vfs_subr.c revision 242556
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_subr.c 242556 2012-11-04 13:31:41Z kib $");
43
44#include "opt_compat.h"
45#include "opt_ddb.h"
46#include "opt_watchdog.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/condvar.h>
53#include <sys/conf.h>
54#include <sys/dirent.h>
55#include <sys/event.h>
56#include <sys/eventhandler.h>
57#include <sys/extattr.h>
58#include <sys/file.h>
59#include <sys/fcntl.h>
60#include <sys/jail.h>
61#include <sys/kdb.h>
62#include <sys/kernel.h>
63#include <sys/kthread.h>
64#include <sys/lockf.h>
65#include <sys/malloc.h>
66#include <sys/mount.h>
67#include <sys/namei.h>
68#include <sys/priv.h>
69#include <sys/reboot.h>
70#include <sys/sched.h>
71#include <sys/sleepqueue.h>
72#include <sys/stat.h>
73#include <sys/sysctl.h>
74#include <sys/syslog.h>
75#include <sys/vmmeter.h>
76#include <sys/vnode.h>
77#include <sys/watchdog.h>
78
79#include <machine/stdarg.h>
80
81#include <security/mac/mac_framework.h>
82
83#include <vm/vm.h>
84#include <vm/vm_object.h>
85#include <vm/vm_extern.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/vm_kern.h>
90#include <vm/uma.h>
91
92#ifdef DDB
93#include <ddb/ddb.h>
94#endif
95
96static void	delmntque(struct vnode *vp);
97static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
98		    int slpflag, int slptimeo);
99static void	syncer_shutdown(void *arg, int howto);
100static int	vtryrecycle(struct vnode *vp);
101static void	v_incr_usecount(struct vnode *);
102static void	v_decr_usecount(struct vnode *);
103static void	v_decr_useonly(struct vnode *);
104static void	v_upgrade_usecount(struct vnode *);
105static void	vnlru_free(int);
106static void	vgonel(struct vnode *);
107static void	vfs_knllock(void *arg);
108static void	vfs_knlunlock(void *arg);
109static void	vfs_knl_assert_locked(void *arg);
110static void	vfs_knl_assert_unlocked(void *arg);
111static void	destroy_vpollinfo(struct vpollinfo *vi);
112
113/*
114 * Number of vnodes in existence.  Increased whenever getnewvnode()
115 * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode.
116 */
117static unsigned long	numvnodes;
118
119SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
120    "Number of vnodes in existence");
121
122/*
123 * Conversion tables for conversion from vnode types to inode formats
124 * and back.
125 */
126enum vtype iftovt_tab[16] = {
127	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
128	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
129};
130int vttoif_tab[10] = {
131	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
132	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
133};
134
135/*
136 * List of vnodes that are ready for recycling.
137 */
138static TAILQ_HEAD(freelst, vnode) vnode_free_list;
139
140/*
141 * Free vnode target.  Free vnodes may simply be files which have been stat'd
142 * but not read.  This is somewhat common, and a small cache of such files
143 * should be kept to avoid recreation costs.
144 */
145static u_long wantfreevnodes;
146SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
147/* Number of vnodes in the free list. */
148static u_long freevnodes;
149SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0,
150    "Number of vnodes in the free list");
151
152static int vlru_allow_cache_src;
153SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW,
154    &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode");
155
156/*
157 * Various variables used for debugging the new implementation of
158 * reassignbuf().
159 * XXX these are probably of (very) limited utility now.
160 */
161static int reassignbufcalls;
162SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0,
163    "Number of calls to reassignbuf");
164
165/*
166 * Cache for the mount type id assigned to NFS.  This is used for
167 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
168 */
169int	nfs_mount_type = -1;
170
171/* To keep more than one thread at a time from running vfs_getnewfsid */
172static struct mtx mntid_mtx;
173
174/*
175 * Lock for any access to the following:
176 *	vnode_free_list
177 *	numvnodes
178 *	freevnodes
179 */
180static struct mtx vnode_free_list_mtx;
181
182/* Publicly exported FS */
183struct nfs_public nfs_pub;
184
185/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
186static uma_zone_t vnode_zone;
187static uma_zone_t vnodepoll_zone;
188
189/*
190 * The workitem queue.
191 *
192 * It is useful to delay writes of file data and filesystem metadata
193 * for tens of seconds so that quickly created and deleted files need
194 * not waste disk bandwidth being created and removed. To realize this,
195 * we append vnodes to a "workitem" queue. When running with a soft
196 * updates implementation, most pending metadata dependencies should
197 * not wait for more than a few seconds. Thus, mounted on block devices
198 * are delayed only about a half the time that file data is delayed.
199 * Similarly, directory updates are more critical, so are only delayed
200 * about a third the time that file data is delayed. Thus, there are
201 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
202 * one each second (driven off the filesystem syncer process). The
203 * syncer_delayno variable indicates the next queue that is to be processed.
204 * Items that need to be processed soon are placed in this queue:
205 *
206 *	syncer_workitem_pending[syncer_delayno]
207 *
208 * A delay of fifteen seconds is done by placing the request fifteen
209 * entries later in the queue:
210 *
211 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
212 *
213 */
214static int syncer_delayno;
215static long syncer_mask;
216LIST_HEAD(synclist, bufobj);
217static struct synclist *syncer_workitem_pending;
218/*
219 * The sync_mtx protects:
220 *	bo->bo_synclist
221 *	sync_vnode_count
222 *	syncer_delayno
223 *	syncer_state
224 *	syncer_workitem_pending
225 *	syncer_worklist_len
226 *	rushjob
227 */
228static struct mtx sync_mtx;
229static struct cv sync_wakeup;
230
231#define SYNCER_MAXDELAY		32
232static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
233static int syncdelay = 30;		/* max time to delay syncing data */
234static int filedelay = 30;		/* time to delay syncing files */
235SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
236    "Time to delay syncing files (in seconds)");
237static int dirdelay = 29;		/* time to delay syncing directories */
238SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
239    "Time to delay syncing directories (in seconds)");
240static int metadelay = 28;		/* time to delay syncing metadata */
241SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
242    "Time to delay syncing metadata (in seconds)");
243static int rushjob;		/* number of slots to run ASAP */
244static int stat_rush_requests;	/* number of times I/O speeded up */
245SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
246    "Number of times I/O speeded up (rush requests)");
247
248/*
249 * When shutting down the syncer, run it at four times normal speed.
250 */
251#define SYNCER_SHUTDOWN_SPEEDUP		4
252static int sync_vnode_count;
253static int syncer_worklist_len;
254static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
255    syncer_state;
256
257/*
258 * Number of vnodes we want to exist at any one time.  This is mostly used
259 * to size hash tables in vnode-related code.  It is normally not used in
260 * getnewvnode(), as wantfreevnodes is normally nonzero.)
261 *
262 * XXX desiredvnodes is historical cruft and should not exist.
263 */
264int desiredvnodes;
265SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
266    &desiredvnodes, 0, "Maximum number of vnodes");
267SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
268    &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
269static int vnlru_nowhere;
270SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
271    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
272
273/*
274 * Macros to control when a vnode is freed and recycled.  All require
275 * the vnode interlock.
276 */
277#define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
278#define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
279#define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
280
281
282/*
283 * Initialize the vnode management data structures.
284 *
285 * Reevaluate the following cap on the number of vnodes after the physical
286 * memory size exceeds 512GB.  In the limit, as the physical memory size
287 * grows, the ratio of physical pages to vnodes approaches sixteen to one.
288 */
289#ifndef	MAXVNODES_MAX
290#define	MAXVNODES_MAX	(512 * (1024 * 1024 * 1024 / (int)PAGE_SIZE / 16))
291#endif
292static void
293vntblinit(void *dummy __unused)
294{
295	int physvnodes, virtvnodes;
296
297	/*
298	 * Desiredvnodes is a function of the physical memory size and the
299	 * kernel's heap size.  Generally speaking, it scales with the
300	 * physical memory size.  The ratio of desiredvnodes to physical pages
301	 * is one to four until desiredvnodes exceeds 98,304.  Thereafter, the
302	 * marginal ratio of desiredvnodes to physical pages is one to
303	 * sixteen.  However, desiredvnodes is limited by the kernel's heap
304	 * size.  The memory required by desiredvnodes vnodes and vm objects
305	 * may not exceed one seventh of the kernel's heap size.
306	 */
307	physvnodes = maxproc + cnt.v_page_count / 16 + 3 * min(98304 * 4,
308	    cnt.v_page_count) / 16;
309	virtvnodes = vm_kmem_size / (7 * (sizeof(struct vm_object) +
310	    sizeof(struct vnode)));
311	desiredvnodes = min(physvnodes, virtvnodes);
312	if (desiredvnodes > MAXVNODES_MAX) {
313		if (bootverbose)
314			printf("Reducing kern.maxvnodes %d -> %d\n",
315			    desiredvnodes, MAXVNODES_MAX);
316		desiredvnodes = MAXVNODES_MAX;
317	}
318	wantfreevnodes = desiredvnodes / 4;
319	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
320	TAILQ_INIT(&vnode_free_list);
321	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
322	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
323	    NULL, NULL, UMA_ALIGN_PTR, 0);
324	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
325	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
326	/*
327	 * Initialize the filesystem syncer.
328	 */
329	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
330	    &syncer_mask);
331	syncer_maxdelay = syncer_mask + 1;
332	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
333	cv_init(&sync_wakeup, "syncer");
334}
335SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
336
337
338/*
339 * Mark a mount point as busy. Used to synchronize access and to delay
340 * unmounting. Eventually, mountlist_mtx is not released on failure.
341 *
342 * vfs_busy() is a custom lock, it can block the caller.
343 * vfs_busy() only sleeps if the unmount is active on the mount point.
344 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
345 * vnode belonging to mp.
346 *
347 * Lookup uses vfs_busy() to traverse mount points.
348 * root fs			var fs
349 * / vnode lock		A	/ vnode lock (/var)		D
350 * /var vnode lock	B	/log vnode lock(/var/log)	E
351 * vfs_busy lock	C	vfs_busy lock			F
352 *
353 * Within each file system, the lock order is C->A->B and F->D->E.
354 *
355 * When traversing across mounts, the system follows that lock order:
356 *
357 *        C->A->B
358 *              |
359 *              +->F->D->E
360 *
361 * The lookup() process for namei("/var") illustrates the process:
362 *  VOP_LOOKUP() obtains B while A is held
363 *  vfs_busy() obtains a shared lock on F while A and B are held
364 *  vput() releases lock on B
365 *  vput() releases lock on A
366 *  VFS_ROOT() obtains lock on D while shared lock on F is held
367 *  vfs_unbusy() releases shared lock on F
368 *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
369 *    Attempt to lock A (instead of vp_crossmp) while D is held would
370 *    violate the global order, causing deadlocks.
371 *
372 * dounmount() locks B while F is drained.
373 */
374int
375vfs_busy(struct mount *mp, int flags)
376{
377
378	MPASS((flags & ~MBF_MASK) == 0);
379	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
380
381	MNT_ILOCK(mp);
382	MNT_REF(mp);
383	/*
384	 * If mount point is currenly being unmounted, sleep until the
385	 * mount point fate is decided.  If thread doing the unmounting fails,
386	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
387	 * that this mount point has survived the unmount attempt and vfs_busy
388	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
389	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
390	 * about to be really destroyed.  vfs_busy needs to release its
391	 * reference on the mount point in this case and return with ENOENT,
392	 * telling the caller that mount mount it tried to busy is no longer
393	 * valid.
394	 */
395	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
396		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
397			MNT_REL(mp);
398			MNT_IUNLOCK(mp);
399			CTR1(KTR_VFS, "%s: failed busying before sleeping",
400			    __func__);
401			return (ENOENT);
402		}
403		if (flags & MBF_MNTLSTLOCK)
404			mtx_unlock(&mountlist_mtx);
405		mp->mnt_kern_flag |= MNTK_MWAIT;
406		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
407		if (flags & MBF_MNTLSTLOCK)
408			mtx_lock(&mountlist_mtx);
409		MNT_ILOCK(mp);
410	}
411	if (flags & MBF_MNTLSTLOCK)
412		mtx_unlock(&mountlist_mtx);
413	mp->mnt_lockref++;
414	MNT_IUNLOCK(mp);
415	return (0);
416}
417
418/*
419 * Free a busy filesystem.
420 */
421void
422vfs_unbusy(struct mount *mp)
423{
424
425	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
426	MNT_ILOCK(mp);
427	MNT_REL(mp);
428	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
429	mp->mnt_lockref--;
430	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
431		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
432		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
433		mp->mnt_kern_flag &= ~MNTK_DRAINING;
434		wakeup(&mp->mnt_lockref);
435	}
436	MNT_IUNLOCK(mp);
437}
438
439/*
440 * Lookup a mount point by filesystem identifier.
441 */
442struct mount *
443vfs_getvfs(fsid_t *fsid)
444{
445	struct mount *mp;
446
447	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
448	mtx_lock(&mountlist_mtx);
449	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
450		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
451		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
452			vfs_ref(mp);
453			mtx_unlock(&mountlist_mtx);
454			return (mp);
455		}
456	}
457	mtx_unlock(&mountlist_mtx);
458	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
459	return ((struct mount *) 0);
460}
461
462/*
463 * Lookup a mount point by filesystem identifier, busying it before
464 * returning.
465 */
466struct mount *
467vfs_busyfs(fsid_t *fsid)
468{
469	struct mount *mp;
470	int error;
471
472	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
473	mtx_lock(&mountlist_mtx);
474	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
475		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
476		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
477			error = vfs_busy(mp, MBF_MNTLSTLOCK);
478			if (error) {
479				mtx_unlock(&mountlist_mtx);
480				return (NULL);
481			}
482			return (mp);
483		}
484	}
485	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
486	mtx_unlock(&mountlist_mtx);
487	return ((struct mount *) 0);
488}
489
490/*
491 * Check if a user can access privileged mount options.
492 */
493int
494vfs_suser(struct mount *mp, struct thread *td)
495{
496	int error;
497
498	/*
499	 * If the thread is jailed, but this is not a jail-friendly file
500	 * system, deny immediately.
501	 */
502	if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred))
503		return (EPERM);
504
505	/*
506	 * If the file system was mounted outside the jail of the calling
507	 * thread, deny immediately.
508	 */
509	if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
510		return (EPERM);
511
512	/*
513	 * If file system supports delegated administration, we don't check
514	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
515	 * by the file system itself.
516	 * If this is not the user that did original mount, we check for
517	 * the PRIV_VFS_MOUNT_OWNER privilege.
518	 */
519	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
520	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
521		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
522			return (error);
523	}
524	return (0);
525}
526
527/*
528 * Get a new unique fsid.  Try to make its val[0] unique, since this value
529 * will be used to create fake device numbers for stat().  Also try (but
530 * not so hard) make its val[0] unique mod 2^16, since some emulators only
531 * support 16-bit device numbers.  We end up with unique val[0]'s for the
532 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
533 *
534 * Keep in mind that several mounts may be running in parallel.  Starting
535 * the search one past where the previous search terminated is both a
536 * micro-optimization and a defense against returning the same fsid to
537 * different mounts.
538 */
539void
540vfs_getnewfsid(struct mount *mp)
541{
542	static uint16_t mntid_base;
543	struct mount *nmp;
544	fsid_t tfsid;
545	int mtype;
546
547	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
548	mtx_lock(&mntid_mtx);
549	mtype = mp->mnt_vfc->vfc_typenum;
550	tfsid.val[1] = mtype;
551	mtype = (mtype & 0xFF) << 24;
552	for (;;) {
553		tfsid.val[0] = makedev(255,
554		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
555		mntid_base++;
556		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
557			break;
558		vfs_rel(nmp);
559	}
560	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
561	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
562	mtx_unlock(&mntid_mtx);
563}
564
565/*
566 * Knob to control the precision of file timestamps:
567 *
568 *   0 = seconds only; nanoseconds zeroed.
569 *   1 = seconds and nanoseconds, accurate within 1/HZ.
570 *   2 = seconds and nanoseconds, truncated to microseconds.
571 * >=3 = seconds and nanoseconds, maximum precision.
572 */
573enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
574
575static int timestamp_precision = TSP_SEC;
576SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
577    &timestamp_precision, 0, "File timestamp precision (0: seconds, "
578    "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to ms, "
579    "3+: sec + ns (max. precision))");
580
581/*
582 * Get a current timestamp.
583 */
584void
585vfs_timestamp(struct timespec *tsp)
586{
587	struct timeval tv;
588
589	switch (timestamp_precision) {
590	case TSP_SEC:
591		tsp->tv_sec = time_second;
592		tsp->tv_nsec = 0;
593		break;
594	case TSP_HZ:
595		getnanotime(tsp);
596		break;
597	case TSP_USEC:
598		microtime(&tv);
599		TIMEVAL_TO_TIMESPEC(&tv, tsp);
600		break;
601	case TSP_NSEC:
602	default:
603		nanotime(tsp);
604		break;
605	}
606}
607
608/*
609 * Set vnode attributes to VNOVAL
610 */
611void
612vattr_null(struct vattr *vap)
613{
614
615	vap->va_type = VNON;
616	vap->va_size = VNOVAL;
617	vap->va_bytes = VNOVAL;
618	vap->va_mode = VNOVAL;
619	vap->va_nlink = VNOVAL;
620	vap->va_uid = VNOVAL;
621	vap->va_gid = VNOVAL;
622	vap->va_fsid = VNOVAL;
623	vap->va_fileid = VNOVAL;
624	vap->va_blocksize = VNOVAL;
625	vap->va_rdev = VNOVAL;
626	vap->va_atime.tv_sec = VNOVAL;
627	vap->va_atime.tv_nsec = VNOVAL;
628	vap->va_mtime.tv_sec = VNOVAL;
629	vap->va_mtime.tv_nsec = VNOVAL;
630	vap->va_ctime.tv_sec = VNOVAL;
631	vap->va_ctime.tv_nsec = VNOVAL;
632	vap->va_birthtime.tv_sec = VNOVAL;
633	vap->va_birthtime.tv_nsec = VNOVAL;
634	vap->va_flags = VNOVAL;
635	vap->va_gen = VNOVAL;
636	vap->va_vaflags = 0;
637}
638
639/*
640 * This routine is called when we have too many vnodes.  It attempts
641 * to free <count> vnodes and will potentially free vnodes that still
642 * have VM backing store (VM backing store is typically the cause
643 * of a vnode blowout so we want to do this).  Therefore, this operation
644 * is not considered cheap.
645 *
646 * A number of conditions may prevent a vnode from being reclaimed.
647 * the buffer cache may have references on the vnode, a directory
648 * vnode may still have references due to the namei cache representing
649 * underlying files, or the vnode may be in active use.   It is not
650 * desireable to reuse such vnodes.  These conditions may cause the
651 * number of vnodes to reach some minimum value regardless of what
652 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
653 */
654static int
655vlrureclaim(struct mount *mp)
656{
657	struct vnode *vp;
658	int done;
659	int trigger;
660	int usevnodes;
661	int count;
662
663	/*
664	 * Calculate the trigger point, don't allow user
665	 * screwups to blow us up.   This prevents us from
666	 * recycling vnodes with lots of resident pages.  We
667	 * aren't trying to free memory, we are trying to
668	 * free vnodes.
669	 */
670	usevnodes = desiredvnodes;
671	if (usevnodes <= 0)
672		usevnodes = 1;
673	trigger = cnt.v_page_count * 2 / usevnodes;
674	done = 0;
675	vn_start_write(NULL, &mp, V_WAIT);
676	MNT_ILOCK(mp);
677	count = mp->mnt_nvnodelistsize / 10 + 1;
678	while (count != 0) {
679		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
680		while (vp != NULL && vp->v_type == VMARKER)
681			vp = TAILQ_NEXT(vp, v_nmntvnodes);
682		if (vp == NULL)
683			break;
684		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
685		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
686		--count;
687		if (!VI_TRYLOCK(vp))
688			goto next_iter;
689		/*
690		 * If it's been deconstructed already, it's still
691		 * referenced, or it exceeds the trigger, skip it.
692		 */
693		if (vp->v_usecount ||
694		    (!vlru_allow_cache_src &&
695			!LIST_EMPTY(&(vp)->v_cache_src)) ||
696		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
697		    vp->v_object->resident_page_count > trigger)) {
698			VI_UNLOCK(vp);
699			goto next_iter;
700		}
701		MNT_IUNLOCK(mp);
702		vholdl(vp);
703		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
704			vdrop(vp);
705			goto next_iter_mntunlocked;
706		}
707		VI_LOCK(vp);
708		/*
709		 * v_usecount may have been bumped after VOP_LOCK() dropped
710		 * the vnode interlock and before it was locked again.
711		 *
712		 * It is not necessary to recheck VI_DOOMED because it can
713		 * only be set by another thread that holds both the vnode
714		 * lock and vnode interlock.  If another thread has the
715		 * vnode lock before we get to VOP_LOCK() and obtains the
716		 * vnode interlock after VOP_LOCK() drops the vnode
717		 * interlock, the other thread will be unable to drop the
718		 * vnode lock before our VOP_LOCK() call fails.
719		 */
720		if (vp->v_usecount ||
721		    (!vlru_allow_cache_src &&
722			!LIST_EMPTY(&(vp)->v_cache_src)) ||
723		    (vp->v_object != NULL &&
724		    vp->v_object->resident_page_count > trigger)) {
725			VOP_UNLOCK(vp, LK_INTERLOCK);
726			goto next_iter_mntunlocked;
727		}
728		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
729		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
730		vgonel(vp);
731		VOP_UNLOCK(vp, 0);
732		vdropl(vp);
733		done++;
734next_iter_mntunlocked:
735		if (!should_yield())
736			goto relock_mnt;
737		goto yield;
738next_iter:
739		if (!should_yield())
740			continue;
741		MNT_IUNLOCK(mp);
742yield:
743		kern_yield(PRI_UNCHANGED);
744relock_mnt:
745		MNT_ILOCK(mp);
746	}
747	MNT_IUNLOCK(mp);
748	vn_finished_write(mp);
749	return done;
750}
751
752/*
753 * Attempt to keep the free list at wantfreevnodes length.
754 */
755static void
756vnlru_free(int count)
757{
758	struct vnode *vp;
759
760	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
761	for (; count > 0; count--) {
762		vp = TAILQ_FIRST(&vnode_free_list);
763		/*
764		 * The list can be modified while the free_list_mtx
765		 * has been dropped and vp could be NULL here.
766		 */
767		if (!vp)
768			break;
769		VNASSERT(vp->v_op != NULL, vp,
770		    ("vnlru_free: vnode already reclaimed."));
771		KASSERT((vp->v_iflag & VI_FREE) != 0,
772		    ("Removing vnode not on freelist"));
773		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
774		    ("Mangling active vnode"));
775		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
776		/*
777		 * Don't recycle if we can't get the interlock.
778		 */
779		if (!VI_TRYLOCK(vp)) {
780			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
781			continue;
782		}
783		VNASSERT(VCANRECYCLE(vp), vp,
784		    ("vp inconsistent on freelist"));
785		freevnodes--;
786		vp->v_iflag &= ~VI_FREE;
787		vholdl(vp);
788		mtx_unlock(&vnode_free_list_mtx);
789		VI_UNLOCK(vp);
790		vtryrecycle(vp);
791		/*
792		 * If the recycled succeeded this vdrop will actually free
793		 * the vnode.  If not it will simply place it back on
794		 * the free list.
795		 */
796		vdrop(vp);
797		mtx_lock(&vnode_free_list_mtx);
798	}
799}
800/*
801 * Attempt to recycle vnodes in a context that is always safe to block.
802 * Calling vlrurecycle() from the bowels of filesystem code has some
803 * interesting deadlock problems.
804 */
805static struct proc *vnlruproc;
806static int vnlruproc_sig;
807
808static void
809vnlru_proc(void)
810{
811	struct mount *mp, *nmp;
812	int done;
813	struct proc *p = vnlruproc;
814
815	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
816	    SHUTDOWN_PRI_FIRST);
817
818	for (;;) {
819		kproc_suspend_check(p);
820		mtx_lock(&vnode_free_list_mtx);
821		if (freevnodes > wantfreevnodes)
822			vnlru_free(freevnodes - wantfreevnodes);
823		if (numvnodes <= desiredvnodes * 9 / 10) {
824			vnlruproc_sig = 0;
825			wakeup(&vnlruproc_sig);
826			msleep(vnlruproc, &vnode_free_list_mtx,
827			    PVFS|PDROP, "vlruwt", hz);
828			continue;
829		}
830		mtx_unlock(&vnode_free_list_mtx);
831		done = 0;
832		mtx_lock(&mountlist_mtx);
833		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
834			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
835				nmp = TAILQ_NEXT(mp, mnt_list);
836				continue;
837			}
838			done += vlrureclaim(mp);
839			mtx_lock(&mountlist_mtx);
840			nmp = TAILQ_NEXT(mp, mnt_list);
841			vfs_unbusy(mp);
842		}
843		mtx_unlock(&mountlist_mtx);
844		if (done == 0) {
845#if 0
846			/* These messages are temporary debugging aids */
847			if (vnlru_nowhere < 5)
848				printf("vnlru process getting nowhere..\n");
849			else if (vnlru_nowhere == 5)
850				printf("vnlru process messages stopped.\n");
851#endif
852			vnlru_nowhere++;
853			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
854		} else
855			kern_yield(PRI_UNCHANGED);
856	}
857}
858
859static struct kproc_desc vnlru_kp = {
860	"vnlru",
861	vnlru_proc,
862	&vnlruproc
863};
864SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
865    &vnlru_kp);
866
867/*
868 * Routines having to do with the management of the vnode table.
869 */
870
871/*
872 * Try to recycle a freed vnode.  We abort if anyone picks up a reference
873 * before we actually vgone().  This function must be called with the vnode
874 * held to prevent the vnode from being returned to the free list midway
875 * through vgone().
876 */
877static int
878vtryrecycle(struct vnode *vp)
879{
880	struct mount *vnmp;
881
882	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
883	VNASSERT(vp->v_holdcnt, vp,
884	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
885	/*
886	 * This vnode may found and locked via some other list, if so we
887	 * can't recycle it yet.
888	 */
889	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
890		CTR2(KTR_VFS,
891		    "%s: impossible to recycle, vp %p lock is already held",
892		    __func__, vp);
893		return (EWOULDBLOCK);
894	}
895	/*
896	 * Don't recycle if its filesystem is being suspended.
897	 */
898	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
899		VOP_UNLOCK(vp, 0);
900		CTR2(KTR_VFS,
901		    "%s: impossible to recycle, cannot start the write for %p",
902		    __func__, vp);
903		return (EBUSY);
904	}
905	/*
906	 * If we got this far, we need to acquire the interlock and see if
907	 * anyone picked up this vnode from another list.  If not, we will
908	 * mark it with DOOMED via vgonel() so that anyone who does find it
909	 * will skip over it.
910	 */
911	VI_LOCK(vp);
912	if (vp->v_usecount) {
913		VOP_UNLOCK(vp, LK_INTERLOCK);
914		vn_finished_write(vnmp);
915		CTR2(KTR_VFS,
916		    "%s: impossible to recycle, %p is already referenced",
917		    __func__, vp);
918		return (EBUSY);
919	}
920	if ((vp->v_iflag & VI_DOOMED) == 0)
921		vgonel(vp);
922	VOP_UNLOCK(vp, LK_INTERLOCK);
923	vn_finished_write(vnmp);
924	return (0);
925}
926
927/*
928 * Wait for available vnodes.
929 */
930static int
931getnewvnode_wait(int suspended)
932{
933
934	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
935	if (numvnodes > desiredvnodes) {
936		if (suspended) {
937			/*
938			 * File system is beeing suspended, we cannot risk a
939			 * deadlock here, so allocate new vnode anyway.
940			 */
941			if (freevnodes > wantfreevnodes)
942				vnlru_free(freevnodes - wantfreevnodes);
943			return (0);
944		}
945		if (vnlruproc_sig == 0) {
946			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
947			wakeup(vnlruproc);
948		}
949		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
950		    "vlruwk", hz);
951	}
952	return (numvnodes > desiredvnodes ? ENFILE : 0);
953}
954
955void
956getnewvnode_reserve(u_int count)
957{
958	struct thread *td;
959
960	td = curthread;
961	mtx_lock(&vnode_free_list_mtx);
962	while (count > 0) {
963		if (getnewvnode_wait(0) == 0) {
964			count--;
965			td->td_vp_reserv++;
966			numvnodes++;
967		}
968	}
969	mtx_unlock(&vnode_free_list_mtx);
970}
971
972void
973getnewvnode_drop_reserve(void)
974{
975	struct thread *td;
976
977	td = curthread;
978	mtx_lock(&vnode_free_list_mtx);
979	KASSERT(numvnodes >= td->td_vp_reserv, ("reserve too large"));
980	numvnodes -= td->td_vp_reserv;
981	mtx_unlock(&vnode_free_list_mtx);
982	td->td_vp_reserv = 0;
983}
984
985/*
986 * Return the next vnode from the free list.
987 */
988int
989getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
990    struct vnode **vpp)
991{
992	struct vnode *vp;
993	struct bufobj *bo;
994	struct thread *td;
995	int error;
996
997	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
998	vp = NULL;
999	td = curthread;
1000	if (td->td_vp_reserv > 0) {
1001		td->td_vp_reserv -= 1;
1002		goto alloc;
1003	}
1004	mtx_lock(&vnode_free_list_mtx);
1005	/*
1006	 * Lend our context to reclaim vnodes if they've exceeded the max.
1007	 */
1008	if (freevnodes > wantfreevnodes)
1009		vnlru_free(1);
1010	error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag &
1011	    MNTK_SUSPEND));
1012#if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1013	if (error != 0) {
1014		mtx_unlock(&vnode_free_list_mtx);
1015		return (error);
1016	}
1017#endif
1018	numvnodes++;
1019	mtx_unlock(&vnode_free_list_mtx);
1020alloc:
1021	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
1022	/*
1023	 * Setup locks.
1024	 */
1025	vp->v_vnlock = &vp->v_lock;
1026	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
1027	/*
1028	 * By default, don't allow shared locks unless filesystems
1029	 * opt-in.
1030	 */
1031	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
1032	/*
1033	 * Initialize bufobj.
1034	 */
1035	bo = &vp->v_bufobj;
1036	bo->__bo_vnode = vp;
1037	mtx_init(BO_MTX(bo), "bufobj interlock", NULL, MTX_DEF);
1038	bo->bo_ops = &buf_ops_bio;
1039	bo->bo_private = vp;
1040	TAILQ_INIT(&bo->bo_clean.bv_hd);
1041	TAILQ_INIT(&bo->bo_dirty.bv_hd);
1042	/*
1043	 * Initialize namecache.
1044	 */
1045	LIST_INIT(&vp->v_cache_src);
1046	TAILQ_INIT(&vp->v_cache_dst);
1047	/*
1048	 * Finalize various vnode identity bits.
1049	 */
1050	vp->v_type = VNON;
1051	vp->v_tag = tag;
1052	vp->v_op = vops;
1053	v_incr_usecount(vp);
1054	vp->v_data = NULL;
1055#ifdef MAC
1056	mac_vnode_init(vp);
1057	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1058		mac_vnode_associate_singlelabel(mp, vp);
1059	else if (mp == NULL && vops != &dead_vnodeops)
1060		printf("NULL mp in getnewvnode()\n");
1061#endif
1062	if (mp != NULL) {
1063		bo->bo_bsize = mp->mnt_stat.f_iosize;
1064		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1065			vp->v_vflag |= VV_NOKNOTE;
1066	}
1067	rangelock_init(&vp->v_rl);
1068
1069	*vpp = vp;
1070	return (0);
1071}
1072
1073/*
1074 * Delete from old mount point vnode list, if on one.
1075 */
1076static void
1077delmntque(struct vnode *vp)
1078{
1079	struct mount *mp;
1080	int active;
1081
1082	mp = vp->v_mount;
1083	if (mp == NULL)
1084		return;
1085	MNT_ILOCK(mp);
1086	VI_LOCK(vp);
1087	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1088	    ("Active vnode list size %d > Vnode list size %d",
1089	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1090	active = vp->v_iflag & VI_ACTIVE;
1091	vp->v_iflag &= ~VI_ACTIVE;
1092	if (active) {
1093		mtx_lock(&vnode_free_list_mtx);
1094		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1095		mp->mnt_activevnodelistsize--;
1096		mtx_unlock(&vnode_free_list_mtx);
1097	}
1098	vp->v_mount = NULL;
1099	VI_UNLOCK(vp);
1100	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1101		("bad mount point vnode list size"));
1102	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1103	mp->mnt_nvnodelistsize--;
1104	MNT_REL(mp);
1105	MNT_IUNLOCK(mp);
1106}
1107
1108static void
1109insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1110{
1111
1112	vp->v_data = NULL;
1113	vp->v_op = &dead_vnodeops;
1114	/* XXX non mp-safe fs may still call insmntque with vnode
1115	   unlocked */
1116	if (!VOP_ISLOCKED(vp))
1117		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1118	vgone(vp);
1119	vput(vp);
1120}
1121
1122/*
1123 * Insert into list of vnodes for the new mount point, if available.
1124 */
1125int
1126insmntque1(struct vnode *vp, struct mount *mp,
1127	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1128{
1129	int locked;
1130
1131	KASSERT(vp->v_mount == NULL,
1132		("insmntque: vnode already on per mount vnode list"));
1133	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1134	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1135
1136	/*
1137	 * We acquire the vnode interlock early to ensure that the
1138	 * vnode cannot be recycled by another process releasing a
1139	 * holdcnt on it before we get it on both the vnode list
1140	 * and the active vnode list. The mount mutex protects only
1141	 * manipulation of the vnode list and the vnode freelist
1142	 * mutex protects only manipulation of the active vnode list.
1143	 * Hence the need to hold the vnode interlock throughout.
1144	 */
1145	MNT_ILOCK(mp);
1146	VI_LOCK(vp);
1147	if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1148	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1149	     mp->mnt_nvnodelistsize == 0)) {
1150		locked = VOP_ISLOCKED(vp);
1151		if (!locked || (locked == LK_EXCLUSIVE &&
1152		     (vp->v_vflag & VV_FORCEINSMQ) == 0)) {
1153			VI_UNLOCK(vp);
1154			MNT_IUNLOCK(mp);
1155			if (dtr != NULL)
1156				dtr(vp, dtr_arg);
1157			return (EBUSY);
1158		}
1159	}
1160	vp->v_mount = mp;
1161	MNT_REF(mp);
1162	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1163	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1164		("neg mount point vnode list size"));
1165	mp->mnt_nvnodelistsize++;
1166	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1167	    ("Activating already active vnode"));
1168	vp->v_iflag |= VI_ACTIVE;
1169	mtx_lock(&vnode_free_list_mtx);
1170	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1171	mp->mnt_activevnodelistsize++;
1172	mtx_unlock(&vnode_free_list_mtx);
1173	VI_UNLOCK(vp);
1174	MNT_IUNLOCK(mp);
1175	return (0);
1176}
1177
1178int
1179insmntque(struct vnode *vp, struct mount *mp)
1180{
1181
1182	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1183}
1184
1185/*
1186 * Flush out and invalidate all buffers associated with a bufobj
1187 * Called with the underlying object locked.
1188 */
1189int
1190bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1191{
1192	int error;
1193
1194	BO_LOCK(bo);
1195	if (flags & V_SAVE) {
1196		error = bufobj_wwait(bo, slpflag, slptimeo);
1197		if (error) {
1198			BO_UNLOCK(bo);
1199			return (error);
1200		}
1201		if (bo->bo_dirty.bv_cnt > 0) {
1202			BO_UNLOCK(bo);
1203			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1204				return (error);
1205			/*
1206			 * XXX We could save a lock/unlock if this was only
1207			 * enabled under INVARIANTS
1208			 */
1209			BO_LOCK(bo);
1210			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1211				panic("vinvalbuf: dirty bufs");
1212		}
1213	}
1214	/*
1215	 * If you alter this loop please notice that interlock is dropped and
1216	 * reacquired in flushbuflist.  Special care is needed to ensure that
1217	 * no race conditions occur from this.
1218	 */
1219	do {
1220		error = flushbuflist(&bo->bo_clean,
1221		    flags, bo, slpflag, slptimeo);
1222		if (error == 0 && !(flags & V_CLEANONLY))
1223			error = flushbuflist(&bo->bo_dirty,
1224			    flags, bo, slpflag, slptimeo);
1225		if (error != 0 && error != EAGAIN) {
1226			BO_UNLOCK(bo);
1227			return (error);
1228		}
1229	} while (error != 0);
1230
1231	/*
1232	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1233	 * have write I/O in-progress but if there is a VM object then the
1234	 * VM object can also have read-I/O in-progress.
1235	 */
1236	do {
1237		bufobj_wwait(bo, 0, 0);
1238		BO_UNLOCK(bo);
1239		if (bo->bo_object != NULL) {
1240			VM_OBJECT_LOCK(bo->bo_object);
1241			vm_object_pip_wait(bo->bo_object, "bovlbx");
1242			VM_OBJECT_UNLOCK(bo->bo_object);
1243		}
1244		BO_LOCK(bo);
1245	} while (bo->bo_numoutput > 0);
1246	BO_UNLOCK(bo);
1247
1248	/*
1249	 * Destroy the copy in the VM cache, too.
1250	 */
1251	if (bo->bo_object != NULL &&
1252	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0) {
1253		VM_OBJECT_LOCK(bo->bo_object);
1254		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1255		    OBJPR_CLEANONLY : 0);
1256		VM_OBJECT_UNLOCK(bo->bo_object);
1257	}
1258
1259#ifdef INVARIANTS
1260	BO_LOCK(bo);
1261	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0 &&
1262	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1263		panic("vinvalbuf: flush failed");
1264	BO_UNLOCK(bo);
1265#endif
1266	return (0);
1267}
1268
1269/*
1270 * Flush out and invalidate all buffers associated with a vnode.
1271 * Called with the underlying object locked.
1272 */
1273int
1274vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1275{
1276
1277	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1278	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1279	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1280}
1281
1282/*
1283 * Flush out buffers on the specified list.
1284 *
1285 */
1286static int
1287flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1288    int slptimeo)
1289{
1290	struct buf *bp, *nbp;
1291	int retval, error;
1292	daddr_t lblkno;
1293	b_xflags_t xflags;
1294
1295	ASSERT_BO_LOCKED(bo);
1296
1297	retval = 0;
1298	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1299		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1300		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1301			continue;
1302		}
1303		lblkno = 0;
1304		xflags = 0;
1305		if (nbp != NULL) {
1306			lblkno = nbp->b_lblkno;
1307			xflags = nbp->b_xflags &
1308				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1309		}
1310		retval = EAGAIN;
1311		error = BUF_TIMELOCK(bp,
1312		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1313		    "flushbuf", slpflag, slptimeo);
1314		if (error) {
1315			BO_LOCK(bo);
1316			return (error != ENOLCK ? error : EAGAIN);
1317		}
1318		KASSERT(bp->b_bufobj == bo,
1319		    ("bp %p wrong b_bufobj %p should be %p",
1320		    bp, bp->b_bufobj, bo));
1321		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1322			BUF_UNLOCK(bp);
1323			BO_LOCK(bo);
1324			return (EAGAIN);
1325		}
1326		/*
1327		 * XXX Since there are no node locks for NFS, I
1328		 * believe there is a slight chance that a delayed
1329		 * write will occur while sleeping just above, so
1330		 * check for it.
1331		 */
1332		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1333		    (flags & V_SAVE)) {
1334			BO_LOCK(bo);
1335			bremfree(bp);
1336			BO_UNLOCK(bo);
1337			bp->b_flags |= B_ASYNC;
1338			bwrite(bp);
1339			BO_LOCK(bo);
1340			return (EAGAIN);	/* XXX: why not loop ? */
1341		}
1342		BO_LOCK(bo);
1343		bremfree(bp);
1344		BO_UNLOCK(bo);
1345		bp->b_flags |= (B_INVAL | B_RELBUF);
1346		bp->b_flags &= ~B_ASYNC;
1347		brelse(bp);
1348		BO_LOCK(bo);
1349		if (nbp != NULL &&
1350		    (nbp->b_bufobj != bo ||
1351		     nbp->b_lblkno != lblkno ||
1352		     (nbp->b_xflags &
1353		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1354			break;			/* nbp invalid */
1355	}
1356	return (retval);
1357}
1358
1359/*
1360 * Truncate a file's buffer and pages to a specified length.  This
1361 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1362 * sync activity.
1363 */
1364int
1365vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize)
1366{
1367	struct buf *bp, *nbp;
1368	int anyfreed;
1369	int trunclbn;
1370	struct bufobj *bo;
1371
1372	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1373	    vp, cred, blksize, (uintmax_t)length);
1374
1375	/*
1376	 * Round up to the *next* lbn.
1377	 */
1378	trunclbn = (length + blksize - 1) / blksize;
1379
1380	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1381restart:
1382	bo = &vp->v_bufobj;
1383	BO_LOCK(bo);
1384	anyfreed = 1;
1385	for (;anyfreed;) {
1386		anyfreed = 0;
1387		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1388			if (bp->b_lblkno < trunclbn)
1389				continue;
1390			if (BUF_LOCK(bp,
1391			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1392			    BO_MTX(bo)) == ENOLCK)
1393				goto restart;
1394
1395			BO_LOCK(bo);
1396			bremfree(bp);
1397			BO_UNLOCK(bo);
1398			bp->b_flags |= (B_INVAL | B_RELBUF);
1399			bp->b_flags &= ~B_ASYNC;
1400			brelse(bp);
1401			anyfreed = 1;
1402
1403			BO_LOCK(bo);
1404			if (nbp != NULL &&
1405			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1406			    (nbp->b_vp != vp) ||
1407			    (nbp->b_flags & B_DELWRI))) {
1408				BO_UNLOCK(bo);
1409				goto restart;
1410			}
1411		}
1412
1413		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1414			if (bp->b_lblkno < trunclbn)
1415				continue;
1416			if (BUF_LOCK(bp,
1417			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1418			    BO_MTX(bo)) == ENOLCK)
1419				goto restart;
1420			BO_LOCK(bo);
1421			bremfree(bp);
1422			BO_UNLOCK(bo);
1423			bp->b_flags |= (B_INVAL | B_RELBUF);
1424			bp->b_flags &= ~B_ASYNC;
1425			brelse(bp);
1426			anyfreed = 1;
1427
1428			BO_LOCK(bo);
1429			if (nbp != NULL &&
1430			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1431			    (nbp->b_vp != vp) ||
1432			    (nbp->b_flags & B_DELWRI) == 0)) {
1433				BO_UNLOCK(bo);
1434				goto restart;
1435			}
1436		}
1437	}
1438
1439	if (length > 0) {
1440restartsync:
1441		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1442			if (bp->b_lblkno > 0)
1443				continue;
1444			/*
1445			 * Since we hold the vnode lock this should only
1446			 * fail if we're racing with the buf daemon.
1447			 */
1448			if (BUF_LOCK(bp,
1449			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1450			    BO_MTX(bo)) == ENOLCK) {
1451				goto restart;
1452			}
1453			VNASSERT((bp->b_flags & B_DELWRI), vp,
1454			    ("buf(%p) on dirty queue without DELWRI", bp));
1455
1456			BO_LOCK(bo);
1457			bremfree(bp);
1458			BO_UNLOCK(bo);
1459			bawrite(bp);
1460			BO_LOCK(bo);
1461			goto restartsync;
1462		}
1463	}
1464
1465	bufobj_wwait(bo, 0, 0);
1466	BO_UNLOCK(bo);
1467	vnode_pager_setsize(vp, length);
1468
1469	return (0);
1470}
1471
1472/*
1473 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1474 *		 a vnode.
1475 *
1476 *	NOTE: We have to deal with the special case of a background bitmap
1477 *	buffer, a situation where two buffers will have the same logical
1478 *	block offset.  We want (1) only the foreground buffer to be accessed
1479 *	in a lookup and (2) must differentiate between the foreground and
1480 *	background buffer in the splay tree algorithm because the splay
1481 *	tree cannot normally handle multiple entities with the same 'index'.
1482 *	We accomplish this by adding differentiating flags to the splay tree's
1483 *	numerical domain.
1484 */
1485static
1486struct buf *
1487buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1488{
1489	struct buf dummy;
1490	struct buf *lefttreemax, *righttreemin, *y;
1491
1492	if (root == NULL)
1493		return (NULL);
1494	lefttreemax = righttreemin = &dummy;
1495	for (;;) {
1496		if (lblkno < root->b_lblkno ||
1497		    (lblkno == root->b_lblkno &&
1498		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1499			if ((y = root->b_left) == NULL)
1500				break;
1501			if (lblkno < y->b_lblkno) {
1502				/* Rotate right. */
1503				root->b_left = y->b_right;
1504				y->b_right = root;
1505				root = y;
1506				if ((y = root->b_left) == NULL)
1507					break;
1508			}
1509			/* Link into the new root's right tree. */
1510			righttreemin->b_left = root;
1511			righttreemin = root;
1512		} else if (lblkno > root->b_lblkno ||
1513		    (lblkno == root->b_lblkno &&
1514		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1515			if ((y = root->b_right) == NULL)
1516				break;
1517			if (lblkno > y->b_lblkno) {
1518				/* Rotate left. */
1519				root->b_right = y->b_left;
1520				y->b_left = root;
1521				root = y;
1522				if ((y = root->b_right) == NULL)
1523					break;
1524			}
1525			/* Link into the new root's left tree. */
1526			lefttreemax->b_right = root;
1527			lefttreemax = root;
1528		} else {
1529			break;
1530		}
1531		root = y;
1532	}
1533	/* Assemble the new root. */
1534	lefttreemax->b_right = root->b_left;
1535	righttreemin->b_left = root->b_right;
1536	root->b_left = dummy.b_right;
1537	root->b_right = dummy.b_left;
1538	return (root);
1539}
1540
1541static void
1542buf_vlist_remove(struct buf *bp)
1543{
1544	struct buf *root;
1545	struct bufv *bv;
1546
1547	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1548	ASSERT_BO_LOCKED(bp->b_bufobj);
1549	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1550	    (BX_VNDIRTY|BX_VNCLEAN),
1551	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1552	if (bp->b_xflags & BX_VNDIRTY)
1553		bv = &bp->b_bufobj->bo_dirty;
1554	else
1555		bv = &bp->b_bufobj->bo_clean;
1556	if (bp != bv->bv_root) {
1557		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1558		KASSERT(root == bp, ("splay lookup failed in remove"));
1559	}
1560	if (bp->b_left == NULL) {
1561		root = bp->b_right;
1562	} else {
1563		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1564		root->b_right = bp->b_right;
1565	}
1566	bv->bv_root = root;
1567	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1568	bv->bv_cnt--;
1569	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1570}
1571
1572/*
1573 * Add the buffer to the sorted clean or dirty block list using a
1574 * splay tree algorithm.
1575 *
1576 * NOTE: xflags is passed as a constant, optimizing this inline function!
1577 */
1578static void
1579buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1580{
1581	struct buf *root;
1582	struct bufv *bv;
1583
1584	ASSERT_BO_LOCKED(bo);
1585	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1586	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1587	bp->b_xflags |= xflags;
1588	if (xflags & BX_VNDIRTY)
1589		bv = &bo->bo_dirty;
1590	else
1591		bv = &bo->bo_clean;
1592
1593	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1594	if (root == NULL) {
1595		bp->b_left = NULL;
1596		bp->b_right = NULL;
1597		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1598	} else if (bp->b_lblkno < root->b_lblkno ||
1599	    (bp->b_lblkno == root->b_lblkno &&
1600	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1601		bp->b_left = root->b_left;
1602		bp->b_right = root;
1603		root->b_left = NULL;
1604		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1605	} else {
1606		bp->b_right = root->b_right;
1607		bp->b_left = root;
1608		root->b_right = NULL;
1609		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1610	}
1611	bv->bv_cnt++;
1612	bv->bv_root = bp;
1613}
1614
1615/*
1616 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1617 * shadow buffers used in background bitmap writes.
1618 *
1619 * This code isn't quite efficient as it could be because we are maintaining
1620 * two sorted lists and do not know which list the block resides in.
1621 *
1622 * During a "make buildworld" the desired buffer is found at one of
1623 * the roots more than 60% of the time.  Thus, checking both roots
1624 * before performing either splay eliminates unnecessary splays on the
1625 * first tree splayed.
1626 */
1627struct buf *
1628gbincore(struct bufobj *bo, daddr_t lblkno)
1629{
1630	struct buf *bp;
1631
1632	ASSERT_BO_LOCKED(bo);
1633	if ((bp = bo->bo_clean.bv_root) != NULL &&
1634	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1635		return (bp);
1636	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1637	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1638		return (bp);
1639	if ((bp = bo->bo_clean.bv_root) != NULL) {
1640		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1641		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1642			return (bp);
1643	}
1644	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1645		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1646		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1647			return (bp);
1648	}
1649	return (NULL);
1650}
1651
1652/*
1653 * Associate a buffer with a vnode.
1654 */
1655void
1656bgetvp(struct vnode *vp, struct buf *bp)
1657{
1658	struct bufobj *bo;
1659
1660	bo = &vp->v_bufobj;
1661	ASSERT_BO_LOCKED(bo);
1662	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1663
1664	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1665	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1666	    ("bgetvp: bp already attached! %p", bp));
1667
1668	vhold(vp);
1669	bp->b_vp = vp;
1670	bp->b_bufobj = bo;
1671	/*
1672	 * Insert onto list for new vnode.
1673	 */
1674	buf_vlist_add(bp, bo, BX_VNCLEAN);
1675}
1676
1677/*
1678 * Disassociate a buffer from a vnode.
1679 */
1680void
1681brelvp(struct buf *bp)
1682{
1683	struct bufobj *bo;
1684	struct vnode *vp;
1685
1686	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1687	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1688
1689	/*
1690	 * Delete from old vnode list, if on one.
1691	 */
1692	vp = bp->b_vp;		/* XXX */
1693	bo = bp->b_bufobj;
1694	BO_LOCK(bo);
1695	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1696		buf_vlist_remove(bp);
1697	else
1698		panic("brelvp: Buffer %p not on queue.", bp);
1699	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1700		bo->bo_flag &= ~BO_ONWORKLST;
1701		mtx_lock(&sync_mtx);
1702		LIST_REMOVE(bo, bo_synclist);
1703		syncer_worklist_len--;
1704		mtx_unlock(&sync_mtx);
1705	}
1706	bp->b_vp = NULL;
1707	bp->b_bufobj = NULL;
1708	BO_UNLOCK(bo);
1709	vdrop(vp);
1710}
1711
1712/*
1713 * Add an item to the syncer work queue.
1714 */
1715static void
1716vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1717{
1718	int slot;
1719
1720	ASSERT_BO_LOCKED(bo);
1721
1722	mtx_lock(&sync_mtx);
1723	if (bo->bo_flag & BO_ONWORKLST)
1724		LIST_REMOVE(bo, bo_synclist);
1725	else {
1726		bo->bo_flag |= BO_ONWORKLST;
1727		syncer_worklist_len++;
1728	}
1729
1730	if (delay > syncer_maxdelay - 2)
1731		delay = syncer_maxdelay - 2;
1732	slot = (syncer_delayno + delay) & syncer_mask;
1733
1734	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1735	mtx_unlock(&sync_mtx);
1736}
1737
1738static int
1739sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1740{
1741	int error, len;
1742
1743	mtx_lock(&sync_mtx);
1744	len = syncer_worklist_len - sync_vnode_count;
1745	mtx_unlock(&sync_mtx);
1746	error = SYSCTL_OUT(req, &len, sizeof(len));
1747	return (error);
1748}
1749
1750SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1751    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1752
1753static struct proc *updateproc;
1754static void sched_sync(void);
1755static struct kproc_desc up_kp = {
1756	"syncer",
1757	sched_sync,
1758	&updateproc
1759};
1760SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1761
1762static int
1763sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1764{
1765	struct vnode *vp;
1766	struct mount *mp;
1767
1768	*bo = LIST_FIRST(slp);
1769	if (*bo == NULL)
1770		return (0);
1771	vp = (*bo)->__bo_vnode;	/* XXX */
1772	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1773		return (1);
1774	/*
1775	 * We use vhold in case the vnode does not
1776	 * successfully sync.  vhold prevents the vnode from
1777	 * going away when we unlock the sync_mtx so that
1778	 * we can acquire the vnode interlock.
1779	 */
1780	vholdl(vp);
1781	mtx_unlock(&sync_mtx);
1782	VI_UNLOCK(vp);
1783	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1784		vdrop(vp);
1785		mtx_lock(&sync_mtx);
1786		return (*bo == LIST_FIRST(slp));
1787	}
1788	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1789	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1790	VOP_UNLOCK(vp, 0);
1791	vn_finished_write(mp);
1792	BO_LOCK(*bo);
1793	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1794		/*
1795		 * Put us back on the worklist.  The worklist
1796		 * routine will remove us from our current
1797		 * position and then add us back in at a later
1798		 * position.
1799		 */
1800		vn_syncer_add_to_worklist(*bo, syncdelay);
1801	}
1802	BO_UNLOCK(*bo);
1803	vdrop(vp);
1804	mtx_lock(&sync_mtx);
1805	return (0);
1806}
1807
1808/*
1809 * System filesystem synchronizer daemon.
1810 */
1811static void
1812sched_sync(void)
1813{
1814	struct synclist *next, *slp;
1815	struct bufobj *bo;
1816	long starttime;
1817	struct thread *td = curthread;
1818	int last_work_seen;
1819	int net_worklist_len;
1820	int syncer_final_iter;
1821	int first_printf;
1822	int error;
1823
1824	last_work_seen = 0;
1825	syncer_final_iter = 0;
1826	first_printf = 1;
1827	syncer_state = SYNCER_RUNNING;
1828	starttime = time_uptime;
1829	td->td_pflags |= TDP_NORUNNINGBUF;
1830
1831	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1832	    SHUTDOWN_PRI_LAST);
1833
1834	mtx_lock(&sync_mtx);
1835	for (;;) {
1836		if (syncer_state == SYNCER_FINAL_DELAY &&
1837		    syncer_final_iter == 0) {
1838			mtx_unlock(&sync_mtx);
1839			kproc_suspend_check(td->td_proc);
1840			mtx_lock(&sync_mtx);
1841		}
1842		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1843		if (syncer_state != SYNCER_RUNNING &&
1844		    starttime != time_uptime) {
1845			if (first_printf) {
1846				printf("\nSyncing disks, vnodes remaining...");
1847				first_printf = 0;
1848			}
1849			printf("%d ", net_worklist_len);
1850		}
1851		starttime = time_uptime;
1852
1853		/*
1854		 * Push files whose dirty time has expired.  Be careful
1855		 * of interrupt race on slp queue.
1856		 *
1857		 * Skip over empty worklist slots when shutting down.
1858		 */
1859		do {
1860			slp = &syncer_workitem_pending[syncer_delayno];
1861			syncer_delayno += 1;
1862			if (syncer_delayno == syncer_maxdelay)
1863				syncer_delayno = 0;
1864			next = &syncer_workitem_pending[syncer_delayno];
1865			/*
1866			 * If the worklist has wrapped since the
1867			 * it was emptied of all but syncer vnodes,
1868			 * switch to the FINAL_DELAY state and run
1869			 * for one more second.
1870			 */
1871			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1872			    net_worklist_len == 0 &&
1873			    last_work_seen == syncer_delayno) {
1874				syncer_state = SYNCER_FINAL_DELAY;
1875				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1876			}
1877		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1878		    syncer_worklist_len > 0);
1879
1880		/*
1881		 * Keep track of the last time there was anything
1882		 * on the worklist other than syncer vnodes.
1883		 * Return to the SHUTTING_DOWN state if any
1884		 * new work appears.
1885		 */
1886		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1887			last_work_seen = syncer_delayno;
1888		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1889			syncer_state = SYNCER_SHUTTING_DOWN;
1890		while (!LIST_EMPTY(slp)) {
1891			error = sync_vnode(slp, &bo, td);
1892			if (error == 1) {
1893				LIST_REMOVE(bo, bo_synclist);
1894				LIST_INSERT_HEAD(next, bo, bo_synclist);
1895				continue;
1896			}
1897
1898			if (first_printf == 0)
1899				wdog_kern_pat(WD_LASTVAL);
1900
1901		}
1902		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1903			syncer_final_iter--;
1904		/*
1905		 * The variable rushjob allows the kernel to speed up the
1906		 * processing of the filesystem syncer process. A rushjob
1907		 * value of N tells the filesystem syncer to process the next
1908		 * N seconds worth of work on its queue ASAP. Currently rushjob
1909		 * is used by the soft update code to speed up the filesystem
1910		 * syncer process when the incore state is getting so far
1911		 * ahead of the disk that the kernel memory pool is being
1912		 * threatened with exhaustion.
1913		 */
1914		if (rushjob > 0) {
1915			rushjob -= 1;
1916			continue;
1917		}
1918		/*
1919		 * Just sleep for a short period of time between
1920		 * iterations when shutting down to allow some I/O
1921		 * to happen.
1922		 *
1923		 * If it has taken us less than a second to process the
1924		 * current work, then wait. Otherwise start right over
1925		 * again. We can still lose time if any single round
1926		 * takes more than two seconds, but it does not really
1927		 * matter as we are just trying to generally pace the
1928		 * filesystem activity.
1929		 */
1930		if (syncer_state != SYNCER_RUNNING ||
1931		    time_uptime == starttime) {
1932			thread_lock(td);
1933			sched_prio(td, PPAUSE);
1934			thread_unlock(td);
1935		}
1936		if (syncer_state != SYNCER_RUNNING)
1937			cv_timedwait(&sync_wakeup, &sync_mtx,
1938			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1939		else if (time_uptime == starttime)
1940			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
1941	}
1942}
1943
1944/*
1945 * Request the syncer daemon to speed up its work.
1946 * We never push it to speed up more than half of its
1947 * normal turn time, otherwise it could take over the cpu.
1948 */
1949int
1950speedup_syncer(void)
1951{
1952	int ret = 0;
1953
1954	mtx_lock(&sync_mtx);
1955	if (rushjob < syncdelay / 2) {
1956		rushjob += 1;
1957		stat_rush_requests += 1;
1958		ret = 1;
1959	}
1960	mtx_unlock(&sync_mtx);
1961	cv_broadcast(&sync_wakeup);
1962	return (ret);
1963}
1964
1965/*
1966 * Tell the syncer to speed up its work and run though its work
1967 * list several times, then tell it to shut down.
1968 */
1969static void
1970syncer_shutdown(void *arg, int howto)
1971{
1972
1973	if (howto & RB_NOSYNC)
1974		return;
1975	mtx_lock(&sync_mtx);
1976	syncer_state = SYNCER_SHUTTING_DOWN;
1977	rushjob = 0;
1978	mtx_unlock(&sync_mtx);
1979	cv_broadcast(&sync_wakeup);
1980	kproc_shutdown(arg, howto);
1981}
1982
1983/*
1984 * Reassign a buffer from one vnode to another.
1985 * Used to assign file specific control information
1986 * (indirect blocks) to the vnode to which they belong.
1987 */
1988void
1989reassignbuf(struct buf *bp)
1990{
1991	struct vnode *vp;
1992	struct bufobj *bo;
1993	int delay;
1994#ifdef INVARIANTS
1995	struct bufv *bv;
1996#endif
1997
1998	vp = bp->b_vp;
1999	bo = bp->b_bufobj;
2000	++reassignbufcalls;
2001
2002	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2003	    bp, bp->b_vp, bp->b_flags);
2004	/*
2005	 * B_PAGING flagged buffers cannot be reassigned because their vp
2006	 * is not fully linked in.
2007	 */
2008	if (bp->b_flags & B_PAGING)
2009		panic("cannot reassign paging buffer");
2010
2011	/*
2012	 * Delete from old vnode list, if on one.
2013	 */
2014	BO_LOCK(bo);
2015	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2016		buf_vlist_remove(bp);
2017	else
2018		panic("reassignbuf: Buffer %p not on queue.", bp);
2019	/*
2020	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2021	 * of clean buffers.
2022	 */
2023	if (bp->b_flags & B_DELWRI) {
2024		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2025			switch (vp->v_type) {
2026			case VDIR:
2027				delay = dirdelay;
2028				break;
2029			case VCHR:
2030				delay = metadelay;
2031				break;
2032			default:
2033				delay = filedelay;
2034			}
2035			vn_syncer_add_to_worklist(bo, delay);
2036		}
2037		buf_vlist_add(bp, bo, BX_VNDIRTY);
2038	} else {
2039		buf_vlist_add(bp, bo, BX_VNCLEAN);
2040
2041		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2042			mtx_lock(&sync_mtx);
2043			LIST_REMOVE(bo, bo_synclist);
2044			syncer_worklist_len--;
2045			mtx_unlock(&sync_mtx);
2046			bo->bo_flag &= ~BO_ONWORKLST;
2047		}
2048	}
2049#ifdef INVARIANTS
2050	bv = &bo->bo_clean;
2051	bp = TAILQ_FIRST(&bv->bv_hd);
2052	KASSERT(bp == NULL || bp->b_bufobj == bo,
2053	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2054	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2055	KASSERT(bp == NULL || bp->b_bufobj == bo,
2056	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2057	bv = &bo->bo_dirty;
2058	bp = TAILQ_FIRST(&bv->bv_hd);
2059	KASSERT(bp == NULL || bp->b_bufobj == bo,
2060	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2061	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2062	KASSERT(bp == NULL || bp->b_bufobj == bo,
2063	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2064#endif
2065	BO_UNLOCK(bo);
2066}
2067
2068/*
2069 * Increment the use and hold counts on the vnode, taking care to reference
2070 * the driver's usecount if this is a chardev.  The vholdl() will remove
2071 * the vnode from the free list if it is presently free.  Requires the
2072 * vnode interlock and returns with it held.
2073 */
2074static void
2075v_incr_usecount(struct vnode *vp)
2076{
2077
2078	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2079	vp->v_usecount++;
2080	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2081		dev_lock();
2082		vp->v_rdev->si_usecount++;
2083		dev_unlock();
2084	}
2085	vholdl(vp);
2086}
2087
2088/*
2089 * Turn a holdcnt into a use+holdcnt such that only one call to
2090 * v_decr_usecount is needed.
2091 */
2092static void
2093v_upgrade_usecount(struct vnode *vp)
2094{
2095
2096	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2097	vp->v_usecount++;
2098	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2099		dev_lock();
2100		vp->v_rdev->si_usecount++;
2101		dev_unlock();
2102	}
2103}
2104
2105/*
2106 * Decrement the vnode use and hold count along with the driver's usecount
2107 * if this is a chardev.  The vdropl() below releases the vnode interlock
2108 * as it may free the vnode.
2109 */
2110static void
2111v_decr_usecount(struct vnode *vp)
2112{
2113
2114	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2115	VNASSERT(vp->v_usecount > 0, vp,
2116	    ("v_decr_usecount: negative usecount"));
2117	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2118	vp->v_usecount--;
2119	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2120		dev_lock();
2121		vp->v_rdev->si_usecount--;
2122		dev_unlock();
2123	}
2124	vdropl(vp);
2125}
2126
2127/*
2128 * Decrement only the use count and driver use count.  This is intended to
2129 * be paired with a follow on vdropl() to release the remaining hold count.
2130 * In this way we may vgone() a vnode with a 0 usecount without risk of
2131 * having it end up on a free list because the hold count is kept above 0.
2132 */
2133static void
2134v_decr_useonly(struct vnode *vp)
2135{
2136
2137	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2138	VNASSERT(vp->v_usecount > 0, vp,
2139	    ("v_decr_useonly: negative usecount"));
2140	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2141	vp->v_usecount--;
2142	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2143		dev_lock();
2144		vp->v_rdev->si_usecount--;
2145		dev_unlock();
2146	}
2147}
2148
2149/*
2150 * Grab a particular vnode from the free list, increment its
2151 * reference count and lock it.  VI_DOOMED is set if the vnode
2152 * is being destroyed.  Only callers who specify LK_RETRY will
2153 * see doomed vnodes.  If inactive processing was delayed in
2154 * vput try to do it here.
2155 */
2156int
2157vget(struct vnode *vp, int flags, struct thread *td)
2158{
2159	int error;
2160
2161	error = 0;
2162	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2163	    ("vget: invalid lock operation"));
2164	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2165
2166	if ((flags & LK_INTERLOCK) == 0)
2167		VI_LOCK(vp);
2168	vholdl(vp);
2169	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2170		vdrop(vp);
2171		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2172		    vp);
2173		return (error);
2174	}
2175	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2176		panic("vget: vn_lock failed to return ENOENT\n");
2177	VI_LOCK(vp);
2178	/* Upgrade our holdcnt to a usecount. */
2179	v_upgrade_usecount(vp);
2180	/*
2181	 * We don't guarantee that any particular close will
2182	 * trigger inactive processing so just make a best effort
2183	 * here at preventing a reference to a removed file.  If
2184	 * we don't succeed no harm is done.
2185	 */
2186	if (vp->v_iflag & VI_OWEINACT) {
2187		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2188		    (flags & LK_NOWAIT) == 0)
2189			vinactive(vp, td);
2190		vp->v_iflag &= ~VI_OWEINACT;
2191	}
2192	VI_UNLOCK(vp);
2193	return (0);
2194}
2195
2196/*
2197 * Increase the reference count of a vnode.
2198 */
2199void
2200vref(struct vnode *vp)
2201{
2202
2203	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2204	VI_LOCK(vp);
2205	v_incr_usecount(vp);
2206	VI_UNLOCK(vp);
2207}
2208
2209/*
2210 * Return reference count of a vnode.
2211 *
2212 * The results of this call are only guaranteed when some mechanism other
2213 * than the VI lock is used to stop other processes from gaining references
2214 * to the vnode.  This may be the case if the caller holds the only reference.
2215 * This is also useful when stale data is acceptable as race conditions may
2216 * be accounted for by some other means.
2217 */
2218int
2219vrefcnt(struct vnode *vp)
2220{
2221	int usecnt;
2222
2223	VI_LOCK(vp);
2224	usecnt = vp->v_usecount;
2225	VI_UNLOCK(vp);
2226
2227	return (usecnt);
2228}
2229
2230#define	VPUTX_VRELE	1
2231#define	VPUTX_VPUT	2
2232#define	VPUTX_VUNREF	3
2233
2234static void
2235vputx(struct vnode *vp, int func)
2236{
2237	int error;
2238
2239	KASSERT(vp != NULL, ("vputx: null vp"));
2240	if (func == VPUTX_VUNREF)
2241		ASSERT_VOP_LOCKED(vp, "vunref");
2242	else if (func == VPUTX_VPUT)
2243		ASSERT_VOP_LOCKED(vp, "vput");
2244	else
2245		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2246	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2247	VI_LOCK(vp);
2248
2249	/* Skip this v_writecount check if we're going to panic below. */
2250	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2251	    ("vputx: missed vn_close"));
2252	error = 0;
2253
2254	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2255	    vp->v_usecount == 1)) {
2256		if (func == VPUTX_VPUT)
2257			VOP_UNLOCK(vp, 0);
2258		v_decr_usecount(vp);
2259		return;
2260	}
2261
2262	if (vp->v_usecount != 1) {
2263		vprint("vputx: negative ref count", vp);
2264		panic("vputx: negative ref cnt");
2265	}
2266	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2267	/*
2268	 * We want to hold the vnode until the inactive finishes to
2269	 * prevent vgone() races.  We drop the use count here and the
2270	 * hold count below when we're done.
2271	 */
2272	v_decr_useonly(vp);
2273	/*
2274	 * We must call VOP_INACTIVE with the node locked. Mark
2275	 * as VI_DOINGINACT to avoid recursion.
2276	 */
2277	vp->v_iflag |= VI_OWEINACT;
2278	switch (func) {
2279	case VPUTX_VRELE:
2280		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2281		VI_LOCK(vp);
2282		break;
2283	case VPUTX_VPUT:
2284		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2285			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
2286			    LK_NOWAIT);
2287			VI_LOCK(vp);
2288		}
2289		break;
2290	case VPUTX_VUNREF:
2291		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
2292			error = EBUSY;
2293		break;
2294	}
2295	if (vp->v_usecount > 0)
2296		vp->v_iflag &= ~VI_OWEINACT;
2297	if (error == 0) {
2298		if (vp->v_iflag & VI_OWEINACT)
2299			vinactive(vp, curthread);
2300		if (func != VPUTX_VUNREF)
2301			VOP_UNLOCK(vp, 0);
2302	}
2303	vdropl(vp);
2304}
2305
2306/*
2307 * Vnode put/release.
2308 * If count drops to zero, call inactive routine and return to freelist.
2309 */
2310void
2311vrele(struct vnode *vp)
2312{
2313
2314	vputx(vp, VPUTX_VRELE);
2315}
2316
2317/*
2318 * Release an already locked vnode.  This give the same effects as
2319 * unlock+vrele(), but takes less time and avoids releasing and
2320 * re-aquiring the lock (as vrele() acquires the lock internally.)
2321 */
2322void
2323vput(struct vnode *vp)
2324{
2325
2326	vputx(vp, VPUTX_VPUT);
2327}
2328
2329/*
2330 * Release an exclusively locked vnode. Do not unlock the vnode lock.
2331 */
2332void
2333vunref(struct vnode *vp)
2334{
2335
2336	vputx(vp, VPUTX_VUNREF);
2337}
2338
2339/*
2340 * Somebody doesn't want the vnode recycled.
2341 */
2342void
2343vhold(struct vnode *vp)
2344{
2345
2346	VI_LOCK(vp);
2347	vholdl(vp);
2348	VI_UNLOCK(vp);
2349}
2350
2351/*
2352 * Increase the hold count and activate if this is the first reference.
2353 */
2354void
2355vholdl(struct vnode *vp)
2356{
2357	struct mount *mp;
2358
2359	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2360	vp->v_holdcnt++;
2361	if (!VSHOULDBUSY(vp))
2362		return;
2363	ASSERT_VI_LOCKED(vp, "vholdl");
2364	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
2365	VNASSERT(vp->v_op != NULL, vp, ("vholdl: vnode already reclaimed."));
2366	/*
2367	 * Remove a vnode from the free list, mark it as in use,
2368	 * and put it on the active list.
2369	 */
2370	mtx_lock(&vnode_free_list_mtx);
2371	TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
2372	freevnodes--;
2373	vp->v_iflag &= ~(VI_FREE|VI_AGE);
2374	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
2375	    ("Activating already active vnode"));
2376	vp->v_iflag |= VI_ACTIVE;
2377	mp = vp->v_mount;
2378	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
2379	mp->mnt_activevnodelistsize++;
2380	mtx_unlock(&vnode_free_list_mtx);
2381}
2382
2383/*
2384 * Note that there is one less who cares about this vnode.
2385 * vdrop() is the opposite of vhold().
2386 */
2387void
2388vdrop(struct vnode *vp)
2389{
2390
2391	VI_LOCK(vp);
2392	vdropl(vp);
2393}
2394
2395/*
2396 * Drop the hold count of the vnode.  If this is the last reference to
2397 * the vnode we place it on the free list unless it has been vgone'd
2398 * (marked VI_DOOMED) in which case we will free it.
2399 */
2400void
2401vdropl(struct vnode *vp)
2402{
2403	struct bufobj *bo;
2404	struct mount *mp;
2405	int active;
2406
2407	ASSERT_VI_LOCKED(vp, "vdropl");
2408	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2409	if (vp->v_holdcnt <= 0)
2410		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2411	vp->v_holdcnt--;
2412	if (vp->v_holdcnt > 0) {
2413		VI_UNLOCK(vp);
2414		return;
2415	}
2416	if ((vp->v_iflag & VI_DOOMED) == 0) {
2417		/*
2418		 * Mark a vnode as free: remove it from its active list
2419		 * and put it up for recycling on the freelist.
2420		 */
2421		VNASSERT(vp->v_op != NULL, vp,
2422		    ("vdropl: vnode already reclaimed."));
2423		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2424		    ("vnode already free"));
2425		VNASSERT(VSHOULDFREE(vp), vp,
2426		    ("vdropl: freeing when we shouldn't"));
2427		active = vp->v_iflag & VI_ACTIVE;
2428		vp->v_iflag &= ~VI_ACTIVE;
2429		mp = vp->v_mount;
2430		mtx_lock(&vnode_free_list_mtx);
2431		if (active) {
2432			TAILQ_REMOVE(&mp->mnt_activevnodelist, vp,
2433			    v_actfreelist);
2434			mp->mnt_activevnodelistsize--;
2435		}
2436		if (vp->v_iflag & VI_AGE) {
2437			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_actfreelist);
2438		} else {
2439			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
2440		}
2441		freevnodes++;
2442		vp->v_iflag &= ~VI_AGE;
2443		vp->v_iflag |= VI_FREE;
2444		mtx_unlock(&vnode_free_list_mtx);
2445		VI_UNLOCK(vp);
2446		return;
2447	}
2448	/*
2449	 * The vnode has been marked for destruction, so free it.
2450	 */
2451	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2452	mtx_lock(&vnode_free_list_mtx);
2453	numvnodes--;
2454	mtx_unlock(&vnode_free_list_mtx);
2455	bo = &vp->v_bufobj;
2456	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2457	    ("cleaned vnode still on the free list."));
2458	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2459	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
2460	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2461	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2462	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2463	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2464	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
2465	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2466	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
2467	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
2468	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
2469	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
2470	VI_UNLOCK(vp);
2471#ifdef MAC
2472	mac_vnode_destroy(vp);
2473#endif
2474	if (vp->v_pollinfo != NULL)
2475		destroy_vpollinfo(vp->v_pollinfo);
2476#ifdef INVARIANTS
2477	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
2478	vp->v_op = NULL;
2479#endif
2480	rangelock_destroy(&vp->v_rl);
2481	lockdestroy(vp->v_vnlock);
2482	mtx_destroy(&vp->v_interlock);
2483	mtx_destroy(BO_MTX(bo));
2484	uma_zfree(vnode_zone, vp);
2485}
2486
2487/*
2488 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2489 * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2490 * OWEINACT tracks whether a vnode missed a call to inactive due to a
2491 * failed lock upgrade.
2492 */
2493void
2494vinactive(struct vnode *vp, struct thread *td)
2495{
2496	struct vm_object *obj;
2497
2498	ASSERT_VOP_ELOCKED(vp, "vinactive");
2499	ASSERT_VI_LOCKED(vp, "vinactive");
2500	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2501	    ("vinactive: recursed on VI_DOINGINACT"));
2502	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2503	vp->v_iflag |= VI_DOINGINACT;
2504	vp->v_iflag &= ~VI_OWEINACT;
2505	VI_UNLOCK(vp);
2506	/*
2507	 * Before moving off the active list, we must be sure that any
2508	 * modified pages are on the vnode's dirty list since these will
2509	 * no longer be checked once the vnode is on the inactive list.
2510	 */
2511	obj = vp->v_object;
2512	if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0) {
2513		VM_OBJECT_LOCK(obj);
2514		vm_object_page_clean(obj, 0, 0, OBJPC_NOSYNC);
2515		VM_OBJECT_UNLOCK(obj);
2516	}
2517	VOP_INACTIVE(vp, td);
2518	VI_LOCK(vp);
2519	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2520	    ("vinactive: lost VI_DOINGINACT"));
2521	vp->v_iflag &= ~VI_DOINGINACT;
2522}
2523
2524/*
2525 * Remove any vnodes in the vnode table belonging to mount point mp.
2526 *
2527 * If FORCECLOSE is not specified, there should not be any active ones,
2528 * return error if any are found (nb: this is a user error, not a
2529 * system error). If FORCECLOSE is specified, detach any active vnodes
2530 * that are found.
2531 *
2532 * If WRITECLOSE is set, only flush out regular file vnodes open for
2533 * writing.
2534 *
2535 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2536 *
2537 * `rootrefs' specifies the base reference count for the root vnode
2538 * of this filesystem. The root vnode is considered busy if its
2539 * v_usecount exceeds this value. On a successful return, vflush(, td)
2540 * will call vrele() on the root vnode exactly rootrefs times.
2541 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2542 * be zero.
2543 */
2544#ifdef DIAGNOSTIC
2545static int busyprt = 0;		/* print out busy vnodes */
2546SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
2547#endif
2548
2549int
2550vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
2551{
2552	struct vnode *vp, *mvp, *rootvp = NULL;
2553	struct vattr vattr;
2554	int busy = 0, error;
2555
2556	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
2557	    rootrefs, flags);
2558	if (rootrefs > 0) {
2559		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2560		    ("vflush: bad args"));
2561		/*
2562		 * Get the filesystem root vnode. We can vput() it
2563		 * immediately, since with rootrefs > 0, it won't go away.
2564		 */
2565		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
2566			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
2567			    __func__, error);
2568			return (error);
2569		}
2570		vput(rootvp);
2571	}
2572loop:
2573	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
2574		vholdl(vp);
2575		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2576		if (error) {
2577			vdrop(vp);
2578			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2579			goto loop;
2580		}
2581		/*
2582		 * Skip over a vnodes marked VV_SYSTEM.
2583		 */
2584		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2585			VOP_UNLOCK(vp, 0);
2586			vdrop(vp);
2587			continue;
2588		}
2589		/*
2590		 * If WRITECLOSE is set, flush out unlinked but still open
2591		 * files (even if open only for reading) and regular file
2592		 * vnodes open for writing.
2593		 */
2594		if (flags & WRITECLOSE) {
2595			if (vp->v_object != NULL) {
2596				VM_OBJECT_LOCK(vp->v_object);
2597				vm_object_page_clean(vp->v_object, 0, 0, 0);
2598				VM_OBJECT_UNLOCK(vp->v_object);
2599			}
2600			error = VOP_FSYNC(vp, MNT_WAIT, td);
2601			if (error != 0) {
2602				VOP_UNLOCK(vp, 0);
2603				vdrop(vp);
2604				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2605				return (error);
2606			}
2607			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2608			VI_LOCK(vp);
2609
2610			if ((vp->v_type == VNON ||
2611			    (error == 0 && vattr.va_nlink > 0)) &&
2612			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2613				VOP_UNLOCK(vp, 0);
2614				vdropl(vp);
2615				continue;
2616			}
2617		} else
2618			VI_LOCK(vp);
2619		/*
2620		 * With v_usecount == 0, all we need to do is clear out the
2621		 * vnode data structures and we are done.
2622		 *
2623		 * If FORCECLOSE is set, forcibly close the vnode.
2624		 */
2625		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2626			VNASSERT(vp->v_usecount == 0 ||
2627			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2628			    ("device VNODE %p is FORCECLOSED", vp));
2629			vgonel(vp);
2630		} else {
2631			busy++;
2632#ifdef DIAGNOSTIC
2633			if (busyprt)
2634				vprint("vflush: busy vnode", vp);
2635#endif
2636		}
2637		VOP_UNLOCK(vp, 0);
2638		vdropl(vp);
2639	}
2640	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2641		/*
2642		 * If just the root vnode is busy, and if its refcount
2643		 * is equal to `rootrefs', then go ahead and kill it.
2644		 */
2645		VI_LOCK(rootvp);
2646		KASSERT(busy > 0, ("vflush: not busy"));
2647		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2648		    ("vflush: usecount %d < rootrefs %d",
2649		     rootvp->v_usecount, rootrefs));
2650		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2651			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2652			vgone(rootvp);
2653			VOP_UNLOCK(rootvp, 0);
2654			busy = 0;
2655		} else
2656			VI_UNLOCK(rootvp);
2657	}
2658	if (busy) {
2659		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
2660		    busy);
2661		return (EBUSY);
2662	}
2663	for (; rootrefs > 0; rootrefs--)
2664		vrele(rootvp);
2665	return (0);
2666}
2667
2668/*
2669 * Recycle an unused vnode to the front of the free list.
2670 */
2671int
2672vrecycle(struct vnode *vp)
2673{
2674	int recycled;
2675
2676	ASSERT_VOP_ELOCKED(vp, "vrecycle");
2677	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2678	recycled = 0;
2679	VI_LOCK(vp);
2680	if (vp->v_usecount == 0) {
2681		recycled = 1;
2682		vgonel(vp);
2683	}
2684	VI_UNLOCK(vp);
2685	return (recycled);
2686}
2687
2688/*
2689 * Eliminate all activity associated with a vnode
2690 * in preparation for reuse.
2691 */
2692void
2693vgone(struct vnode *vp)
2694{
2695	VI_LOCK(vp);
2696	vgonel(vp);
2697	VI_UNLOCK(vp);
2698}
2699
2700static void
2701vgonel_reclaim_lowervp_vfs(struct mount *mp __unused,
2702    struct vnode *lowervp __unused)
2703{
2704}
2705
2706/*
2707 * Notify upper mounts about reclaimed vnode.
2708 */
2709static void
2710vgonel_reclaim_lowervp(struct vnode *vp)
2711{
2712	static struct vfsops vgonel_vfsops = {
2713		.vfs_reclaim_lowervp = vgonel_reclaim_lowervp_vfs
2714	};
2715	struct mount *mp, *ump, *mmp;
2716
2717	mp = vp->v_mount;
2718	if (mp == NULL)
2719		return;
2720
2721	MNT_ILOCK(mp);
2722	if (TAILQ_EMPTY(&mp->mnt_uppers))
2723		goto unlock;
2724	MNT_IUNLOCK(mp);
2725	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
2726	mmp->mnt_op = &vgonel_vfsops;
2727	mmp->mnt_kern_flag |= MNTK_MARKER;
2728	MNT_ILOCK(mp);
2729	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
2730	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
2731		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
2732			ump = TAILQ_NEXT(ump, mnt_upper_link);
2733			continue;
2734		}
2735		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
2736		MNT_IUNLOCK(mp);
2737		VFS_RECLAIM_LOWERVP(ump, vp);
2738		MNT_ILOCK(mp);
2739		ump = TAILQ_NEXT(mmp, mnt_upper_link);
2740		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
2741	}
2742	free(mmp, M_TEMP);
2743	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
2744	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
2745		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
2746		wakeup(&mp->mnt_uppers);
2747	}
2748unlock:
2749	MNT_IUNLOCK(mp);
2750}
2751
2752/*
2753 * vgone, with the vp interlock held.
2754 */
2755void
2756vgonel(struct vnode *vp)
2757{
2758	struct thread *td;
2759	int oweinact;
2760	int active;
2761	struct mount *mp;
2762
2763	ASSERT_VOP_ELOCKED(vp, "vgonel");
2764	ASSERT_VI_LOCKED(vp, "vgonel");
2765	VNASSERT(vp->v_holdcnt, vp,
2766	    ("vgonel: vp %p has no reference.", vp));
2767	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2768	td = curthread;
2769
2770	/*
2771	 * Don't vgonel if we're already doomed.
2772	 */
2773	if (vp->v_iflag & VI_DOOMED)
2774		return;
2775	vp->v_iflag |= VI_DOOMED;
2776
2777	/*
2778	 * Check to see if the vnode is in use.  If so, we have to call
2779	 * VOP_CLOSE() and VOP_INACTIVE().
2780	 */
2781	active = vp->v_usecount;
2782	oweinact = (vp->v_iflag & VI_OWEINACT);
2783	VI_UNLOCK(vp);
2784	vgonel_reclaim_lowervp(vp);
2785
2786	/*
2787	 * Clean out any buffers associated with the vnode.
2788	 * If the flush fails, just toss the buffers.
2789	 */
2790	mp = NULL;
2791	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2792		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2793	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0)
2794		vinvalbuf(vp, 0, 0, 0);
2795
2796	/*
2797	 * If purging an active vnode, it must be closed and
2798	 * deactivated before being reclaimed.
2799	 */
2800	if (active)
2801		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2802	if (oweinact || active) {
2803		VI_LOCK(vp);
2804		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2805			vinactive(vp, td);
2806		VI_UNLOCK(vp);
2807	}
2808	if (vp->v_type == VSOCK)
2809		vfs_unp_reclaim(vp);
2810	/*
2811	 * Reclaim the vnode.
2812	 */
2813	if (VOP_RECLAIM(vp, td))
2814		panic("vgone: cannot reclaim");
2815	if (mp != NULL)
2816		vn_finished_secondary_write(mp);
2817	VNASSERT(vp->v_object == NULL, vp,
2818	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2819	/*
2820	 * Clear the advisory locks and wake up waiting threads.
2821	 */
2822	(void)VOP_ADVLOCKPURGE(vp);
2823	/*
2824	 * Delete from old mount point vnode list.
2825	 */
2826	delmntque(vp);
2827	cache_purge(vp);
2828	/*
2829	 * Done with purge, reset to the standard lock and invalidate
2830	 * the vnode.
2831	 */
2832	VI_LOCK(vp);
2833	vp->v_vnlock = &vp->v_lock;
2834	vp->v_op = &dead_vnodeops;
2835	vp->v_tag = "none";
2836	vp->v_type = VBAD;
2837}
2838
2839/*
2840 * Calculate the total number of references to a special device.
2841 */
2842int
2843vcount(struct vnode *vp)
2844{
2845	int count;
2846
2847	dev_lock();
2848	count = vp->v_rdev->si_usecount;
2849	dev_unlock();
2850	return (count);
2851}
2852
2853/*
2854 * Same as above, but using the struct cdev *as argument
2855 */
2856int
2857count_dev(struct cdev *dev)
2858{
2859	int count;
2860
2861	dev_lock();
2862	count = dev->si_usecount;
2863	dev_unlock();
2864	return(count);
2865}
2866
2867/*
2868 * Print out a description of a vnode.
2869 */
2870static char *typename[] =
2871{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2872 "VMARKER"};
2873
2874void
2875vn_printf(struct vnode *vp, const char *fmt, ...)
2876{
2877	va_list ap;
2878	char buf[256], buf2[16];
2879	u_long flags;
2880
2881	va_start(ap, fmt);
2882	vprintf(fmt, ap);
2883	va_end(ap);
2884	printf("%p: ", (void *)vp);
2885	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2886	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2887	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2888	buf[0] = '\0';
2889	buf[1] = '\0';
2890	if (vp->v_vflag & VV_ROOT)
2891		strlcat(buf, "|VV_ROOT", sizeof(buf));
2892	if (vp->v_vflag & VV_ISTTY)
2893		strlcat(buf, "|VV_ISTTY", sizeof(buf));
2894	if (vp->v_vflag & VV_NOSYNC)
2895		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2896	if (vp->v_vflag & VV_CACHEDLABEL)
2897		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2898	if (vp->v_vflag & VV_TEXT)
2899		strlcat(buf, "|VV_TEXT", sizeof(buf));
2900	if (vp->v_vflag & VV_COPYONWRITE)
2901		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2902	if (vp->v_vflag & VV_SYSTEM)
2903		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2904	if (vp->v_vflag & VV_PROCDEP)
2905		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2906	if (vp->v_vflag & VV_NOKNOTE)
2907		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2908	if (vp->v_vflag & VV_DELETED)
2909		strlcat(buf, "|VV_DELETED", sizeof(buf));
2910	if (vp->v_vflag & VV_MD)
2911		strlcat(buf, "|VV_MD", sizeof(buf));
2912	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC |
2913	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2914	    VV_NOKNOTE | VV_DELETED | VV_MD);
2915	if (flags != 0) {
2916		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2917		strlcat(buf, buf2, sizeof(buf));
2918	}
2919	if (vp->v_iflag & VI_MOUNT)
2920		strlcat(buf, "|VI_MOUNT", sizeof(buf));
2921	if (vp->v_iflag & VI_AGE)
2922		strlcat(buf, "|VI_AGE", sizeof(buf));
2923	if (vp->v_iflag & VI_DOOMED)
2924		strlcat(buf, "|VI_DOOMED", sizeof(buf));
2925	if (vp->v_iflag & VI_FREE)
2926		strlcat(buf, "|VI_FREE", sizeof(buf));
2927	if (vp->v_iflag & VI_DOINGINACT)
2928		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2929	if (vp->v_iflag & VI_OWEINACT)
2930		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2931	flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2932	    VI_DOINGINACT | VI_OWEINACT);
2933	if (flags != 0) {
2934		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2935		strlcat(buf, buf2, sizeof(buf));
2936	}
2937	printf("    flags (%s)\n", buf + 1);
2938	if (mtx_owned(VI_MTX(vp)))
2939		printf(" VI_LOCKed");
2940	if (vp->v_object != NULL)
2941		printf("    v_object %p ref %d pages %d\n",
2942		    vp->v_object, vp->v_object->ref_count,
2943		    vp->v_object->resident_page_count);
2944	printf("    ");
2945	lockmgr_printinfo(vp->v_vnlock);
2946	if (vp->v_data != NULL)
2947		VOP_PRINT(vp);
2948}
2949
2950#ifdef DDB
2951/*
2952 * List all of the locked vnodes in the system.
2953 * Called when debugging the kernel.
2954 */
2955DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2956{
2957	struct mount *mp, *nmp;
2958	struct vnode *vp;
2959
2960	/*
2961	 * Note: because this is DDB, we can't obey the locking semantics
2962	 * for these structures, which means we could catch an inconsistent
2963	 * state and dereference a nasty pointer.  Not much to be done
2964	 * about that.
2965	 */
2966	db_printf("Locked vnodes\n");
2967	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2968		nmp = TAILQ_NEXT(mp, mnt_list);
2969		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2970			if (vp->v_type != VMARKER &&
2971			    VOP_ISLOCKED(vp))
2972				vprint("", vp);
2973		}
2974		nmp = TAILQ_NEXT(mp, mnt_list);
2975	}
2976}
2977
2978/*
2979 * Show details about the given vnode.
2980 */
2981DB_SHOW_COMMAND(vnode, db_show_vnode)
2982{
2983	struct vnode *vp;
2984
2985	if (!have_addr)
2986		return;
2987	vp = (struct vnode *)addr;
2988	vn_printf(vp, "vnode ");
2989}
2990
2991/*
2992 * Show details about the given mount point.
2993 */
2994DB_SHOW_COMMAND(mount, db_show_mount)
2995{
2996	struct mount *mp;
2997	struct vfsopt *opt;
2998	struct statfs *sp;
2999	struct vnode *vp;
3000	char buf[512];
3001	uint64_t mflags;
3002	u_int flags;
3003
3004	if (!have_addr) {
3005		/* No address given, print short info about all mount points. */
3006		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3007			db_printf("%p %s on %s (%s)\n", mp,
3008			    mp->mnt_stat.f_mntfromname,
3009			    mp->mnt_stat.f_mntonname,
3010			    mp->mnt_stat.f_fstypename);
3011			if (db_pager_quit)
3012				break;
3013		}
3014		db_printf("\nMore info: show mount <addr>\n");
3015		return;
3016	}
3017
3018	mp = (struct mount *)addr;
3019	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
3020	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
3021
3022	buf[0] = '\0';
3023	mflags = mp->mnt_flag;
3024#define	MNT_FLAG(flag)	do {						\
3025	if (mflags & (flag)) {						\
3026		if (buf[0] != '\0')					\
3027			strlcat(buf, ", ", sizeof(buf));		\
3028		strlcat(buf, (#flag) + 4, sizeof(buf));			\
3029		mflags &= ~(flag);					\
3030	}								\
3031} while (0)
3032	MNT_FLAG(MNT_RDONLY);
3033	MNT_FLAG(MNT_SYNCHRONOUS);
3034	MNT_FLAG(MNT_NOEXEC);
3035	MNT_FLAG(MNT_NOSUID);
3036	MNT_FLAG(MNT_NFS4ACLS);
3037	MNT_FLAG(MNT_UNION);
3038	MNT_FLAG(MNT_ASYNC);
3039	MNT_FLAG(MNT_SUIDDIR);
3040	MNT_FLAG(MNT_SOFTDEP);
3041	MNT_FLAG(MNT_NOSYMFOLLOW);
3042	MNT_FLAG(MNT_GJOURNAL);
3043	MNT_FLAG(MNT_MULTILABEL);
3044	MNT_FLAG(MNT_ACLS);
3045	MNT_FLAG(MNT_NOATIME);
3046	MNT_FLAG(MNT_NOCLUSTERR);
3047	MNT_FLAG(MNT_NOCLUSTERW);
3048	MNT_FLAG(MNT_SUJ);
3049	MNT_FLAG(MNT_EXRDONLY);
3050	MNT_FLAG(MNT_EXPORTED);
3051	MNT_FLAG(MNT_DEFEXPORTED);
3052	MNT_FLAG(MNT_EXPORTANON);
3053	MNT_FLAG(MNT_EXKERB);
3054	MNT_FLAG(MNT_EXPUBLIC);
3055	MNT_FLAG(MNT_LOCAL);
3056	MNT_FLAG(MNT_QUOTA);
3057	MNT_FLAG(MNT_ROOTFS);
3058	MNT_FLAG(MNT_USER);
3059	MNT_FLAG(MNT_IGNORE);
3060	MNT_FLAG(MNT_UPDATE);
3061	MNT_FLAG(MNT_DELEXPORT);
3062	MNT_FLAG(MNT_RELOAD);
3063	MNT_FLAG(MNT_FORCE);
3064	MNT_FLAG(MNT_SNAPSHOT);
3065	MNT_FLAG(MNT_BYFSID);
3066#undef MNT_FLAG
3067	if (mflags != 0) {
3068		if (buf[0] != '\0')
3069			strlcat(buf, ", ", sizeof(buf));
3070		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3071		    "0x%016jx", mflags);
3072	}
3073	db_printf("    mnt_flag = %s\n", buf);
3074
3075	buf[0] = '\0';
3076	flags = mp->mnt_kern_flag;
3077#define	MNT_KERN_FLAG(flag)	do {					\
3078	if (flags & (flag)) {						\
3079		if (buf[0] != '\0')					\
3080			strlcat(buf, ", ", sizeof(buf));		\
3081		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3082		flags &= ~(flag);					\
3083	}								\
3084} while (0)
3085	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3086	MNT_KERN_FLAG(MNTK_ASYNC);
3087	MNT_KERN_FLAG(MNTK_SOFTDEP);
3088	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
3089	MNT_KERN_FLAG(MNTK_DRAINING);
3090	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3091	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3092	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3093	MNT_KERN_FLAG(MNTK_NOASYNC);
3094	MNT_KERN_FLAG(MNTK_UNMOUNT);
3095	MNT_KERN_FLAG(MNTK_MWAIT);
3096	MNT_KERN_FLAG(MNTK_SUSPEND);
3097	MNT_KERN_FLAG(MNTK_SUSPEND2);
3098	MNT_KERN_FLAG(MNTK_SUSPENDED);
3099	MNT_KERN_FLAG(MNTK_MPSAFE);
3100	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
3101	MNT_KERN_FLAG(MNTK_NOKNOTE);
3102#undef MNT_KERN_FLAG
3103	if (flags != 0) {
3104		if (buf[0] != '\0')
3105			strlcat(buf, ", ", sizeof(buf));
3106		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3107		    "0x%08x", flags);
3108	}
3109	db_printf("    mnt_kern_flag = %s\n", buf);
3110
3111	db_printf("    mnt_opt = ");
3112	opt = TAILQ_FIRST(mp->mnt_opt);
3113	if (opt != NULL) {
3114		db_printf("%s", opt->name);
3115		opt = TAILQ_NEXT(opt, link);
3116		while (opt != NULL) {
3117			db_printf(", %s", opt->name);
3118			opt = TAILQ_NEXT(opt, link);
3119		}
3120	}
3121	db_printf("\n");
3122
3123	sp = &mp->mnt_stat;
3124	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
3125	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
3126	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
3127	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
3128	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
3129	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
3130	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
3131	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
3132	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
3133	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
3134	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
3135	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
3136
3137	db_printf("    mnt_cred = { uid=%u ruid=%u",
3138	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
3139	if (jailed(mp->mnt_cred))
3140		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
3141	db_printf(" }\n");
3142	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
3143	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
3144	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
3145	db_printf("    mnt_activevnodelistsize = %d\n",
3146	    mp->mnt_activevnodelistsize);
3147	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
3148	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
3149	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
3150	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
3151	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
3152	db_printf("    mnt_secondary_accwrites = %d\n",
3153	    mp->mnt_secondary_accwrites);
3154	db_printf("    mnt_gjprovider = %s\n",
3155	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
3156
3157	db_printf("\n\nList of active vnodes\n");
3158	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
3159		if (vp->v_type != VMARKER) {
3160			vn_printf(vp, "vnode ");
3161			if (db_pager_quit)
3162				break;
3163		}
3164	}
3165	db_printf("\n\nList of inactive vnodes\n");
3166	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3167		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
3168			vn_printf(vp, "vnode ");
3169			if (db_pager_quit)
3170				break;
3171		}
3172	}
3173}
3174#endif	/* DDB */
3175
3176/*
3177 * Fill in a struct xvfsconf based on a struct vfsconf.
3178 */
3179static int
3180vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
3181{
3182	struct xvfsconf xvfsp;
3183
3184	bzero(&xvfsp, sizeof(xvfsp));
3185	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3186	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3187	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3188	xvfsp.vfc_flags = vfsp->vfc_flags;
3189	/*
3190	 * These are unused in userland, we keep them
3191	 * to not break binary compatibility.
3192	 */
3193	xvfsp.vfc_vfsops = NULL;
3194	xvfsp.vfc_next = NULL;
3195	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3196}
3197
3198#ifdef COMPAT_FREEBSD32
3199struct xvfsconf32 {
3200	uint32_t	vfc_vfsops;
3201	char		vfc_name[MFSNAMELEN];
3202	int32_t		vfc_typenum;
3203	int32_t		vfc_refcount;
3204	int32_t		vfc_flags;
3205	uint32_t	vfc_next;
3206};
3207
3208static int
3209vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
3210{
3211	struct xvfsconf32 xvfsp;
3212
3213	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3214	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3215	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3216	xvfsp.vfc_flags = vfsp->vfc_flags;
3217	xvfsp.vfc_vfsops = 0;
3218	xvfsp.vfc_next = 0;
3219	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3220}
3221#endif
3222
3223/*
3224 * Top level filesystem related information gathering.
3225 */
3226static int
3227sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
3228{
3229	struct vfsconf *vfsp;
3230	int error;
3231
3232	error = 0;
3233	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3234#ifdef COMPAT_FREEBSD32
3235		if (req->flags & SCTL_MASK32)
3236			error = vfsconf2x32(req, vfsp);
3237		else
3238#endif
3239			error = vfsconf2x(req, vfsp);
3240		if (error)
3241			break;
3242	}
3243	return (error);
3244}
3245
3246SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD,
3247    NULL, 0, sysctl_vfs_conflist,
3248    "S,xvfsconf", "List of all configured filesystems");
3249
3250#ifndef BURN_BRIDGES
3251static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
3252
3253static int
3254vfs_sysctl(SYSCTL_HANDLER_ARGS)
3255{
3256	int *name = (int *)arg1 - 1;	/* XXX */
3257	u_int namelen = arg2 + 1;	/* XXX */
3258	struct vfsconf *vfsp;
3259
3260	log(LOG_WARNING, "userland calling deprecated sysctl, "
3261	    "please rebuild world\n");
3262
3263#if 1 || defined(COMPAT_PRELITE2)
3264	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3265	if (namelen == 1)
3266		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3267#endif
3268
3269	switch (name[1]) {
3270	case VFS_MAXTYPENUM:
3271		if (namelen != 2)
3272			return (ENOTDIR);
3273		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3274	case VFS_CONF:
3275		if (namelen != 3)
3276			return (ENOTDIR);	/* overloaded */
3277		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
3278			if (vfsp->vfc_typenum == name[2])
3279				break;
3280		if (vfsp == NULL)
3281			return (EOPNOTSUPP);
3282#ifdef COMPAT_FREEBSD32
3283		if (req->flags & SCTL_MASK32)
3284			return (vfsconf2x32(req, vfsp));
3285		else
3286#endif
3287			return (vfsconf2x(req, vfsp));
3288	}
3289	return (EOPNOTSUPP);
3290}
3291
3292static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
3293    vfs_sysctl, "Generic filesystem");
3294
3295#if 1 || defined(COMPAT_PRELITE2)
3296
3297static int
3298sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3299{
3300	int error;
3301	struct vfsconf *vfsp;
3302	struct ovfsconf ovfs;
3303
3304	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3305		bzero(&ovfs, sizeof(ovfs));
3306		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3307		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3308		ovfs.vfc_index = vfsp->vfc_typenum;
3309		ovfs.vfc_refcount = vfsp->vfc_refcount;
3310		ovfs.vfc_flags = vfsp->vfc_flags;
3311		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3312		if (error)
3313			return error;
3314	}
3315	return 0;
3316}
3317
3318#endif /* 1 || COMPAT_PRELITE2 */
3319#endif /* !BURN_BRIDGES */
3320
3321#define KINFO_VNODESLOP		10
3322#ifdef notyet
3323/*
3324 * Dump vnode list (via sysctl).
3325 */
3326/* ARGSUSED */
3327static int
3328sysctl_vnode(SYSCTL_HANDLER_ARGS)
3329{
3330	struct xvnode *xvn;
3331	struct mount *mp;
3332	struct vnode *vp;
3333	int error, len, n;
3334
3335	/*
3336	 * Stale numvnodes access is not fatal here.
3337	 */
3338	req->lock = 0;
3339	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3340	if (!req->oldptr)
3341		/* Make an estimate */
3342		return (SYSCTL_OUT(req, 0, len));
3343
3344	error = sysctl_wire_old_buffer(req, 0);
3345	if (error != 0)
3346		return (error);
3347	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3348	n = 0;
3349	mtx_lock(&mountlist_mtx);
3350	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3351		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3352			continue;
3353		MNT_ILOCK(mp);
3354		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3355			if (n == len)
3356				break;
3357			vref(vp);
3358			xvn[n].xv_size = sizeof *xvn;
3359			xvn[n].xv_vnode = vp;
3360			xvn[n].xv_id = 0;	/* XXX compat */
3361#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3362			XV_COPY(usecount);
3363			XV_COPY(writecount);
3364			XV_COPY(holdcnt);
3365			XV_COPY(mount);
3366			XV_COPY(numoutput);
3367			XV_COPY(type);
3368#undef XV_COPY
3369			xvn[n].xv_flag = vp->v_vflag;
3370
3371			switch (vp->v_type) {
3372			case VREG:
3373			case VDIR:
3374			case VLNK:
3375				break;
3376			case VBLK:
3377			case VCHR:
3378				if (vp->v_rdev == NULL) {
3379					vrele(vp);
3380					continue;
3381				}
3382				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3383				break;
3384			case VSOCK:
3385				xvn[n].xv_socket = vp->v_socket;
3386				break;
3387			case VFIFO:
3388				xvn[n].xv_fifo = vp->v_fifoinfo;
3389				break;
3390			case VNON:
3391			case VBAD:
3392			default:
3393				/* shouldn't happen? */
3394				vrele(vp);
3395				continue;
3396			}
3397			vrele(vp);
3398			++n;
3399		}
3400		MNT_IUNLOCK(mp);
3401		mtx_lock(&mountlist_mtx);
3402		vfs_unbusy(mp);
3403		if (n == len)
3404			break;
3405	}
3406	mtx_unlock(&mountlist_mtx);
3407
3408	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3409	free(xvn, M_TEMP);
3410	return (error);
3411}
3412
3413SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3414    0, 0, sysctl_vnode, "S,xvnode", "");
3415#endif
3416
3417/*
3418 * Unmount all filesystems. The list is traversed in reverse order
3419 * of mounting to avoid dependencies.
3420 */
3421void
3422vfs_unmountall(void)
3423{
3424	struct mount *mp;
3425	struct thread *td;
3426	int error;
3427
3428	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
3429	td = curthread;
3430
3431	/*
3432	 * Since this only runs when rebooting, it is not interlocked.
3433	 */
3434	while(!TAILQ_EMPTY(&mountlist)) {
3435		mp = TAILQ_LAST(&mountlist, mntlist);
3436		error = dounmount(mp, MNT_FORCE, td);
3437		if (error) {
3438			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3439			/*
3440			 * XXX: Due to the way in which we mount the root
3441			 * file system off of devfs, devfs will generate a
3442			 * "busy" warning when we try to unmount it before
3443			 * the root.  Don't print a warning as a result in
3444			 * order to avoid false positive errors that may
3445			 * cause needless upset.
3446			 */
3447			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3448				printf("unmount of %s failed (",
3449				    mp->mnt_stat.f_mntonname);
3450				if (error == EBUSY)
3451					printf("BUSY)\n");
3452				else
3453					printf("%d)\n", error);
3454			}
3455		} else {
3456			/* The unmount has removed mp from the mountlist */
3457		}
3458	}
3459}
3460
3461/*
3462 * perform msync on all vnodes under a mount point
3463 * the mount point must be locked.
3464 */
3465void
3466vfs_msync(struct mount *mp, int flags)
3467{
3468	struct vnode *vp, *mvp;
3469	struct vm_object *obj;
3470
3471	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
3472	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
3473		obj = vp->v_object;
3474		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
3475		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3476			if (!vget(vp,
3477			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3478			    curthread)) {
3479				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3480					vput(vp);
3481					continue;
3482				}
3483
3484				obj = vp->v_object;
3485				if (obj != NULL) {
3486					VM_OBJECT_LOCK(obj);
3487					vm_object_page_clean(obj, 0, 0,
3488					    flags == MNT_WAIT ?
3489					    OBJPC_SYNC : OBJPC_NOSYNC);
3490					VM_OBJECT_UNLOCK(obj);
3491				}
3492				vput(vp);
3493			}
3494		} else
3495			VI_UNLOCK(vp);
3496	}
3497}
3498
3499static void
3500destroy_vpollinfo(struct vpollinfo *vi)
3501{
3502	seldrain(&vi->vpi_selinfo);
3503	knlist_destroy(&vi->vpi_selinfo.si_note);
3504	mtx_destroy(&vi->vpi_lock);
3505	uma_zfree(vnodepoll_zone, vi);
3506}
3507
3508/*
3509 * Initalize per-vnode helper structure to hold poll-related state.
3510 */
3511void
3512v_addpollinfo(struct vnode *vp)
3513{
3514	struct vpollinfo *vi;
3515
3516	if (vp->v_pollinfo != NULL)
3517		return;
3518	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3519	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3520	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3521	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
3522	VI_LOCK(vp);
3523	if (vp->v_pollinfo != NULL) {
3524		VI_UNLOCK(vp);
3525		destroy_vpollinfo(vi);
3526		return;
3527	}
3528	vp->v_pollinfo = vi;
3529	VI_UNLOCK(vp);
3530}
3531
3532/*
3533 * Record a process's interest in events which might happen to
3534 * a vnode.  Because poll uses the historic select-style interface
3535 * internally, this routine serves as both the ``check for any
3536 * pending events'' and the ``record my interest in future events''
3537 * functions.  (These are done together, while the lock is held,
3538 * to avoid race conditions.)
3539 */
3540int
3541vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3542{
3543
3544	v_addpollinfo(vp);
3545	mtx_lock(&vp->v_pollinfo->vpi_lock);
3546	if (vp->v_pollinfo->vpi_revents & events) {
3547		/*
3548		 * This leaves events we are not interested
3549		 * in available for the other process which
3550		 * which presumably had requested them
3551		 * (otherwise they would never have been
3552		 * recorded).
3553		 */
3554		events &= vp->v_pollinfo->vpi_revents;
3555		vp->v_pollinfo->vpi_revents &= ~events;
3556
3557		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3558		return (events);
3559	}
3560	vp->v_pollinfo->vpi_events |= events;
3561	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3562	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3563	return (0);
3564}
3565
3566/*
3567 * Routine to create and manage a filesystem syncer vnode.
3568 */
3569#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3570static int	sync_fsync(struct  vop_fsync_args *);
3571static int	sync_inactive(struct  vop_inactive_args *);
3572static int	sync_reclaim(struct  vop_reclaim_args *);
3573
3574static struct vop_vector sync_vnodeops = {
3575	.vop_bypass =	VOP_EOPNOTSUPP,
3576	.vop_close =	sync_close,		/* close */
3577	.vop_fsync =	sync_fsync,		/* fsync */
3578	.vop_inactive =	sync_inactive,	/* inactive */
3579	.vop_reclaim =	sync_reclaim,	/* reclaim */
3580	.vop_lock1 =	vop_stdlock,	/* lock */
3581	.vop_unlock =	vop_stdunlock,	/* unlock */
3582	.vop_islocked =	vop_stdislocked,	/* islocked */
3583};
3584
3585/*
3586 * Create a new filesystem syncer vnode for the specified mount point.
3587 */
3588void
3589vfs_allocate_syncvnode(struct mount *mp)
3590{
3591	struct vnode *vp;
3592	struct bufobj *bo;
3593	static long start, incr, next;
3594	int error;
3595
3596	/* Allocate a new vnode */
3597	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
3598	if (error != 0)
3599		panic("vfs_allocate_syncvnode: getnewvnode() failed");
3600	vp->v_type = VNON;
3601	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3602	vp->v_vflag |= VV_FORCEINSMQ;
3603	error = insmntque(vp, mp);
3604	if (error != 0)
3605		panic("vfs_allocate_syncvnode: insmntque() failed");
3606	vp->v_vflag &= ~VV_FORCEINSMQ;
3607	VOP_UNLOCK(vp, 0);
3608	/*
3609	 * Place the vnode onto the syncer worklist. We attempt to
3610	 * scatter them about on the list so that they will go off
3611	 * at evenly distributed times even if all the filesystems
3612	 * are mounted at once.
3613	 */
3614	next += incr;
3615	if (next == 0 || next > syncer_maxdelay) {
3616		start /= 2;
3617		incr /= 2;
3618		if (start == 0) {
3619			start = syncer_maxdelay / 2;
3620			incr = syncer_maxdelay;
3621		}
3622		next = start;
3623	}
3624	bo = &vp->v_bufobj;
3625	BO_LOCK(bo);
3626	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3627	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3628	mtx_lock(&sync_mtx);
3629	sync_vnode_count++;
3630	if (mp->mnt_syncer == NULL) {
3631		mp->mnt_syncer = vp;
3632		vp = NULL;
3633	}
3634	mtx_unlock(&sync_mtx);
3635	BO_UNLOCK(bo);
3636	if (vp != NULL) {
3637		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3638		vgone(vp);
3639		vput(vp);
3640	}
3641}
3642
3643void
3644vfs_deallocate_syncvnode(struct mount *mp)
3645{
3646	struct vnode *vp;
3647
3648	mtx_lock(&sync_mtx);
3649	vp = mp->mnt_syncer;
3650	if (vp != NULL)
3651		mp->mnt_syncer = NULL;
3652	mtx_unlock(&sync_mtx);
3653	if (vp != NULL)
3654		vrele(vp);
3655}
3656
3657/*
3658 * Do a lazy sync of the filesystem.
3659 */
3660static int
3661sync_fsync(struct vop_fsync_args *ap)
3662{
3663	struct vnode *syncvp = ap->a_vp;
3664	struct mount *mp = syncvp->v_mount;
3665	int error, save;
3666	struct bufobj *bo;
3667
3668	/*
3669	 * We only need to do something if this is a lazy evaluation.
3670	 */
3671	if (ap->a_waitfor != MNT_LAZY)
3672		return (0);
3673
3674	/*
3675	 * Move ourselves to the back of the sync list.
3676	 */
3677	bo = &syncvp->v_bufobj;
3678	BO_LOCK(bo);
3679	vn_syncer_add_to_worklist(bo, syncdelay);
3680	BO_UNLOCK(bo);
3681
3682	/*
3683	 * Walk the list of vnodes pushing all that are dirty and
3684	 * not already on the sync list.
3685	 */
3686	mtx_lock(&mountlist_mtx);
3687	if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) != 0) {
3688		mtx_unlock(&mountlist_mtx);
3689		return (0);
3690	}
3691	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3692		vfs_unbusy(mp);
3693		return (0);
3694	}
3695	save = curthread_pflags_set(TDP_SYNCIO);
3696	vfs_msync(mp, MNT_NOWAIT);
3697	error = VFS_SYNC(mp, MNT_LAZY);
3698	curthread_pflags_restore(save);
3699	vn_finished_write(mp);
3700	vfs_unbusy(mp);
3701	return (error);
3702}
3703
3704/*
3705 * The syncer vnode is no referenced.
3706 */
3707static int
3708sync_inactive(struct vop_inactive_args *ap)
3709{
3710
3711	vgone(ap->a_vp);
3712	return (0);
3713}
3714
3715/*
3716 * The syncer vnode is no longer needed and is being decommissioned.
3717 *
3718 * Modifications to the worklist must be protected by sync_mtx.
3719 */
3720static int
3721sync_reclaim(struct vop_reclaim_args *ap)
3722{
3723	struct vnode *vp = ap->a_vp;
3724	struct bufobj *bo;
3725
3726	bo = &vp->v_bufobj;
3727	BO_LOCK(bo);
3728	mtx_lock(&sync_mtx);
3729	if (vp->v_mount->mnt_syncer == vp)
3730		vp->v_mount->mnt_syncer = NULL;
3731	if (bo->bo_flag & BO_ONWORKLST) {
3732		LIST_REMOVE(bo, bo_synclist);
3733		syncer_worklist_len--;
3734		sync_vnode_count--;
3735		bo->bo_flag &= ~BO_ONWORKLST;
3736	}
3737	mtx_unlock(&sync_mtx);
3738	BO_UNLOCK(bo);
3739
3740	return (0);
3741}
3742
3743/*
3744 * Check if vnode represents a disk device
3745 */
3746int
3747vn_isdisk(struct vnode *vp, int *errp)
3748{
3749	int error;
3750
3751	error = 0;
3752	dev_lock();
3753	if (vp->v_type != VCHR)
3754		error = ENOTBLK;
3755	else if (vp->v_rdev == NULL)
3756		error = ENXIO;
3757	else if (vp->v_rdev->si_devsw == NULL)
3758		error = ENXIO;
3759	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3760		error = ENOTBLK;
3761	dev_unlock();
3762	if (errp != NULL)
3763		*errp = error;
3764	return (error == 0);
3765}
3766
3767/*
3768 * Common filesystem object access control check routine.  Accepts a
3769 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3770 * and optional call-by-reference privused argument allowing vaccess()
3771 * to indicate to the caller whether privilege was used to satisfy the
3772 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3773 */
3774int
3775vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3776    accmode_t accmode, struct ucred *cred, int *privused)
3777{
3778	accmode_t dac_granted;
3779	accmode_t priv_granted;
3780
3781	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
3782	    ("invalid bit in accmode"));
3783	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
3784	    ("VAPPEND without VWRITE"));
3785
3786	/*
3787	 * Look for a normal, non-privileged way to access the file/directory
3788	 * as requested.  If it exists, go with that.
3789	 */
3790
3791	if (privused != NULL)
3792		*privused = 0;
3793
3794	dac_granted = 0;
3795
3796	/* Check the owner. */
3797	if (cred->cr_uid == file_uid) {
3798		dac_granted |= VADMIN;
3799		if (file_mode & S_IXUSR)
3800			dac_granted |= VEXEC;
3801		if (file_mode & S_IRUSR)
3802			dac_granted |= VREAD;
3803		if (file_mode & S_IWUSR)
3804			dac_granted |= (VWRITE | VAPPEND);
3805
3806		if ((accmode & dac_granted) == accmode)
3807			return (0);
3808
3809		goto privcheck;
3810	}
3811
3812	/* Otherwise, check the groups (first match) */
3813	if (groupmember(file_gid, cred)) {
3814		if (file_mode & S_IXGRP)
3815			dac_granted |= VEXEC;
3816		if (file_mode & S_IRGRP)
3817			dac_granted |= VREAD;
3818		if (file_mode & S_IWGRP)
3819			dac_granted |= (VWRITE | VAPPEND);
3820
3821		if ((accmode & dac_granted) == accmode)
3822			return (0);
3823
3824		goto privcheck;
3825	}
3826
3827	/* Otherwise, check everyone else. */
3828	if (file_mode & S_IXOTH)
3829		dac_granted |= VEXEC;
3830	if (file_mode & S_IROTH)
3831		dac_granted |= VREAD;
3832	if (file_mode & S_IWOTH)
3833		dac_granted |= (VWRITE | VAPPEND);
3834	if ((accmode & dac_granted) == accmode)
3835		return (0);
3836
3837privcheck:
3838	/*
3839	 * Build a privilege mask to determine if the set of privileges
3840	 * satisfies the requirements when combined with the granted mask
3841	 * from above.  For each privilege, if the privilege is required,
3842	 * bitwise or the request type onto the priv_granted mask.
3843	 */
3844	priv_granted = 0;
3845
3846	if (type == VDIR) {
3847		/*
3848		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3849		 * requests, instead of PRIV_VFS_EXEC.
3850		 */
3851		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3852		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3853			priv_granted |= VEXEC;
3854	} else {
3855		/*
3856		 * Ensure that at least one execute bit is on. Otherwise,
3857		 * a privileged user will always succeed, and we don't want
3858		 * this to happen unless the file really is executable.
3859		 */
3860		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3861		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
3862		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3863			priv_granted |= VEXEC;
3864	}
3865
3866	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
3867	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
3868		priv_granted |= VREAD;
3869
3870	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3871	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3872		priv_granted |= (VWRITE | VAPPEND);
3873
3874	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3875	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3876		priv_granted |= VADMIN;
3877
3878	if ((accmode & (priv_granted | dac_granted)) == accmode) {
3879		/* XXX audit: privilege used */
3880		if (privused != NULL)
3881			*privused = 1;
3882		return (0);
3883	}
3884
3885	return ((accmode & VADMIN) ? EPERM : EACCES);
3886}
3887
3888/*
3889 * Credential check based on process requesting service, and per-attribute
3890 * permissions.
3891 */
3892int
3893extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3894    struct thread *td, accmode_t accmode)
3895{
3896
3897	/*
3898	 * Kernel-invoked always succeeds.
3899	 */
3900	if (cred == NOCRED)
3901		return (0);
3902
3903	/*
3904	 * Do not allow privileged processes in jail to directly manipulate
3905	 * system attributes.
3906	 */
3907	switch (attrnamespace) {
3908	case EXTATTR_NAMESPACE_SYSTEM:
3909		/* Potentially should be: return (EPERM); */
3910		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3911	case EXTATTR_NAMESPACE_USER:
3912		return (VOP_ACCESS(vp, accmode, cred, td));
3913	default:
3914		return (EPERM);
3915	}
3916}
3917
3918#ifdef DEBUG_VFS_LOCKS
3919/*
3920 * This only exists to supress warnings from unlocked specfs accesses.  It is
3921 * no longer ok to have an unlocked VFS.
3922 */
3923#define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
3924	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
3925
3926int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3927SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
3928    "Drop into debugger on lock violation");
3929
3930int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3931SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
3932    0, "Check for interlock across VOPs");
3933
3934int vfs_badlock_print = 1;	/* Print lock violations. */
3935SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
3936    0, "Print lock violations");
3937
3938#ifdef KDB
3939int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3940SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
3941    &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
3942#endif
3943
3944static void
3945vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3946{
3947
3948#ifdef KDB
3949	if (vfs_badlock_backtrace)
3950		kdb_backtrace();
3951#endif
3952	if (vfs_badlock_print)
3953		printf("%s: %p %s\n", str, (void *)vp, msg);
3954	if (vfs_badlock_ddb)
3955		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3956}
3957
3958void
3959assert_vi_locked(struct vnode *vp, const char *str)
3960{
3961
3962	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3963		vfs_badlock("interlock is not locked but should be", str, vp);
3964}
3965
3966void
3967assert_vi_unlocked(struct vnode *vp, const char *str)
3968{
3969
3970	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3971		vfs_badlock("interlock is locked but should not be", str, vp);
3972}
3973
3974void
3975assert_vop_locked(struct vnode *vp, const char *str)
3976{
3977
3978	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == 0)
3979		vfs_badlock("is not locked but should be", str, vp);
3980}
3981
3982void
3983assert_vop_unlocked(struct vnode *vp, const char *str)
3984{
3985
3986	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
3987		vfs_badlock("is locked but should not be", str, vp);
3988}
3989
3990void
3991assert_vop_elocked(struct vnode *vp, const char *str)
3992{
3993
3994	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
3995		vfs_badlock("is not exclusive locked but should be", str, vp);
3996}
3997
3998#if 0
3999void
4000assert_vop_elocked_other(struct vnode *vp, const char *str)
4001{
4002
4003	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
4004		vfs_badlock("is not exclusive locked by another thread",
4005		    str, vp);
4006}
4007
4008void
4009assert_vop_slocked(struct vnode *vp, const char *str)
4010{
4011
4012	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
4013		vfs_badlock("is not locked shared but should be", str, vp);
4014}
4015#endif /* 0 */
4016#endif /* DEBUG_VFS_LOCKS */
4017
4018void
4019vop_rename_fail(struct vop_rename_args *ap)
4020{
4021
4022	if (ap->a_tvp != NULL)
4023		vput(ap->a_tvp);
4024	if (ap->a_tdvp == ap->a_tvp)
4025		vrele(ap->a_tdvp);
4026	else
4027		vput(ap->a_tdvp);
4028	vrele(ap->a_fdvp);
4029	vrele(ap->a_fvp);
4030}
4031
4032void
4033vop_rename_pre(void *ap)
4034{
4035	struct vop_rename_args *a = ap;
4036
4037#ifdef DEBUG_VFS_LOCKS
4038	if (a->a_tvp)
4039		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
4040	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
4041	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
4042	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
4043
4044	/* Check the source (from). */
4045	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
4046	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
4047		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
4048	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
4049		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
4050
4051	/* Check the target. */
4052	if (a->a_tvp)
4053		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
4054	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
4055#endif
4056	if (a->a_tdvp != a->a_fdvp)
4057		vhold(a->a_fdvp);
4058	if (a->a_tvp != a->a_fvp)
4059		vhold(a->a_fvp);
4060	vhold(a->a_tdvp);
4061	if (a->a_tvp)
4062		vhold(a->a_tvp);
4063}
4064
4065void
4066vop_strategy_pre(void *ap)
4067{
4068#ifdef DEBUG_VFS_LOCKS
4069	struct vop_strategy_args *a;
4070	struct buf *bp;
4071
4072	a = ap;
4073	bp = a->a_bp;
4074
4075	/*
4076	 * Cluster ops lock their component buffers but not the IO container.
4077	 */
4078	if ((bp->b_flags & B_CLUSTER) != 0)
4079		return;
4080
4081	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
4082		if (vfs_badlock_print)
4083			printf(
4084			    "VOP_STRATEGY: bp is not locked but should be\n");
4085		if (vfs_badlock_ddb)
4086			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4087	}
4088#endif
4089}
4090
4091void
4092vop_lookup_pre(void *ap)
4093{
4094#ifdef DEBUG_VFS_LOCKS
4095	struct vop_lookup_args *a;
4096	struct vnode *dvp;
4097
4098	a = ap;
4099	dvp = a->a_dvp;
4100	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
4101	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
4102#endif
4103}
4104
4105void
4106vop_lookup_post(void *ap, int rc)
4107{
4108#ifdef DEBUG_VFS_LOCKS
4109	struct vop_lookup_args *a;
4110	struct vnode *dvp;
4111	struct vnode *vp;
4112
4113	a = ap;
4114	dvp = a->a_dvp;
4115	vp = *(a->a_vpp);
4116
4117	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
4118	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
4119
4120	if (!rc)
4121		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
4122#endif
4123}
4124
4125void
4126vop_lock_pre(void *ap)
4127{
4128#ifdef DEBUG_VFS_LOCKS
4129	struct vop_lock1_args *a = ap;
4130
4131	if ((a->a_flags & LK_INTERLOCK) == 0)
4132		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4133	else
4134		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
4135#endif
4136}
4137
4138void
4139vop_lock_post(void *ap, int rc)
4140{
4141#ifdef DEBUG_VFS_LOCKS
4142	struct vop_lock1_args *a = ap;
4143
4144	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4145	if (rc == 0)
4146		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
4147#endif
4148}
4149
4150void
4151vop_unlock_pre(void *ap)
4152{
4153#ifdef DEBUG_VFS_LOCKS
4154	struct vop_unlock_args *a = ap;
4155
4156	if (a->a_flags & LK_INTERLOCK)
4157		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
4158	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
4159#endif
4160}
4161
4162void
4163vop_unlock_post(void *ap, int rc)
4164{
4165#ifdef DEBUG_VFS_LOCKS
4166	struct vop_unlock_args *a = ap;
4167
4168	if (a->a_flags & LK_INTERLOCK)
4169		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
4170#endif
4171}
4172
4173void
4174vop_create_post(void *ap, int rc)
4175{
4176	struct vop_create_args *a = ap;
4177
4178	if (!rc)
4179		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4180}
4181
4182void
4183vop_deleteextattr_post(void *ap, int rc)
4184{
4185	struct vop_deleteextattr_args *a = ap;
4186
4187	if (!rc)
4188		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4189}
4190
4191void
4192vop_link_post(void *ap, int rc)
4193{
4194	struct vop_link_args *a = ap;
4195
4196	if (!rc) {
4197		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
4198		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
4199	}
4200}
4201
4202void
4203vop_mkdir_post(void *ap, int rc)
4204{
4205	struct vop_mkdir_args *a = ap;
4206
4207	if (!rc)
4208		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4209}
4210
4211void
4212vop_mknod_post(void *ap, int rc)
4213{
4214	struct vop_mknod_args *a = ap;
4215
4216	if (!rc)
4217		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4218}
4219
4220void
4221vop_remove_post(void *ap, int rc)
4222{
4223	struct vop_remove_args *a = ap;
4224
4225	if (!rc) {
4226		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4227		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4228	}
4229}
4230
4231void
4232vop_rename_post(void *ap, int rc)
4233{
4234	struct vop_rename_args *a = ap;
4235
4236	if (!rc) {
4237		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
4238		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
4239		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
4240		if (a->a_tvp)
4241			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
4242	}
4243	if (a->a_tdvp != a->a_fdvp)
4244		vdrop(a->a_fdvp);
4245	if (a->a_tvp != a->a_fvp)
4246		vdrop(a->a_fvp);
4247	vdrop(a->a_tdvp);
4248	if (a->a_tvp)
4249		vdrop(a->a_tvp);
4250}
4251
4252void
4253vop_rmdir_post(void *ap, int rc)
4254{
4255	struct vop_rmdir_args *a = ap;
4256
4257	if (!rc) {
4258		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4259		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4260	}
4261}
4262
4263void
4264vop_setattr_post(void *ap, int rc)
4265{
4266	struct vop_setattr_args *a = ap;
4267
4268	if (!rc)
4269		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4270}
4271
4272void
4273vop_setextattr_post(void *ap, int rc)
4274{
4275	struct vop_setextattr_args *a = ap;
4276
4277	if (!rc)
4278		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4279}
4280
4281void
4282vop_symlink_post(void *ap, int rc)
4283{
4284	struct vop_symlink_args *a = ap;
4285
4286	if (!rc)
4287		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4288}
4289
4290static struct knlist fs_knlist;
4291
4292static void
4293vfs_event_init(void *arg)
4294{
4295	knlist_init_mtx(&fs_knlist, NULL);
4296}
4297/* XXX - correct order? */
4298SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4299
4300void
4301vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
4302{
4303
4304	KNOTE_UNLOCKED(&fs_knlist, event);
4305}
4306
4307static int	filt_fsattach(struct knote *kn);
4308static void	filt_fsdetach(struct knote *kn);
4309static int	filt_fsevent(struct knote *kn, long hint);
4310
4311struct filterops fs_filtops = {
4312	.f_isfd = 0,
4313	.f_attach = filt_fsattach,
4314	.f_detach = filt_fsdetach,
4315	.f_event = filt_fsevent
4316};
4317
4318static int
4319filt_fsattach(struct knote *kn)
4320{
4321
4322	kn->kn_flags |= EV_CLEAR;
4323	knlist_add(&fs_knlist, kn, 0);
4324	return (0);
4325}
4326
4327static void
4328filt_fsdetach(struct knote *kn)
4329{
4330
4331	knlist_remove(&fs_knlist, kn, 0);
4332}
4333
4334static int
4335filt_fsevent(struct knote *kn, long hint)
4336{
4337
4338	kn->kn_fflags |= hint;
4339	return (kn->kn_fflags != 0);
4340}
4341
4342static int
4343sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4344{
4345	struct vfsidctl vc;
4346	int error;
4347	struct mount *mp;
4348
4349	error = SYSCTL_IN(req, &vc, sizeof(vc));
4350	if (error)
4351		return (error);
4352	if (vc.vc_vers != VFS_CTL_VERS1)
4353		return (EINVAL);
4354	mp = vfs_getvfs(&vc.vc_fsid);
4355	if (mp == NULL)
4356		return (ENOENT);
4357	/* ensure that a specific sysctl goes to the right filesystem. */
4358	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4359	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4360		vfs_rel(mp);
4361		return (EINVAL);
4362	}
4363	VCTLTOREQ(&vc, req);
4364	error = VFS_SYSCTL(mp, vc.vc_op, req);
4365	vfs_rel(mp);
4366	return (error);
4367}
4368
4369SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
4370    NULL, 0, sysctl_vfs_ctl, "",
4371    "Sysctl by fsid");
4372
4373/*
4374 * Function to initialize a va_filerev field sensibly.
4375 * XXX: Wouldn't a random number make a lot more sense ??
4376 */
4377u_quad_t
4378init_va_filerev(void)
4379{
4380	struct bintime bt;
4381
4382	getbinuptime(&bt);
4383	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4384}
4385
4386static int	filt_vfsread(struct knote *kn, long hint);
4387static int	filt_vfswrite(struct knote *kn, long hint);
4388static int	filt_vfsvnode(struct knote *kn, long hint);
4389static void	filt_vfsdetach(struct knote *kn);
4390static struct filterops vfsread_filtops = {
4391	.f_isfd = 1,
4392	.f_detach = filt_vfsdetach,
4393	.f_event = filt_vfsread
4394};
4395static struct filterops vfswrite_filtops = {
4396	.f_isfd = 1,
4397	.f_detach = filt_vfsdetach,
4398	.f_event = filt_vfswrite
4399};
4400static struct filterops vfsvnode_filtops = {
4401	.f_isfd = 1,
4402	.f_detach = filt_vfsdetach,
4403	.f_event = filt_vfsvnode
4404};
4405
4406static void
4407vfs_knllock(void *arg)
4408{
4409	struct vnode *vp = arg;
4410
4411	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4412}
4413
4414static void
4415vfs_knlunlock(void *arg)
4416{
4417	struct vnode *vp = arg;
4418
4419	VOP_UNLOCK(vp, 0);
4420}
4421
4422static void
4423vfs_knl_assert_locked(void *arg)
4424{
4425#ifdef DEBUG_VFS_LOCKS
4426	struct vnode *vp = arg;
4427
4428	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
4429#endif
4430}
4431
4432static void
4433vfs_knl_assert_unlocked(void *arg)
4434{
4435#ifdef DEBUG_VFS_LOCKS
4436	struct vnode *vp = arg;
4437
4438	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
4439#endif
4440}
4441
4442int
4443vfs_kqfilter(struct vop_kqfilter_args *ap)
4444{
4445	struct vnode *vp = ap->a_vp;
4446	struct knote *kn = ap->a_kn;
4447	struct knlist *knl;
4448
4449	switch (kn->kn_filter) {
4450	case EVFILT_READ:
4451		kn->kn_fop = &vfsread_filtops;
4452		break;
4453	case EVFILT_WRITE:
4454		kn->kn_fop = &vfswrite_filtops;
4455		break;
4456	case EVFILT_VNODE:
4457		kn->kn_fop = &vfsvnode_filtops;
4458		break;
4459	default:
4460		return (EINVAL);
4461	}
4462
4463	kn->kn_hook = (caddr_t)vp;
4464
4465	v_addpollinfo(vp);
4466	if (vp->v_pollinfo == NULL)
4467		return (ENOMEM);
4468	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4469	knlist_add(knl, kn, 0);
4470
4471	return (0);
4472}
4473
4474/*
4475 * Detach knote from vnode
4476 */
4477static void
4478filt_vfsdetach(struct knote *kn)
4479{
4480	struct vnode *vp = (struct vnode *)kn->kn_hook;
4481
4482	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4483	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4484}
4485
4486/*ARGSUSED*/
4487static int
4488filt_vfsread(struct knote *kn, long hint)
4489{
4490	struct vnode *vp = (struct vnode *)kn->kn_hook;
4491	struct vattr va;
4492	int res;
4493
4494	/*
4495	 * filesystem is gone, so set the EOF flag and schedule
4496	 * the knote for deletion.
4497	 */
4498	if (hint == NOTE_REVOKE) {
4499		VI_LOCK(vp);
4500		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4501		VI_UNLOCK(vp);
4502		return (1);
4503	}
4504
4505	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4506		return (0);
4507
4508	VI_LOCK(vp);
4509	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4510	res = (kn->kn_data != 0);
4511	VI_UNLOCK(vp);
4512	return (res);
4513}
4514
4515/*ARGSUSED*/
4516static int
4517filt_vfswrite(struct knote *kn, long hint)
4518{
4519	struct vnode *vp = (struct vnode *)kn->kn_hook;
4520
4521	VI_LOCK(vp);
4522
4523	/*
4524	 * filesystem is gone, so set the EOF flag and schedule
4525	 * the knote for deletion.
4526	 */
4527	if (hint == NOTE_REVOKE)
4528		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4529
4530	kn->kn_data = 0;
4531	VI_UNLOCK(vp);
4532	return (1);
4533}
4534
4535static int
4536filt_vfsvnode(struct knote *kn, long hint)
4537{
4538	struct vnode *vp = (struct vnode *)kn->kn_hook;
4539	int res;
4540
4541	VI_LOCK(vp);
4542	if (kn->kn_sfflags & hint)
4543		kn->kn_fflags |= hint;
4544	if (hint == NOTE_REVOKE) {
4545		kn->kn_flags |= EV_EOF;
4546		VI_UNLOCK(vp);
4547		return (1);
4548	}
4549	res = (kn->kn_fflags != 0);
4550	VI_UNLOCK(vp);
4551	return (res);
4552}
4553
4554int
4555vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4556{
4557	int error;
4558
4559	if (dp->d_reclen > ap->a_uio->uio_resid)
4560		return (ENAMETOOLONG);
4561	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4562	if (error) {
4563		if (ap->a_ncookies != NULL) {
4564			if (ap->a_cookies != NULL)
4565				free(ap->a_cookies, M_TEMP);
4566			ap->a_cookies = NULL;
4567			*ap->a_ncookies = 0;
4568		}
4569		return (error);
4570	}
4571	if (ap->a_ncookies == NULL)
4572		return (0);
4573
4574	KASSERT(ap->a_cookies,
4575	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4576
4577	*ap->a_cookies = realloc(*ap->a_cookies,
4578	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4579	(*ap->a_cookies)[*ap->a_ncookies] = off;
4580	return (0);
4581}
4582
4583/*
4584 * Mark for update the access time of the file if the filesystem
4585 * supports VOP_MARKATIME.  This functionality is used by execve and
4586 * mmap, so we want to avoid the I/O implied by directly setting
4587 * va_atime for the sake of efficiency.
4588 */
4589void
4590vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4591{
4592	struct mount *mp;
4593
4594	mp = vp->v_mount;
4595	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
4596	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
4597		(void)VOP_MARKATIME(vp);
4598}
4599
4600/*
4601 * The purpose of this routine is to remove granularity from accmode_t,
4602 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
4603 * VADMIN and VAPPEND.
4604 *
4605 * If it returns 0, the caller is supposed to continue with the usual
4606 * access checks using 'accmode' as modified by this routine.  If it
4607 * returns nonzero value, the caller is supposed to return that value
4608 * as errno.
4609 *
4610 * Note that after this routine runs, accmode may be zero.
4611 */
4612int
4613vfs_unixify_accmode(accmode_t *accmode)
4614{
4615	/*
4616	 * There is no way to specify explicit "deny" rule using
4617	 * file mode or POSIX.1e ACLs.
4618	 */
4619	if (*accmode & VEXPLICIT_DENY) {
4620		*accmode = 0;
4621		return (0);
4622	}
4623
4624	/*
4625	 * None of these can be translated into usual access bits.
4626	 * Also, the common case for NFSv4 ACLs is to not contain
4627	 * either of these bits. Caller should check for VWRITE
4628	 * on the containing directory instead.
4629	 */
4630	if (*accmode & (VDELETE_CHILD | VDELETE))
4631		return (EPERM);
4632
4633	if (*accmode & VADMIN_PERMS) {
4634		*accmode &= ~VADMIN_PERMS;
4635		*accmode |= VADMIN;
4636	}
4637
4638	/*
4639	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
4640	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
4641	 */
4642	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
4643
4644	return (0);
4645}
4646
4647/*
4648 * These are helper functions for filesystems to traverse all
4649 * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
4650 *
4651 * This interface replaces MNT_VNODE_FOREACH.
4652 */
4653
4654MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
4655
4656struct vnode *
4657__mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
4658{
4659	struct vnode *vp;
4660
4661	if (should_yield())
4662		kern_yield(PRI_UNCHANGED);
4663	MNT_ILOCK(mp);
4664	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4665	vp = TAILQ_NEXT(*mvp, v_nmntvnodes);
4666	while (vp != NULL && (vp->v_type == VMARKER ||
4667	    (vp->v_iflag & VI_DOOMED) != 0))
4668		vp = TAILQ_NEXT(vp, v_nmntvnodes);
4669
4670	/* Check if we are done */
4671	if (vp == NULL) {
4672		__mnt_vnode_markerfree_all(mvp, mp);
4673		/* MNT_IUNLOCK(mp); -- done in above function */
4674		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
4675		return (NULL);
4676	}
4677	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
4678	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
4679	VI_LOCK(vp);
4680	MNT_IUNLOCK(mp);
4681	return (vp);
4682}
4683
4684struct vnode *
4685__mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
4686{
4687	struct vnode *vp;
4688
4689	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
4690	MNT_ILOCK(mp);
4691	MNT_REF(mp);
4692	(*mvp)->v_type = VMARKER;
4693
4694	vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
4695	while (vp != NULL && (vp->v_type == VMARKER ||
4696	    (vp->v_iflag & VI_DOOMED) != 0))
4697		vp = TAILQ_NEXT(vp, v_nmntvnodes);
4698
4699	/* Check if we are done */
4700	if (vp == NULL) {
4701		MNT_REL(mp);
4702		MNT_IUNLOCK(mp);
4703		free(*mvp, M_VNODE_MARKER);
4704		*mvp = NULL;
4705		return (NULL);
4706	}
4707	(*mvp)->v_mount = mp;
4708	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
4709	VI_LOCK(vp);
4710	MNT_IUNLOCK(mp);
4711	return (vp);
4712}
4713
4714
4715void
4716__mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
4717{
4718
4719	if (*mvp == NULL) {
4720		MNT_IUNLOCK(mp);
4721		return;
4722	}
4723
4724	mtx_assert(MNT_MTX(mp), MA_OWNED);
4725
4726	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4727	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
4728	MNT_REL(mp);
4729	MNT_IUNLOCK(mp);
4730	free(*mvp, M_VNODE_MARKER);
4731	*mvp = NULL;
4732}
4733
4734/*
4735 * These are helper functions for filesystems to traverse their
4736 * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
4737 */
4738struct vnode *
4739__mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
4740{
4741	struct vnode *vp, *nvp;
4742
4743	if (should_yield())
4744		kern_yield(PRI_UNCHANGED);
4745	MNT_ILOCK(mp);
4746	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4747	vp = TAILQ_NEXT(*mvp, v_actfreelist);
4748	while (vp != NULL) {
4749		VI_LOCK(vp);
4750		if (vp->v_mount == mp && vp->v_type != VMARKER &&
4751		    (vp->v_iflag & VI_DOOMED) == 0)
4752			break;
4753		nvp = TAILQ_NEXT(vp, v_actfreelist);
4754		VI_UNLOCK(vp);
4755		vp = nvp;
4756	}
4757
4758	/* Check if we are done */
4759	if (vp == NULL) {
4760		__mnt_vnode_markerfree_active(mvp, mp);
4761		/* MNT_IUNLOCK(mp); -- done in above function */
4762		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
4763		return (NULL);
4764	}
4765	mtx_lock(&vnode_free_list_mtx);
4766	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
4767	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
4768	mtx_unlock(&vnode_free_list_mtx);
4769	MNT_IUNLOCK(mp);
4770	return (vp);
4771}
4772
4773struct vnode *
4774__mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
4775{
4776	struct vnode *vp, *nvp;
4777
4778	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
4779	MNT_ILOCK(mp);
4780	MNT_REF(mp);
4781	(*mvp)->v_type = VMARKER;
4782
4783	vp = TAILQ_NEXT(*mvp, v_actfreelist);
4784	while (vp != NULL) {
4785		VI_LOCK(vp);
4786		if (vp->v_mount == mp && vp->v_type != VMARKER &&
4787		    (vp->v_iflag & VI_DOOMED) == 0)
4788			break;
4789		nvp = TAILQ_NEXT(vp, v_actfreelist);
4790		VI_UNLOCK(vp);
4791		vp = nvp;
4792	}
4793
4794	/* Check if we are done */
4795	if (vp == NULL) {
4796		MNT_REL(mp);
4797		MNT_IUNLOCK(mp);
4798		free(*mvp, M_VNODE_MARKER);
4799		*mvp = NULL;
4800		return (NULL);
4801	}
4802	(*mvp)->v_mount = mp;
4803	mtx_lock(&vnode_free_list_mtx);
4804	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
4805	mtx_unlock(&vnode_free_list_mtx);
4806	MNT_IUNLOCK(mp);
4807	return (vp);
4808}
4809
4810void
4811__mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
4812{
4813
4814	if (*mvp == NULL) {
4815		MNT_IUNLOCK(mp);
4816		return;
4817	}
4818
4819	mtx_assert(MNT_MTX(mp), MA_OWNED);
4820
4821	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4822	mtx_lock(&vnode_free_list_mtx);
4823	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
4824	mtx_unlock(&vnode_free_list_mtx);
4825	MNT_REL(mp);
4826	MNT_IUNLOCK(mp);
4827	free(*mvp, M_VNODE_MARKER);
4828	*mvp = NULL;
4829}
4830