASSERT_BO_LOCKED(bo);
1593	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1594	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1595	bp->b_xflags |= xflags;
1596	if (xflags & BX_VNDIRTY)
1597		bv = &bo->bo_dirty;
1598	else
1599		bv = &bo->bo_clean;
1600
1601	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1602	if (root == NULL) {
1603		bp->b_left = NULL;
1604		bp->b_right = NULL;
1605		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1606	} else if (bp->b_lblkno < root->b_lblkno ||
1607	    (bp->b_lblkno == root->b_lblkno &&
1608	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1609		bp->b_left = root->b_left;
1610		bp->b_right = root;
1611		root->b_left = NULL;
1612		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1613	} else {
1614		bp->b_right = root->b_right;
1615		bp->b_left = root;
1616		root->b_right = NULL;
1617		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1618	}
1619	bv->bv_cnt++;
1620	bv->bv_root = bp;
1621}
1622
1623/*
1624 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1625 * shadow buffers used in background bitmap writes.
1626 *
1627 * This code isn't quite efficient as it could be because we are maintaining
1628 * two sorted lists and do not know which list the block resides in.
1629 *
1630 * During a "make buildworld" the desired buffer is found at one of
1631 * the roots more than 60% of the time.  Thus, checking both roots
1632 * before performing either splay eliminates unnecessary splays on the
1633 * first tree splayed.
1634 */
1635struct buf *
1636gbincore(struct bufobj *bo, daddr_t lblkno)
1637{
1638	struct buf *bp;
1639
1640	ASSERT_BO_LOCKED(bo);
1641	if ((bp = bo->bo_clean.bv_root) != NULL &&
1642	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1643		return (bp);
1644	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1645	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1646		return (bp);
1647	if ((bp = bo->bo_clean.bv_root) != NULL) {
1648		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1649		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1650			return (bp);
1651	}
1652	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1653		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1654		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1655			return (bp);
1656	}
1657	return (NULL);
1658}
1659
1660/*
1661 * Associate a buffer with a vnode.
1662 */
1663void
1664bgetvp(struct vnode *vp, struct buf *bp)
1665{
1666	struct bufobj *bo;
1667
1668	bo = &vp->v_bufobj;
1669	ASSERT_BO_LOCKED(bo);
1670	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1671
1672	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1673	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1674	    ("bgetvp: bp already attached! %p", bp));
1675
1676	vhold(vp);
1677	bp->b_vp = vp;
1678	bp->b_bufobj = bo;
1679	/*
1680	 * Insert onto list for new vnode.
1681	 */
1682	buf_vlist_add(bp, bo, BX_VNCLEAN);
1683}
1684
1685/*
1686 * Disassociate a buffer from a vnode.
1687 */
1688void
1689brelvp(struct buf *bp)
1690{
1691	struct bufobj *bo;
1692	struct vnode *vp;
1693
1694	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1695	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1696
1697	/*
1698	 * Delete from old vnode list, if on one.
1699	 */
1700	vp = bp->b_vp;		/* XXX */
1701	bo = bp->b_bufobj;
1702	BO_LOCK(bo);
1703	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1704		buf_vlist_remove(bp);
1705	else
1706		panic("brelvp: Buffer %p not on queue.", bp);
1707	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1708		bo->bo_flag &= ~BO_ONWORKLST;
1709		mtx_lock(&sync_mtx);
1710		LIST_REMOVE(bo, bo_synclist);
1711		syncer_worklist_len--;
1712		mtx_unlock(&sync_mtx);
1713	}
1714	bp->b_vp = NULL;
1715	bp->b_bufobj = NULL;
1716	BO_UNLOCK(bo);
1717	vdrop(vp);
1718}
1719
1720/*
1721 * Add an item to the syncer work queue.
1722 */
1723static void
1724vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1725{
1726	int slot;
1727
1728	ASSERT_BO_LOCKED(bo);
1729
1730	mtx_lock(&sync_mtx);
1731	if (bo->bo_flag & BO_ONWORKLST)
1732		LIST_REMOVE(bo, bo_synclist);
1733	else {
1734		bo->bo_flag |= BO_ONWORKLST;
1735		syncer_worklist_len++;
1736	}
1737
1738	if (delay > syncer_maxdelay - 2)
1739		delay = syncer_maxdelay - 2;
1740	slot = (syncer_delayno + delay) & syncer_mask;
1741
1742	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1743	mtx_unlock(&sync_mtx);
1744}
1745
1746static int
1747sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1748{
1749	int error, len;
1750
1751	mtx_lock(&sync_mtx);
1752	len = syncer_worklist_len - sync_vnode_count;
1753	mtx_unlock(&sync_mtx);
1754	error = SYSCTL_OUT(req, &len, sizeof(len));
1755	return (error);
1756}
1757
1758SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1759    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1760
1761static struct proc *updateproc;
1762static void sched_sync(void);
1763static struct kproc_desc up_kp = {
1764	"syncer",
1765	sched_sync,
1766	&updateproc
1767};
1768SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1769
1770static int
1771sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1772{
1773	struct vnode *vp;
1774	struct mount *mp;
1775
1776	*bo = LIST_FIRST(slp);
1777	if (*bo == NULL)
1778		return (0);
1779	vp = (*bo)->__bo_vnode;	/* XXX */
1780	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1781		return (1);
1782	/*
1783	 * We use vhold in case the vnode does not
1784	 * successfully sync.  vhold prevents the vnode from
1785	 * going away when we unlock the sync_mtx so that
1786	 * we can acquire the vnode interlock.
1787	 */
1788	vholdl(vp);
1789	mtx_unlock(&sync_mtx);
1790	VI_UNLOCK(vp);
1791	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1792		vdrop(vp);
1793		mtx_lock(&sync_mtx);
1794		return (*bo == LIST_FIRST(slp));
1795	}
1796	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1797	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1798	VOP_UNLOCK(vp, 0);
1799	vn_finished_write(mp);
1800	BO_LOCK(*bo);
1801	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1802		/*
1803		 * Put us back on the worklist.  The worklist
1804		 * routine will remove us from our current
1805		 * position and then add us back in at a later
1806		 * position.
1807		 */
1808		vn_syncer_add_to_worklist(*bo, syncdelay);
1809	}
1810	BO_UNLOCK(*bo);
1811	vdrop(vp);
1812	mtx_lock(&sync_mtx);
1813	return (0);
1814}
1815
1816/*
1817 * System filesystem synchronizer daemon.
1818 */
1819static void
1820sched_sync(void)
1821{
1822	struct synclist *next, *slp;
1823	struct bufobj *bo;
1824	long starttime;
1825	struct thread *td = curthread;
1826	int last_work_seen;
1827	int net_worklist_len;
1828	int syncer_final_iter;
1829	int first_printf;
1830	int error;
1831
1832	last_work_seen = 0;
1833	syncer_final_iter = 0;
1834	first_printf = 1;
1835	syncer_state = SYNCER_RUNNING;
1836	starttime = time_uptime;
1837	td->td_pflags |= TDP_NORUNNINGBUF;
1838
1839	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1840	    SHUTDOWN_PRI_LAST);
1841
1842	mtx_lock(&sync_mtx);
1843	for (;;) {
1844		if (syncer_state == SYNCER_FINAL_DELAY &&
1845		    syncer_final_iter == 0) {
1846			mtx_unlock(&sync_mtx);
1847			kproc_suspend_check(td->td_proc);
1848			mtx_lock(&sync_mtx);
1849		}
1850		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1851		if (syncer_state != SYNCER_RUNNING &&
1852		    starttime != time_uptime) {
1853			if (first_printf) {
1854				printf("\nSyncing disks, vnodes remaining...");
1855				first_printf = 0;
1856			}
1857			printf("%d ", net_worklist_len);
1858		}
1859		starttime = time_uptime;
1860
1861		/*
1862		 * Push files whose dirty time has expired.  Be careful
1863		 * of interrupt race on slp queue.
1864		 *
1865		 * Skip over empty worklist slots when shutting down.
1866		 */
1867		do {
1868			slp = &syncer_workitem_pending[syncer_delayno];
1869			syncer_delayno += 1;
1870			if (syncer_delayno == syncer_maxdelay)
1871				syncer_delayno = 0;
1872			next = &syncer_workitem_pending[syncer_delayno];
1873			/*
1874			 * If the worklist has wrapped since the
1875			 * it was emptied of all but syncer vnodes,
1876			 * switch to the FINAL_DELAY state and run
1877			 * for one more second.
1878			 */
1879			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1880			    net_worklist_len == 0 &&
1881			    last_work_seen == syncer_delayno) {
1882				syncer_state = SYNCER_FINAL_DELAY;
1883				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1884			}
1885		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1886		    syncer_worklist_len > 0);
1887
1888		/*
1889		 * Keep track of the last time there was anything
1890		 * on the worklist other than syncer vnodes.
1891		 * Return to the SHUTTING_DOWN state if any
1892		 * new work appears.
1893		 */
1894		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1895			last_work_seen = syncer_delayno;
1896		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1897			syncer_state = SYNCER_SHUTTING_DOWN;
1898		while (!LIST_EMPTY(slp)) {
1899			error = sync_vnode(slp, &bo, td);
1900			if (error == 1) {
1901				LIST_REMOVE(bo, bo_synclist);
1902				LIST_INSERT_HEAD(next, bo, bo_synclist);
1903				continue;
1904			}
1905
1906			if (first_printf == 0)
1907				wdog_kern_pat(WD_LASTVAL);
1908
1909		}
1910		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1911			syncer_final_iter--;
1912		/*
1913		 * The variable rushjob allows the kernel to speed up the
1914		 * processing of the filesystem syncer process. A rushjob
1915		 * value of N tells the filesystem syncer to process the next
1916		 * N seconds worth of work on its queue ASAP. Currently rushjob
1917		 * is used by the soft update code to speed up the filesystem
1918		 * syncer process when the incore state is getting so far
1919		 * ahead of the disk that the kernel memory pool is being
1920		 * threatened with exhaustion.
1921		 */
1922		if (rushjob > 0) {
1923			rushjob -= 1;
1924			continue;
1925		}
1926		/*
1927		 * Just sleep for a short period of time between
1928		 * iterations when shutting down to allow some I/O
1929		 * to happen.
1930		 *
1931		 * If it has taken us less than a second to process the
1932		 * current work, then wait. Otherwise start right over
1933		 * again. We can still lose time if any single round
1934		 * takes more than two seconds, but it does not really
1935		 * matter as we are just trying to generally pace the
1936		 * filesystem activity.
1937		 */
1938		if (syncer_state != SYNCER_RUNNING ||
1939		    time_uptime == starttime) {
1940			thread_lock(td);
1941			sched_prio(td, PPAUSE);
1942			thread_unlock(td);
1943		}
1944		if (syncer_state != SYNCER_RUNNING)
1945			cv_timedwait(&sync_wakeup, &sync_mtx,
1946			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1947		else if (time_uptime == starttime)
1948			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
1949	}
1950}
1951
1952/*
1953 * Request the syncer daemon to speed up its work.
1954 * We never push it to speed up more than half of its
1955 * normal turn time, otherwise it could take over the cpu.
1956 */
1957int
1958speedup_syncer(void)
1959{
1960	int ret = 0;
1961
1962	mtx_lock(&sync_mtx);
1963	if (rushjob < syncdelay / 2) {
1964		rushjob += 1;
1965		stat_rush_requests += 1;
1966		ret = 1;
1967	}
1968	mtx_unlock(&sync_mtx);
1969	cv_broadcast(&sync_wakeup);
1970	return (ret);
1971}
1972
1973/*
1974 * Tell the syncer to speed up its work and run though its work
1975 * list several times, then tell it to shut down.
1976 */
1977static void
1978syncer_shutdown(void *arg, int howto)
1979{
1980
1981	if (howto & RB_NOSYNC)
1982		return;
1983	mtx_lock(&sync_mtx);
1984	syncer_state = SYNCER_SHUTTING_DOWN;
1985	rushjob = 0;
1986	mtx_unlock(&sync_mtx);
1987	cv_broadcast(&sync_wakeup);
1988	kproc_shutdown(arg, howto);
1989}
1990
1991/*
1992 * Reassign a buffer from one vnode to another.
1993 * Used to assign file specific control information
1994 * (indirect blocks) to the vnode to which they belong.
1995 */
1996void
1997reassignbuf(struct buf *bp)
1998{
1999	struct vnode *vp;
2000	struct bufobj *bo;
2001	int delay;
2002#ifdef INVARIANTS
2003	struct bufv *bv;
2004#endif
2005
2006	vp = bp->b_vp;
2007	bo = bp->b_bufobj;
2008	++reassignbufcalls;
2009
2010	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2011	    bp, bp->b_vp, bp->b_flags);
2012	/*
2013	 * B_PAGING flagged buffers cannot be reassigned because their vp
2014	 * is not fully linked in.
2015	 */
2016	if (bp->b_flags & B_PAGING)
2017		panic("cannot reassign paging buffer");
2018
2019	/*
2020	 * Delete from old vnode list, if on one.
2021	 */
2022	BO_LOCK(bo);
2023	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2024		buf_vlist_remove(bp);
2025	else
2026		panic("reassignbuf: Buffer %p not on queue.", bp);
2027	/*
2028	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2029	 * of clean buffers.
2030	 */
2031	if (bp->b_flags & B_DELWRI) {
2032		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2033			switch (vp->v_type) {
2034			case VDIR:
2035				delay = dirdelay;
2036				break;
2037			case VCHR:
2038				delay = metadelay;
2039				break;
2040			default:
2041				delay = filedelay;
2042			}
2043			vn_syncer_add_to_worklist(bo, delay);
2044		}
2045		buf_vlist_add(bp, bo, BX_VNDIRTY);
2046	} else {
2047		buf_vlist_add(bp, bo, BX_VNCLEAN);
2048
2049		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2050			mtx_lock(&sync_mtx);
2051			LIST_REMOVE(bo, bo_synclist);
2052			syncer_worklist_len--;
2053			mtx_unlock(&sync_mtx);
2054			bo->bo_flag &= ~BO_ONWORKLST;
2055		}
2056	}
2057#ifdef INVARIANTS
2058	bv = &bo->bo_clean;
2059	bp = TAILQ_FIRST(&bv->bv_hd);
2060	KASSERT(bp == NULL || bp->b_bufobj == bo,
2061	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2062	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2063	KASSERT(bp == NULL || bp->b_bufobj == bo,
2064	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2065	bv = &bo->bo_dirty;
2066	bp = TAILQ_FIRST(&bv->bv_hd);
2067	KASSERT(bp == NULL || bp->b_bufobj == bo,
2068	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2069	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2070	KASSERT(bp == NULL || bp->b_bufobj == bo,
2071	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2072#endif
2073	BO_UNLOCK(bo);
2074}
2075
2076/*
2077 * Increment the use and hold counts on the vnode, taking care to reference
2078 * the driver's usecount if this is a chardev.  The vholdl() will remove
2079 * the vnode from the free list if it is presently free.  Requires the
2080 * vnode interlock and returns with it held.
2081 */
2082static void
2083v_incr_usecount(struct vnode *vp)
2084{
2085
2086	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2087	vp->v_usecount++;
2088	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2089		dev_lock();
2090		vp->v_rdev->si_usecount++;
2091		dev_unlock();
2092	}
2093	vholdl(vp);
2094}
2095
2096/*
2097 * Turn a holdcnt into a use+holdcnt such that only one call to
2098 * v_decr_usecount is needed.
2099 */
2100static void
2101v_upgrade_usecount(struct vnode *vp)
2102{
2103
2104	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2105	vp->v_usecount++;
2106	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2107		dev_lock();
2108		vp->v_rdev->si_usecount++;
2109		dev_unlock();
2110	}
2111}
2112
2113/*
2114 * Decrement the vnode use and hold count along with the driver's usecount
2115 * if this is a chardev.  The vdropl() below releases the vnode interlock
2116 * as it may free the vnode.
2117 */
2118static void
2119v_decr_usecount(struct vnode *vp)
2120{
2121
2122	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2123	VNASSERT(vp->v_usecount > 0, vp,
2124	    ("v_decr_usecount: negative usecount"));
2125	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2126	vp->v_usecount--;
2127	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2128		dev_lock();
2129		vp->v_rdev->si_usecount--;
2130		dev_unlock();
2131	}
2132	vdropl(vp);
2133}
2134
2135/*
2136 * Decrement only the use count and driver use count.  This is intended to
2137 * be paired with a follow on vdropl() to release the remaining hold count.
2138 * In this way we may vgone() a vnode with a 0 usecount without risk of
2139 * having it end up on a free list because the hold count is kept above 0.
2140 */
2141static void
2142v_decr_useonly(struct vnode *vp)
2143{
2144
2145	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2146	VNASSERT(vp->v_usecount > 0, vp,
2147	    ("v_decr_useonly: negative usecount"));
2148	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2149	vp->v_usecount--;
2150	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2151		dev_lock();
2152		vp->v_rdev->si_usecount--;
2153		dev_unlock();
2154	}
2155}
2156
2157/*
2158 * Grab a particular vnode from the free list, increment its
2159 * reference count and lock it.  VI_DOOMED is set if the vnode
2160 * is being destroyed.  Only callers who specify LK_RETRY will
2161 * see doomed vnodes.  If inactive processing was delayed in
2162 * vput try to do it here.
2163 */
2164int
2165vget(struct vnode *vp, int flags, struct thread *td)
2166{
2167	int error;
2168
2169	error = 0;
2170	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2171	    ("vget: invalid lock operation"));
2172	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2173
2174	if ((flags & LK_INTERLOCK) == 0)
2175		VI_LOCK(vp);
2176	vholdl(vp);
2177	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2178		vdrop(vp);
2179		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2180		    vp);
2181		return (error);
2182	}
2183	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2184		panic("vget: vn_lock failed to return ENOENT\n");
2185	VI_LOCK(vp);
2186	/* Upgrade our holdcnt to a usecount. */
2187	v_upgrade_usecount(vp);
2188	/*
2189	 * We don't guarantee that any particular close will
2190	 * trigger inactive processing so just make a best effort
2191	 * here at preventing a reference to a removed file.  If
2192	 * we don't succeed no harm is done.
2193	 */
2194	if (vp->v_iflag & VI_OWEINACT) {
2195		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2196		    (flags & LK_NOWAIT) == 0)
2197			vinactive(vp, td);
2198		vp->v_iflag &= ~VI_OWEINACT;
2199	}
2200	VI_UNLOCK(vp);
2201	return (0);
2202}
2203
2204/*
2205 * Increase the reference count of a vnode.
2206 */
2207void
2208vref(struct vnode *vp)
2209{
2210
2211	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2212	VI_LOCK(vp);
2213	v_incr_usecount(vp);
2214	VI_UNLOCK(vp);
2215}
2216
2217/*
2218 * Return reference count of a vnode.
2219 *
2220 * The results of this call are only guaranteed when some mechanism other
2221 * than the VI lock is used to stop other processes from gaining references
2222 * to the vnode.  This may be the case if the caller holds the only reference.
2223 * This is also useful when stale data is acceptable as race conditions may
2224 * be accounted for by some other means.
2225 */
2226int
2227vrefcnt(struct vnode *vp)
2228{
2229	int usecnt;
2230
2231	VI_LOCK(vp);
2232	usecnt = vp->v_usecount;
2233	VI_UNLOCK(vp);
2234
2235	return (usecnt);
2236}
2237
2238#define	VPUTX_VRELE	1
2239#define	VPUTX_VPUT	2
2240#define	VPUTX_VUNREF	3
2241
2242static void
2243vputx(struct vnode *vp, int func)
2244{
2245	int error;
2246
2247	KASSERT(vp != NULL, ("vputx: null vp"));
2248	if (func == VPUTX_VUNREF)
2249		ASSERT_VOP_LOCKED(vp, "vunref");
2250	else if (func == VPUTX_VPUT)
2251		ASSERT_VOP_LOCKED(vp, "vput");
2252	else
2253		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2254	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2255	VI_LOCK(vp);
2256
2257	/* Skip this v_writecount check if we're going to panic below. */
2258	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2259	    ("vputx: missed vn_close"));
2260	error = 0;
2261
2262	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2263	    vp->v_usecount == 1)) {
2264		if (func == VPUTX_VPUT)
2265			VOP_UNLOCK(vp, 0);
2266		v_decr_usecount(vp);
2267		return;
2268	}
2269
2270	if (vp->v_usecount != 1) {
2271		vprint("vputx: negative ref count", vp);
2272		panic("vputx: negative ref cnt");
2273	}
2274	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2275	/*
2276	 * We want to hold the vnode until the inactive finishes to
2277	 * prevent vgone() races.  We drop the use count here and the
2278	 * hold count below when we're done.
2279	 */
2280	v_decr_useonly(vp);
2281	/*
2282	 * We must call VOP_INACTIVE with the node locked. Mark
2283	 * as VI_DOINGINACT to avoid recursion.
2284	 */
2285	vp->v_iflag |= VI_OWEINACT;
2286	switch (func) {
2287	case VPUTX_VRELE:
2288		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2289		VI_LOCK(vp);
2290		break;
2291	case VPUTX_VPUT:
2292		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2293			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
2294			    LK_NOWAIT);
2295			VI_LOCK(vp);
2296		}
2297		break;
2298	case VPUTX_VUNREF:
2299		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
2300			error = EBUSY;
2301		break;
2302	}
2303	if (vp->v_usecount > 0)
2304		vp->v_iflag &= ~VI_OWEINACT;
2305	if (error == 0) {
2306		if (vp->v_iflag & VI_OWEINACT)
2307			vinactive(vp, curthread);
2308		if (func != VPUTX_VUNREF)
2309			VOP_UNLOCK(vp, 0);
2310	}
2311	vdropl(vp);
2312}
2313
2314/*
2315 * Vnode put/release.
2316 * If count drops to zero, call inactive routine and return to freelist.
2317 */
2318void
2319vrele(struct vnode *vp)
2320{
2321
2322	vputx(vp, VPUTX_VRELE);
2323}
2324
2325/*
2326 * Release an already locked vnode.  This give the same effects as
2327 * unlock+vrele(), but takes less time and avoids releasing and
2328 * re-aquiring the lock (as vrele() acquires the lock internally.)
2329 */
2330void
2331vput(struct vnode *vp)
2332{
2333
2334	vputx(vp, VPUTX_VPUT);
2335}
2336
2337/*
2338 * Release an exclusively locked vnode. Do not unlock the vnode lock.
2339 */
2340void
2341vunref(struct vnode *vp)
2342{
2343
2344	vputx(vp, VPUTX_VUNREF);
2345}
2346
2347/*
2348 * Somebody doesn't want the vnode recycled.
2349 */
2350void
2351vhold(struct vnode *vp)
2352{
2353
2354	VI_LOCK(vp);
2355	vholdl(vp);
2356	VI_UNLOCK(vp);
2357}
2358
2359/*
2360 * Increase the hold count and activate if this is the first reference.
2361 */
2362void
2363vholdl(struct vnode *vp)
2364{
2365	struct mount *mp;
2366
2367	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2368	vp->v_holdcnt++;
2369	if (!VSHOULDBUSY(vp))
2370		return;
2371	ASSERT_VI_LOCKED(vp, "vholdl");
2372	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
2373	VNASSERT(vp->v_op != NULL, vp, ("vholdl: vnode already reclaimed."));
2374	/*
2375	 * Remove a vnode from the free list, mark it as in use,
2376	 * and put it on the active list.
2377	 */
2378	mtx_lock(&vnode_free_list_mtx);
2379	TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
2380	freevnodes--;
2381	vp->v_iflag &= ~(VI_FREE|VI_AGE);
2382	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
2383	    ("Activating already active vnode"));
2384	vp->v_iflag |= VI_ACTIVE;
2385	mp = vp->v_mount;
2386	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
2387	mp->mnt_activevnodelistsize++;
2388	mtx_unlock(&vnode_free_list_mtx);
2389}
2390
2391/*
2392 * Note that there is one less who cares about this vnode.
2393 * vdrop() is the opposite of vhold().
2394 */
2395void
2396vdrop(struct vnode *vp)
2397{
2398
2399	VI_LOCK(vp);
2400	vdropl(vp);
2401}
2402
2403/*
2404 * Drop the hold count of the vnode.  If this is the last reference to
2405 * the vnode we place it on the free list unless it has been vgone'd
2406 * (marked VI_DOOMED) in which case we will free it.
2407 */
2408void
2409vdropl(struct vnode *vp)
2410{
2411	struct bufobj *bo;
2412	struct mount *mp;
2413	int active;
2414
2415	ASSERT_VI_LOCKED(vp, "vdropl");
2416	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2417	if (vp->v_holdcnt <= 0)
2418		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2419	vp->v_holdcnt--;
2420	if (vp->v_holdcnt > 0) {
2421		VI_UNLOCK(vp);
2422		return;
2423	}
2424	if ((vp->v_iflag & VI_DOOMED) == 0) {
2425		/*
2426		 * Mark a vnode as free: remove it from its active list
2427		 * and put it up for recycling on the freelist.
2428		 */
2429		VNASSERT(vp->v_op != NULL, vp,
2430		    ("vdropl: vnode already reclaimed."));
2431		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2432		    ("vnode already free"));
2433		VNASSERT(VSHOULDFREE(vp), vp,
2434		    ("vdropl: freeing when we shouldn't"));
2435		active = vp->v_iflag & VI_ACTIVE;
2436		vp->v_iflag &= ~VI_ACTIVE;
2437		mp = vp->v_mount;
2438		mtx_lock(&vnode_free_list_mtx);
2439		if (active) {
2440			TAILQ_REMOVE(&mp->mnt_activevnodelist, vp,
2441			    v_actfreelist);
2442			mp->mnt_activevnodelistsize--;
2443		}
2444		if (vp->v_iflag & VI_AGE) {
2445			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_actfreelist);
2446		} else {
2447			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
2448		}
2449		freevnodes++;
2450		vp->v_iflag &= ~VI_AGE;
2451		vp->v_iflag |= VI_FREE;
2452		mtx_unlock(&vnode_free_list_mtx);
2453		VI_UNLOCK(vp);
2454		return;
2455	}
2456	/*
2457	 * The vnode has been marked for destruction, so free it.
2458	 */
2459	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2460	mtx_lock(&vnode_free_list_mtx);
2461	numvnodes--;
2462	mtx_unlock(&vnode_free_list_mtx);
2463	bo = &vp->v_bufobj;
2464	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2465	    ("cleaned vnode still on the free list."));
2466	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2467	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
2468	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2469	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2470	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2471	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2472	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
2473	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2474	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
2475	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
2476	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
2477	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
2478	VI_UNLOCK(vp);
2479#ifdef MAC
2480	mac_vnode_destroy(vp);
2481#endif
2482	if (vp->v_pollinfo != NULL)
2483		destroy_vpollinfo(vp->v_pollinfo);
2484#ifdef INVARIANTS
2485	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
2486	vp->v_op = NULL;
2487#endif
2488	rangelock_destroy(&vp->v_rl);
2489	lockdestroy(vp->v_vnlock);
2490	mtx_destroy(&vp->v_interlock);
2491	mtx_destroy(BO_MTX(bo));
2492	uma_zfree(vnode_zone, vp);
2493}
2494
2495/*
2496 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2497 * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2498 * OWEINACT tracks whether a vnode missed a call to inactive due to a
2499 * failed lock upgrade.
2500 */
2501void
2502vinactive(struct vnode *vp, struct thread *td)
2503{
2504	struct vm_object *obj;
2505
2506	ASSERT_VOP_ELOCKED(vp, "vinactive");
2507	ASSERT_VI_LOCKED(vp, "vinactive");
2508	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2509	    ("vinactive: recursed on VI_DOINGINACT"));
2510	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2511	vp->v_iflag |= VI_DOINGINACT;
2512	vp->v_iflag &= ~VI_OWEINACT;
2513	VI_UNLOCK(vp);
2514	/*
2515	 * Before moving off the active list, we must be sure that any
2516	 * modified pages are on the vnode's dirty list since these will
2517	 * no longer be checked once the vnode is on the inactive list.
2518	 * Because the vnode vm object keeps a hold reference on the vnode
2519	 * if there is at least one resident non-cached page, the vnode
2520	 * cannot leave the active list without the page cleanup done.
2521	 */
2522	obj = vp->v_object;
2523	if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0) {
2524		VM_OBJECT_WLOCK(obj);
2525		vm_object_page_clean(obj, 0, 0, OBJPC_NOSYNC);
2526		VM_OBJECT_WUNLOCK(obj);
2527	}
2528	VOP_INACTIVE(vp, td);
2529	VI_LOCK(vp);
2530	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2531	    ("vinactive: lost VI_DOINGINACT"));
2532	vp->v_iflag &= ~VI_DOINGINACT;
2533}
2534
2535/*
2536 * Remove any vnodes in the vnode table belonging to mount point mp.
2537 *
2538 * If FORCECLOSE is not specified, there should not be any active ones,
2539 * return error if any are found (nb: this is a user error, not a
2540 * system error). If FORCECLOSE is specified, detach any active vnodes
2541 * that are found.
2542 *
2543 * If WRITECLOSE is set, only flush out regular file vnodes open for
2544 * writing.
2545 *
2546 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2547 *
2548 * `rootrefs' specifies the base reference count for the root vnode
2549 * of this filesystem. The root vnode is considered busy if its
2550 * v_usecount exceeds this value. On a successful return, vflush(, td)
2551 * will call vrele() on the root vnode exactly rootrefs times.
2552 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2553 * be zero.
2554 */
2555#ifdef DIAGNOSTIC
2556static int busyprt = 0;		/* print out busy vnodes */
2557SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
2558#endif
2559
2560int
2561vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
2562{
2563	struct vnode *vp, *mvp, *rootvp = NULL;
2564	struct vattr vattr;
2565	int busy = 0, error;
2566
2567	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
2568	    rootrefs, flags);
2569	if (rootrefs > 0) {
2570		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2571		    ("vflush: bad args"));
2572		/*
2573		 * Get the filesystem root vnode. We can vput() it
2574		 * immediately, since with rootrefs > 0, it won't go away.
2575		 */
2576		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
2577			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
2578			    __func__, error);
2579			return (error);
2580		}
2581		vput(rootvp);
2582	}
2583loop:
2584	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
2585		vholdl(vp);
2586		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2587		if (error) {
2588			vdrop(vp);
2589			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2590			goto loop;
2591		}
2592		/*
2593		 * Skip over a vnodes marked VV_SYSTEM.
2594		 */
2595		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2596			VOP_UNLOCK(vp, 0);
2597			vdrop(vp);
2598			continue;
2599		}
2600		/*
2601		 * If WRITECLOSE is set, flush out unlinked but still open
2602		 * files (even if open only for reading) and regular file
2603		 * vnodes open for writing.
2604		 */
2605		if (flags & WRITECLOSE) {
2606			if (vp->v_object != NULL) {
2607				VM_OBJECT_WLOCK(vp->v_object);
2608				vm_object_page_clean(vp->v_object, 0, 0, 0);
2609				VM_OBJECT_WUNLOCK(vp->v_object);
2610			}
2611			error = VOP_FSYNC(vp, MNT_WAIT, td);
2612			if (error != 0) {
2613				VOP_UNLOCK(vp, 0);
2614				vdrop(vp);
2615				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2616				return (error);
2617			}
2618			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2619			VI_LOCK(vp);
2620
2621			if ((vp->v_type == VNON ||
2622			    (error == 0 && vattr.va_nlink > 0)) &&
2623			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2624				VOP_UNLOCK(vp, 0);
2625				vdropl(vp);
2626				continue;
2627			}
2628		} else
2629			VI_LOCK(vp);
2630		/*
2631		 * With v_usecount == 0, all we need to do is clear out the
2632		 * vnode data structures and we are done.
2633		 *
2634		 * If FORCECLOSE is set, forcibly close the vnode.
2635		 */
2636		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2637			VNASSERT(vp->v_usecount == 0 ||
2638			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2639			    ("device VNODE %p is FORCECLOSED", vp));
2640			vgonel(vp);
2641		} else {
2642			busy++;
2643#ifdef DIAGNOSTIC
2644			if (busyprt)
2645				vprint("vflush: busy vnode", vp);
2646#endif
2647		}
2648		VOP_UNLOCK(vp, 0);
2649		vdropl(vp);
2650	}
2651	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2652		/*
2653		 * If just the root vnode is busy, and if its refcount
2654		 * is equal to `rootrefs', then go ahead and kill it.
2655		 */
2656		VI_LOCK(rootvp);
2657		KASSERT(busy > 0, ("vflush: not busy"));
2658		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2659		    ("vflush: usecount %d < rootrefs %d",
2660		     rootvp->v_usecount, rootrefs));
2661		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2662			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2663			vgone(rootvp);
2664			VOP_UNLOCK(rootvp, 0);
2665			busy = 0;
2666		} else
2667			VI_UNLOCK(rootvp);
2668	}
2669	if (busy) {
2670		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
2671		    busy);
2672		return (EBUSY);
2673	}
2674	for (; rootrefs > 0; rootrefs--)
2675		vrele(rootvp);
2676	return (0);
2677}
2678
2679/*
2680 * Recycle an unused vnode to the front of the free list.
2681 */
2682int
2683vrecycle(struct vnode *vp)
2684{
2685	int recycled;
2686
2687	ASSERT_VOP_ELOCKED(vp, "vrecycle");
2688	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2689	recycled = 0;
2690	VI_LOCK(vp);
2691	if (vp->v_usecount == 0) {
2692		recycled = 1;
2693		vgonel(vp);
2694	}
2695	VI_UNLOCK(vp);
2696	return (recycled);
2697}
2698
2699/*
2700 * Eliminate all activity associated with a vnode
2701 * in preparation for reuse.
2702 */
2703void
2704vgone(struct vnode *vp)
2705{
2706	VI_LOCK(vp);
2707	vgonel(vp);
2708	VI_UNLOCK(vp);
2709}
2710
2711static void
2712vgonel_reclaim_lowervp_vfs(struct mount *mp __unused,
2713    struct vnode *lowervp __unused)
2714{
2715}
2716
2717/*
2718 * Notify upper mounts about reclaimed vnode.
2719 */
2720static void
2721vgonel_reclaim_lowervp(struct vnode *vp)
2722{
2723	static struct vfsops vgonel_vfsops = {
2724		.vfs_reclaim_lowervp = vgonel_reclaim_lowervp_vfs
2725	};
2726	struct mount *mp, *ump, *mmp;
2727
2728	mp = vp->v_mount;
2729	if (mp == NULL)
2730		return;
2731
2732	MNT_ILOCK(mp);
2733	if (TAILQ_EMPTY(&mp->mnt_uppers))
2734		goto unlock;
2735	MNT_IUNLOCK(mp);
2736	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
2737	mmp->mnt_op = &vgonel_vfsops;
2738	mmp->mnt_kern_flag |= MNTK_MARKER;
2739	MNT_ILOCK(mp);
2740	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
2741	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
2742		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
2743			ump = TAILQ_NEXT(ump, mnt_upper_link);
2744			continue;
2745		}
2746		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
2747		MNT_IUNLOCK(mp);
2748		VFS_RECLAIM_LOWERVP(ump, vp);
2749		MNT_ILOCK(mp);
2750		ump = TAILQ_NEXT(mmp, mnt_upper_link);
2751		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
2752	}
2753	free(mmp, M_TEMP);
2754	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
2755	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
2756		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
2757		wakeup(&mp->mnt_uppers);
2758	}
2759unlock:
2760	MNT_IUNLOCK(mp);
2761}
2762
2763/*
2764 * vgone, with the vp interlock held.
2765 */
2766void
2767vgonel(struct vnode *vp)
2768{
2769	struct thread *td;
2770	int oweinact;
2771	int active;
2772	struct mount *mp;
2773
2774	ASSERT_VOP_ELOCKED(vp, "vgonel");
2775	ASSERT_VI_LOCKED(vp, "vgonel");
2776	VNASSERT(vp->v_holdcnt, vp,
2777	    ("vgonel: vp %p has no reference.", vp));
2778	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2779	td = curthread;
2780
2781	/*
2782	 * Don't vgonel if we're already doomed.
2783	 */
2784	if (vp->v_iflag & VI_DOOMED)
2785		return;
2786	vp->v_iflag |= VI_DOOMED;
2787
2788	/*
2789	 * Check to see if the vnode is in use.  If so, we have to call
2790	 * VOP_CLOSE() and VOP_INACTIVE().
2791	 */
2792	active = vp->v_usecount;
2793	oweinact = (vp->v_iflag & VI_OWEINACT);
2794	VI_UNLOCK(vp);
2795	vgonel_reclaim_lowervp(vp);
2796
2797	/*
2798	 * Clean out any buffers associated with the vnode.
2799	 * If the flush fails, just toss the buffers.
2800	 */
2801	mp = NULL;
2802	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2803		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2804	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0)
2805		vinvalbuf(vp, 0, 0, 0);
2806
2807	/*
2808	 * If purging an active vnode, it must be closed and
2809	 * deactivated before being reclaimed.
2810	 */
2811	if (active)
2812		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2813	if (oweinact || active) {
2814		VI_LOCK(vp);
2815		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2816			vinactive(vp, td);
2817		VI_UNLOCK(vp);
2818	}
2819	if (vp->v_type == VSOCK)
2820		vfs_unp_reclaim(vp);
2821	/*
2822	 * Reclaim the vnode.
2823	 */
2824	if (VOP_RECLAIM(vp, td))
2825		panic("vgone: cannot reclaim");
2826	if (mp != NULL)
2827		vn_finished_secondary_write(mp);
2828	VNASSERT(vp->v_object == NULL, vp,
2829	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2830	/*
2831	 * Clear the advisory locks and wake up waiting threads.
2832	 */
2833	(void)VOP_ADVLOCKPURGE(vp);
2834	/*
2835	 * Delete from old mount point vnode list.
2836	 */
2837	delmntque(vp);
2838	cache_purge(vp);
2839	/*
2840	 * Done with purge, reset to the standard lock and invalidate
2841	 * the vnode.
2842	 */
2843	VI_LOCK(vp);
2844	vp->v_vnlock = &vp->v_lock;
2845	vp->v_op = &dead_vnodeops;
2846	vp->v_tag = "none";
2847	vp->v_type = VBAD;
2848}
2849
2850/*
2851 * Calculate the total number of references to a special device.
2852 */
2853int
2854vcount(struct vnode *vp)
2855{
2856	int count;
2857
2858	dev_lock();
2859	count = vp->v_rdev->si_usecount;
2860	dev_unlock();
2861	return (count);
2862}
2863
2864/*
2865 * Same as above, but using the struct cdev *as argument
2866 */
2867int
2868count_dev(struct cdev *dev)
2869{
2870	int count;
2871
2872	dev_lock();
2873	count = dev->si_usecount;
2874	dev_unlock();
2875	return(count);
2876}
2877
2878/*
2879 * Print out a description of a vnode.
2880 */
2881static char *typename[] =
2882{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2883 "VMARKER"};
2884
2885void
2886vn_printf(struct vnode *vp, const char *fmt, ...)
2887{
2888	va_list ap;
2889	char buf[256], buf2[16];
2890	u_long flags;
2891
2892	va_start(ap, fmt);
2893	vprintf(fmt, ap);
2894	va_end(ap);
2895	printf("%p: ", (void *)vp);
2896	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2897	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2898	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2899	buf[0] = '\0';
2900	buf[1] = '\0';
2901	if (vp->v_vflag & VV_ROOT)
2902		strlcat(buf, "|VV_ROOT", sizeof(buf));
2903	if (vp->v_vflag & VV_ISTTY)
2904		strlcat(buf, "|VV_ISTTY", sizeof(buf));
2905	if (vp->v_vflag & VV_NOSYNC)
2906		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2907	if (vp->v_vflag & VV_ETERNALDEV)
2908		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
2909	if (vp->v_vflag & VV_CACHEDLABEL)
2910		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2911	if (vp->v_vflag & VV_TEXT)
2912		strlcat(buf, "|VV_TEXT", sizeof(buf));
2913	if (vp->v_vflag & VV_COPYONWRITE)
2914		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2915	if (vp->v_vflag & VV_SYSTEM)
2916		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2917	if (vp->v_vflag & VV_PROCDEP)
2918		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2919	if (vp->v_vflag & VV_NOKNOTE)
2920		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2921	if (vp->v_vflag & VV_DELETED)
2922		strlcat(buf, "|VV_DELETED", sizeof(buf));
2923	if (vp->v_vflag & VV_MD)
2924		strlcat(buf, "|VV_MD", sizeof(buf));
2925	if (vp->v_vflag & VV_FORCEINSMQ)
2926		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
2927	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
2928	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2929	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
2930	if (flags != 0) {
2931		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2932		strlcat(buf, buf2, sizeof(buf));
2933	}
2934	if (vp->v_iflag & VI_MOUNT)
2935		strlcat(buf, "|VI_MOUNT", sizeof(buf));
2936	if (vp->v_iflag & VI_AGE)
2937		strlcat(buf, "|VI_AGE", sizeof(buf));
2938	if (vp->v_iflag & VI_DOOMED)
2939		strlcat(buf, "|VI_DOOMED", sizeof(buf));
2940	if (vp->v_iflag & VI_FREE)
2941		strlcat(buf, "|VI_FREE", sizeof(buf));
2942	if (vp->v_iflag & VI_ACTIVE)
2943		strlcat(buf, "|VI_ACTIVE", sizeof(buf));
2944	if (vp->v_iflag & VI_DOINGINACT)
2945		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2946	if (vp->v_iflag & VI_OWEINACT)
2947		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2948	flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2949	    VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT);
2950	if (flags != 0) {
2951		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2952		strlcat(buf, buf2, sizeof(buf));
2953	}
2954	printf("    flags (%s)\n", buf + 1);
2955	if (mtx_owned(VI_MTX(vp)))
2956		printf(" VI_LOCKed");
2957	if (vp->v_object != NULL)
2958		printf("    v_object %p ref %d pages %d\n",
2959		    vp->v_object, vp->v_object->ref_count,
2960		    vp->v_object->resident_page_count);
2961	printf("    ");
2962	lockmgr_printinfo(vp->v_vnlock);
2963	if (vp->v_data != NULL)
2964		VOP_PRINT(vp);
2965}
2966
2967#ifdef DDB
2968/*
2969 * List all of the locked vnodes in the system.
2970 * Called when debugging the kernel.
2971 */
2972DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2973{
2974	struct mount *mp, *nmp;
2975	struct vnode *vp;
2976
2977	/*
2978	 * Note: because this is DDB, we can't obey the locking semantics
2979	 * for these structures, which means we could catch an inconsistent
2980	 * state and dereference a nasty pointer.  Not much to be done
2981	 * about that.
2982	 */
2983	db_printf("Locked vnodes\n");
2984	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2985		nmp = TAILQ_NEXT(mp, mnt_list);
2986		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2987			if (vp->v_type != VMARKER &&
2988			    VOP_ISLOCKED(vp))
2989				vprint("", vp);
2990		}
2991		nmp = TAILQ_NEXT(mp, mnt_list);
2992	}
2993}
2994
2995/*
2996 * Show details about the given vnode.
2997 */
2998DB_SHOW_COMMAND(vnode, db_show_vnode)
2999{
3000	struct vnode *vp;
3001
3002	if (!have_addr)
3003		return;
3004	vp = (struct vnode *)addr;
3005	vn_printf(vp, "vnode ");
3006}
3007
3008/*
3009 * Show details about the given mount point.
3010 */
3011DB_SHOW_COMMAND(mount, db_show_mount)
3012{
3013	struct mount *mp;
3014	struct vfsopt *opt;
3015	struct statfs *sp;
3016	struct vnode *vp;
3017	char buf[512];
3018	uint64_t mflags;
3019	u_int flags;
3020
3021	if (!have_addr) {
3022		/* No address given, print short info about all mount points. */
3023		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3024			db_printf("%p %s on %s (%s)\n", mp,
3025			    mp->mnt_stat.f_mntfromname,
3026			    mp->mnt_stat.f_mntonname,
3027			    mp->mnt_stat.f_fstypename);
3028			if (db_pager_quit)
3029				break;
3030		}
3031		db_printf("\nMore info: show mount <addr>\n");
3032		return;
3033	}
3034
3035	mp = (struct mount *)addr;
3036	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
3037	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
3038
3039	buf[0] = '\0';
3040	mflags = mp->mnt_flag;
3041#define	MNT_FLAG(flag)	do {						\
3042	if (mflags & (flag)) {						\
3043		if (buf[0] != '\0')					\
3044			strlcat(buf, ", ", sizeof(buf));		\
3045		strlcat(buf, (#flag) + 4, sizeof(buf));			\
3046		mflags &= ~(flag);					\
3047	}								\
3048} while (0)
3049	MNT_FLAG(MNT_RDONLY);
3050	MNT_FLAG(MNT_SYNCHRONOUS);
3051	MNT_FLAG(MNT_NOEXEC);
3052	MNT_FLAG(MNT_NOSUID);
3053	MNT_FLAG(MNT_NFS4ACLS);
3054	MNT_FLAG(MNT_UNION);
3055	MNT_FLAG(MNT_ASYNC);
3056	MNT_FLAG(MNT_SUIDDIR);
3057	MNT_FLAG(MNT_SOFTDEP);
3058	MNT_FLAG(MNT_NOSYMFOLLOW);
3059	MNT_FLAG(MNT_GJOURNAL);
3060	MNT_FLAG(MNT_MULTILABEL);
3061	MNT_FLAG(MNT_ACLS);
3062	MNT_FLAG(MNT_NOATIME);
3063	MNT_FLAG(MNT_NOCLUSTERR);
3064	MNT_FLAG(MNT_NOCLUSTERW);
3065	MNT_FLAG(MNT_SUJ);
3066	MNT_FLAG(MNT_EXRDONLY);
3067	MNT_FLAG(MNT_EXPORTED);
3068	MNT_FLAG(MNT_DEFEXPORTED);
3069	MNT_FLAG(MNT_EXPORTANON);
3070	MNT_FLAG(MNT_EXKERB);
3071	MNT_FLAG(MNT_EXPUBLIC);
3072	MNT_FLAG(MNT_LOCAL);
3073	MNT_FLAG(MNT_QUOTA);
3074	MNT_FLAG(MNT_ROOTFS);
3075	MNT_FLAG(MNT_USER);
3076	MNT_FLAG(MNT_IGNORE);
3077	MNT_FLAG(MNT_UPDATE);
3078	MNT_FLAG(MNT_DELEXPORT);
3079	MNT_FLAG(MNT_RELOAD);
3080	MNT_FLAG(MNT_FORCE);
3081	MNT_FLAG(MNT_SNAPSHOT);
3082	MNT_FLAG(MNT_BYFSID);
3083#undef MNT_FLAG
3084	if (mflags != 0) {
3085		if (buf[0] != '\0')
3086			strlcat(buf, ", ", sizeof(buf));
3087		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3088		    "0x%016jx", mflags);
3089	}
3090	db_printf("    mnt_flag = %s\n", buf);
3091
3092	buf[0] = '\0';
3093	flags = mp->mnt_kern_flag;
3094#define	MNT_KERN_FLAG(flag)	do {					\
3095	if (flags & (flag)) {						\
3096		if (buf[0] != '\0')					\
3097			strlcat(buf, ", ", sizeof(buf));		\
3098		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3099		flags &= ~(flag);					\
3100	}								\
3101} while (0)
3102	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3103	MNT_KERN_FLAG(MNTK_ASYNC);
3104	MNT_KERN_FLAG(MNTK_SOFTDEP);
3105	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
3106	MNT_KERN_FLAG(MNTK_DRAINING);
3107	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3108	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3109	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3110	MNT_KERN_FLAG(MNTK_NO_IOPF);
3111	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
3112	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
3113	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
3114	MNT_KERN_FLAG(MNTK_MARKER);
3115	MNT_KERN_FLAG(MNTK_NOASYNC);
3116	MNT_KERN_FLAG(MNTK_UNMOUNT);
3117	MNT_KERN_FLAG(MNTK_MWAIT);
3118	MNT_KERN_FLAG(MNTK_SUSPEND);
3119	MNT_KERN_FLAG(MNTK_SUSPEND2);
3120	MNT_KERN_FLAG(MNTK_SUSPENDED);
3121	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
3122	MNT_KERN_FLAG(MNTK_NOKNOTE);
3123#undef MNT_KERN_FLAG
3124	if (flags != 0) {
3125		if (buf[0] != '\0')
3126			strlcat(buf, ", ", sizeof(buf));
3127		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3128		    "0x%08x", flags);
3129	}
3130	db_printf("    mnt_kern_flag = %s\n", buf);
3131
3132	db_printf("    mnt_opt = ");
3133	opt = TAILQ_FIRST(mp->mnt_opt);
3134	if (opt != NULL) {
3135		db_printf("%s", opt->name);
3136		opt = TAILQ_NEXT(opt, link);
3137		while (opt != NULL) {
3138			db_printf(", %s", opt->name);
3139			opt = TAILQ_NEXT(opt, link);
3140		}
3141	}
3142	db_printf("\n");
3143
3144	sp = &mp->mnt_stat;
3145	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
3146	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
3147	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
3148	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
3149	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
3150	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
3151	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
3152	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
3153	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
3154	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
3155	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
3156	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
3157
3158	db_printf("    mnt_cred = { uid=%u ruid=%u",
3159	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
3160	if (jailed(mp->mnt_cred))
3161		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
3162	db_printf(" }\n");
3163	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
3164	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
3165	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
3166	db_printf("    mnt_activevnodelistsize = %d\n",
3167	    mp->mnt_activevnodelistsize);
3168	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
3169	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
3170	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
3171	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
3172	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
3173	db_printf("    mnt_secondary_accwrites = %d\n",
3174	    mp->mnt_secondary_accwrites);
3175	db_printf("    mnt_gjprovider = %s\n",
3176	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
3177
3178	db_printf("\n\nList of active vnodes\n");
3179	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
3180		if (vp->v_type != VMARKER) {
3181			vn_printf(vp, "vnode ");
3182			if (db_pager_quit)
3183				break;
3184		}
3185	}
3186	db_printf("\n\nList of inactive vnodes\n");
3187	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3188		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
3189			vn_printf(vp, "vnode ");
3190			if (db_pager_quit)
3191				break;
3192		}
3193	}
3194}
3195#endif	/* DDB */
3196
3197/*
3198 * Fill in a struct xvfsconf based on a struct vfsconf.
3199 */
3200static int
3201vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
3202{
3203	struct xvfsconf xvfsp;
3204
3205	bzero(&xvfsp, sizeof(xvfsp));
3206	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3207	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3208	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3209	xvfsp.vfc_flags = vfsp->vfc_flags;
3210	/*
3211	 * These are unused in userland, we keep them
3212	 * to not break binary compatibility.
3213	 */
3214	xvfsp.vfc_vfsops = NULL;
3215	xvfsp.vfc_next = NULL;
3216	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3217}
3218
3219#ifdef COMPAT_FREEBSD32
3220struct xvfsconf32 {
3221	uint32_t	vfc_vfsops;
3222	char		vfc_name[MFSNAMELEN];
3223	int32_t		vfc_typenum;
3224	int32_t		vfc_refcount;
3225	int32_t		vfc_flags;
3226	uint32_t	vfc_next;
3227};
3228
3229static int
3230vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
3231{
3232	struct xvfsconf32 xvfsp;
3233
3234	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3235	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3236	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3237	xvfsp.vfc_flags = vfsp->vfc_flags;
3238	xvfsp.vfc_vfsops = 0;
3239	xvfsp.vfc_next = 0;
3240	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3241}
3242#endif
3243
3244/*
3245 * Top level filesystem related information gathering.
3246 */
3247static int
3248sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
3249{
3250	struct vfsconf *vfsp;
3251	int error;
3252
3253	error = 0;
3254	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3255#ifdef COMPAT_FREEBSD32
3256		if (req->flags & SCTL_MASK32)
3257			error = vfsconf2x32(req, vfsp);
3258		else
3259#endif
3260			error = vfsconf2x(req, vfsp);
3261		if (error)
3262			break;
3263	}
3264	return (error);
3265}
3266
3267SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD,
3268    NULL, 0, sysctl_vfs_conflist,
3269    "S,xvfsconf", "List of all configured filesystems");
3270
3271#ifndef BURN_BRIDGES
3272static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
3273
3274static int
3275vfs_sysctl(SYSCTL_HANDLER_ARGS)
3276{
3277	int *name = (int *)arg1 - 1;	/* XXX */
3278	u_int namelen = arg2 + 1;	/* XXX */
3279	struct vfsconf *vfsp;
3280
3281	log(LOG_WARNING, "userland calling deprecated sysctl, "
3282	    "please rebuild world\n");
3283
3284#if 1 || defined(COMPAT_PRELITE2)
3285	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3286	if (namelen == 1)
3287		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3288#endif
3289
3290	switch (name[1]) {
3291	case VFS_MAXTYPENUM:
3292		if (namelen != 2)
3293			return (ENOTDIR);
3294		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3295	case VFS_CONF:
3296		if (namelen != 3)
3297			return (ENOTDIR);	/* overloaded */
3298		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
3299			if (vfsp->vfc_typenum == name[2])
3300				break;
3301		if (vfsp == NULL)
3302			return (EOPNOTSUPP);
3303#ifdef COMPAT_FREEBSD32
3304		if (req->flags & SCTL_MASK32)
3305			return (vfsconf2x32(req, vfsp));
3306		else
3307#endif
3308			return (vfsconf2x(req, vfsp));
3309	}
3310	return (EOPNOTSUPP);
3311}
3312
3313static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
3314    vfs_sysctl, "Generic filesystem");
3315
3316#if 1 || defined(COMPAT_PRELITE2)
3317
3318static int
3319sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3320{
3321	int error;
3322	struct vfsconf *vfsp;
3323	struct ovfsconf ovfs;
3324
3325	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3326		bzero(&ovfs, sizeof(ovfs));
3327		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3328		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3329		ovfs.vfc_index = vfsp->vfc_typenum;
3330		ovfs.vfc_refcount = vfsp->vfc_refcount;
3331		ovfs.vfc_flags = vfsp->vfc_flags;
3332		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3333		if (error)
3334			return error;
3335	}
3336	return 0;
3337}
3338
3339#endif /* 1 || COMPAT_PRELITE2 */
3340#endif /* !BURN_BRIDGES */
3341
3342#define KINFO_VNODESLOP		10
3343#ifdef notyet
3344/*
3345 * Dump vnode list (via sysctl).
3346 */
3347/* ARGSUSED */
3348static int
3349sysctl_vnode(SYSCTL_HANDLER_ARGS)
3350{
3351	struct xvnode *xvn;
3352	struct mount *mp;
3353	struct vnode *vp;
3354	int error, len, n;
3355
3356	/*
3357	 * Stale numvnodes access is not fatal here.
3358	 */
3359	req->lock = 0;
3360	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3361	if (!req->oldptr)
3362		/* Make an estimate */
3363		return (SYSCTL_OUT(req, 0, len));
3364
3365	error = sysctl_wire_old_buffer(req, 0);
3366	if (error != 0)
3367		return (error);
3368	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3369	n = 0;
3370	mtx_lock(&mountlist_mtx);
3371	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3372		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3373			continue;
3374		MNT_ILOCK(mp);
3375		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3376			if (n == len)
3377				break;
3378			vref(vp);
3379			xvn[n].xv_size = sizeof *xvn;
3380			xvn[n].xv_vnode = vp;
3381			xvn[n].xv_id = 0;	/* XXX compat */
3382#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3383			XV_COPY(usecount);
3384			XV_COPY(writecount);
3385			XV_COPY(holdcnt);
3386			XV_COPY(mount);
3387			XV_COPY(numoutput);
3388			XV_COPY(type);
3389#undef XV_COPY
3390			xvn[n].xv_flag = vp->v_vflag;
3391
3392			switch (vp->v_type) {
3393			case VREG:
3394			case VDIR:
3395			case VLNK:
3396				break;
3397			case VBLK:
3398			case VCHR:
3399				if (vp->v_rdev == NULL) {
3400					vrele(vp);
3401					continue;
3402				}
3403				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3404				break;
3405			case VSOCK:
3406				xvn[n].xv_socket = vp->v_socket;
3407				break;
3408			case VFIFO:
3409				xvn[n].xv_fifo = vp->v_fifoinfo;
3410				break;
3411			case VNON:
3412			case VBAD:
3413			default:
3414				/* shouldn't happen? */
3415				vrele(vp);
3416				continue;
3417			}
3418			vrele(vp);
3419			++n;
3420		}
3421		MNT_IUNLOCK(mp);
3422		mtx_lock(&mountlist_mtx);
3423		vfs_unbusy(mp);
3424		if (n == len)
3425			break;
3426	}
3427	mtx_unlock(&mountlist_mtx);
3428
3429	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3430	free(xvn, M_TEMP);
3431	return (error);
3432}
3433
3434SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3435    0, 0, sysctl_vnode, "S,xvnode", "");
3436#endif
3437
3438/*
3439 * Unmount all filesystems. The list is traversed in reverse order
3440 * of mounting to avoid dependencies.
3441 */
3442void
3443vfs_unmountall(void)
3444{
3445	struct mount *mp;
3446	struct thread *td;
3447	int error;
3448
3449	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
3450	td = curthread;
3451
3452	/*
3453	 * Since this only runs when rebooting, it is not interlocked.
3454	 */
3455	while(!TAILQ_EMPTY(&mountlist)) {
3456		mp = TAILQ_LAST(&mountlist, mntlist);
3457		error = dounmount(mp, MNT_FORCE, td);
3458		if (error) {
3459			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3460			/*
3461			 * XXX: Due to the way in which we mount the root
3462			 * file system off of devfs, devfs will generate a
3463			 * "busy" warning when we try to unmount it before
3464			 * the root.  Don't print a warning as a result in
3465			 * order to avoid false positive errors that may
3466			 * cause needless upset.
3467			 */
3468			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3469				printf("unmount of %s failed (",
3470				    mp->mnt_stat.f_mntonname);
3471				if (error == EBUSY)
3472					printf("BUSY)\n");
3473				else
3474					printf("%d)\n", error);
3475			}
3476		} else {
3477			/* The unmount has removed mp from the mountlist */
3478		}
3479	}
3480}
3481
3482/*
3483 * perform msync on all vnodes under a mount point
3484 * the mount point must be locked.
3485 */
3486void
3487vfs_msync(struct mount *mp, int flags)
3488{
3489	struct vnode *vp, *mvp;
3490	struct vm_object *obj;
3491
3492	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
3493	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
3494		obj = vp->v_object;
3495		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
3496		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3497			if (!vget(vp,
3498			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3499			    curthread)) {
3500				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3501					vput(vp);
3502					continue;
3503				}
3504
3505				obj = vp->v_object;
3506				if (obj != NULL) {
3507					VM_OBJECT_WLOCK(obj);
3508					vm_object_page_clean(obj, 0, 0,
3509					    flags == MNT_WAIT ?
3510					    OBJPC_SYNC : OBJPC_NOSYNC);
3511					VM_OBJECT_WUNLOCK(obj);
3512				}
3513				vput(vp);
3514			}
3515		} else
3516			VI_UNLOCK(vp);
3517	}
3518}
3519
3520static void
3521destroy_vpollinfo(struct vpollinfo *vi)
3522{
3523	seldrain(&vi->vpi_selinfo);
3524	knlist_destroy(&vi->vpi_selinfo.si_note);
3525	mtx_destroy(&vi->vpi_lock);
3526	uma_zfree(vnodepoll_zone, vi);
3527}
3528
3529/*
3530 * Initalize per-vnode helper structure to hold poll-related state.
3531 */
3532void
3533v_addpollinfo(struct vnode *vp)
3534{
3535	struct vpollinfo *vi;
3536
3537	if (vp->v_pollinfo != NULL)
3538		return;
3539	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3540	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3541	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3542	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
3543	VI_LOCK(vp);
3544	if (vp->v_pollinfo != NULL) {
3545		VI_UNLOCK(vp);
3546		destroy_vpollinfo(vi);
3547		return;
3548	}
3549	vp->v_pollinfo = vi;
3550	VI_UNLOCK(vp);
3551}
3552
3553/*
3554 * Record a process's interest in events which might happen to
3555 * a vnode.  Because poll uses the historic select-style interface
3556 * internally, this routine serves as both the ``check for any
3557 * pending events'' and the ``record my interest in future events''
3558 * functions.  (These are done together, while the lock is held,
3559 * to avoid race conditions.)
3560 */
3561int
3562vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3563{
3564
3565	v_addpollinfo(vp);
3566	mtx_lock(&vp->v_pollinfo->vpi_lock);
3567	if (vp->v_pollinfo->vpi_revents & events) {
3568		/*
3569		 * This leaves events we are not interested
3570		 * in available for the other process which
3571		 * which presumably had requested them
3572		 * (otherwise they would never have been
3573		 * recorded).
3574		 */
3575		events &= vp->v_pollinfo->vpi_revents;
3576		vp->v_pollinfo->vpi_revents &= ~events;
3577
3578		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3579		return (events);
3580	}
3581	vp->v_pollinfo->vpi_events |= events;
3582	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3583	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3584	return (0);
3585}
3586
3587/*
3588 * Routine to create and manage a filesystem syncer vnode.
3589 */
3590#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3591static int	sync_fsync(struct  vop_fsync_args *);
3592static int	sync_inactive(struct  vop_inactive_args *);
3593static int	sync_reclaim(struct  vop_reclaim_args *);
3594
3595static struct vop_vector sync_vnodeops = {
3596	.vop_bypass =	VOP_EOPNOTSUPP,
3597	.vop_close =	sync_close,		/* close */
3598	.vop_fsync =	sync_fsync,		/* fsync */
3599	.vop_inactive =	sync_inactive,	/* inactive */
3600	.vop_reclaim =	sync_reclaim,	/* reclaim */
3601	.vop_lock1 =	vop_stdlock,	/* lock */
3602	.vop_unlock =	vop_stdunlock,	/* unlock */
3603	.vop_islocked =	vop_stdislocked,	/* islocked */
3604};
3605
3606/*
3607 * Create a new filesystem syncer vnode for the specified mount point.
3608 */
3609void
3610vfs_allocate_syncvnode(struct mount *mp)
3611{
3612	struct vnode *vp;
3613	struct bufobj *bo;
3614	static long start, incr, next;
3615	int error;
3616
3617	/* Allocate a new vnode */
3618	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
3619	if (error != 0)
3620		panic("vfs_allocate_syncvnode: getnewvnode() failed");
3621	vp->v_type = VNON;
3622	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3623	vp->v_vflag |= VV_FORCEINSMQ;
3624	error = insmntque(vp, mp);
3625	if (error != 0)
3626		panic("vfs_allocate_syncvnode: insmntque() failed");
3627	vp->v_vflag &= ~VV_FORCEINSMQ;
3628	VOP_UNLOCK(vp, 0);
3629	/*
3630	 * Place the vnode onto the syncer worklist. We attempt to
3631	 * scatter them about on the list so that they will go off
3632	 * at evenly distributed times even if all the filesystems
3633	 * are mounted at once.
3634	 */
3635	next += incr;
3636	if (next == 0 || next > syncer_maxdelay) {
3637		start /= 2;
3638		incr /= 2;
3639		if (start == 0) {
3640			start = syncer_maxdelay / 2;
3641			incr = syncer_maxdelay;
3642		}
3643		next = start;
3644	}
3645	bo = &vp->v_bufobj;
3646	BO_LOCK(bo);
3647	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3648	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3649	mtx_lock(&sync_mtx);
3650	sync_vnode_count++;
3651	if (mp->mnt_syncer == NULL) {
3652		mp->mnt_syncer = vp;
3653		vp = NULL;
3654	}
3655	mtx_unlock(&sync_mtx);
3656	BO_UNLOCK(bo);
3657	if (vp != NULL) {
3658		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3659		vgone(vp);
3660		vput(vp);
3661	}
3662}
3663
3664void
3665vfs_deallocate_syncvnode(struct mount *mp)
3666{
3667	struct vnode *vp;
3668
3669	mtx_lock(&sync_mtx);
3670	vp = mp->mnt_syncer;
3671	if (vp != NULL)
3672		mp->mnt_syncer = NULL;
3673	mtx_unlock(&sync_mtx);
3674	if (vp != NULL)
3675		vrele(vp);
3676}
3677
3678/*
3679 * Do a lazy sync of the filesystem.
3680 */
3681static int
3682sync_fsync(struct vop_fsync_args *ap)
3683{
3684	struct vnode *syncvp = ap->a_vp;
3685	struct mount *mp = syncvp->v_mount;
3686	int error, save;
3687	struct bufobj *bo;
3688
3689	/*
3690	 * We only need to do something if this is a lazy evaluation.
3691	 */
3692	if (ap->a_waitfor != MNT_LAZY)
3693		return (0);
3694
3695	/*
3696	 * Move ourselves to the back of the sync list.
3697	 */
3698	bo = &syncvp->v_bufobj;
3699	BO_LOCK(bo);
3700	vn_syncer_add_to_worklist(bo, syncdelay);
3701	BO_UNLOCK(bo);
3702
3703	/*
3704	 * Walk the list of vnodes pushing all that are dirty and
3705	 * not already on the sync list.
3706	 */
3707	mtx_lock(&mountlist_mtx);
3708	if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) != 0) {
3709		mtx_unlock(&mountlist_mtx);
3710		return (0);
3711	}
3712	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3713		vfs_unbusy(mp);
3714		return (0);
3715	}
3716	save = curthread_pflags_set(TDP_SYNCIO);
3717	vfs_msync(mp, MNT_NOWAIT);
3718	error = VFS_SYNC(mp, MNT_LAZY);
3719	curthread_pflags_restore(save);
3720	vn_finished_write(mp);
3721	vfs_unbusy(mp);
3722	return (error);
3723}
3724
3725/*
3726 * The syncer vnode is no referenced.
3727 */
3728static int
3729sync_inactive(struct vop_inactive_args *ap)
3730{
3731
3732	vgone(ap->a_vp);
3733	return (0);
3734}
3735
3736/*
3737 * The syncer vnode is no longer needed and is being decommissioned.
3738 *
3739 * Modifications to the worklist must be protected by sync_mtx.
3740 */
3741static int
3742sync_reclaim(struct vop_reclaim_args *ap)
3743{
3744	struct vnode *vp = ap->a_vp;
3745	struct bufobj *bo;
3746
3747	bo = &vp->v_bufobj;
3748	BO_LOCK(bo);
3749	mtx_lock(&sync_mtx);
3750	if (vp->v_mount->mnt_syncer == vp)
3751		vp->v_mount->mnt_syncer = NULL;
3752	if (bo->bo_flag & BO_ONWORKLST) {
3753		LIST_REMOVE(bo, bo_synclist);
3754		syncer_worklist_len--;
3755		sync_vnode_count--;
3756		bo->bo_flag &= ~BO_ONWORKLST;
3757	}
3758	mtx_unlock(&sync_mtx);
3759	BO_UNLOCK(bo);
3760
3761	return (0);
3762}
3763
3764/*
3765 * Check if vnode represents a disk device
3766 */
3767int
3768vn_isdisk(struct vnode *vp, int *errp)
3769{
3770	int error;
3771
3772	error = 0;
3773	dev_lock();
3774	if (vp->v_type != VCHR)
3775		error = ENOTBLK;
3776	else if (vp->v_rdev == NULL)
3777		error = ENXIO;
3778	else if (vp->v_rdev->si_devsw == NULL)
3779		error = ENXIO;
3780	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3781		error = ENOTBLK;
3782	dev_unlock();
3783	if (errp != NULL)
3784		*errp = error;
3785	return (error == 0);
3786}
3787
3788/*
3789 * Common filesystem object access control check routine.  Accepts a
3790 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3791 * and optional call-by-reference privused argument allowing vaccess()
3792 * to indicate to the caller whether privilege was used to satisfy the
3793 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3794 */
3795int
3796vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3797    accmode_t accmode, struct ucred *cred, int *privused)
3798{
3799	accmode_t dac_granted;
3800	accmode_t priv_granted;
3801
3802	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
3803	    ("invalid bit in accmode"));
3804	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
3805	    ("VAPPEND without VWRITE"));
3806
3807	/*
3808	 * Look for a normal, non-privileged way to access the file/directory
3809	 * as requested.  If it exists, go with that.
3810	 */
3811
3812	if (privused != NULL)
3813		*privused = 0;
3814
3815	dac_granted = 0;
3816
3817	/* Check the owner. */
3818	if (cred->cr_uid == file_uid) {
3819		dac_granted |= VADMIN;
3820		if (file_mode & S_IXUSR)
3821			dac_granted |= VEXEC;
3822		if (file_mode & S_IRUSR)
3823			dac_granted |= VREAD;
3824		if (file_mode & S_IWUSR)
3825			dac_granted |= (VWRITE | VAPPEND);
3826
3827		if ((accmode & dac_granted) == accmode)
3828			return (0);
3829
3830		goto privcheck;
3831	}
3832
3833	/* Otherwise, check the groups (first match) */
3834	if (groupmember(file_gid, cred)) {
3835		if (file_mode & S_IXGRP)
3836			dac_granted |= VEXEC;
3837		if (file_mode & S_IRGRP)
3838			dac_granted |= VREAD;
3839		if (file_mode & S_IWGRP)
3840			dac_granted |= (VWRITE | VAPPEND);
3841
3842		if ((accmode & dac_granted) == accmode)
3843			return (0);
3844
3845		goto privcheck;
3846	}
3847
3848	/* Otherwise, check everyone else. */
3849	if (file_mode & S_IXOTH)
3850		dac_granted |= VEXEC;
3851	if (file_mode & S_IROTH)
3852		dac_granted |= VREAD;
3853	if (file_mode & S_IWOTH)
3854		dac_granted |= (VWRITE | VAPPEND);
3855	if ((accmode & dac_granted) == accmode)
3856		return (0);
3857
3858privcheck:
3859	/*
3860	 * Build a privilege mask to determine if the set of privileges
3861	 * satisfies the requirements when combined with the granted mask
3862	 * from above.  For each privilege, if the privilege is required,
3863	 * bitwise or the request type onto the priv_granted mask.
3864	 */
3865	priv_granted = 0;
3866
3867	if (type == VDIR) {
3868		/*
3869		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3870		 * requests, instead of PRIV_VFS_EXEC.
3871		 */
3872		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3873		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3874			priv_granted |= VEXEC;
3875	} else {
3876		/*
3877		 * Ensure that at least one execute bit is on. Otherwise,
3878		 * a privileged user will always succeed, and we don't want
3879		 * this to happen unless the file really is executable.
3880		 */
3881		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3882		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
3883		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3884			priv_granted |= VEXEC;
3885	}
3886
3887	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
3888	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
3889		priv_granted |= VREAD;
3890
3891	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3892	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3893		priv_granted |= (VWRITE | VAPPEND);
3894
3895	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3896	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3897		priv_granted |= VADMIN;
3898
3899	if ((accmode & (priv_granted | dac_granted)) == accmode) {
3900		/* XXX audit: privilege used */
3901		if (privused != NULL)
3902			*privused = 1;
3903		return (0);
3904	}
3905
3906	return ((accmode & VADMIN) ? EPERM : EACCES);
3907}
3908
3909/*
3910 * Credential check based on process requesting service, and per-attribute
3911 * permissions.
3912 */
3913int
3914extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3915    struct thread *td, accmode_t accmode)
3916{
3917
3918	/*
3919	 * Kernel-invoked always succeeds.
3920	 */
3921	if (cred == NOCRED)
3922		return (0);
3923
3924	/*
3925	 * Do not allow privileged processes in jail to directly manipulate
3926	 * system attributes.
3927	 */
3928	switch (attrnamespace) {
3929	case EXTATTR_NAMESPACE_SYSTEM:
3930		/* Potentially should be: return (EPERM); */
3931		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3932	case EXTATTR_NAMESPACE_USER:
3933		return (VOP_ACCESS(vp, accmode, cred, td));
3934	default:
3935		return (EPERM);
3936	}
3937}
3938
3939#ifdef DEBUG_VFS_LOCKS
3940/*
3941 * This only exists to supress warnings from unlocked specfs accesses.  It is
3942 * no longer ok to have an unlocked VFS.
3943 */
3944#define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
3945	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
3946
3947int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3948SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
3949    "Drop into debugger on lock violation");
3950
3951int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3952SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
3953    0, "Check for interlock across VOPs");
3954
3955int vfs_badlock_print = 1;	/* Print lock violations. */
3956SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
3957    0, "Print lock violations");
3958
3959#ifdef KDB
3960int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3961SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
3962    &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
3963#endif
3964
3965static void
3966vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3967{
3968
3969#ifdef KDB
3970	if (vfs_badlock_backtrace)
3971		kdb_backtrace();
3972#endif
3973	if (vfs_badlock_print)
3974		printf("%s: %p %s\n", str, (void *)vp, msg);
3975	if (vfs_badlock_ddb)
3976		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3977}
3978
3979void
3980assert_vi_locked(struct vnode *vp, const char *str)
3981{
3982
3983	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3984		vfs_badlock("interlock is not locked but should be", str, vp);
3985}
3986
3987void
3988assert_vi_unlocked(struct vnode *vp, const char *str)
3989{
3990
3991	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3992		vfs_badlock("interlock is locked but should not be", str, vp);
3993}
3994
3995void
3996assert_vop_locked(struct vnode *vp, const char *str)
3997{
3998	int locked;
3999
4000	if (!IGNORE_LOCK(vp)) {
4001		locked = VOP_ISLOCKED(vp);
4002		if (locked == 0 || locked == LK_EXCLOTHER)
4003			vfs_badlock("is not locked but should be", str, vp);
4004	}
4005}
4006
4007void
4008assert_vop_unlocked(struct vnode *vp, const char *str)
4009{
4010
4011	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
4012		vfs_badlock("is locked but should not be", str, vp);
4013}
4014
4015void
4016assert_vop_elocked(struct vnode *vp, const char *str)
4017{
4018
4019	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
4020		vfs_badlock("is not exclusive locked but should be", str, vp);
4021}
4022
4023#if 0
4024void
4025assert_vop_elocked_other(struct vnode *vp, const char *str)
4026{
4027
4028	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
4029		vfs_badlock("is not exclusive locked by another thread",
4030		    str, vp);
4031}
4032
4033void
4034assert_vop_slocked(struct vnode *vp, const char *str)
4035{
4036
4037	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
4038		vfs_badlock("is not locked shared but should be", str, vp);
4039}
4040#endif /* 0 */
4041#endif /* DEBUG_VFS_LOCKS */
4042
4043void
4044vop_rename_fail(struct vop_rename_args *ap)
4045{
4046
4047	if (ap->a_tvp != NULL)
4048		vput(ap->a_tvp);
4049	if (ap->a_tdvp == ap->a_tvp)
4050		vrele(ap->a_tdvp);
4051	else
4052		vput(ap->a_tdvp);
4053	vrele(ap->a_fdvp);
4054	vrele(ap->a_fvp);
4055}
4056
4057void
4058vop_rename_pre(void *ap)
4059{
4060	struct vop_rename_args *a = ap;
4061
4062#ifdef DEBUG_VFS_LOCKS
4063	if (a->a_tvp)
4064		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
4065	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
4066	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
4067	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
4068
4069	/* Check the source (from). */
4070	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
4071	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
4072		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
4073	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
4074		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
4075
4076	/* Check the target. */
4077	if (a->a_tvp)
4078		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
4079	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
4080#endif
4081	if (a->a_tdvp != a->a_fdvp)
4082		vhold(a->a_fdvp);
4083	if (a->a_tvp != a->a_fvp)
4084		vhold(a->a_fvp);
4085	vhold(a->a_tdvp);
4086	if (a->a_tvp)
4087		vhold(a->a_tvp);
4088}
4089
4090void
4091vop_strategy_pre(void *ap)
4092{
4093#ifdef DEBUG_VFS_LOCKS
4094	struct vop_strategy_args *a;
4095	struct buf *bp;
4096
4097	a = ap;
4098	bp = a->a_bp;
4099
4100	/*
4101	 * Cluster ops lock their component buffers but not the IO container.
4102	 */
4103	if ((bp->b_flags & B_CLUSTER) != 0)
4104		return;
4105
4106	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
4107		if (vfs_badlock_print)
4108			printf(
4109			    "VOP_STRATEGY: bp is not locked but should be\n");
4110		if (vfs_badlock_ddb)
4111			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4112	}
4113#endif
4114}
4115
4116void
4117vop_lock_pre(void *ap)
4118{
4119#ifdef DEBUG_VFS_LOCKS
4120	struct vop_lock1_args *a = ap;
4121
4122	if ((a->a_flags & LK_INTERLOCK) == 0)
4123		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4124	else
4125		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
4126#endif
4127}
4128
4129void
4130vop_lock_post(void *ap, int rc)
4131{
4132#ifdef DEBUG_VFS_LOCKS
4133	struct vop_lock1_args *a = ap;
4134
4135	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4136	if (rc == 0)
4137		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
4138#endif
4139}
4140
4141void
4142vop_unlock_pre(void *ap)
4143{
4144#ifdef DEBUG_VFS_LOCKS
4145	struct vop_unlock_args *a = ap;
4146
4147	if (a->a_flags & LK_INTERLOCK)
4148		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
4149	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
4150#endif
4151}
4152
4153void
4154vop_unlock_post(void *ap, int rc)
4155{
4156#ifdef DEBUG_VFS_LOCKS
4157	struct vop_unlock_args *a = ap;
4158
4159	if (a->a_flags & LK_INTERLOCK)
4160		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
4161#endif
4162}
4163
4164void
4165vop_create_post(void *ap, int rc)
4166{
4167	struct vop_create_args *a = ap;
4168
4169	if (!rc)
4170		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4171}
4172
4173void
4174vop_deleteextattr_post(void *ap, int rc)
4175{
4176	struct vop_deleteextattr_args *a = ap;
4177
4178	if (!rc)
4179		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4180}
4181
4182void
4183vop_link_post(void *ap, int rc)
4184{
4185	struct vop_link_args *a = ap;
4186
4187	if (!rc) {
4188		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
4189		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
4190	}
4191}
4192
4193void
4194vop_mkdir_post(void *ap, int rc)
4195{
4196	struct vop_mkdir_args *a = ap;
4197
4198	if (!rc)
4199		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4200}
4201
4202void
4203vop_mknod_post(void *ap, int rc)
4204{
4205	struct vop_mknod_args *a = ap;
4206
4207	if (!rc)
4208		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4209}
4210
4211void
4212vop_remove_post(void *ap, int rc)
4213{
4214	struct vop_remove_args *a = ap;
4215
4216	if (!rc) {
4217		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4218		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4219	}
4220}
4221
4222void
4223vop_rename_post(void *ap, int rc)
4224{
4225	struct vop_rename_args *a = ap;
4226
4227	if (!rc) {
4228		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
4229		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
4230		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
4231		if (a->a_tvp)
4232			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
4233	}
4234	if (a->a_tdvp != a->a_fdvp)
4235		vdrop(a->a_fdvp);
4236	if (a->a_tvp != a->a_fvp)
4237		vdrop(a->a_fvp);
4238	vdrop(a->a_tdvp);
4239	if (a->a_tvp)
4240		vdrop(a->a_tvp);
4241}
4242
4243void
4244vop_rmdir_post(void *ap, int rc)
4245{
4246	struct vop_rmdir_args *a = ap;
4247
4248	if (!rc) {
4249		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4250		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4251	}
4252}
4253
4254void
4255vop_setattr_post(void *ap, int rc)
4256{
4257	struct vop_setattr_args *a = ap;
4258
4259	if (!rc)
4260		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4261}
4262
4263void
4264vop_setextattr_post(void *ap, int rc)
4265{
4266	struct vop_setextattr_args *a = ap;
4267
4268	if (!rc)
4269		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4270}
4271
4272void
4273vop_symlink_post(void *ap, int rc)
4274{
4275	struct vop_symlink_args *a = ap;
4276
4277	if (!rc)
4278		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4279}
4280
4281static struct knlist fs_knlist;
4282
4283static void
4284vfs_event_init(void *arg)
4285{
4286	knlist_init_mtx(&fs_knlist, NULL);
4287}
4288/* XXX - correct order? */
4289SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4290
4291void
4292vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
4293{
4294
4295	KNOTE_UNLOCKED(&fs_knlist, event);
4296}
4297
4298static int	filt_fsattach(struct knote *kn);
4299static void	filt_fsdetach(struct knote *kn);
4300static int	filt_fsevent(struct knote *kn, long hint);
4301
4302struct filterops fs_filtops = {
4303	.f_isfd = 0,
4304	.f_attach = filt_fsattach,
4305	.f_detach = filt_fsdetach,
4306	.f_event = filt_fsevent
4307};
4308
4309static int
4310filt_fsattach(struct knote *kn)
4311{
4312
4313	kn->kn_flags |= EV_CLEAR;
4314	knlist_add(&fs_knlist, kn, 0);
4315	return (0);
4316}
4317
4318static void
4319filt_fsdetach(struct knote *kn)
4320{
4321
4322	knlist_remove(&fs_knlist, kn, 0);
4323}
4324
4325static int
4326filt_fsevent(struct knote *kn, long hint)
4327{
4328
4329	kn->kn_fflags |= hint;
4330	return (kn->kn_fflags != 0);
4331}
4332
4333static int
4334sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4335{
4336	struct vfsidctl vc;
4337	int error;
4338	struct mount *mp;
4339
4340	error = SYSCTL_IN(req, &vc, sizeof(vc));
4341	if (error)
4342		return (error);
4343	if (vc.vc_vers != VFS_CTL_VERS1)
4344		return (EINVAL);
4345	mp = vfs_getvfs(&vc.vc_fsid);
4346	if (mp == NULL)
4347		return (ENOENT);
4348	/* ensure that a specific sysctl goes to the right filesystem. */
4349	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4350	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4351		vfs_rel(mp);
4352		return (EINVAL);
4353	}
4354	VCTLTOREQ(&vc, req);
4355	error = VFS_SYSCTL(mp, vc.vc_op, req);
4356	vfs_rel(mp);
4357	return (error);
4358}
4359
4360SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
4361    NULL, 0, sysctl_vfs_ctl, "",
4362    "Sysctl by fsid");
4363
4364/*
4365 * Function to initialize a va_filerev field sensibly.
4366 * XXX: Wouldn't a random number make a lot more sense ??
4367 */
4368u_quad_t
4369init_va_filerev(void)
4370{
4371	struct bintime bt;
4372
4373	getbinuptime(&bt);
4374	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4375}
4376
4377static int	filt_vfsread(struct knote *kn, long hint);
4378static int	filt_vfswrite(struct knote *kn, long hint);
4379static int	filt_vfsvnode(struct knote *kn, long hint);
4380static void	filt_vfsdetach(struct knote *kn);
4381static struct filterops vfsread_filtops = {
4382	.f_isfd = 1,
4383	.f_detach = filt_vfsdetach,
4384	.f_event = filt_vfsread
4385};
4386static struct filterops vfswrite_filtops = {
4387	.f_isfd = 1,
4388	.f_detach = filt_vfsdetach,
4389	.f_event = filt_vfswrite
4390};
4391static struct filterops vfsvnode_filtops = {
4392	.f_isfd = 1,
4393	.f_detach = filt_vfsdetach,
4394	.f_event = filt_vfsvnode
4395};
4396
4397static void
4398vfs_knllock(void *arg)
4399{
4400	struct vnode *vp = arg;
4401
4402	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4403}
4404
4405static void
4406vfs_knlunlock(void *arg)
4407{
4408	struct vnode *vp = arg;
4409
4410	VOP_UNLOCK(vp, 0);
4411}
4412
4413static void
4414vfs_knl_assert_locked(void *arg)
4415{
4416#ifdef DEBUG_VFS_LOCKS
4417	struct vnode *vp = arg;
4418
4419	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
4420#endif
4421}
4422
4423static void
4424vfs_knl_assert_unlocked(void *arg)
4425{
4426#ifdef DEBUG_VFS_LOCKS
4427	struct vnode *vp = arg;
4428
4429	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
4430#endif
4431}
4432
4433int
4434vfs_kqfilter(struct vop_kqfilter_args *ap)
4435{
4436	struct vnode *vp = ap->a_vp;
4437	struct knote *kn = ap->a_kn;
4438	struct knlist *knl;
4439
4440	switch (kn->kn_filter) {
4441	case EVFILT_READ:
4442		kn->kn_fop = &vfsread_filtops;
4443		break;
4444	case EVFILT_WRITE:
4445		kn->kn_fop = &vfswrite_filtops;
4446		break;
4447	case EVFILT_VNODE:
4448		kn->kn_fop = &vfsvnode_filtops;
4449		break;
4450	default:
4451		return (EINVAL);
4452	}
4453
4454	kn->kn_hook = (caddr_t)vp;
4455
4456	v_addpollinfo(vp);
4457	if (vp->v_pollinfo == NULL)
4458		return (ENOMEM);
4459	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4460	knlist_add(knl, kn, 0);
4461
4462	return (0);
4463}
4464
4465/*
4466 * Detach knote from vnode
4467 */
4468static void
4469filt_vfsdetach(struct knote *kn)
4470{
4471	struct vnode *vp = (struct vnode *)kn->kn_hook;
4472
4473	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4474	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4475}
4476
4477/*ARGSUSED*/
4478static int
4479filt_vfsread(struct knote *kn, long hint)
4480{
4481	struct vnode *vp = (struct vnode *)kn->kn_hook;
4482	struct vattr va;
4483	int res;
4484
4485	/*
4486	 * filesystem is gone, so set the EOF flag and schedule
4487	 * the knote for deletion.
4488	 */
4489	if (hint == NOTE_REVOKE) {
4490		VI_LOCK(vp);
4491		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4492		VI_UNLOCK(vp);
4493		return (1);
4494	}
4495
4496	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4497		return (0);
4498
4499	VI_LOCK(vp);
4500	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4501	res = (kn->kn_data != 0);
4502	VI_UNLOCK(vp);
4503	return (res);
4504}
4505
4506/*ARGSUSED*/
4507static int
4508filt_vfswrite(struct knote *kn, long hint)
4509{
4510	struct vnode *vp = (struct vnode *)kn->kn_hook;
4511
4512	VI_LOCK(vp);
4513
4514	/*
4515	 * filesystem is gone, so set the EOF flag and schedule
4516	 * the knote for deletion.
4517	 */
4518	if (hint == NOTE_REVOKE)
4519		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4520
4521	kn->kn_data = 0;
4522	VI_UNLOCK(vp);
4523	return (1);
4524}
4525
4526static int
4527filt_vfsvnode(struct knote *kn, long hint)
4528{
4529	struct vnode *vp = (struct vnode *)kn->kn_hook;
4530	int res;
4531
4532	VI_LOCK(vp);
4533	if (kn->kn_sfflags & hint)
4534		kn->kn_fflags |= hint;
4535	if (hint == NOTE_REVOKE) {
4536		kn->kn_flags |= EV_EOF;
4537		VI_UNLOCK(vp);
4538		return (1);
4539	}
4540	res = (kn->kn_fflags != 0);
4541	VI_UNLOCK(vp);
4542	return (res);
4543}
4544
4545int
4546vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4547{
4548	int error;
4549
4550	if (dp->d_reclen > ap->a_uio->uio_resid)
4551		return (ENAMETOOLONG);
4552	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4553	if (error) {
4554		if (ap->a_ncookies != NULL) {
4555			if (ap->a_cookies != NULL)
4556				free(ap->a_cookies, M_TEMP);
4557			ap->a_cookies = NULL;
4558			*ap->a_ncookies = 0;
4559		}
4560		return (error);
4561	}
4562	if (ap->a_ncookies == NULL)
4563		return (0);
4564
4565	KASSERT(ap->a_cookies,
4566	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4567
4568	*ap->a_cookies = realloc(*ap->a_cookies,
4569	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4570	(*ap->a_cookies)[*ap->a_ncookies] = off;
4571	return (0);
4572}
4573
4574/*
4575 * Mark for update the access time of the file if the filesystem
4576 * supports VOP_MARKATIME.  This functionality is used by execve and
4577 * mmap, so we want to avoid the I/O implied by directly setting
4578 * va_atime for the sake of efficiency.
4579 */
4580void
4581vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4582{
4583	struct mount *mp;
4584
4585	mp = vp->v_mount;
4586	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
4587	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
4588		(void)VOP_MARKATIME(vp);
4589}
4590
4591/*
4592 * The purpose of this routine is to remove granularity from accmode_t,
4593 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
4594 * VADMIN and VAPPEND.
4595 *
4596 * If it returns 0, the caller is supposed to continue with the usual
4597 * access checks using 'accmode' as modified by this routine.  If it
4598 * returns nonzero value, the caller is supposed to return that value
4599 * as errno.
4600 *
4601 * Note that after this routine runs, accmode may be zero.
4602 */
4603int
4604vfs_unixify_accmode(accmode_t *accmode)
4605{
4606	/*
4607	 * There is no way to specify explicit "deny" rule using
4608	 * file mode or POSIX.1e ACLs.
4609	 */
4610	if (*accmode & VEXPLICIT_DENY) {
4611		*accmode = 0;
4612		return (0);
4613	}
4614
4615	/*
4616	 * None of these can be translated into usual access bits.
4617	 * Also, the common case for NFSv4 ACLs is to not contain
4618	 * either of these bits. Caller should check for VWRITE
4619	 * on the containing directory instead.
4620	 */
4621	if (*accmode & (VDELETE_CHILD | VDELETE))
4622		return (EPERM);
4623
4624	if (*accmode & VADMIN_PERMS) {
4625		*accmode &= ~VADMIN_PERMS;
4626		*accmode |= VADMIN;
4627	}
4628
4629	/*
4630	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
4631	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
4632	 */
4633	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
4634
4635	return (0);
4636}
4637
4638/*
4639 * These are helper functions for filesystems to traverse all
4640 * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
4641 *
4642 * This interface replaces MNT_VNODE_FOREACH.
4643 */
4644
4645MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
4646
4647struct vnode *
4648__mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
4649{
4650	struct vnode *vp;
4651
4652	if (should_yield())
4653		kern_yield(PRI_USER);
4654	MNT_ILOCK(mp);
4655	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4656	vp = TAILQ_NEXT(*mvp, v_nmntvnodes);
4657	while (vp != NULL && (vp->v_type == VMARKER ||
4658	    (vp->v_iflag & VI_DOOMED) != 0))
4659		vp = TAILQ_NEXT(vp, v_nmntvnodes);
4660
4661	/* Check if we are done */
4662	if (vp == NULL) {
4663		__mnt_vnode_markerfree_all(mvp, mp);
4664		/* MNT_IUNLOCK(mp); -- done in above function */
4665		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
4666		return (NULL);
4667	}
4668	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
4669	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
4670	VI_LOCK(vp);
4671	MNT_IUNLOCK(mp);
4672	return (vp);
4673}
4674
4675struct vnode *
4676__mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
4677{
4678	struct vnode *vp;
4679
4680	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
4681	MNT_ILOCK(mp);
4682	MNT_REF(mp);
4683	(*mvp)->v_type = VMARKER;
4684
4685	vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
4686	while (vp != NULL && (vp->v_type == VMARKER ||
4687	    (vp->v_iflag & VI_DOOMED) != 0))
4688		vp = TAILQ_NEXT(vp, v_nmntvnodes);
4689
4690	/* Check if we are done */
4691	if (vp == NULL) {
4692		MNT_REL(mp);
4693		MNT_IUNLOCK(mp);
4694		free(*mvp, M_VNODE_MARKER);
4695		*mvp = NULL;
4696		return (NULL);
4697	}
4698	(*mvp)->v_mount = mp;
4699	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
4700	VI_LOCK(vp);
4701	MNT_IUNLOCK(mp);
4702	return (vp);
4703}
4704
4705
4706void
4707__mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
4708{
4709
4710	if (*mvp == NULL) {
4711		MNT_IUNLOCK(mp);
4712		return;
4713	}
4714
4715	mtx_assert(MNT_MTX(mp), MA_OWNED);
4716
4717	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4718	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
4719	MNT_REL(mp);
4720	MNT_IUNLOCK(mp);
4721	free(*mvp, M_VNODE_MARKER);
4722	*mvp = NULL;
4723}
4724
4725/*
4726 * These are helper functions for filesystems to traverse their
4727 * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
4728 */
4729static void
4730mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
4731{
4732
4733	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4734
4735	MNT_ILOCK(mp);
4736	MNT_REL(mp);
4737	MNT_IUNLOCK(mp);
4738	free(*mvp, M_VNODE_MARKER);
4739	*mvp = NULL;
4740}
4741
4742static struct vnode *
4743mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
4744{
4745	struct vnode *vp, *nvp;
4746
4747	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
4748	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4749restart:
4750	vp = TAILQ_NEXT(*mvp, v_actfreelist);
4751	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
4752	while (vp != NULL) {
4753		if (vp->v_type == VMARKER) {
4754			vp = TAILQ_NEXT(vp, v_actfreelist);
4755			continue;
4756		}
4757		if (!VI_TRYLOCK(vp)) {
4758			if (mp_ncpus == 1 || should_yield()) {
4759				TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
4760				mtx_unlock(&vnode_free_list_mtx);
4761				kern_yield(PRI_USER);
4762				mtx_lock(&vnode_free_list_mtx);
4763				goto restart;
4764			}
4765			continue;
4766		}
4767		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
4768		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
4769		    ("alien vnode on the active list %p %p", vp, mp));
4770		if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0)
4771			break;
4772		nvp = TAILQ_NEXT(vp, v_actfreelist);
4773		VI_UNLOCK(vp);
4774		vp = nvp;
4775	}
4776
4777	/* Check if we are done */
4778	if (vp == NULL) {
4779		mtx_unlock(&vnode_free_list_mtx);
4780		mnt_vnode_markerfree_active(mvp, mp);
4781		return (NULL);
4782	}
4783	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
4784	mtx_unlock(&vnode_free_list_mtx);
4785	ASSERT_VI_LOCKED(vp, "active iter");
4786	KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp));
4787	return (vp);
4788}
4789
4790struct vnode *
4791__mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
4792{
4793
4794	if (should_yield())
4795		kern_yield(PRI_USER);
4796	mtx_lock(&vnode_free_list_mtx);
4797	return (mnt_vnode_next_active(mvp, mp));
4798}
4799
4800struct vnode *
4801__mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
4802{
4803	struct vnode *vp;
4804
4805	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
4806	MNT_ILOCK(mp);
4807	MNT_REF(mp);
4808	MNT_IUNLOCK(mp);
4809	(*mvp)->v_type = VMARKER;
4810	(*mvp)->v_mount = mp;
4811
4812	mtx_lock(&vnode_free_list_mtx);
4813	vp = TAILQ_FIRST(&mp->mnt_activevnodelist);
4814	if (vp == NULL) {
4815		mtx_unlock(&vnode_free_list_mtx);
4816		mnt_vnode_markerfree_active(mvp, mp);
4817		return (NULL);
4818	}
4819	TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
4820	return (mnt_vnode_next_active(mvp, mp));
4821}
4822
4823void
4824__mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
4825{
4826
4827	if (*mvp == NULL)
4828		return;
4829
4830	mtx_lock(&vnode_free_list_mtx);
4831	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
4832	mtx_unlock(&vnode_free_list_mtx);
4833	mnt_vnode_markerfree_active(mvp, mp);
4834}
4835