vfs_subr.c revision 207141
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_subr.c 207141 2010-04-24 07:05:35Z jeff $");
43
44#include "opt_ddb.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/bio.h>
49#include <sys/buf.h>
50#include <sys/condvar.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/event.h>
54#include <sys/eventhandler.h>
55#include <sys/extattr.h>
56#include <sys/file.h>
57#include <sys/fcntl.h>
58#include <sys/jail.h>
59#include <sys/kdb.h>
60#include <sys/kernel.h>
61#include <sys/kthread.h>
62#include <sys/lockf.h>
63#include <sys/malloc.h>
64#include <sys/mount.h>
65#include <sys/namei.h>
66#include <sys/priv.h>
67#include <sys/reboot.h>
68#include <sys/sleepqueue.h>
69#include <sys/stat.h>
70#include <sys/sysctl.h>
71#include <sys/syslog.h>
72#include <sys/vmmeter.h>
73#include <sys/vnode.h>
74
75#include <machine/stdarg.h>
76
77#include <security/mac/mac_framework.h>
78
79#include <vm/vm.h>
80#include <vm/vm_object.h>
81#include <vm/vm_extern.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_page.h>
85#include <vm/vm_kern.h>
86#include <vm/uma.h>
87
88#ifdef DDB
89#include <ddb/ddb.h>
90#endif
91
92#define	WI_MPSAFEQ	0
93#define	WI_GIANTQ	1
94
95static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure");
96
97static void	delmntque(struct vnode *vp);
98static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
99		    int slpflag, int slptimeo);
100static void	syncer_shutdown(void *arg, int howto);
101static int	vtryrecycle(struct vnode *vp);
102static void	vbusy(struct vnode *vp);
103static void	vinactive(struct vnode *, struct thread *);
104static void	v_incr_usecount(struct vnode *);
105static void	v_decr_usecount(struct vnode *);
106static void	v_decr_useonly(struct vnode *);
107static void	v_upgrade_usecount(struct vnode *);
108static void	vfree(struct vnode *);
109static void	vnlru_free(int);
110static void	vgonel(struct vnode *);
111static void	vfs_knllock(void *arg);
112static void	vfs_knlunlock(void *arg);
113static void	vfs_knl_assert_locked(void *arg);
114static void	vfs_knl_assert_unlocked(void *arg);
115static void	destroy_vpollinfo(struct vpollinfo *vi);
116
117/*
118 * Number of vnodes in existence.  Increased whenever getnewvnode()
119 * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed
120 * vnode.
121 */
122static unsigned long	numvnodes;
123
124SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
125
126/*
127 * Conversion tables for conversion from vnode types to inode formats
128 * and back.
129 */
130enum vtype iftovt_tab[16] = {
131	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
132	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
133};
134int vttoif_tab[10] = {
135	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
136	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
137};
138
139/*
140 * List of vnodes that are ready for recycling.
141 */
142static TAILQ_HEAD(freelst, vnode) vnode_free_list;
143
144/*
145 * Free vnode target.  Free vnodes may simply be files which have been stat'd
146 * but not read.  This is somewhat common, and a small cache of such files
147 * should be kept to avoid recreation costs.
148 */
149static u_long wantfreevnodes;
150SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
151/* Number of vnodes in the free list. */
152static u_long freevnodes;
153SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
154
155static int vlru_allow_cache_src;
156SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW,
157    &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode");
158
159/*
160 * Various variables used for debugging the new implementation of
161 * reassignbuf().
162 * XXX these are probably of (very) limited utility now.
163 */
164static int reassignbufcalls;
165SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
166
167/*
168 * Cache for the mount type id assigned to NFS.  This is used for
169 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
170 */
171int	nfs_mount_type = -1;
172
173/* To keep more than one thread at a time from running vfs_getnewfsid */
174static struct mtx mntid_mtx;
175
176/*
177 * Lock for any access to the following:
178 *	vnode_free_list
179 *	numvnodes
180 *	freevnodes
181 */
182static struct mtx vnode_free_list_mtx;
183
184/* Publicly exported FS */
185struct nfs_public nfs_pub;
186
187/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
188static uma_zone_t vnode_zone;
189static uma_zone_t vnodepoll_zone;
190
191/* Set to 1 to print out reclaim of active vnodes */
192int	prtactive;
193
194/*
195 * The workitem queue.
196 *
197 * It is useful to delay writes of file data and filesystem metadata
198 * for tens of seconds so that quickly created and deleted files need
199 * not waste disk bandwidth being created and removed. To realize this,
200 * we append vnodes to a "workitem" queue. When running with a soft
201 * updates implementation, most pending metadata dependencies should
202 * not wait for more than a few seconds. Thus, mounted on block devices
203 * are delayed only about a half the time that file data is delayed.
204 * Similarly, directory updates are more critical, so are only delayed
205 * about a third the time that file data is delayed. Thus, there are
206 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
207 * one each second (driven off the filesystem syncer process). The
208 * syncer_delayno variable indicates the next queue that is to be processed.
209 * Items that need to be processed soon are placed in this queue:
210 *
211 *	syncer_workitem_pending[syncer_delayno]
212 *
213 * A delay of fifteen seconds is done by placing the request fifteen
214 * entries later in the queue:
215 *
216 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
217 *
218 */
219static int syncer_delayno;
220static long syncer_mask;
221LIST_HEAD(synclist, bufobj);
222static struct synclist *syncer_workitem_pending[2];
223/*
224 * The sync_mtx protects:
225 *	bo->bo_synclist
226 *	sync_vnode_count
227 *	syncer_delayno
228 *	syncer_state
229 *	syncer_workitem_pending
230 *	syncer_worklist_len
231 *	rushjob
232 */
233static struct mtx sync_mtx;
234static struct cv sync_wakeup;
235
236#define SYNCER_MAXDELAY		32
237static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
238static int syncdelay = 30;		/* max time to delay syncing data */
239static int filedelay = 30;		/* time to delay syncing files */
240SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
241static int dirdelay = 29;		/* time to delay syncing directories */
242SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
243static int metadelay = 28;		/* time to delay syncing metadata */
244SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
245static int rushjob;		/* number of slots to run ASAP */
246static int stat_rush_requests;	/* number of times I/O speeded up */
247SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
248
249/*
250 * When shutting down the syncer, run it at four times normal speed.
251 */
252#define SYNCER_SHUTDOWN_SPEEDUP		4
253static int sync_vnode_count;
254static int syncer_worklist_len;
255static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
256    syncer_state;
257
258/*
259 * Number of vnodes we want to exist at any one time.  This is mostly used
260 * to size hash tables in vnode-related code.  It is normally not used in
261 * getnewvnode(), as wantfreevnodes is normally nonzero.)
262 *
263 * XXX desiredvnodes is historical cruft and should not exist.
264 */
265int desiredvnodes;
266SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
267    &desiredvnodes, 0, "Maximum number of vnodes");
268SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
269    &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
270static int vnlru_nowhere;
271SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
272    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
273
274/*
275 * Macros to control when a vnode is freed and recycled.  All require
276 * the vnode interlock.
277 */
278#define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
279#define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
280#define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
281
282
283/*
284 * Initialize the vnode management data structures.
285 */
286#ifndef	MAXVNODES_MAX
287#define	MAXVNODES_MAX	100000
288#endif
289static void
290vntblinit(void *dummy __unused)
291{
292
293	/*
294	 * Desiredvnodes is a function of the physical memory size and
295	 * the kernel's heap size.  Specifically, desiredvnodes scales
296	 * in proportion to the physical memory size until two fifths
297	 * of the kernel's heap size is consumed by vnodes and vm
298	 * objects.
299	 */
300	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
301	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
302	if (desiredvnodes > MAXVNODES_MAX) {
303		if (bootverbose)
304			printf("Reducing kern.maxvnodes %d -> %d\n",
305			    desiredvnodes, MAXVNODES_MAX);
306		desiredvnodes = MAXVNODES_MAX;
307	}
308	wantfreevnodes = desiredvnodes / 4;
309	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
310	TAILQ_INIT(&vnode_free_list);
311	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
312	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
313	    NULL, NULL, UMA_ALIGN_PTR, 0);
314	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
315	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
316	/*
317	 * Initialize the filesystem syncer.
318	 */
319	syncer_workitem_pending[WI_MPSAFEQ] = hashinit(syncer_maxdelay, M_VNODE,
320	    &syncer_mask);
321	syncer_workitem_pending[WI_GIANTQ] = hashinit(syncer_maxdelay, M_VNODE,
322	    &syncer_mask);
323	syncer_maxdelay = syncer_mask + 1;
324	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
325	cv_init(&sync_wakeup, "syncer");
326}
327SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
328
329
330/*
331 * Mark a mount point as busy. Used to synchronize access and to delay
332 * unmounting. Eventually, mountlist_mtx is not released on failure.
333 */
334int
335vfs_busy(struct mount *mp, int flags)
336{
337
338	MPASS((flags & ~MBF_MASK) == 0);
339	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
340
341	MNT_ILOCK(mp);
342	MNT_REF(mp);
343	/*
344	 * If mount point is currenly being unmounted, sleep until the
345	 * mount point fate is decided.  If thread doing the unmounting fails,
346	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
347	 * that this mount point has survived the unmount attempt and vfs_busy
348	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
349	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
350	 * about to be really destroyed.  vfs_busy needs to release its
351	 * reference on the mount point in this case and return with ENOENT,
352	 * telling the caller that mount mount it tried to busy is no longer
353	 * valid.
354	 */
355	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
356		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
357			MNT_REL(mp);
358			MNT_IUNLOCK(mp);
359			CTR1(KTR_VFS, "%s: failed busying before sleeping",
360			    __func__);
361			return (ENOENT);
362		}
363		if (flags & MBF_MNTLSTLOCK)
364			mtx_unlock(&mountlist_mtx);
365		mp->mnt_kern_flag |= MNTK_MWAIT;
366		msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
367		if (flags & MBF_MNTLSTLOCK)
368			mtx_lock(&mountlist_mtx);
369	}
370	if (flags & MBF_MNTLSTLOCK)
371		mtx_unlock(&mountlist_mtx);
372	mp->mnt_lockref++;
373	MNT_IUNLOCK(mp);
374	return (0);
375}
376
377/*
378 * Free a busy filesystem.
379 */
380void
381vfs_unbusy(struct mount *mp)
382{
383
384	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
385	MNT_ILOCK(mp);
386	MNT_REL(mp);
387	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
388	mp->mnt_lockref--;
389	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
390		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
391		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
392		mp->mnt_kern_flag &= ~MNTK_DRAINING;
393		wakeup(&mp->mnt_lockref);
394	}
395	MNT_IUNLOCK(mp);
396}
397
398/*
399 * Lookup a mount point by filesystem identifier.
400 */
401struct mount *
402vfs_getvfs(fsid_t *fsid)
403{
404	struct mount *mp;
405
406	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
407	mtx_lock(&mountlist_mtx);
408	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
409		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
410		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
411			vfs_ref(mp);
412			mtx_unlock(&mountlist_mtx);
413			return (mp);
414		}
415	}
416	mtx_unlock(&mountlist_mtx);
417	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
418	return ((struct mount *) 0);
419}
420
421/*
422 * Lookup a mount point by filesystem identifier, busying it before
423 * returning.
424 */
425struct mount *
426vfs_busyfs(fsid_t *fsid)
427{
428	struct mount *mp;
429	int error;
430
431	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
432	mtx_lock(&mountlist_mtx);
433	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
434		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
435		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
436			error = vfs_busy(mp, MBF_MNTLSTLOCK);
437			if (error) {
438				mtx_unlock(&mountlist_mtx);
439				return (NULL);
440			}
441			return (mp);
442		}
443	}
444	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
445	mtx_unlock(&mountlist_mtx);
446	return ((struct mount *) 0);
447}
448
449/*
450 * Check if a user can access privileged mount options.
451 */
452int
453vfs_suser(struct mount *mp, struct thread *td)
454{
455	int error;
456
457	/*
458	 * If the thread is jailed, but this is not a jail-friendly file
459	 * system, deny immediately.
460	 */
461	if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred))
462		return (EPERM);
463
464	/*
465	 * If the file system was mounted outside the jail of the calling
466	 * thread, deny immediately.
467	 */
468	if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
469		return (EPERM);
470
471	/*
472	 * If file system supports delegated administration, we don't check
473	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
474	 * by the file system itself.
475	 * If this is not the user that did original mount, we check for
476	 * the PRIV_VFS_MOUNT_OWNER privilege.
477	 */
478	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
479	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
480		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
481			return (error);
482	}
483	return (0);
484}
485
486/*
487 * Get a new unique fsid.  Try to make its val[0] unique, since this value
488 * will be used to create fake device numbers for stat().  Also try (but
489 * not so hard) make its val[0] unique mod 2^16, since some emulators only
490 * support 16-bit device numbers.  We end up with unique val[0]'s for the
491 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
492 *
493 * Keep in mind that several mounts may be running in parallel.  Starting
494 * the search one past where the previous search terminated is both a
495 * micro-optimization and a defense against returning the same fsid to
496 * different mounts.
497 */
498void
499vfs_getnewfsid(struct mount *mp)
500{
501	static u_int16_t mntid_base;
502	struct mount *nmp;
503	fsid_t tfsid;
504	int mtype;
505
506	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
507	mtx_lock(&mntid_mtx);
508	mtype = mp->mnt_vfc->vfc_typenum;
509	tfsid.val[1] = mtype;
510	mtype = (mtype & 0xFF) << 24;
511	for (;;) {
512		tfsid.val[0] = makedev(255,
513		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
514		mntid_base++;
515		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
516			break;
517		vfs_rel(nmp);
518	}
519	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
520	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
521	mtx_unlock(&mntid_mtx);
522}
523
524/*
525 * Knob to control the precision of file timestamps:
526 *
527 *   0 = seconds only; nanoseconds zeroed.
528 *   1 = seconds and nanoseconds, accurate within 1/HZ.
529 *   2 = seconds and nanoseconds, truncated to microseconds.
530 * >=3 = seconds and nanoseconds, maximum precision.
531 */
532enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
533
534static int timestamp_precision = TSP_SEC;
535SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
536    &timestamp_precision, 0, "");
537
538/*
539 * Get a current timestamp.
540 */
541void
542vfs_timestamp(struct timespec *tsp)
543{
544	struct timeval tv;
545
546	switch (timestamp_precision) {
547	case TSP_SEC:
548		tsp->tv_sec = time_second;
549		tsp->tv_nsec = 0;
550		break;
551	case TSP_HZ:
552		getnanotime(tsp);
553		break;
554	case TSP_USEC:
555		microtime(&tv);
556		TIMEVAL_TO_TIMESPEC(&tv, tsp);
557		break;
558	case TSP_NSEC:
559	default:
560		nanotime(tsp);
561		break;
562	}
563}
564
565/*
566 * Set vnode attributes to VNOVAL
567 */
568void
569vattr_null(struct vattr *vap)
570{
571
572	vap->va_type = VNON;
573	vap->va_size = VNOVAL;
574	vap->va_bytes = VNOVAL;
575	vap->va_mode = VNOVAL;
576	vap->va_nlink = VNOVAL;
577	vap->va_uid = VNOVAL;
578	vap->va_gid = VNOVAL;
579	vap->va_fsid = VNOVAL;
580	vap->va_fileid = VNOVAL;
581	vap->va_blocksize = VNOVAL;
582	vap->va_rdev = VNOVAL;
583	vap->va_atime.tv_sec = VNOVAL;
584	vap->va_atime.tv_nsec = VNOVAL;
585	vap->va_mtime.tv_sec = VNOVAL;
586	vap->va_mtime.tv_nsec = VNOVAL;
587	vap->va_ctime.tv_sec = VNOVAL;
588	vap->va_ctime.tv_nsec = VNOVAL;
589	vap->va_birthtime.tv_sec = VNOVAL;
590	vap->va_birthtime.tv_nsec = VNOVAL;
591	vap->va_flags = VNOVAL;
592	vap->va_gen = VNOVAL;
593	vap->va_vaflags = 0;
594}
595
596/*
597 * This routine is called when we have too many vnodes.  It attempts
598 * to free <count> vnodes and will potentially free vnodes that still
599 * have VM backing store (VM backing store is typically the cause
600 * of a vnode blowout so we want to do this).  Therefore, this operation
601 * is not considered cheap.
602 *
603 * A number of conditions may prevent a vnode from being reclaimed.
604 * the buffer cache may have references on the vnode, a directory
605 * vnode may still have references due to the namei cache representing
606 * underlying files, or the vnode may be in active use.   It is not
607 * desireable to reuse such vnodes.  These conditions may cause the
608 * number of vnodes to reach some minimum value regardless of what
609 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
610 */
611static int
612vlrureclaim(struct mount *mp)
613{
614	struct vnode *vp;
615	int done;
616	int trigger;
617	int usevnodes;
618	int count;
619
620	/*
621	 * Calculate the trigger point, don't allow user
622	 * screwups to blow us up.   This prevents us from
623	 * recycling vnodes with lots of resident pages.  We
624	 * aren't trying to free memory, we are trying to
625	 * free vnodes.
626	 */
627	usevnodes = desiredvnodes;
628	if (usevnodes <= 0)
629		usevnodes = 1;
630	trigger = cnt.v_page_count * 2 / usevnodes;
631	done = 0;
632	vn_start_write(NULL, &mp, V_WAIT);
633	MNT_ILOCK(mp);
634	count = mp->mnt_nvnodelistsize / 10 + 1;
635	while (count != 0) {
636		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
637		while (vp != NULL && vp->v_type == VMARKER)
638			vp = TAILQ_NEXT(vp, v_nmntvnodes);
639		if (vp == NULL)
640			break;
641		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
642		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
643		--count;
644		if (!VI_TRYLOCK(vp))
645			goto next_iter;
646		/*
647		 * If it's been deconstructed already, it's still
648		 * referenced, or it exceeds the trigger, skip it.
649		 */
650		if (vp->v_usecount ||
651		    (!vlru_allow_cache_src &&
652			!LIST_EMPTY(&(vp)->v_cache_src)) ||
653		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
654		    vp->v_object->resident_page_count > trigger)) {
655			VI_UNLOCK(vp);
656			goto next_iter;
657		}
658		MNT_IUNLOCK(mp);
659		vholdl(vp);
660		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
661			vdrop(vp);
662			goto next_iter_mntunlocked;
663		}
664		VI_LOCK(vp);
665		/*
666		 * v_usecount may have been bumped after VOP_LOCK() dropped
667		 * the vnode interlock and before it was locked again.
668		 *
669		 * It is not necessary to recheck VI_DOOMED because it can
670		 * only be set by another thread that holds both the vnode
671		 * lock and vnode interlock.  If another thread has the
672		 * vnode lock before we get to VOP_LOCK() and obtains the
673		 * vnode interlock after VOP_LOCK() drops the vnode
674		 * interlock, the other thread will be unable to drop the
675		 * vnode lock before our VOP_LOCK() call fails.
676		 */
677		if (vp->v_usecount ||
678		    (!vlru_allow_cache_src &&
679			!LIST_EMPTY(&(vp)->v_cache_src)) ||
680		    (vp->v_object != NULL &&
681		    vp->v_object->resident_page_count > trigger)) {
682			VOP_UNLOCK(vp, LK_INTERLOCK);
683			goto next_iter_mntunlocked;
684		}
685		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
686		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
687		vgonel(vp);
688		VOP_UNLOCK(vp, 0);
689		vdropl(vp);
690		done++;
691next_iter_mntunlocked:
692		if ((count % 256) != 0)
693			goto relock_mnt;
694		goto yield;
695next_iter:
696		if ((count % 256) != 0)
697			continue;
698		MNT_IUNLOCK(mp);
699yield:
700		uio_yield();
701relock_mnt:
702		MNT_ILOCK(mp);
703	}
704	MNT_IUNLOCK(mp);
705	vn_finished_write(mp);
706	return done;
707}
708
709/*
710 * Attempt to keep the free list at wantfreevnodes length.
711 */
712static void
713vnlru_free(int count)
714{
715	struct vnode *vp;
716	int vfslocked;
717
718	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
719	for (; count > 0; count--) {
720		vp = TAILQ_FIRST(&vnode_free_list);
721		/*
722		 * The list can be modified while the free_list_mtx
723		 * has been dropped and vp could be NULL here.
724		 */
725		if (!vp)
726			break;
727		VNASSERT(vp->v_op != NULL, vp,
728		    ("vnlru_free: vnode already reclaimed."));
729		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
730		/*
731		 * Don't recycle if we can't get the interlock.
732		 */
733		if (!VI_TRYLOCK(vp)) {
734			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
735			continue;
736		}
737		VNASSERT(VCANRECYCLE(vp), vp,
738		    ("vp inconsistent on freelist"));
739		freevnodes--;
740		vp->v_iflag &= ~VI_FREE;
741		vholdl(vp);
742		mtx_unlock(&vnode_free_list_mtx);
743		VI_UNLOCK(vp);
744		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
745		vtryrecycle(vp);
746		VFS_UNLOCK_GIANT(vfslocked);
747		/*
748		 * If the recycled succeeded this vdrop will actually free
749		 * the vnode.  If not it will simply place it back on
750		 * the free list.
751		 */
752		vdrop(vp);
753		mtx_lock(&vnode_free_list_mtx);
754	}
755}
756/*
757 * Attempt to recycle vnodes in a context that is always safe to block.
758 * Calling vlrurecycle() from the bowels of filesystem code has some
759 * interesting deadlock problems.
760 */
761static struct proc *vnlruproc;
762static int vnlruproc_sig;
763
764static void
765vnlru_proc(void)
766{
767	struct mount *mp, *nmp;
768	int done, vfslocked;
769	struct proc *p = vnlruproc;
770
771	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
772	    SHUTDOWN_PRI_FIRST);
773
774	for (;;) {
775		kproc_suspend_check(p);
776		mtx_lock(&vnode_free_list_mtx);
777		if (freevnodes > wantfreevnodes)
778			vnlru_free(freevnodes - wantfreevnodes);
779		if (numvnodes <= desiredvnodes * 9 / 10) {
780			vnlruproc_sig = 0;
781			wakeup(&vnlruproc_sig);
782			msleep(vnlruproc, &vnode_free_list_mtx,
783			    PVFS|PDROP, "vlruwt", hz);
784			continue;
785		}
786		mtx_unlock(&vnode_free_list_mtx);
787		done = 0;
788		mtx_lock(&mountlist_mtx);
789		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
790			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
791				nmp = TAILQ_NEXT(mp, mnt_list);
792				continue;
793			}
794			vfslocked = VFS_LOCK_GIANT(mp);
795			done += vlrureclaim(mp);
796			VFS_UNLOCK_GIANT(vfslocked);
797			mtx_lock(&mountlist_mtx);
798			nmp = TAILQ_NEXT(mp, mnt_list);
799			vfs_unbusy(mp);
800		}
801		mtx_unlock(&mountlist_mtx);
802		if (done == 0) {
803			EVENTHANDLER_INVOKE(vfs_lowvnodes, desiredvnodes / 10);
804#if 0
805			/* These messages are temporary debugging aids */
806			if (vnlru_nowhere < 5)
807				printf("vnlru process getting nowhere..\n");
808			else if (vnlru_nowhere == 5)
809				printf("vnlru process messages stopped.\n");
810#endif
811			vnlru_nowhere++;
812			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
813		} else
814			uio_yield();
815	}
816}
817
818static struct kproc_desc vnlru_kp = {
819	"vnlru",
820	vnlru_proc,
821	&vnlruproc
822};
823SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
824    &vnlru_kp);
825
826/*
827 * Routines having to do with the management of the vnode table.
828 */
829
830void
831vdestroy(struct vnode *vp)
832{
833	struct bufobj *bo;
834
835	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
836	mtx_lock(&vnode_free_list_mtx);
837	numvnodes--;
838	mtx_unlock(&vnode_free_list_mtx);
839	bo = &vp->v_bufobj;
840	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
841	    ("cleaned vnode still on the free list."));
842	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
843	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
844	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
845	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
846	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
847	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
848	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
849	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
850	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
851	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
852	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
853	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
854	VI_UNLOCK(vp);
855#ifdef MAC
856	mac_vnode_destroy(vp);
857#endif
858	if (vp->v_pollinfo != NULL)
859		destroy_vpollinfo(vp->v_pollinfo);
860#ifdef INVARIANTS
861	/* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
862	vp->v_op = NULL;
863#endif
864	lockdestroy(vp->v_vnlock);
865	mtx_destroy(&vp->v_interlock);
866	mtx_destroy(BO_MTX(bo));
867	uma_zfree(vnode_zone, vp);
868}
869
870/*
871 * Try to recycle a freed vnode.  We abort if anyone picks up a reference
872 * before we actually vgone().  This function must be called with the vnode
873 * held to prevent the vnode from being returned to the free list midway
874 * through vgone().
875 */
876static int
877vtryrecycle(struct vnode *vp)
878{
879	struct mount *vnmp;
880
881	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
882	VNASSERT(vp->v_holdcnt, vp,
883	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
884	/*
885	 * This vnode may found and locked via some other list, if so we
886	 * can't recycle it yet.
887	 */
888	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
889		CTR2(KTR_VFS,
890		    "%s: impossible to recycle, vp %p lock is already held",
891		    __func__, vp);
892		return (EWOULDBLOCK);
893	}
894	/*
895	 * Don't recycle if its filesystem is being suspended.
896	 */
897	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
898		VOP_UNLOCK(vp, 0);
899		CTR2(KTR_VFS,
900		    "%s: impossible to recycle, cannot start the write for %p",
901		    __func__, vp);
902		return (EBUSY);
903	}
904	/*
905	 * If we got this far, we need to acquire the interlock and see if
906	 * anyone picked up this vnode from another list.  If not, we will
907	 * mark it with DOOMED via vgonel() so that anyone who does find it
908	 * will skip over it.
909	 */
910	VI_LOCK(vp);
911	if (vp->v_usecount) {
912		VOP_UNLOCK(vp, LK_INTERLOCK);
913		vn_finished_write(vnmp);
914		CTR2(KTR_VFS,
915		    "%s: impossible to recycle, %p is already referenced",
916		    __func__, vp);
917		return (EBUSY);
918	}
919	if ((vp->v_iflag & VI_DOOMED) == 0)
920		vgonel(vp);
921	VOP_UNLOCK(vp, LK_INTERLOCK);
922	vn_finished_write(vnmp);
923	return (0);
924}
925
926/*
927 * Return the next vnode from the free list.
928 */
929int
930getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
931    struct vnode **vpp)
932{
933	struct vnode *vp = NULL;
934	struct bufobj *bo;
935
936	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
937	mtx_lock(&vnode_free_list_mtx);
938	/*
939	 * Lend our context to reclaim vnodes if they've exceeded the max.
940	 */
941	if (freevnodes > wantfreevnodes)
942		vnlru_free(1);
943	/*
944	 * Wait for available vnodes.
945	 */
946	if (numvnodes > desiredvnodes) {
947		if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
948			/*
949			 * File system is beeing suspended, we cannot risk a
950			 * deadlock here, so allocate new vnode anyway.
951			 */
952			if (freevnodes > wantfreevnodes)
953				vnlru_free(freevnodes - wantfreevnodes);
954			goto alloc;
955		}
956		if (vnlruproc_sig == 0) {
957			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
958			wakeup(vnlruproc);
959		}
960		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
961		    "vlruwk", hz);
962#if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
963		if (numvnodes > desiredvnodes) {
964			mtx_unlock(&vnode_free_list_mtx);
965			return (ENFILE);
966		}
967#endif
968	}
969alloc:
970	numvnodes++;
971	mtx_unlock(&vnode_free_list_mtx);
972	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
973	/*
974	 * Setup locks.
975	 */
976	vp->v_vnlock = &vp->v_lock;
977	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
978	/*
979	 * By default, don't allow shared locks unless filesystems
980	 * opt-in.
981	 */
982	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
983	/*
984	 * Initialize bufobj.
985	 */
986	bo = &vp->v_bufobj;
987	bo->__bo_vnode = vp;
988	mtx_init(BO_MTX(bo), "bufobj interlock", NULL, MTX_DEF);
989	bo->bo_ops = &buf_ops_bio;
990	bo->bo_private = vp;
991	TAILQ_INIT(&bo->bo_clean.bv_hd);
992	TAILQ_INIT(&bo->bo_dirty.bv_hd);
993	/*
994	 * Initialize namecache.
995	 */
996	LIST_INIT(&vp->v_cache_src);
997	TAILQ_INIT(&vp->v_cache_dst);
998	/*
999	 * Finalize various vnode identity bits.
1000	 */
1001	vp->v_type = VNON;
1002	vp->v_tag = tag;
1003	vp->v_op = vops;
1004	v_incr_usecount(vp);
1005	vp->v_data = 0;
1006#ifdef MAC
1007	mac_vnode_init(vp);
1008	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1009		mac_vnode_associate_singlelabel(mp, vp);
1010	else if (mp == NULL && vops != &dead_vnodeops)
1011		printf("NULL mp in getnewvnode()\n");
1012#endif
1013	if (mp != NULL) {
1014		bo->bo_bsize = mp->mnt_stat.f_iosize;
1015		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1016			vp->v_vflag |= VV_NOKNOTE;
1017	}
1018
1019	*vpp = vp;
1020	return (0);
1021}
1022
1023/*
1024 * Delete from old mount point vnode list, if on one.
1025 */
1026static void
1027delmntque(struct vnode *vp)
1028{
1029	struct mount *mp;
1030
1031	mp = vp->v_mount;
1032	if (mp == NULL)
1033		return;
1034	MNT_ILOCK(mp);
1035	vp->v_mount = NULL;
1036	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1037		("bad mount point vnode list size"));
1038	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1039	mp->mnt_nvnodelistsize--;
1040	MNT_REL(mp);
1041	MNT_IUNLOCK(mp);
1042}
1043
1044static void
1045insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1046{
1047
1048	vp->v_data = NULL;
1049	vp->v_op = &dead_vnodeops;
1050	/* XXX non mp-safe fs may still call insmntque with vnode
1051	   unlocked */
1052	if (!VOP_ISLOCKED(vp))
1053		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1054	vgone(vp);
1055	vput(vp);
1056}
1057
1058/*
1059 * Insert into list of vnodes for the new mount point, if available.
1060 */
1061int
1062insmntque1(struct vnode *vp, struct mount *mp,
1063	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1064{
1065	int locked;
1066
1067	KASSERT(vp->v_mount == NULL,
1068		("insmntque: vnode already on per mount vnode list"));
1069	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1070#ifdef DEBUG_VFS_LOCKS
1071	if (!VFS_NEEDSGIANT(mp))
1072		ASSERT_VOP_ELOCKED(vp,
1073		    "insmntque: mp-safe fs and non-locked vp");
1074#endif
1075	MNT_ILOCK(mp);
1076	if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1077	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1078	     mp->mnt_nvnodelistsize == 0)) {
1079		locked = VOP_ISLOCKED(vp);
1080		if (!locked || (locked == LK_EXCLUSIVE &&
1081		     (vp->v_vflag & VV_FORCEINSMQ) == 0)) {
1082			MNT_IUNLOCK(mp);
1083			if (dtr != NULL)
1084				dtr(vp, dtr_arg);
1085			return (EBUSY);
1086		}
1087	}
1088	vp->v_mount = mp;
1089	MNT_REF(mp);
1090	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1091	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1092		("neg mount point vnode list size"));
1093	mp->mnt_nvnodelistsize++;
1094	MNT_IUNLOCK(mp);
1095	return (0);
1096}
1097
1098int
1099insmntque(struct vnode *vp, struct mount *mp)
1100{
1101
1102	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1103}
1104
1105/*
1106 * Flush out and invalidate all buffers associated with a bufobj
1107 * Called with the underlying object locked.
1108 */
1109int
1110bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1111{
1112	int error;
1113
1114	BO_LOCK(bo);
1115	if (flags & V_SAVE) {
1116		error = bufobj_wwait(bo, slpflag, slptimeo);
1117		if (error) {
1118			BO_UNLOCK(bo);
1119			return (error);
1120		}
1121		if (bo->bo_dirty.bv_cnt > 0) {
1122			BO_UNLOCK(bo);
1123			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1124				return (error);
1125			/*
1126			 * XXX We could save a lock/unlock if this was only
1127			 * enabled under INVARIANTS
1128			 */
1129			BO_LOCK(bo);
1130			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1131				panic("vinvalbuf: dirty bufs");
1132		}
1133	}
1134	/*
1135	 * If you alter this loop please notice that interlock is dropped and
1136	 * reacquired in flushbuflist.  Special care is needed to ensure that
1137	 * no race conditions occur from this.
1138	 */
1139	do {
1140		error = flushbuflist(&bo->bo_clean,
1141		    flags, bo, slpflag, slptimeo);
1142		if (error == 0)
1143			error = flushbuflist(&bo->bo_dirty,
1144			    flags, bo, slpflag, slptimeo);
1145		if (error != 0 && error != EAGAIN) {
1146			BO_UNLOCK(bo);
1147			return (error);
1148		}
1149	} while (error != 0);
1150
1151	/*
1152	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1153	 * have write I/O in-progress but if there is a VM object then the
1154	 * VM object can also have read-I/O in-progress.
1155	 */
1156	do {
1157		bufobj_wwait(bo, 0, 0);
1158		BO_UNLOCK(bo);
1159		if (bo->bo_object != NULL) {
1160			VM_OBJECT_LOCK(bo->bo_object);
1161			vm_object_pip_wait(bo->bo_object, "bovlbx");
1162			VM_OBJECT_UNLOCK(bo->bo_object);
1163		}
1164		BO_LOCK(bo);
1165	} while (bo->bo_numoutput > 0);
1166	BO_UNLOCK(bo);
1167
1168	/*
1169	 * Destroy the copy in the VM cache, too.
1170	 */
1171	if (bo->bo_object != NULL && (flags & (V_ALT | V_NORMAL)) == 0) {
1172		VM_OBJECT_LOCK(bo->bo_object);
1173		vm_object_page_remove(bo->bo_object, 0, 0,
1174			(flags & V_SAVE) ? TRUE : FALSE);
1175		VM_OBJECT_UNLOCK(bo->bo_object);
1176	}
1177
1178#ifdef INVARIANTS
1179	BO_LOCK(bo);
1180	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1181	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1182		panic("vinvalbuf: flush failed");
1183	BO_UNLOCK(bo);
1184#endif
1185	return (0);
1186}
1187
1188/*
1189 * Flush out and invalidate all buffers associated with a vnode.
1190 * Called with the underlying object locked.
1191 */
1192int
1193vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1194{
1195
1196	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1197	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1198	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1199}
1200
1201/*
1202 * Flush out buffers on the specified list.
1203 *
1204 */
1205static int
1206flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1207    int slptimeo)
1208{
1209	struct buf *bp, *nbp;
1210	int retval, error;
1211	daddr_t lblkno;
1212	b_xflags_t xflags;
1213
1214	ASSERT_BO_LOCKED(bo);
1215
1216	retval = 0;
1217	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1218		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1219		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1220			continue;
1221		}
1222		lblkno = 0;
1223		xflags = 0;
1224		if (nbp != NULL) {
1225			lblkno = nbp->b_lblkno;
1226			xflags = nbp->b_xflags &
1227				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1228		}
1229		retval = EAGAIN;
1230		error = BUF_TIMELOCK(bp,
1231		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1232		    "flushbuf", slpflag, slptimeo);
1233		if (error) {
1234			BO_LOCK(bo);
1235			return (error != ENOLCK ? error : EAGAIN);
1236		}
1237		KASSERT(bp->b_bufobj == bo,
1238		    ("bp %p wrong b_bufobj %p should be %p",
1239		    bp, bp->b_bufobj, bo));
1240		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1241			BUF_UNLOCK(bp);
1242			BO_LOCK(bo);
1243			return (EAGAIN);
1244		}
1245		/*
1246		 * XXX Since there are no node locks for NFS, I
1247		 * believe there is a slight chance that a delayed
1248		 * write will occur while sleeping just above, so
1249		 * check for it.
1250		 */
1251		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1252		    (flags & V_SAVE)) {
1253			bremfree(bp);
1254			bp->b_flags |= B_ASYNC;
1255			bwrite(bp);
1256			BO_LOCK(bo);
1257			return (EAGAIN);	/* XXX: why not loop ? */
1258		}
1259		bremfree(bp);
1260		bp->b_flags |= (B_INVAL | B_RELBUF);
1261		bp->b_flags &= ~B_ASYNC;
1262		brelse(bp);
1263		BO_LOCK(bo);
1264		if (nbp != NULL &&
1265		    (nbp->b_bufobj != bo ||
1266		     nbp->b_lblkno != lblkno ||
1267		     (nbp->b_xflags &
1268		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1269			break;			/* nbp invalid */
1270	}
1271	return (retval);
1272}
1273
1274/*
1275 * Truncate a file's buffer and pages to a specified length.  This
1276 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1277 * sync activity.
1278 */
1279int
1280vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td,
1281    off_t length, int blksize)
1282{
1283	struct buf *bp, *nbp;
1284	int anyfreed;
1285	int trunclbn;
1286	struct bufobj *bo;
1287
1288	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1289	    vp, cred, blksize, (uintmax_t)length);
1290
1291	/*
1292	 * Round up to the *next* lbn.
1293	 */
1294	trunclbn = (length + blksize - 1) / blksize;
1295
1296	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1297restart:
1298	bo = &vp->v_bufobj;
1299	BO_LOCK(bo);
1300	anyfreed = 1;
1301	for (;anyfreed;) {
1302		anyfreed = 0;
1303		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1304			if (bp->b_lblkno < trunclbn)
1305				continue;
1306			if (BUF_LOCK(bp,
1307			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1308			    BO_MTX(bo)) == ENOLCK)
1309				goto restart;
1310
1311			bremfree(bp);
1312			bp->b_flags |= (B_INVAL | B_RELBUF);
1313			bp->b_flags &= ~B_ASYNC;
1314			brelse(bp);
1315			anyfreed = 1;
1316
1317			if (nbp != NULL &&
1318			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1319			    (nbp->b_vp != vp) ||
1320			    (nbp->b_flags & B_DELWRI))) {
1321				goto restart;
1322			}
1323			BO_LOCK(bo);
1324		}
1325
1326		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1327			if (bp->b_lblkno < trunclbn)
1328				continue;
1329			if (BUF_LOCK(bp,
1330			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1331			    BO_MTX(bo)) == ENOLCK)
1332				goto restart;
1333			bremfree(bp);
1334			bp->b_flags |= (B_INVAL | B_RELBUF);
1335			bp->b_flags &= ~B_ASYNC;
1336			brelse(bp);
1337			anyfreed = 1;
1338			if (nbp != NULL &&
1339			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1340			    (nbp->b_vp != vp) ||
1341			    (nbp->b_flags & B_DELWRI) == 0)) {
1342				goto restart;
1343			}
1344			BO_LOCK(bo);
1345		}
1346	}
1347
1348	if (length > 0) {
1349restartsync:
1350		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1351			if (bp->b_lblkno > 0)
1352				continue;
1353			/*
1354			 * Since we hold the vnode lock this should only
1355			 * fail if we're racing with the buf daemon.
1356			 */
1357			if (BUF_LOCK(bp,
1358			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1359			    BO_MTX(bo)) == ENOLCK) {
1360				goto restart;
1361			}
1362			VNASSERT((bp->b_flags & B_DELWRI), vp,
1363			    ("buf(%p) on dirty queue without DELWRI", bp));
1364
1365			bremfree(bp);
1366			bawrite(bp);
1367			BO_LOCK(bo);
1368			goto restartsync;
1369		}
1370	}
1371
1372	bufobj_wwait(bo, 0, 0);
1373	BO_UNLOCK(bo);
1374	vnode_pager_setsize(vp, length);
1375
1376	return (0);
1377}
1378
1379/*
1380 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1381 *		 a vnode.
1382 *
1383 *	NOTE: We have to deal with the special case of a background bitmap
1384 *	buffer, a situation where two buffers will have the same logical
1385 *	block offset.  We want (1) only the foreground buffer to be accessed
1386 *	in a lookup and (2) must differentiate between the foreground and
1387 *	background buffer in the splay tree algorithm because the splay
1388 *	tree cannot normally handle multiple entities with the same 'index'.
1389 *	We accomplish this by adding differentiating flags to the splay tree's
1390 *	numerical domain.
1391 */
1392static
1393struct buf *
1394buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1395{
1396	struct buf dummy;
1397	struct buf *lefttreemax, *righttreemin, *y;
1398
1399	if (root == NULL)
1400		return (NULL);
1401	lefttreemax = righttreemin = &dummy;
1402	for (;;) {
1403		if (lblkno < root->b_lblkno ||
1404		    (lblkno == root->b_lblkno &&
1405		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1406			if ((y = root->b_left) == NULL)
1407				break;
1408			if (lblkno < y->b_lblkno) {
1409				/* Rotate right. */
1410				root->b_left = y->b_right;
1411				y->b_right = root;
1412				root = y;
1413				if ((y = root->b_left) == NULL)
1414					break;
1415			}
1416			/* Link into the new root's right tree. */
1417			righttreemin->b_left = root;
1418			righttreemin = root;
1419		} else if (lblkno > root->b_lblkno ||
1420		    (lblkno == root->b_lblkno &&
1421		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1422			if ((y = root->b_right) == NULL)
1423				break;
1424			if (lblkno > y->b_lblkno) {
1425				/* Rotate left. */
1426				root->b_right = y->b_left;
1427				y->b_left = root;
1428				root = y;
1429				if ((y = root->b_right) == NULL)
1430					break;
1431			}
1432			/* Link into the new root's left tree. */
1433			lefttreemax->b_right = root;
1434			lefttreemax = root;
1435		} else {
1436			break;
1437		}
1438		root = y;
1439	}
1440	/* Assemble the new root. */
1441	lefttreemax->b_right = root->b_left;
1442	righttreemin->b_left = root->b_right;
1443	root->b_left = dummy.b_right;
1444	root->b_right = dummy.b_left;
1445	return (root);
1446}
1447
1448static void
1449buf_vlist_remove(struct buf *bp)
1450{
1451	struct buf *root;
1452	struct bufv *bv;
1453
1454	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1455	ASSERT_BO_LOCKED(bp->b_bufobj);
1456	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1457	    (BX_VNDIRTY|BX_VNCLEAN),
1458	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1459	if (bp->b_xflags & BX_VNDIRTY)
1460		bv = &bp->b_bufobj->bo_dirty;
1461	else
1462		bv = &bp->b_bufobj->bo_clean;
1463	if (bp != bv->bv_root) {
1464		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1465		KASSERT(root == bp, ("splay lookup failed in remove"));
1466	}
1467	if (bp->b_left == NULL) {
1468		root = bp->b_right;
1469	} else {
1470		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1471		root->b_right = bp->b_right;
1472	}
1473	bv->bv_root = root;
1474	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1475	bv->bv_cnt--;
1476	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1477}
1478
1479/*
1480 * Add the buffer to the sorted clean or dirty block list using a
1481 * splay tree algorithm.
1482 *
1483 * NOTE: xflags is passed as a constant, optimizing this inline function!
1484 */
1485static void
1486buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1487{
1488	struct buf *root;
1489	struct bufv *bv;
1490
1491	ASSERT_BO_LOCKED(bo);
1492	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1493	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1494	bp->b_xflags |= xflags;
1495	if (xflags & BX_VNDIRTY)
1496		bv = &bo->bo_dirty;
1497	else
1498		bv = &bo->bo_clean;
1499
1500	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1501	if (root == NULL) {
1502		bp->b_left = NULL;
1503		bp->b_right = NULL;
1504		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1505	} else if (bp->b_lblkno < root->b_lblkno ||
1506	    (bp->b_lblkno == root->b_lblkno &&
1507	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1508		bp->b_left = root->b_left;
1509		bp->b_right = root;
1510		root->b_left = NULL;
1511		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1512	} else {
1513		bp->b_right = root->b_right;
1514		bp->b_left = root;
1515		root->b_right = NULL;
1516		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1517	}
1518	bv->bv_cnt++;
1519	bv->bv_root = bp;
1520}
1521
1522/*
1523 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1524 * shadow buffers used in background bitmap writes.
1525 *
1526 * This code isn't quite efficient as it could be because we are maintaining
1527 * two sorted lists and do not know which list the block resides in.
1528 *
1529 * During a "make buildworld" the desired buffer is found at one of
1530 * the roots more than 60% of the time.  Thus, checking both roots
1531 * before performing either splay eliminates unnecessary splays on the
1532 * first tree splayed.
1533 */
1534struct buf *
1535gbincore(struct bufobj *bo, daddr_t lblkno)
1536{
1537	struct buf *bp;
1538
1539	ASSERT_BO_LOCKED(bo);
1540	if ((bp = bo->bo_clean.bv_root) != NULL &&
1541	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1542		return (bp);
1543	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1544	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1545		return (bp);
1546	if ((bp = bo->bo_clean.bv_root) != NULL) {
1547		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1548		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1549			return (bp);
1550	}
1551	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1552		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1553		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1554			return (bp);
1555	}
1556	return (NULL);
1557}
1558
1559/*
1560 * Associate a buffer with a vnode.
1561 */
1562void
1563bgetvp(struct vnode *vp, struct buf *bp)
1564{
1565	struct bufobj *bo;
1566
1567	bo = &vp->v_bufobj;
1568	ASSERT_BO_LOCKED(bo);
1569	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1570
1571	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1572	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1573	    ("bgetvp: bp already attached! %p", bp));
1574
1575	vhold(vp);
1576	if (VFS_NEEDSGIANT(vp->v_mount) || bo->bo_flag & BO_NEEDSGIANT)
1577		bp->b_flags |= B_NEEDSGIANT;
1578	bp->b_vp = vp;
1579	bp->b_bufobj = bo;
1580	/*
1581	 * Insert onto list for new vnode.
1582	 */
1583	buf_vlist_add(bp, bo, BX_VNCLEAN);
1584}
1585
1586/*
1587 * Disassociate a buffer from a vnode.
1588 */
1589void
1590brelvp(struct buf *bp)
1591{
1592	struct bufobj *bo;
1593	struct vnode *vp;
1594
1595	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1596	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1597
1598	/*
1599	 * Delete from old vnode list, if on one.
1600	 */
1601	vp = bp->b_vp;		/* XXX */
1602	bo = bp->b_bufobj;
1603	BO_LOCK(bo);
1604	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1605		buf_vlist_remove(bp);
1606	else
1607		panic("brelvp: Buffer %p not on queue.", bp);
1608	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1609		bo->bo_flag &= ~BO_ONWORKLST;
1610		mtx_lock(&sync_mtx);
1611		LIST_REMOVE(bo, bo_synclist);
1612		syncer_worklist_len--;
1613		mtx_unlock(&sync_mtx);
1614	}
1615	bp->b_flags &= ~B_NEEDSGIANT;
1616	bp->b_vp = NULL;
1617	bp->b_bufobj = NULL;
1618	BO_UNLOCK(bo);
1619	vdrop(vp);
1620}
1621
1622/*
1623 * Add an item to the syncer work queue.
1624 */
1625static void
1626vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1627{
1628	int queue, slot;
1629
1630	ASSERT_BO_LOCKED(bo);
1631
1632	mtx_lock(&sync_mtx);
1633	if (bo->bo_flag & BO_ONWORKLST)
1634		LIST_REMOVE(bo, bo_synclist);
1635	else {
1636		bo->bo_flag |= BO_ONWORKLST;
1637		syncer_worklist_len++;
1638	}
1639
1640	if (delay > syncer_maxdelay - 2)
1641		delay = syncer_maxdelay - 2;
1642	slot = (syncer_delayno + delay) & syncer_mask;
1643
1644	queue = VFS_NEEDSGIANT(bo->__bo_vnode->v_mount) ? WI_GIANTQ :
1645	    WI_MPSAFEQ;
1646	LIST_INSERT_HEAD(&syncer_workitem_pending[queue][slot], bo,
1647	    bo_synclist);
1648	mtx_unlock(&sync_mtx);
1649}
1650
1651static int
1652sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1653{
1654	int error, len;
1655
1656	mtx_lock(&sync_mtx);
1657	len = syncer_worklist_len - sync_vnode_count;
1658	mtx_unlock(&sync_mtx);
1659	error = SYSCTL_OUT(req, &len, sizeof(len));
1660	return (error);
1661}
1662
1663SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1664    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1665
1666static struct proc *updateproc;
1667static void sched_sync(void);
1668static struct kproc_desc up_kp = {
1669	"syncer",
1670	sched_sync,
1671	&updateproc
1672};
1673SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1674
1675static int
1676sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1677{
1678	struct vnode *vp;
1679	struct mount *mp;
1680
1681	*bo = LIST_FIRST(slp);
1682	if (*bo == NULL)
1683		return (0);
1684	vp = (*bo)->__bo_vnode;	/* XXX */
1685	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1686		return (1);
1687	/*
1688	 * We use vhold in case the vnode does not
1689	 * successfully sync.  vhold prevents the vnode from
1690	 * going away when we unlock the sync_mtx so that
1691	 * we can acquire the vnode interlock.
1692	 */
1693	vholdl(vp);
1694	mtx_unlock(&sync_mtx);
1695	VI_UNLOCK(vp);
1696	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1697		vdrop(vp);
1698		mtx_lock(&sync_mtx);
1699		return (*bo == LIST_FIRST(slp));
1700	}
1701	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1702	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1703	VOP_UNLOCK(vp, 0);
1704	vn_finished_write(mp);
1705	BO_LOCK(*bo);
1706	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1707		/*
1708		 * Put us back on the worklist.  The worklist
1709		 * routine will remove us from our current
1710		 * position and then add us back in at a later
1711		 * position.
1712		 */
1713		vn_syncer_add_to_worklist(*bo, syncdelay);
1714	}
1715	BO_UNLOCK(*bo);
1716	vdrop(vp);
1717	mtx_lock(&sync_mtx);
1718	return (0);
1719}
1720
1721/*
1722 * System filesystem synchronizer daemon.
1723 */
1724static void
1725sched_sync(void)
1726{
1727	struct synclist *gnext, *next;
1728	struct synclist *gslp, *slp;
1729	struct bufobj *bo;
1730	long starttime;
1731	struct thread *td = curthread;
1732	int last_work_seen;
1733	int net_worklist_len;
1734	int syncer_final_iter;
1735	int first_printf;
1736	int error;
1737
1738	last_work_seen = 0;
1739	syncer_final_iter = 0;
1740	first_printf = 1;
1741	syncer_state = SYNCER_RUNNING;
1742	starttime = time_uptime;
1743	td->td_pflags |= TDP_NORUNNINGBUF;
1744
1745	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1746	    SHUTDOWN_PRI_LAST);
1747
1748	mtx_lock(&sync_mtx);
1749	for (;;) {
1750		if (syncer_state == SYNCER_FINAL_DELAY &&
1751		    syncer_final_iter == 0) {
1752			mtx_unlock(&sync_mtx);
1753			kproc_suspend_check(td->td_proc);
1754			mtx_lock(&sync_mtx);
1755		}
1756		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1757		if (syncer_state != SYNCER_RUNNING &&
1758		    starttime != time_uptime) {
1759			if (first_printf) {
1760				printf("\nSyncing disks, vnodes remaining...");
1761				first_printf = 0;
1762			}
1763			printf("%d ", net_worklist_len);
1764		}
1765		starttime = time_uptime;
1766
1767		/*
1768		 * Push files whose dirty time has expired.  Be careful
1769		 * of interrupt race on slp queue.
1770		 *
1771		 * Skip over empty worklist slots when shutting down.
1772		 */
1773		do {
1774			slp = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1775			gslp = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1776			syncer_delayno += 1;
1777			if (syncer_delayno == syncer_maxdelay)
1778				syncer_delayno = 0;
1779			next = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1780			gnext = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1781			/*
1782			 * If the worklist has wrapped since the
1783			 * it was emptied of all but syncer vnodes,
1784			 * switch to the FINAL_DELAY state and run
1785			 * for one more second.
1786			 */
1787			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1788			    net_worklist_len == 0 &&
1789			    last_work_seen == syncer_delayno) {
1790				syncer_state = SYNCER_FINAL_DELAY;
1791				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1792			}
1793		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1794		    LIST_EMPTY(gslp) && syncer_worklist_len > 0);
1795
1796		/*
1797		 * Keep track of the last time there was anything
1798		 * on the worklist other than syncer vnodes.
1799		 * Return to the SHUTTING_DOWN state if any
1800		 * new work appears.
1801		 */
1802		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1803			last_work_seen = syncer_delayno;
1804		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1805			syncer_state = SYNCER_SHUTTING_DOWN;
1806		while (!LIST_EMPTY(slp)) {
1807			error = sync_vnode(slp, &bo, td);
1808			if (error == 1) {
1809				LIST_REMOVE(bo, bo_synclist);
1810				LIST_INSERT_HEAD(next, bo, bo_synclist);
1811				continue;
1812			}
1813		}
1814		if (!LIST_EMPTY(gslp)) {
1815			mtx_unlock(&sync_mtx);
1816			mtx_lock(&Giant);
1817			mtx_lock(&sync_mtx);
1818			while (!LIST_EMPTY(gslp)) {
1819				error = sync_vnode(gslp, &bo, td);
1820				if (error == 1) {
1821					LIST_REMOVE(bo, bo_synclist);
1822					LIST_INSERT_HEAD(gnext, bo,
1823					    bo_synclist);
1824					continue;
1825				}
1826			}
1827			mtx_unlock(&Giant);
1828		}
1829		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1830			syncer_final_iter--;
1831		/*
1832		 * The variable rushjob allows the kernel to speed up the
1833		 * processing of the filesystem syncer process. A rushjob
1834		 * value of N tells the filesystem syncer to process the next
1835		 * N seconds worth of work on its queue ASAP. Currently rushjob
1836		 * is used by the soft update code to speed up the filesystem
1837		 * syncer process when the incore state is getting so far
1838		 * ahead of the disk that the kernel memory pool is being
1839		 * threatened with exhaustion.
1840		 */
1841		if (rushjob > 0) {
1842			rushjob -= 1;
1843			continue;
1844		}
1845		/*
1846		 * Just sleep for a short period of time between
1847		 * iterations when shutting down to allow some I/O
1848		 * to happen.
1849		 *
1850		 * If it has taken us less than a second to process the
1851		 * current work, then wait. Otherwise start right over
1852		 * again. We can still lose time if any single round
1853		 * takes more than two seconds, but it does not really
1854		 * matter as we are just trying to generally pace the
1855		 * filesystem activity.
1856		 */
1857		if (syncer_state != SYNCER_RUNNING)
1858			cv_timedwait(&sync_wakeup, &sync_mtx,
1859			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1860		else if (time_uptime == starttime)
1861			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
1862	}
1863}
1864
1865/*
1866 * Request the syncer daemon to speed up its work.
1867 * We never push it to speed up more than half of its
1868 * normal turn time, otherwise it could take over the cpu.
1869 */
1870int
1871speedup_syncer(void)
1872{
1873	int ret = 0;
1874
1875	mtx_lock(&sync_mtx);
1876	if (rushjob < syncdelay / 2) {
1877		rushjob += 1;
1878		stat_rush_requests += 1;
1879		ret = 1;
1880	}
1881	mtx_unlock(&sync_mtx);
1882	cv_broadcast(&sync_wakeup);
1883	return (ret);
1884}
1885
1886/*
1887 * Tell the syncer to speed up its work and run though its work
1888 * list several times, then tell it to shut down.
1889 */
1890static void
1891syncer_shutdown(void *arg, int howto)
1892{
1893
1894	if (howto & RB_NOSYNC)
1895		return;
1896	mtx_lock(&sync_mtx);
1897	syncer_state = SYNCER_SHUTTING_DOWN;
1898	rushjob = 0;
1899	mtx_unlock(&sync_mtx);
1900	cv_broadcast(&sync_wakeup);
1901	kproc_shutdown(arg, howto);
1902}
1903
1904/*
1905 * Reassign a buffer from one vnode to another.
1906 * Used to assign file specific control information
1907 * (indirect blocks) to the vnode to which they belong.
1908 */
1909void
1910reassignbuf(struct buf *bp)
1911{
1912	struct vnode *vp;
1913	struct bufobj *bo;
1914	int delay;
1915#ifdef INVARIANTS
1916	struct bufv *bv;
1917#endif
1918
1919	vp = bp->b_vp;
1920	bo = bp->b_bufobj;
1921	++reassignbufcalls;
1922
1923	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1924	    bp, bp->b_vp, bp->b_flags);
1925	/*
1926	 * B_PAGING flagged buffers cannot be reassigned because their vp
1927	 * is not fully linked in.
1928	 */
1929	if (bp->b_flags & B_PAGING)
1930		panic("cannot reassign paging buffer");
1931
1932	/*
1933	 * Delete from old vnode list, if on one.
1934	 */
1935	BO_LOCK(bo);
1936	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1937		buf_vlist_remove(bp);
1938	else
1939		panic("reassignbuf: Buffer %p not on queue.", bp);
1940	/*
1941	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1942	 * of clean buffers.
1943	 */
1944	if (bp->b_flags & B_DELWRI) {
1945		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1946			switch (vp->v_type) {
1947			case VDIR:
1948				delay = dirdelay;
1949				break;
1950			case VCHR:
1951				delay = metadelay;
1952				break;
1953			default:
1954				delay = filedelay;
1955			}
1956			vn_syncer_add_to_worklist(bo, delay);
1957		}
1958		buf_vlist_add(bp, bo, BX_VNDIRTY);
1959	} else {
1960		buf_vlist_add(bp, bo, BX_VNCLEAN);
1961
1962		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1963			mtx_lock(&sync_mtx);
1964			LIST_REMOVE(bo, bo_synclist);
1965			syncer_worklist_len--;
1966			mtx_unlock(&sync_mtx);
1967			bo->bo_flag &= ~BO_ONWORKLST;
1968		}
1969	}
1970#ifdef INVARIANTS
1971	bv = &bo->bo_clean;
1972	bp = TAILQ_FIRST(&bv->bv_hd);
1973	KASSERT(bp == NULL || bp->b_bufobj == bo,
1974	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1975	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1976	KASSERT(bp == NULL || bp->b_bufobj == bo,
1977	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1978	bv = &bo->bo_dirty;
1979	bp = TAILQ_FIRST(&bv->bv_hd);
1980	KASSERT(bp == NULL || bp->b_bufobj == bo,
1981	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1982	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1983	KASSERT(bp == NULL || bp->b_bufobj == bo,
1984	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1985#endif
1986	BO_UNLOCK(bo);
1987}
1988
1989/*
1990 * Increment the use and hold counts on the vnode, taking care to reference
1991 * the driver's usecount if this is a chardev.  The vholdl() will remove
1992 * the vnode from the free list if it is presently free.  Requires the
1993 * vnode interlock and returns with it held.
1994 */
1995static void
1996v_incr_usecount(struct vnode *vp)
1997{
1998
1999	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2000	vp->v_usecount++;
2001	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2002		dev_lock();
2003		vp->v_rdev->si_usecount++;
2004		dev_unlock();
2005	}
2006	vholdl(vp);
2007}
2008
2009/*
2010 * Turn a holdcnt into a use+holdcnt such that only one call to
2011 * v_decr_usecount is needed.
2012 */
2013static void
2014v_upgrade_usecount(struct vnode *vp)
2015{
2016
2017	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2018	vp->v_usecount++;
2019	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2020		dev_lock();
2021		vp->v_rdev->si_usecount++;
2022		dev_unlock();
2023	}
2024}
2025
2026/*
2027 * Decrement the vnode use and hold count along with the driver's usecount
2028 * if this is a chardev.  The vdropl() below releases the vnode interlock
2029 * as it may free the vnode.
2030 */
2031static void
2032v_decr_usecount(struct vnode *vp)
2033{
2034
2035	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2036	VNASSERT(vp->v_usecount > 0, vp,
2037	    ("v_decr_usecount: negative usecount"));
2038	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2039	vp->v_usecount--;
2040	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2041		dev_lock();
2042		vp->v_rdev->si_usecount--;
2043		dev_unlock();
2044	}
2045	vdropl(vp);
2046}
2047
2048/*
2049 * Decrement only the use count and driver use count.  This is intended to
2050 * be paired with a follow on vdropl() to release the remaining hold count.
2051 * In this way we may vgone() a vnode with a 0 usecount without risk of
2052 * having it end up on a free list because the hold count is kept above 0.
2053 */
2054static void
2055v_decr_useonly(struct vnode *vp)
2056{
2057
2058	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2059	VNASSERT(vp->v_usecount > 0, vp,
2060	    ("v_decr_useonly: negative usecount"));
2061	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2062	vp->v_usecount--;
2063	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2064		dev_lock();
2065		vp->v_rdev->si_usecount--;
2066		dev_unlock();
2067	}
2068}
2069
2070/*
2071 * Grab a particular vnode from the free list, increment its
2072 * reference count and lock it.  VI_DOOMED is set if the vnode
2073 * is being destroyed.  Only callers who specify LK_RETRY will
2074 * see doomed vnodes.  If inactive processing was delayed in
2075 * vput try to do it here.
2076 */
2077int
2078vget(struct vnode *vp, int flags, struct thread *td)
2079{
2080	int error;
2081
2082	error = 0;
2083	VFS_ASSERT_GIANT(vp->v_mount);
2084	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2085	    ("vget: invalid lock operation"));
2086	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2087
2088	if ((flags & LK_INTERLOCK) == 0)
2089		VI_LOCK(vp);
2090	vholdl(vp);
2091	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2092		vdrop(vp);
2093		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2094		    vp);
2095		return (error);
2096	}
2097	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2098		panic("vget: vn_lock failed to return ENOENT\n");
2099	VI_LOCK(vp);
2100	/* Upgrade our holdcnt to a usecount. */
2101	v_upgrade_usecount(vp);
2102	/*
2103	 * We don't guarantee that any particular close will
2104	 * trigger inactive processing so just make a best effort
2105	 * here at preventing a reference to a removed file.  If
2106	 * we don't succeed no harm is done.
2107	 */
2108	if (vp->v_iflag & VI_OWEINACT) {
2109		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2110		    (flags & LK_NOWAIT) == 0)
2111			vinactive(vp, td);
2112		vp->v_iflag &= ~VI_OWEINACT;
2113	}
2114	VI_UNLOCK(vp);
2115	return (0);
2116}
2117
2118/*
2119 * Increase the reference count of a vnode.
2120 */
2121void
2122vref(struct vnode *vp)
2123{
2124
2125	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2126	VI_LOCK(vp);
2127	v_incr_usecount(vp);
2128	VI_UNLOCK(vp);
2129}
2130
2131/*
2132 * Return reference count of a vnode.
2133 *
2134 * The results of this call are only guaranteed when some mechanism other
2135 * than the VI lock is used to stop other processes from gaining references
2136 * to the vnode.  This may be the case if the caller holds the only reference.
2137 * This is also useful when stale data is acceptable as race conditions may
2138 * be accounted for by some other means.
2139 */
2140int
2141vrefcnt(struct vnode *vp)
2142{
2143	int usecnt;
2144
2145	VI_LOCK(vp);
2146	usecnt = vp->v_usecount;
2147	VI_UNLOCK(vp);
2148
2149	return (usecnt);
2150}
2151
2152#define	VPUTX_VRELE	1
2153#define	VPUTX_VPUT	2
2154#define	VPUTX_VUNREF	3
2155
2156static void
2157vputx(struct vnode *vp, int func)
2158{
2159	int error;
2160
2161	KASSERT(vp != NULL, ("vputx: null vp"));
2162	if (func == VPUTX_VUNREF)
2163		ASSERT_VOP_ELOCKED(vp, "vunref");
2164	else if (func == VPUTX_VPUT)
2165		ASSERT_VOP_LOCKED(vp, "vput");
2166	else
2167		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2168	VFS_ASSERT_GIANT(vp->v_mount);
2169	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2170	VI_LOCK(vp);
2171
2172	/* Skip this v_writecount check if we're going to panic below. */
2173	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2174	    ("vputx: missed vn_close"));
2175	error = 0;
2176
2177	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2178	    vp->v_usecount == 1)) {
2179		if (func == VPUTX_VPUT)
2180			VOP_UNLOCK(vp, 0);
2181		v_decr_usecount(vp);
2182		return;
2183	}
2184
2185	if (vp->v_usecount != 1) {
2186#ifdef DIAGNOSTIC
2187		vprint("vputx: negative ref count", vp);
2188#endif
2189		panic("vputx: negative ref cnt");
2190	}
2191	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2192	/*
2193	 * We want to hold the vnode until the inactive finishes to
2194	 * prevent vgone() races.  We drop the use count here and the
2195	 * hold count below when we're done.
2196	 */
2197	v_decr_useonly(vp);
2198	/*
2199	 * We must call VOP_INACTIVE with the node locked. Mark
2200	 * as VI_DOINGINACT to avoid recursion.
2201	 */
2202	vp->v_iflag |= VI_OWEINACT;
2203	if (func == VPUTX_VRELE) {
2204		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2205		VI_LOCK(vp);
2206	} else if (func == VPUTX_VPUT && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2207		error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | LK_NOWAIT);
2208		VI_LOCK(vp);
2209	}
2210	if (vp->v_usecount > 0)
2211		vp->v_iflag &= ~VI_OWEINACT;
2212	if (error == 0) {
2213		if (vp->v_iflag & VI_OWEINACT)
2214			vinactive(vp, curthread);
2215		if (func != VPUTX_VUNREF)
2216			VOP_UNLOCK(vp, 0);
2217	}
2218	vdropl(vp);
2219}
2220
2221/*
2222 * Vnode put/release.
2223 * If count drops to zero, call inactive routine and return to freelist.
2224 */
2225void
2226vrele(struct vnode *vp)
2227{
2228
2229	vputx(vp, VPUTX_VRELE);
2230}
2231
2232/*
2233 * Release an already locked vnode.  This give the same effects as
2234 * unlock+vrele(), but takes less time and avoids releasing and
2235 * re-aquiring the lock (as vrele() acquires the lock internally.)
2236 */
2237void
2238vput(struct vnode *vp)
2239{
2240
2241	vputx(vp, VPUTX_VPUT);
2242}
2243
2244/*
2245 * Release an exclusively locked vnode. Do not unlock the vnode lock.
2246 */
2247void
2248vunref(struct vnode *vp)
2249{
2250
2251	vputx(vp, VPUTX_VUNREF);
2252}
2253
2254/*
2255 * Somebody doesn't want the vnode recycled.
2256 */
2257void
2258vhold(struct vnode *vp)
2259{
2260
2261	VI_LOCK(vp);
2262	vholdl(vp);
2263	VI_UNLOCK(vp);
2264}
2265
2266void
2267vholdl(struct vnode *vp)
2268{
2269
2270	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2271	vp->v_holdcnt++;
2272	if (VSHOULDBUSY(vp))
2273		vbusy(vp);
2274}
2275
2276/*
2277 * Note that there is one less who cares about this vnode.  vdrop() is the
2278 * opposite of vhold().
2279 */
2280void
2281vdrop(struct vnode *vp)
2282{
2283
2284	VI_LOCK(vp);
2285	vdropl(vp);
2286}
2287
2288/*
2289 * Drop the hold count of the vnode.  If this is the last reference to
2290 * the vnode we will free it if it has been vgone'd otherwise it is
2291 * placed on the free list.
2292 */
2293void
2294vdropl(struct vnode *vp)
2295{
2296
2297	ASSERT_VI_LOCKED(vp, "vdropl");
2298	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2299	if (vp->v_holdcnt <= 0)
2300		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2301	vp->v_holdcnt--;
2302	if (vp->v_holdcnt == 0) {
2303		if (vp->v_iflag & VI_DOOMED) {
2304			CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__,
2305			    vp);
2306			vdestroy(vp);
2307			return;
2308		} else
2309			vfree(vp);
2310	}
2311	VI_UNLOCK(vp);
2312}
2313
2314/*
2315 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2316 * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2317 * OWEINACT tracks whether a vnode missed a call to inactive due to a
2318 * failed lock upgrade.
2319 */
2320static void
2321vinactive(struct vnode *vp, struct thread *td)
2322{
2323
2324	ASSERT_VOP_ELOCKED(vp, "vinactive");
2325	ASSERT_VI_LOCKED(vp, "vinactive");
2326	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2327	    ("vinactive: recursed on VI_DOINGINACT"));
2328	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2329	vp->v_iflag |= VI_DOINGINACT;
2330	vp->v_iflag &= ~VI_OWEINACT;
2331	VI_UNLOCK(vp);
2332	VOP_INACTIVE(vp, td);
2333	VI_LOCK(vp);
2334	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2335	    ("vinactive: lost VI_DOINGINACT"));
2336	vp->v_iflag &= ~VI_DOINGINACT;
2337}
2338
2339/*
2340 * Remove any vnodes in the vnode table belonging to mount point mp.
2341 *
2342 * If FORCECLOSE is not specified, there should not be any active ones,
2343 * return error if any are found (nb: this is a user error, not a
2344 * system error). If FORCECLOSE is specified, detach any active vnodes
2345 * that are found.
2346 *
2347 * If WRITECLOSE is set, only flush out regular file vnodes open for
2348 * writing.
2349 *
2350 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2351 *
2352 * `rootrefs' specifies the base reference count for the root vnode
2353 * of this filesystem. The root vnode is considered busy if its
2354 * v_usecount exceeds this value. On a successful return, vflush(, td)
2355 * will call vrele() on the root vnode exactly rootrefs times.
2356 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2357 * be zero.
2358 */
2359#ifdef DIAGNOSTIC
2360static int busyprt = 0;		/* print out busy vnodes */
2361SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2362#endif
2363
2364int
2365vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
2366{
2367	struct vnode *vp, *mvp, *rootvp = NULL;
2368	struct vattr vattr;
2369	int busy = 0, error;
2370
2371	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
2372	    rootrefs, flags);
2373	if (rootrefs > 0) {
2374		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2375		    ("vflush: bad args"));
2376		/*
2377		 * Get the filesystem root vnode. We can vput() it
2378		 * immediately, since with rootrefs > 0, it won't go away.
2379		 */
2380		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
2381			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
2382			    __func__, error);
2383			return (error);
2384		}
2385		vput(rootvp);
2386	}
2387	MNT_ILOCK(mp);
2388loop:
2389	MNT_VNODE_FOREACH(vp, mp, mvp) {
2390		VI_LOCK(vp);
2391		vholdl(vp);
2392		MNT_IUNLOCK(mp);
2393		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2394		if (error) {
2395			vdrop(vp);
2396			MNT_ILOCK(mp);
2397			MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
2398			goto loop;
2399		}
2400		/*
2401		 * Skip over a vnodes marked VV_SYSTEM.
2402		 */
2403		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2404			VOP_UNLOCK(vp, 0);
2405			vdrop(vp);
2406			MNT_ILOCK(mp);
2407			continue;
2408		}
2409		/*
2410		 * If WRITECLOSE is set, flush out unlinked but still open
2411		 * files (even if open only for reading) and regular file
2412		 * vnodes open for writing.
2413		 */
2414		if (flags & WRITECLOSE) {
2415			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2416			VI_LOCK(vp);
2417
2418			if ((vp->v_type == VNON ||
2419			    (error == 0 && vattr.va_nlink > 0)) &&
2420			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2421				VOP_UNLOCK(vp, 0);
2422				vdropl(vp);
2423				MNT_ILOCK(mp);
2424				continue;
2425			}
2426		} else
2427			VI_LOCK(vp);
2428		/*
2429		 * With v_usecount == 0, all we need to do is clear out the
2430		 * vnode data structures and we are done.
2431		 *
2432		 * If FORCECLOSE is set, forcibly close the vnode.
2433		 */
2434		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2435			VNASSERT(vp->v_usecount == 0 ||
2436			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2437			    ("device VNODE %p is FORCECLOSED", vp));
2438			vgonel(vp);
2439		} else {
2440			busy++;
2441#ifdef DIAGNOSTIC
2442			if (busyprt)
2443				vprint("vflush: busy vnode", vp);
2444#endif
2445		}
2446		VOP_UNLOCK(vp, 0);
2447		vdropl(vp);
2448		MNT_ILOCK(mp);
2449	}
2450	MNT_IUNLOCK(mp);
2451	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2452		/*
2453		 * If just the root vnode is busy, and if its refcount
2454		 * is equal to `rootrefs', then go ahead and kill it.
2455		 */
2456		VI_LOCK(rootvp);
2457		KASSERT(busy > 0, ("vflush: not busy"));
2458		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2459		    ("vflush: usecount %d < rootrefs %d",
2460		     rootvp->v_usecount, rootrefs));
2461		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2462			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2463			vgone(rootvp);
2464			VOP_UNLOCK(rootvp, 0);
2465			busy = 0;
2466		} else
2467			VI_UNLOCK(rootvp);
2468	}
2469	if (busy) {
2470		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
2471		    busy);
2472		return (EBUSY);
2473	}
2474	for (; rootrefs > 0; rootrefs--)
2475		vrele(rootvp);
2476	return (0);
2477}
2478
2479/*
2480 * Recycle an unused vnode to the front of the free list.
2481 */
2482int
2483vrecycle(struct vnode *vp, struct thread *td)
2484{
2485	int recycled;
2486
2487	ASSERT_VOP_ELOCKED(vp, "vrecycle");
2488	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2489	recycled = 0;
2490	VI_LOCK(vp);
2491	if (vp->v_usecount == 0) {
2492		recycled = 1;
2493		vgonel(vp);
2494	}
2495	VI_UNLOCK(vp);
2496	return (recycled);
2497}
2498
2499/*
2500 * Eliminate all activity associated with a vnode
2501 * in preparation for reuse.
2502 */
2503void
2504vgone(struct vnode *vp)
2505{
2506	VI_LOCK(vp);
2507	vgonel(vp);
2508	VI_UNLOCK(vp);
2509}
2510
2511/*
2512 * vgone, with the vp interlock held.
2513 */
2514void
2515vgonel(struct vnode *vp)
2516{
2517	struct thread *td;
2518	int oweinact;
2519	int active;
2520	struct mount *mp;
2521
2522	ASSERT_VOP_ELOCKED(vp, "vgonel");
2523	ASSERT_VI_LOCKED(vp, "vgonel");
2524	VNASSERT(vp->v_holdcnt, vp,
2525	    ("vgonel: vp %p has no reference.", vp));
2526	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2527	td = curthread;
2528
2529	/*
2530	 * Don't vgonel if we're already doomed.
2531	 */
2532	if (vp->v_iflag & VI_DOOMED)
2533		return;
2534	vp->v_iflag |= VI_DOOMED;
2535	/*
2536	 * Check to see if the vnode is in use.  If so, we have to call
2537	 * VOP_CLOSE() and VOP_INACTIVE().
2538	 */
2539	active = vp->v_usecount;
2540	oweinact = (vp->v_iflag & VI_OWEINACT);
2541	VI_UNLOCK(vp);
2542	/*
2543	 * Clean out any buffers associated with the vnode.
2544	 * If the flush fails, just toss the buffers.
2545	 */
2546	mp = NULL;
2547	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2548		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2549	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0)
2550		vinvalbuf(vp, 0, 0, 0);
2551
2552	/*
2553	 * If purging an active vnode, it must be closed and
2554	 * deactivated before being reclaimed.
2555	 */
2556	if (active)
2557		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2558	if (oweinact || active) {
2559		VI_LOCK(vp);
2560		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2561			vinactive(vp, td);
2562		VI_UNLOCK(vp);
2563	}
2564	/*
2565	 * Reclaim the vnode.
2566	 */
2567	if (VOP_RECLAIM(vp, td))
2568		panic("vgone: cannot reclaim");
2569	if (mp != NULL)
2570		vn_finished_secondary_write(mp);
2571	VNASSERT(vp->v_object == NULL, vp,
2572	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2573	/*
2574	 * Clear the advisory locks and wake up waiting threads.
2575	 */
2576	lf_purgelocks(vp, &(vp->v_lockf));
2577	/*
2578	 * Delete from old mount point vnode list.
2579	 */
2580	delmntque(vp);
2581	cache_purge(vp);
2582	/*
2583	 * Done with purge, reset to the standard lock and invalidate
2584	 * the vnode.
2585	 */
2586	VI_LOCK(vp);
2587	vp->v_vnlock = &vp->v_lock;
2588	vp->v_op = &dead_vnodeops;
2589	vp->v_tag = "none";
2590	vp->v_type = VBAD;
2591}
2592
2593/*
2594 * Calculate the total number of references to a special device.
2595 */
2596int
2597vcount(struct vnode *vp)
2598{
2599	int count;
2600
2601	dev_lock();
2602	count = vp->v_rdev->si_usecount;
2603	dev_unlock();
2604	return (count);
2605}
2606
2607/*
2608 * Same as above, but using the struct cdev *as argument
2609 */
2610int
2611count_dev(struct cdev *dev)
2612{
2613	int count;
2614
2615	dev_lock();
2616	count = dev->si_usecount;
2617	dev_unlock();
2618	return(count);
2619}
2620
2621/*
2622 * Print out a description of a vnode.
2623 */
2624static char *typename[] =
2625{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2626 "VMARKER"};
2627
2628void
2629vn_printf(struct vnode *vp, const char *fmt, ...)
2630{
2631	va_list ap;
2632	char buf[256], buf2[16];
2633	u_long flags;
2634
2635	va_start(ap, fmt);
2636	vprintf(fmt, ap);
2637	va_end(ap);
2638	printf("%p: ", (void *)vp);
2639	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2640	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2641	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2642	buf[0] = '\0';
2643	buf[1] = '\0';
2644	if (vp->v_vflag & VV_ROOT)
2645		strlcat(buf, "|VV_ROOT", sizeof(buf));
2646	if (vp->v_vflag & VV_ISTTY)
2647		strlcat(buf, "|VV_ISTTY", sizeof(buf));
2648	if (vp->v_vflag & VV_NOSYNC)
2649		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2650	if (vp->v_vflag & VV_CACHEDLABEL)
2651		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2652	if (vp->v_vflag & VV_TEXT)
2653		strlcat(buf, "|VV_TEXT", sizeof(buf));
2654	if (vp->v_vflag & VV_COPYONWRITE)
2655		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2656	if (vp->v_vflag & VV_SYSTEM)
2657		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2658	if (vp->v_vflag & VV_PROCDEP)
2659		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2660	if (vp->v_vflag & VV_NOKNOTE)
2661		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2662	if (vp->v_vflag & VV_DELETED)
2663		strlcat(buf, "|VV_DELETED", sizeof(buf));
2664	if (vp->v_vflag & VV_MD)
2665		strlcat(buf, "|VV_MD", sizeof(buf));
2666	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC |
2667	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2668	    VV_NOKNOTE | VV_DELETED | VV_MD);
2669	if (flags != 0) {
2670		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2671		strlcat(buf, buf2, sizeof(buf));
2672	}
2673	if (vp->v_iflag & VI_MOUNT)
2674		strlcat(buf, "|VI_MOUNT", sizeof(buf));
2675	if (vp->v_iflag & VI_AGE)
2676		strlcat(buf, "|VI_AGE", sizeof(buf));
2677	if (vp->v_iflag & VI_DOOMED)
2678		strlcat(buf, "|VI_DOOMED", sizeof(buf));
2679	if (vp->v_iflag & VI_FREE)
2680		strlcat(buf, "|VI_FREE", sizeof(buf));
2681	if (vp->v_iflag & VI_DOINGINACT)
2682		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2683	if (vp->v_iflag & VI_OWEINACT)
2684		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2685	flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2686	    VI_DOINGINACT | VI_OWEINACT);
2687	if (flags != 0) {
2688		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2689		strlcat(buf, buf2, sizeof(buf));
2690	}
2691	printf("    flags (%s)\n", buf + 1);
2692	if (mtx_owned(VI_MTX(vp)))
2693		printf(" VI_LOCKed");
2694	if (vp->v_object != NULL)
2695		printf("    v_object %p ref %d pages %d\n",
2696		    vp->v_object, vp->v_object->ref_count,
2697		    vp->v_object->resident_page_count);
2698	printf("    ");
2699	lockmgr_printinfo(vp->v_vnlock);
2700	if (vp->v_data != NULL)
2701		VOP_PRINT(vp);
2702}
2703
2704#ifdef DDB
2705/*
2706 * List all of the locked vnodes in the system.
2707 * Called when debugging the kernel.
2708 */
2709DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2710{
2711	struct mount *mp, *nmp;
2712	struct vnode *vp;
2713
2714	/*
2715	 * Note: because this is DDB, we can't obey the locking semantics
2716	 * for these structures, which means we could catch an inconsistent
2717	 * state and dereference a nasty pointer.  Not much to be done
2718	 * about that.
2719	 */
2720	db_printf("Locked vnodes\n");
2721	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2722		nmp = TAILQ_NEXT(mp, mnt_list);
2723		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2724			if (vp->v_type != VMARKER &&
2725			    VOP_ISLOCKED(vp))
2726				vprint("", vp);
2727		}
2728		nmp = TAILQ_NEXT(mp, mnt_list);
2729	}
2730}
2731
2732/*
2733 * Show details about the given vnode.
2734 */
2735DB_SHOW_COMMAND(vnode, db_show_vnode)
2736{
2737	struct vnode *vp;
2738
2739	if (!have_addr)
2740		return;
2741	vp = (struct vnode *)addr;
2742	vn_printf(vp, "vnode ");
2743}
2744
2745/*
2746 * Show details about the given mount point.
2747 */
2748DB_SHOW_COMMAND(mount, db_show_mount)
2749{
2750	struct mount *mp;
2751	struct vfsopt *opt;
2752	struct statfs *sp;
2753	struct vnode *vp;
2754	char buf[512];
2755	u_int flags;
2756
2757	if (!have_addr) {
2758		/* No address given, print short info about all mount points. */
2759		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2760			db_printf("%p %s on %s (%s)\n", mp,
2761			    mp->mnt_stat.f_mntfromname,
2762			    mp->mnt_stat.f_mntonname,
2763			    mp->mnt_stat.f_fstypename);
2764			if (db_pager_quit)
2765				break;
2766		}
2767		db_printf("\nMore info: show mount <addr>\n");
2768		return;
2769	}
2770
2771	mp = (struct mount *)addr;
2772	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
2773	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
2774
2775	buf[0] = '\0';
2776	flags = mp->mnt_flag;
2777#define	MNT_FLAG(flag)	do {						\
2778	if (flags & (flag)) {						\
2779		if (buf[0] != '\0')					\
2780			strlcat(buf, ", ", sizeof(buf));		\
2781		strlcat(buf, (#flag) + 4, sizeof(buf));			\
2782		flags &= ~(flag);					\
2783	}								\
2784} while (0)
2785	MNT_FLAG(MNT_RDONLY);
2786	MNT_FLAG(MNT_SYNCHRONOUS);
2787	MNT_FLAG(MNT_NOEXEC);
2788	MNT_FLAG(MNT_NOSUID);
2789	MNT_FLAG(MNT_UNION);
2790	MNT_FLAG(MNT_ASYNC);
2791	MNT_FLAG(MNT_SUIDDIR);
2792	MNT_FLAG(MNT_SOFTDEP);
2793	MNT_FLAG(MNT_NOSYMFOLLOW);
2794	MNT_FLAG(MNT_GJOURNAL);
2795	MNT_FLAG(MNT_MULTILABEL);
2796	MNT_FLAG(MNT_ACLS);
2797	MNT_FLAG(MNT_NOATIME);
2798	MNT_FLAG(MNT_NOCLUSTERR);
2799	MNT_FLAG(MNT_NOCLUSTERW);
2800	MNT_FLAG(MNT_NFS4ACLS);
2801	MNT_FLAG(MNT_EXRDONLY);
2802	MNT_FLAG(MNT_EXPORTED);
2803	MNT_FLAG(MNT_DEFEXPORTED);
2804	MNT_FLAG(MNT_EXPORTANON);
2805	MNT_FLAG(MNT_EXKERB);
2806	MNT_FLAG(MNT_EXPUBLIC);
2807	MNT_FLAG(MNT_LOCAL);
2808	MNT_FLAG(MNT_QUOTA);
2809	MNT_FLAG(MNT_ROOTFS);
2810	MNT_FLAG(MNT_USER);
2811	MNT_FLAG(MNT_IGNORE);
2812	MNT_FLAG(MNT_UPDATE);
2813	MNT_FLAG(MNT_DELEXPORT);
2814	MNT_FLAG(MNT_RELOAD);
2815	MNT_FLAG(MNT_FORCE);
2816	MNT_FLAG(MNT_SNAPSHOT);
2817	MNT_FLAG(MNT_BYFSID);
2818	MNT_FLAG(MNT_SOFTDEP);
2819#undef MNT_FLAG
2820	if (flags != 0) {
2821		if (buf[0] != '\0')
2822			strlcat(buf, ", ", sizeof(buf));
2823		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2824		    "0x%08x", flags);
2825	}
2826	db_printf("    mnt_flag = %s\n", buf);
2827
2828	buf[0] = '\0';
2829	flags = mp->mnt_kern_flag;
2830#define	MNT_KERN_FLAG(flag)	do {					\
2831	if (flags & (flag)) {						\
2832		if (buf[0] != '\0')					\
2833			strlcat(buf, ", ", sizeof(buf));		\
2834		strlcat(buf, (#flag) + 5, sizeof(buf));			\
2835		flags &= ~(flag);					\
2836	}								\
2837} while (0)
2838	MNT_KERN_FLAG(MNTK_UNMOUNTF);
2839	MNT_KERN_FLAG(MNTK_ASYNC);
2840	MNT_KERN_FLAG(MNTK_SOFTDEP);
2841	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
2842	MNT_KERN_FLAG(MNTK_DRAINING);
2843	MNT_KERN_FLAG(MNTK_REFEXPIRE);
2844	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
2845	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
2846	MNT_KERN_FLAG(MNTK_UNMOUNT);
2847	MNT_KERN_FLAG(MNTK_MWAIT);
2848	MNT_KERN_FLAG(MNTK_SUSPEND);
2849	MNT_KERN_FLAG(MNTK_SUSPEND2);
2850	MNT_KERN_FLAG(MNTK_SUSPENDED);
2851	MNT_KERN_FLAG(MNTK_MPSAFE);
2852	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
2853	MNT_KERN_FLAG(MNTK_NOKNOTE);
2854#undef MNT_KERN_FLAG
2855	if (flags != 0) {
2856		if (buf[0] != '\0')
2857			strlcat(buf, ", ", sizeof(buf));
2858		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2859		    "0x%08x", flags);
2860	}
2861	db_printf("    mnt_kern_flag = %s\n", buf);
2862
2863	db_printf("    mnt_opt = ");
2864	opt = TAILQ_FIRST(mp->mnt_opt);
2865	if (opt != NULL) {
2866		db_printf("%s", opt->name);
2867		opt = TAILQ_NEXT(opt, link);
2868		while (opt != NULL) {
2869			db_printf(", %s", opt->name);
2870			opt = TAILQ_NEXT(opt, link);
2871		}
2872	}
2873	db_printf("\n");
2874
2875	sp = &mp->mnt_stat;
2876	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
2877	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
2878	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
2879	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
2880	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
2881	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
2882	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
2883	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
2884	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
2885	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
2886	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
2887	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
2888
2889	db_printf("    mnt_cred = { uid=%u ruid=%u",
2890	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
2891	if (jailed(mp->mnt_cred))
2892		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
2893	db_printf(" }\n");
2894	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
2895	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
2896	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
2897	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
2898	db_printf("    mnt_noasync = %u\n", mp->mnt_noasync);
2899	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
2900	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
2901	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
2902	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
2903	db_printf("    mnt_secondary_accwrites = %d\n",
2904	    mp->mnt_secondary_accwrites);
2905	db_printf("    mnt_gjprovider = %s\n",
2906	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
2907	db_printf("\n");
2908
2909	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2910		if (vp->v_type != VMARKER) {
2911			vn_printf(vp, "vnode ");
2912			if (db_pager_quit)
2913				break;
2914		}
2915	}
2916}
2917#endif	/* DDB */
2918
2919/*
2920 * Fill in a struct xvfsconf based on a struct vfsconf.
2921 */
2922static void
2923vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2924{
2925
2926	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2927	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2928	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2929	xvfsp->vfc_flags = vfsp->vfc_flags;
2930	/*
2931	 * These are unused in userland, we keep them
2932	 * to not break binary compatibility.
2933	 */
2934	xvfsp->vfc_vfsops = NULL;
2935	xvfsp->vfc_next = NULL;
2936}
2937
2938/*
2939 * Top level filesystem related information gathering.
2940 */
2941static int
2942sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2943{
2944	struct vfsconf *vfsp;
2945	struct xvfsconf xvfsp;
2946	int error;
2947
2948	error = 0;
2949	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2950		bzero(&xvfsp, sizeof(xvfsp));
2951		vfsconf2x(vfsp, &xvfsp);
2952		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2953		if (error)
2954			break;
2955	}
2956	return (error);
2957}
2958
2959SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2960    "S,xvfsconf", "List of all configured filesystems");
2961
2962#ifndef BURN_BRIDGES
2963static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2964
2965static int
2966vfs_sysctl(SYSCTL_HANDLER_ARGS)
2967{
2968	int *name = (int *)arg1 - 1;	/* XXX */
2969	u_int namelen = arg2 + 1;	/* XXX */
2970	struct vfsconf *vfsp;
2971	struct xvfsconf xvfsp;
2972
2973	printf("WARNING: userland calling deprecated sysctl, "
2974	    "please rebuild world\n");
2975
2976#if 1 || defined(COMPAT_PRELITE2)
2977	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2978	if (namelen == 1)
2979		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2980#endif
2981
2982	switch (name[1]) {
2983	case VFS_MAXTYPENUM:
2984		if (namelen != 2)
2985			return (ENOTDIR);
2986		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2987	case VFS_CONF:
2988		if (namelen != 3)
2989			return (ENOTDIR);	/* overloaded */
2990		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2991			if (vfsp->vfc_typenum == name[2])
2992				break;
2993		if (vfsp == NULL)
2994			return (EOPNOTSUPP);
2995		bzero(&xvfsp, sizeof(xvfsp));
2996		vfsconf2x(vfsp, &xvfsp);
2997		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2998	}
2999	return (EOPNOTSUPP);
3000}
3001
3002static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
3003	vfs_sysctl, "Generic filesystem");
3004
3005#if 1 || defined(COMPAT_PRELITE2)
3006
3007static int
3008sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3009{
3010	int error;
3011	struct vfsconf *vfsp;
3012	struct ovfsconf ovfs;
3013
3014	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3015		bzero(&ovfs, sizeof(ovfs));
3016		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3017		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3018		ovfs.vfc_index = vfsp->vfc_typenum;
3019		ovfs.vfc_refcount = vfsp->vfc_refcount;
3020		ovfs.vfc_flags = vfsp->vfc_flags;
3021		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3022		if (error)
3023			return error;
3024	}
3025	return 0;
3026}
3027
3028#endif /* 1 || COMPAT_PRELITE2 */
3029#endif /* !BURN_BRIDGES */
3030
3031#define KINFO_VNODESLOP		10
3032#ifdef notyet
3033/*
3034 * Dump vnode list (via sysctl).
3035 */
3036/* ARGSUSED */
3037static int
3038sysctl_vnode(SYSCTL_HANDLER_ARGS)
3039{
3040	struct xvnode *xvn;
3041	struct mount *mp;
3042	struct vnode *vp;
3043	int error, len, n;
3044
3045	/*
3046	 * Stale numvnodes access is not fatal here.
3047	 */
3048	req->lock = 0;
3049	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3050	if (!req->oldptr)
3051		/* Make an estimate */
3052		return (SYSCTL_OUT(req, 0, len));
3053
3054	error = sysctl_wire_old_buffer(req, 0);
3055	if (error != 0)
3056		return (error);
3057	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3058	n = 0;
3059	mtx_lock(&mountlist_mtx);
3060	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3061		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3062			continue;
3063		MNT_ILOCK(mp);
3064		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3065			if (n == len)
3066				break;
3067			vref(vp);
3068			xvn[n].xv_size = sizeof *xvn;
3069			xvn[n].xv_vnode = vp;
3070			xvn[n].xv_id = 0;	/* XXX compat */
3071#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3072			XV_COPY(usecount);
3073			XV_COPY(writecount);
3074			XV_COPY(holdcnt);
3075			XV_COPY(mount);
3076			XV_COPY(numoutput);
3077			XV_COPY(type);
3078#undef XV_COPY
3079			xvn[n].xv_flag = vp->v_vflag;
3080
3081			switch (vp->v_type) {
3082			case VREG:
3083			case VDIR:
3084			case VLNK:
3085				break;
3086			case VBLK:
3087			case VCHR:
3088				if (vp->v_rdev == NULL) {
3089					vrele(vp);
3090					continue;
3091				}
3092				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3093				break;
3094			case VSOCK:
3095				xvn[n].xv_socket = vp->v_socket;
3096				break;
3097			case VFIFO:
3098				xvn[n].xv_fifo = vp->v_fifoinfo;
3099				break;
3100			case VNON:
3101			case VBAD:
3102			default:
3103				/* shouldn't happen? */
3104				vrele(vp);
3105				continue;
3106			}
3107			vrele(vp);
3108			++n;
3109		}
3110		MNT_IUNLOCK(mp);
3111		mtx_lock(&mountlist_mtx);
3112		vfs_unbusy(mp);
3113		if (n == len)
3114			break;
3115	}
3116	mtx_unlock(&mountlist_mtx);
3117
3118	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3119	free(xvn, M_TEMP);
3120	return (error);
3121}
3122
3123SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3124	0, 0, sysctl_vnode, "S,xvnode", "");
3125#endif
3126
3127/*
3128 * Unmount all filesystems. The list is traversed in reverse order
3129 * of mounting to avoid dependencies.
3130 */
3131void
3132vfs_unmountall(void)
3133{
3134	struct mount *mp;
3135	struct thread *td;
3136	int error;
3137
3138	KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
3139	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
3140	td = curthread;
3141
3142	/*
3143	 * Since this only runs when rebooting, it is not interlocked.
3144	 */
3145	while(!TAILQ_EMPTY(&mountlist)) {
3146		mp = TAILQ_LAST(&mountlist, mntlist);
3147		error = dounmount(mp, MNT_FORCE, td);
3148		if (error) {
3149			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3150			/*
3151			 * XXX: Due to the way in which we mount the root
3152			 * file system off of devfs, devfs will generate a
3153			 * "busy" warning when we try to unmount it before
3154			 * the root.  Don't print a warning as a result in
3155			 * order to avoid false positive errors that may
3156			 * cause needless upset.
3157			 */
3158			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3159				printf("unmount of %s failed (",
3160				    mp->mnt_stat.f_mntonname);
3161				if (error == EBUSY)
3162					printf("BUSY)\n");
3163				else
3164					printf("%d)\n", error);
3165			}
3166		} else {
3167			/* The unmount has removed mp from the mountlist */
3168		}
3169	}
3170}
3171
3172/*
3173 * perform msync on all vnodes under a mount point
3174 * the mount point must be locked.
3175 */
3176void
3177vfs_msync(struct mount *mp, int flags)
3178{
3179	struct vnode *vp, *mvp;
3180	struct vm_object *obj;
3181
3182	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
3183	MNT_ILOCK(mp);
3184	MNT_VNODE_FOREACH(vp, mp, mvp) {
3185		VI_LOCK(vp);
3186		obj = vp->v_object;
3187		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
3188		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3189			MNT_IUNLOCK(mp);
3190			if (!vget(vp,
3191			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3192			    curthread)) {
3193				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3194					vput(vp);
3195					MNT_ILOCK(mp);
3196					continue;
3197				}
3198
3199				obj = vp->v_object;
3200				if (obj != NULL) {
3201					VM_OBJECT_LOCK(obj);
3202					vm_object_page_clean(obj, 0, 0,
3203					    flags == MNT_WAIT ?
3204					    OBJPC_SYNC : OBJPC_NOSYNC);
3205					VM_OBJECT_UNLOCK(obj);
3206				}
3207				vput(vp);
3208			}
3209			MNT_ILOCK(mp);
3210		} else
3211			VI_UNLOCK(vp);
3212	}
3213	MNT_IUNLOCK(mp);
3214}
3215
3216/*
3217 * Mark a vnode as free, putting it up for recycling.
3218 */
3219static void
3220vfree(struct vnode *vp)
3221{
3222
3223	ASSERT_VI_LOCKED(vp, "vfree");
3224	mtx_lock(&vnode_free_list_mtx);
3225	VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
3226	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
3227	VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
3228	VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
3229	    ("vfree: Freeing doomed vnode"));
3230	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3231	if (vp->v_iflag & VI_AGE) {
3232		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3233	} else {
3234		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3235	}
3236	freevnodes++;
3237	vp->v_iflag &= ~VI_AGE;
3238	vp->v_iflag |= VI_FREE;
3239	mtx_unlock(&vnode_free_list_mtx);
3240}
3241
3242/*
3243 * Opposite of vfree() - mark a vnode as in use.
3244 */
3245static void
3246vbusy(struct vnode *vp)
3247{
3248	ASSERT_VI_LOCKED(vp, "vbusy");
3249	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
3250	VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));
3251	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3252
3253	mtx_lock(&vnode_free_list_mtx);
3254	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3255	freevnodes--;
3256	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3257	mtx_unlock(&vnode_free_list_mtx);
3258}
3259
3260static void
3261destroy_vpollinfo(struct vpollinfo *vi)
3262{
3263	knlist_destroy(&vi->vpi_selinfo.si_note);
3264	mtx_destroy(&vi->vpi_lock);
3265	uma_zfree(vnodepoll_zone, vi);
3266}
3267
3268/*
3269 * Initalize per-vnode helper structure to hold poll-related state.
3270 */
3271void
3272v_addpollinfo(struct vnode *vp)
3273{
3274	struct vpollinfo *vi;
3275
3276	if (vp->v_pollinfo != NULL)
3277		return;
3278	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3279	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3280	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3281	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
3282	VI_LOCK(vp);
3283	if (vp->v_pollinfo != NULL) {
3284		VI_UNLOCK(vp);
3285		destroy_vpollinfo(vi);
3286		return;
3287	}
3288	vp->v_pollinfo = vi;
3289	VI_UNLOCK(vp);
3290}
3291
3292/*
3293 * Record a process's interest in events which might happen to
3294 * a vnode.  Because poll uses the historic select-style interface
3295 * internally, this routine serves as both the ``check for any
3296 * pending events'' and the ``record my interest in future events''
3297 * functions.  (These are done together, while the lock is held,
3298 * to avoid race conditions.)
3299 */
3300int
3301vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3302{
3303
3304	v_addpollinfo(vp);
3305	mtx_lock(&vp->v_pollinfo->vpi_lock);
3306	if (vp->v_pollinfo->vpi_revents & events) {
3307		/*
3308		 * This leaves events we are not interested
3309		 * in available for the other process which
3310		 * which presumably had requested them
3311		 * (otherwise they would never have been
3312		 * recorded).
3313		 */
3314		events &= vp->v_pollinfo->vpi_revents;
3315		vp->v_pollinfo->vpi_revents &= ~events;
3316
3317		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3318		return (events);
3319	}
3320	vp->v_pollinfo->vpi_events |= events;
3321	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3322	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3323	return (0);
3324}
3325
3326/*
3327 * Routine to create and manage a filesystem syncer vnode.
3328 */
3329#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3330static int	sync_fsync(struct  vop_fsync_args *);
3331static int	sync_inactive(struct  vop_inactive_args *);
3332static int	sync_reclaim(struct  vop_reclaim_args *);
3333
3334static struct vop_vector sync_vnodeops = {
3335	.vop_bypass =	VOP_EOPNOTSUPP,
3336	.vop_close =	sync_close,		/* close */
3337	.vop_fsync =	sync_fsync,		/* fsync */
3338	.vop_inactive =	sync_inactive,	/* inactive */
3339	.vop_reclaim =	sync_reclaim,	/* reclaim */
3340	.vop_lock1 =	vop_stdlock,	/* lock */
3341	.vop_unlock =	vop_stdunlock,	/* unlock */
3342	.vop_islocked =	vop_stdislocked,	/* islocked */
3343};
3344
3345/*
3346 * Create a new filesystem syncer vnode for the specified mount point.
3347 */
3348int
3349vfs_allocate_syncvnode(struct mount *mp)
3350{
3351	struct vnode *vp;
3352	struct bufobj *bo;
3353	static long start, incr, next;
3354	int error;
3355
3356	/* Allocate a new vnode */
3357	if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
3358		mp->mnt_syncer = NULL;
3359		return (error);
3360	}
3361	vp->v_type = VNON;
3362	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3363	vp->v_vflag |= VV_FORCEINSMQ;
3364	error = insmntque(vp, mp);
3365	if (error != 0)
3366		panic("vfs_allocate_syncvnode: insmntque failed");
3367	vp->v_vflag &= ~VV_FORCEINSMQ;
3368	VOP_UNLOCK(vp, 0);
3369	/*
3370	 * Place the vnode onto the syncer worklist. We attempt to
3371	 * scatter them about on the list so that they will go off
3372	 * at evenly distributed times even if all the filesystems
3373	 * are mounted at once.
3374	 */
3375	next += incr;
3376	if (next == 0 || next > syncer_maxdelay) {
3377		start /= 2;
3378		incr /= 2;
3379		if (start == 0) {
3380			start = syncer_maxdelay / 2;
3381			incr = syncer_maxdelay;
3382		}
3383		next = start;
3384	}
3385	bo = &vp->v_bufobj;
3386	BO_LOCK(bo);
3387	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3388	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3389	mtx_lock(&sync_mtx);
3390	sync_vnode_count++;
3391	mtx_unlock(&sync_mtx);
3392	BO_UNLOCK(bo);
3393	mp->mnt_syncer = vp;
3394	return (0);
3395}
3396
3397/*
3398 * Do a lazy sync of the filesystem.
3399 */
3400static int
3401sync_fsync(struct vop_fsync_args *ap)
3402{
3403	struct vnode *syncvp = ap->a_vp;
3404	struct mount *mp = syncvp->v_mount;
3405	int error;
3406	struct bufobj *bo;
3407
3408	/*
3409	 * We only need to do something if this is a lazy evaluation.
3410	 */
3411	if (ap->a_waitfor != MNT_LAZY)
3412		return (0);
3413
3414	/*
3415	 * Move ourselves to the back of the sync list.
3416	 */
3417	bo = &syncvp->v_bufobj;
3418	BO_LOCK(bo);
3419	vn_syncer_add_to_worklist(bo, syncdelay);
3420	BO_UNLOCK(bo);
3421
3422	/*
3423	 * Walk the list of vnodes pushing all that are dirty and
3424	 * not already on the sync list.
3425	 */
3426	mtx_lock(&mountlist_mtx);
3427	if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) != 0) {
3428		mtx_unlock(&mountlist_mtx);
3429		return (0);
3430	}
3431	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3432		vfs_unbusy(mp);
3433		return (0);
3434	}
3435	MNT_ILOCK(mp);
3436	mp->mnt_noasync++;
3437	mp->mnt_kern_flag &= ~MNTK_ASYNC;
3438	MNT_IUNLOCK(mp);
3439	vfs_msync(mp, MNT_NOWAIT);
3440	error = VFS_SYNC(mp, MNT_LAZY);
3441	MNT_ILOCK(mp);
3442	mp->mnt_noasync--;
3443	if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0)
3444		mp->mnt_kern_flag |= MNTK_ASYNC;
3445	MNT_IUNLOCK(mp);
3446	vn_finished_write(mp);
3447	vfs_unbusy(mp);
3448	return (error);
3449}
3450
3451/*
3452 * The syncer vnode is no referenced.
3453 */
3454static int
3455sync_inactive(struct vop_inactive_args *ap)
3456{
3457
3458	vgone(ap->a_vp);
3459	return (0);
3460}
3461
3462/*
3463 * The syncer vnode is no longer needed and is being decommissioned.
3464 *
3465 * Modifications to the worklist must be protected by sync_mtx.
3466 */
3467static int
3468sync_reclaim(struct vop_reclaim_args *ap)
3469{
3470	struct vnode *vp = ap->a_vp;
3471	struct bufobj *bo;
3472
3473	bo = &vp->v_bufobj;
3474	BO_LOCK(bo);
3475	vp->v_mount->mnt_syncer = NULL;
3476	if (bo->bo_flag & BO_ONWORKLST) {
3477		mtx_lock(&sync_mtx);
3478		LIST_REMOVE(bo, bo_synclist);
3479		syncer_worklist_len--;
3480		sync_vnode_count--;
3481		mtx_unlock(&sync_mtx);
3482		bo->bo_flag &= ~BO_ONWORKLST;
3483	}
3484	BO_UNLOCK(bo);
3485
3486	return (0);
3487}
3488
3489/*
3490 * Check if vnode represents a disk device
3491 */
3492int
3493vn_isdisk(struct vnode *vp, int *errp)
3494{
3495	int error;
3496
3497	error = 0;
3498	dev_lock();
3499	if (vp->v_type != VCHR)
3500		error = ENOTBLK;
3501	else if (vp->v_rdev == NULL)
3502		error = ENXIO;
3503	else if (vp->v_rdev->si_devsw == NULL)
3504		error = ENXIO;
3505	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3506		error = ENOTBLK;
3507	dev_unlock();
3508	if (errp != NULL)
3509		*errp = error;
3510	return (error == 0);
3511}
3512
3513/*
3514 * Common filesystem object access control check routine.  Accepts a
3515 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3516 * and optional call-by-reference privused argument allowing vaccess()
3517 * to indicate to the caller whether privilege was used to satisfy the
3518 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3519 *
3520 * The ifdef'd CAPABILITIES version is here for reference, but is not
3521 * actually used.
3522 */
3523int
3524vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3525    accmode_t accmode, struct ucred *cred, int *privused)
3526{
3527	accmode_t dac_granted;
3528	accmode_t priv_granted;
3529
3530	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
3531	    ("invalid bit in accmode"));
3532	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
3533	    ("VAPPEND without VWRITE"));
3534
3535	/*
3536	 * Look for a normal, non-privileged way to access the file/directory
3537	 * as requested.  If it exists, go with that.
3538	 */
3539
3540	if (privused != NULL)
3541		*privused = 0;
3542
3543	dac_granted = 0;
3544
3545	/* Check the owner. */
3546	if (cred->cr_uid == file_uid) {
3547		dac_granted |= VADMIN;
3548		if (file_mode & S_IXUSR)
3549			dac_granted |= VEXEC;
3550		if (file_mode & S_IRUSR)
3551			dac_granted |= VREAD;
3552		if (file_mode & S_IWUSR)
3553			dac_granted |= (VWRITE | VAPPEND);
3554
3555		if ((accmode & dac_granted) == accmode)
3556			return (0);
3557
3558		goto privcheck;
3559	}
3560
3561	/* Otherwise, check the groups (first match) */
3562	if (groupmember(file_gid, cred)) {
3563		if (file_mode & S_IXGRP)
3564			dac_granted |= VEXEC;
3565		if (file_mode & S_IRGRP)
3566			dac_granted |= VREAD;
3567		if (file_mode & S_IWGRP)
3568			dac_granted |= (VWRITE | VAPPEND);
3569
3570		if ((accmode & dac_granted) == accmode)
3571			return (0);
3572
3573		goto privcheck;
3574	}
3575
3576	/* Otherwise, check everyone else. */
3577	if (file_mode & S_IXOTH)
3578		dac_granted |= VEXEC;
3579	if (file_mode & S_IROTH)
3580		dac_granted |= VREAD;
3581	if (file_mode & S_IWOTH)
3582		dac_granted |= (VWRITE | VAPPEND);
3583	if ((accmode & dac_granted) == accmode)
3584		return (0);
3585
3586privcheck:
3587	/*
3588	 * Build a privilege mask to determine if the set of privileges
3589	 * satisfies the requirements when combined with the granted mask
3590	 * from above.  For each privilege, if the privilege is required,
3591	 * bitwise or the request type onto the priv_granted mask.
3592	 */
3593	priv_granted = 0;
3594
3595	if (type == VDIR) {
3596		/*
3597		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3598		 * requests, instead of PRIV_VFS_EXEC.
3599		 */
3600		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3601		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3602			priv_granted |= VEXEC;
3603	} else {
3604		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3605		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3606			priv_granted |= VEXEC;
3607	}
3608
3609	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
3610	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
3611		priv_granted |= VREAD;
3612
3613	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3614	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3615		priv_granted |= (VWRITE | VAPPEND);
3616
3617	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3618	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3619		priv_granted |= VADMIN;
3620
3621	if ((accmode & (priv_granted | dac_granted)) == accmode) {
3622		/* XXX audit: privilege used */
3623		if (privused != NULL)
3624			*privused = 1;
3625		return (0);
3626	}
3627
3628	return ((accmode & VADMIN) ? EPERM : EACCES);
3629}
3630
3631/*
3632 * Credential check based on process requesting service, and per-attribute
3633 * permissions.
3634 */
3635int
3636extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3637    struct thread *td, accmode_t accmode)
3638{
3639
3640	/*
3641	 * Kernel-invoked always succeeds.
3642	 */
3643	if (cred == NOCRED)
3644		return (0);
3645
3646	/*
3647	 * Do not allow privileged processes in jail to directly manipulate
3648	 * system attributes.
3649	 */
3650	switch (attrnamespace) {
3651	case EXTATTR_NAMESPACE_SYSTEM:
3652		/* Potentially should be: return (EPERM); */
3653		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3654	case EXTATTR_NAMESPACE_USER:
3655		return (VOP_ACCESS(vp, accmode, cred, td));
3656	default:
3657		return (EPERM);
3658	}
3659}
3660
3661#ifdef DEBUG_VFS_LOCKS
3662/*
3663 * This only exists to supress warnings from unlocked specfs accesses.  It is
3664 * no longer ok to have an unlocked VFS.
3665 */
3666#define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
3667	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
3668
3669int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3670SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3671
3672int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3673SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3674
3675int vfs_badlock_print = 1;	/* Print lock violations. */
3676SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3677
3678#ifdef KDB
3679int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3680SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3681#endif
3682
3683static void
3684vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3685{
3686
3687#ifdef KDB
3688	if (vfs_badlock_backtrace)
3689		kdb_backtrace();
3690#endif
3691	if (vfs_badlock_print)
3692		printf("%s: %p %s\n", str, (void *)vp, msg);
3693	if (vfs_badlock_ddb)
3694		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3695}
3696
3697void
3698assert_vi_locked(struct vnode *vp, const char *str)
3699{
3700
3701	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3702		vfs_badlock("interlock is not locked but should be", str, vp);
3703}
3704
3705void
3706assert_vi_unlocked(struct vnode *vp, const char *str)
3707{
3708
3709	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3710		vfs_badlock("interlock is locked but should not be", str, vp);
3711}
3712
3713void
3714assert_vop_locked(struct vnode *vp, const char *str)
3715{
3716
3717	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == 0)
3718		vfs_badlock("is not locked but should be", str, vp);
3719}
3720
3721void
3722assert_vop_unlocked(struct vnode *vp, const char *str)
3723{
3724
3725	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
3726		vfs_badlock("is locked but should not be", str, vp);
3727}
3728
3729void
3730assert_vop_elocked(struct vnode *vp, const char *str)
3731{
3732
3733	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
3734		vfs_badlock("is not exclusive locked but should be", str, vp);
3735}
3736
3737#if 0
3738void
3739assert_vop_elocked_other(struct vnode *vp, const char *str)
3740{
3741
3742	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
3743		vfs_badlock("is not exclusive locked by another thread",
3744		    str, vp);
3745}
3746
3747void
3748assert_vop_slocked(struct vnode *vp, const char *str)
3749{
3750
3751	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
3752		vfs_badlock("is not locked shared but should be", str, vp);
3753}
3754#endif /* 0 */
3755#endif /* DEBUG_VFS_LOCKS */
3756
3757void
3758vop_rename_fail(struct vop_rename_args *ap)
3759{
3760
3761	if (ap->a_tvp != NULL)
3762		vput(ap->a_tvp);
3763	if (ap->a_tdvp == ap->a_tvp)
3764		vrele(ap->a_tdvp);
3765	else
3766		vput(ap->a_tdvp);
3767	vrele(ap->a_fdvp);
3768	vrele(ap->a_fvp);
3769}
3770
3771void
3772vop_rename_pre(void *ap)
3773{
3774	struct vop_rename_args *a = ap;
3775
3776#ifdef DEBUG_VFS_LOCKS
3777	if (a->a_tvp)
3778		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3779	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3780	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3781	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3782
3783	/* Check the source (from). */
3784	if (a->a_tdvp != a->a_fdvp && a->a_tvp != a->a_fdvp)
3785		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3786	if (a->a_tvp != a->a_fvp)
3787		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
3788
3789	/* Check the target. */
3790	if (a->a_tvp)
3791		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3792	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3793#endif
3794	if (a->a_tdvp != a->a_fdvp)
3795		vhold(a->a_fdvp);
3796	if (a->a_tvp != a->a_fvp)
3797		vhold(a->a_fvp);
3798	vhold(a->a_tdvp);
3799	if (a->a_tvp)
3800		vhold(a->a_tvp);
3801}
3802
3803void
3804vop_strategy_pre(void *ap)
3805{
3806#ifdef DEBUG_VFS_LOCKS
3807	struct vop_strategy_args *a;
3808	struct buf *bp;
3809
3810	a = ap;
3811	bp = a->a_bp;
3812
3813	/*
3814	 * Cluster ops lock their component buffers but not the IO container.
3815	 */
3816	if ((bp->b_flags & B_CLUSTER) != 0)
3817		return;
3818
3819	if (!BUF_ISLOCKED(bp)) {
3820		if (vfs_badlock_print)
3821			printf(
3822			    "VOP_STRATEGY: bp is not locked but should be\n");
3823		if (vfs_badlock_ddb)
3824			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3825	}
3826#endif
3827}
3828
3829void
3830vop_lookup_pre(void *ap)
3831{
3832#ifdef DEBUG_VFS_LOCKS
3833	struct vop_lookup_args *a;
3834	struct vnode *dvp;
3835
3836	a = ap;
3837	dvp = a->a_dvp;
3838	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3839	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3840#endif
3841}
3842
3843void
3844vop_lookup_post(void *ap, int rc)
3845{
3846#ifdef DEBUG_VFS_LOCKS
3847	struct vop_lookup_args *a;
3848	struct vnode *dvp;
3849	struct vnode *vp;
3850
3851	a = ap;
3852	dvp = a->a_dvp;
3853	vp = *(a->a_vpp);
3854
3855	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3856	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3857
3858	if (!rc)
3859		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
3860#endif
3861}
3862
3863void
3864vop_lock_pre(void *ap)
3865{
3866#ifdef DEBUG_VFS_LOCKS
3867	struct vop_lock1_args *a = ap;
3868
3869	if ((a->a_flags & LK_INTERLOCK) == 0)
3870		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3871	else
3872		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3873#endif
3874}
3875
3876void
3877vop_lock_post(void *ap, int rc)
3878{
3879#ifdef DEBUG_VFS_LOCKS
3880	struct vop_lock1_args *a = ap;
3881
3882	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3883	if (rc == 0)
3884		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3885#endif
3886}
3887
3888void
3889vop_unlock_pre(void *ap)
3890{
3891#ifdef DEBUG_VFS_LOCKS
3892	struct vop_unlock_args *a = ap;
3893
3894	if (a->a_flags & LK_INTERLOCK)
3895		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3896	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3897#endif
3898}
3899
3900void
3901vop_unlock_post(void *ap, int rc)
3902{
3903#ifdef DEBUG_VFS_LOCKS
3904	struct vop_unlock_args *a = ap;
3905
3906	if (a->a_flags & LK_INTERLOCK)
3907		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3908#endif
3909}
3910
3911void
3912vop_create_post(void *ap, int rc)
3913{
3914	struct vop_create_args *a = ap;
3915
3916	if (!rc)
3917		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3918}
3919
3920void
3921vop_link_post(void *ap, int rc)
3922{
3923	struct vop_link_args *a = ap;
3924
3925	if (!rc) {
3926		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
3927		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
3928	}
3929}
3930
3931void
3932vop_mkdir_post(void *ap, int rc)
3933{
3934	struct vop_mkdir_args *a = ap;
3935
3936	if (!rc)
3937		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3938}
3939
3940void
3941vop_mknod_post(void *ap, int rc)
3942{
3943	struct vop_mknod_args *a = ap;
3944
3945	if (!rc)
3946		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3947}
3948
3949void
3950vop_remove_post(void *ap, int rc)
3951{
3952	struct vop_remove_args *a = ap;
3953
3954	if (!rc) {
3955		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3956		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3957	}
3958}
3959
3960void
3961vop_rename_post(void *ap, int rc)
3962{
3963	struct vop_rename_args *a = ap;
3964
3965	if (!rc) {
3966		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
3967		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
3968		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
3969		if (a->a_tvp)
3970			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
3971	}
3972	if (a->a_tdvp != a->a_fdvp)
3973		vdrop(a->a_fdvp);
3974	if (a->a_tvp != a->a_fvp)
3975		vdrop(a->a_fvp);
3976	vdrop(a->a_tdvp);
3977	if (a->a_tvp)
3978		vdrop(a->a_tvp);
3979}
3980
3981void
3982vop_rmdir_post(void *ap, int rc)
3983{
3984	struct vop_rmdir_args *a = ap;
3985
3986	if (!rc) {
3987		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3988		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3989	}
3990}
3991
3992void
3993vop_setattr_post(void *ap, int rc)
3994{
3995	struct vop_setattr_args *a = ap;
3996
3997	if (!rc)
3998		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
3999}
4000
4001void
4002vop_symlink_post(void *ap, int rc)
4003{
4004	struct vop_symlink_args *a = ap;
4005
4006	if (!rc)
4007		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4008}
4009
4010static struct knlist fs_knlist;
4011
4012static void
4013vfs_event_init(void *arg)
4014{
4015	knlist_init_mtx(&fs_knlist, NULL);
4016}
4017/* XXX - correct order? */
4018SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4019
4020void
4021vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
4022{
4023
4024	KNOTE_UNLOCKED(&fs_knlist, event);
4025}
4026
4027static int	filt_fsattach(struct knote *kn);
4028static void	filt_fsdetach(struct knote *kn);
4029static int	filt_fsevent(struct knote *kn, long hint);
4030
4031struct filterops fs_filtops = {
4032	.f_isfd = 0,
4033	.f_attach = filt_fsattach,
4034	.f_detach = filt_fsdetach,
4035	.f_event = filt_fsevent
4036};
4037
4038static int
4039filt_fsattach(struct knote *kn)
4040{
4041
4042	kn->kn_flags |= EV_CLEAR;
4043	knlist_add(&fs_knlist, kn, 0);
4044	return (0);
4045}
4046
4047static void
4048filt_fsdetach(struct knote *kn)
4049{
4050
4051	knlist_remove(&fs_knlist, kn, 0);
4052}
4053
4054static int
4055filt_fsevent(struct knote *kn, long hint)
4056{
4057
4058	kn->kn_fflags |= hint;
4059	return (kn->kn_fflags != 0);
4060}
4061
4062static int
4063sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4064{
4065	struct vfsidctl vc;
4066	int error;
4067	struct mount *mp;
4068
4069	error = SYSCTL_IN(req, &vc, sizeof(vc));
4070	if (error)
4071		return (error);
4072	if (vc.vc_vers != VFS_CTL_VERS1)
4073		return (EINVAL);
4074	mp = vfs_getvfs(&vc.vc_fsid);
4075	if (mp == NULL)
4076		return (ENOENT);
4077	/* ensure that a specific sysctl goes to the right filesystem. */
4078	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4079	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4080		vfs_rel(mp);
4081		return (EINVAL);
4082	}
4083	VCTLTOREQ(&vc, req);
4084	error = VFS_SYSCTL(mp, vc.vc_op, req);
4085	vfs_rel(mp);
4086	return (error);
4087}
4088
4089SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR, NULL, 0, sysctl_vfs_ctl, "",
4090    "Sysctl by fsid");
4091
4092/*
4093 * Function to initialize a va_filerev field sensibly.
4094 * XXX: Wouldn't a random number make a lot more sense ??
4095 */
4096u_quad_t
4097init_va_filerev(void)
4098{
4099	struct bintime bt;
4100
4101	getbinuptime(&bt);
4102	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4103}
4104
4105static int	filt_vfsread(struct knote *kn, long hint);
4106static int	filt_vfswrite(struct knote *kn, long hint);
4107static int	filt_vfsvnode(struct knote *kn, long hint);
4108static void	filt_vfsdetach(struct knote *kn);
4109static struct filterops vfsread_filtops = {
4110	.f_isfd = 1,
4111	.f_detach = filt_vfsdetach,
4112	.f_event = filt_vfsread
4113};
4114static struct filterops vfswrite_filtops = {
4115	.f_isfd = 1,
4116	.f_detach = filt_vfsdetach,
4117	.f_event = filt_vfswrite
4118};
4119static struct filterops vfsvnode_filtops = {
4120	.f_isfd = 1,
4121	.f_detach = filt_vfsdetach,
4122	.f_event = filt_vfsvnode
4123};
4124
4125static void
4126vfs_knllock(void *arg)
4127{
4128	struct vnode *vp = arg;
4129
4130	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4131}
4132
4133static void
4134vfs_knlunlock(void *arg)
4135{
4136	struct vnode *vp = arg;
4137
4138	VOP_UNLOCK(vp, 0);
4139}
4140
4141static void
4142vfs_knl_assert_locked(void *arg)
4143{
4144#ifdef DEBUG_VFS_LOCKS
4145	struct vnode *vp = arg;
4146
4147	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
4148#endif
4149}
4150
4151static void
4152vfs_knl_assert_unlocked(void *arg)
4153{
4154#ifdef DEBUG_VFS_LOCKS
4155	struct vnode *vp = arg;
4156
4157	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
4158#endif
4159}
4160
4161int
4162vfs_kqfilter(struct vop_kqfilter_args *ap)
4163{
4164	struct vnode *vp = ap->a_vp;
4165	struct knote *kn = ap->a_kn;
4166	struct knlist *knl;
4167
4168	switch (kn->kn_filter) {
4169	case EVFILT_READ:
4170		kn->kn_fop = &vfsread_filtops;
4171		break;
4172	case EVFILT_WRITE:
4173		kn->kn_fop = &vfswrite_filtops;
4174		break;
4175	case EVFILT_VNODE:
4176		kn->kn_fop = &vfsvnode_filtops;
4177		break;
4178	default:
4179		return (EINVAL);
4180	}
4181
4182	kn->kn_hook = (caddr_t)vp;
4183
4184	v_addpollinfo(vp);
4185	if (vp->v_pollinfo == NULL)
4186		return (ENOMEM);
4187	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4188	knlist_add(knl, kn, 0);
4189
4190	return (0);
4191}
4192
4193/*
4194 * Detach knote from vnode
4195 */
4196static void
4197filt_vfsdetach(struct knote *kn)
4198{
4199	struct vnode *vp = (struct vnode *)kn->kn_hook;
4200
4201	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4202	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4203}
4204
4205/*ARGSUSED*/
4206static int
4207filt_vfsread(struct knote *kn, long hint)
4208{
4209	struct vnode *vp = (struct vnode *)kn->kn_hook;
4210	struct vattr va;
4211	int res;
4212
4213	/*
4214	 * filesystem is gone, so set the EOF flag and schedule
4215	 * the knote for deletion.
4216	 */
4217	if (hint == NOTE_REVOKE) {
4218		VI_LOCK(vp);
4219		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4220		VI_UNLOCK(vp);
4221		return (1);
4222	}
4223
4224	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4225		return (0);
4226
4227	VI_LOCK(vp);
4228	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4229	res = (kn->kn_data != 0);
4230	VI_UNLOCK(vp);
4231	return (res);
4232}
4233
4234/*ARGSUSED*/
4235static int
4236filt_vfswrite(struct knote *kn, long hint)
4237{
4238	struct vnode *vp = (struct vnode *)kn->kn_hook;
4239
4240	VI_LOCK(vp);
4241
4242	/*
4243	 * filesystem is gone, so set the EOF flag and schedule
4244	 * the knote for deletion.
4245	 */
4246	if (hint == NOTE_REVOKE)
4247		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4248
4249	kn->kn_data = 0;
4250	VI_UNLOCK(vp);
4251	return (1);
4252}
4253
4254static int
4255filt_vfsvnode(struct knote *kn, long hint)
4256{
4257	struct vnode *vp = (struct vnode *)kn->kn_hook;
4258	int res;
4259
4260	VI_LOCK(vp);
4261	if (kn->kn_sfflags & hint)
4262		kn->kn_fflags |= hint;
4263	if (hint == NOTE_REVOKE) {
4264		kn->kn_flags |= EV_EOF;
4265		VI_UNLOCK(vp);
4266		return (1);
4267	}
4268	res = (kn->kn_fflags != 0);
4269	VI_UNLOCK(vp);
4270	return (res);
4271}
4272
4273int
4274vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4275{
4276	int error;
4277
4278	if (dp->d_reclen > ap->a_uio->uio_resid)
4279		return (ENAMETOOLONG);
4280	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4281	if (error) {
4282		if (ap->a_ncookies != NULL) {
4283			if (ap->a_cookies != NULL)
4284				free(ap->a_cookies, M_TEMP);
4285			ap->a_cookies = NULL;
4286			*ap->a_ncookies = 0;
4287		}
4288		return (error);
4289	}
4290	if (ap->a_ncookies == NULL)
4291		return (0);
4292
4293	KASSERT(ap->a_cookies,
4294	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4295
4296	*ap->a_cookies = realloc(*ap->a_cookies,
4297	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4298	(*ap->a_cookies)[*ap->a_ncookies] = off;
4299	return (0);
4300}
4301
4302/*
4303 * Mark for update the access time of the file if the filesystem
4304 * supports VOP_MARKATIME.  This functionality is used by execve and
4305 * mmap, so we want to avoid the I/O implied by directly setting
4306 * va_atime for the sake of efficiency.
4307 */
4308void
4309vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4310{
4311	struct mount *mp;
4312
4313	mp = vp->v_mount;
4314	VFS_ASSERT_GIANT(mp);
4315	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
4316	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
4317		(void)VOP_MARKATIME(vp);
4318}
4319
4320/*
4321 * The purpose of this routine is to remove granularity from accmode_t,
4322 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
4323 * VADMIN and VAPPEND.
4324 *
4325 * If it returns 0, the caller is supposed to continue with the usual
4326 * access checks using 'accmode' as modified by this routine.  If it
4327 * returns nonzero value, the caller is supposed to return that value
4328 * as errno.
4329 *
4330 * Note that after this routine runs, accmode may be zero.
4331 */
4332int
4333vfs_unixify_accmode(accmode_t *accmode)
4334{
4335	/*
4336	 * There is no way to specify explicit "deny" rule using
4337	 * file mode or POSIX.1e ACLs.
4338	 */
4339	if (*accmode & VEXPLICIT_DENY) {
4340		*accmode = 0;
4341		return (0);
4342	}
4343
4344	/*
4345	 * None of these can be translated into usual access bits.
4346	 * Also, the common case for NFSv4 ACLs is to not contain
4347	 * either of these bits. Caller should check for VWRITE
4348	 * on the containing directory instead.
4349	 */
4350	if (*accmode & (VDELETE_CHILD | VDELETE))
4351		return (EPERM);
4352
4353	if (*accmode & VADMIN_PERMS) {
4354		*accmode &= ~VADMIN_PERMS;
4355		*accmode |= VADMIN;
4356	}
4357
4358	/*
4359	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
4360	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
4361	 */
4362	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
4363
4364	return (0);
4365}
4366