vfs_subr.c revision 184409
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_subr.c 184409 2008-10-28 12:08:36Z kib $");
43
44#include "opt_ddb.h"
45#include "opt_mac.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/bio.h>
50#include <sys/buf.h>
51#include <sys/condvar.h>
52#include <sys/conf.h>
53#include <sys/dirent.h>
54#include <sys/event.h>
55#include <sys/eventhandler.h>
56#include <sys/extattr.h>
57#include <sys/file.h>
58#include <sys/fcntl.h>
59#include <sys/jail.h>
60#include <sys/kdb.h>
61#include <sys/kernel.h>
62#include <sys/kthread.h>
63#include <sys/lockf.h>
64#include <sys/malloc.h>
65#include <sys/mount.h>
66#include <sys/namei.h>
67#include <sys/priv.h>
68#include <sys/reboot.h>
69#include <sys/sleepqueue.h>
70#include <sys/stat.h>
71#include <sys/sysctl.h>
72#include <sys/syslog.h>
73#include <sys/vmmeter.h>
74#include <sys/vnode.h>
75
76#include <machine/stdarg.h>
77
78#include <security/mac/mac_framework.h>
79
80#include <vm/vm.h>
81#include <vm/vm_object.h>
82#include <vm/vm_extern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_page.h>
86#include <vm/vm_kern.h>
87#include <vm/uma.h>
88
89#ifdef DDB
90#include <ddb/ddb.h>
91#endif
92
93#define	WI_MPSAFEQ	0
94#define	WI_GIANTQ	1
95
96static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure");
97
98static void	delmntque(struct vnode *vp);
99static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
100		    int slpflag, int slptimeo);
101static void	syncer_shutdown(void *arg, int howto);
102static int	vtryrecycle(struct vnode *vp);
103static void	vbusy(struct vnode *vp);
104static void	vinactive(struct vnode *, struct thread *);
105static void	v_incr_usecount(struct vnode *);
106static void	v_decr_usecount(struct vnode *);
107static void	v_decr_useonly(struct vnode *);
108static void	v_upgrade_usecount(struct vnode *);
109static void	vfree(struct vnode *);
110static void	vnlru_free(int);
111static void	vdestroy(struct vnode *);
112static void	vgonel(struct vnode *);
113static void	vfs_knllock(void *arg);
114static void	vfs_knlunlock(void *arg);
115static int	vfs_knllocked(void *arg);
116static void	destroy_vpollinfo(struct vpollinfo *vi);
117
118/*
119 * Enable Giant pushdown based on whether or not the vm is mpsafe in this
120 * build.  Without mpsafevm the buffer cache can not run Giant free.
121 */
122int mpsafe_vfs = 1;
123TUNABLE_INT("debug.mpsafevfs", &mpsafe_vfs);
124SYSCTL_INT(_debug, OID_AUTO, mpsafevfs, CTLFLAG_RD, &mpsafe_vfs, 0,
125    "MPSAFE VFS");
126
127/*
128 * Number of vnodes in existence.  Increased whenever getnewvnode()
129 * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed
130 * vnode.
131 */
132static unsigned long	numvnodes;
133
134SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
135
136/*
137 * Conversion tables for conversion from vnode types to inode formats
138 * and back.
139 */
140enum vtype iftovt_tab[16] = {
141	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
142	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
143};
144int vttoif_tab[10] = {
145	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
146	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
147};
148
149/*
150 * List of vnodes that are ready for recycling.
151 */
152static TAILQ_HEAD(freelst, vnode) vnode_free_list;
153
154/*
155 * Free vnode target.  Free vnodes may simply be files which have been stat'd
156 * but not read.  This is somewhat common, and a small cache of such files
157 * should be kept to avoid recreation costs.
158 */
159static u_long wantfreevnodes;
160SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
161/* Number of vnodes in the free list. */
162static u_long freevnodes;
163SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
164
165/*
166 * Various variables used for debugging the new implementation of
167 * reassignbuf().
168 * XXX these are probably of (very) limited utility now.
169 */
170static int reassignbufcalls;
171SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
172
173/*
174 * Cache for the mount type id assigned to NFS.  This is used for
175 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
176 */
177int	nfs_mount_type = -1;
178
179/* To keep more than one thread at a time from running vfs_getnewfsid */
180static struct mtx mntid_mtx;
181
182/*
183 * Lock for any access to the following:
184 *	vnode_free_list
185 *	numvnodes
186 *	freevnodes
187 */
188static struct mtx vnode_free_list_mtx;
189
190/* Publicly exported FS */
191struct nfs_public nfs_pub;
192
193/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
194static uma_zone_t vnode_zone;
195static uma_zone_t vnodepoll_zone;
196
197/* Set to 1 to print out reclaim of active vnodes */
198int	prtactive;
199
200/*
201 * The workitem queue.
202 *
203 * It is useful to delay writes of file data and filesystem metadata
204 * for tens of seconds so that quickly created and deleted files need
205 * not waste disk bandwidth being created and removed. To realize this,
206 * we append vnodes to a "workitem" queue. When running with a soft
207 * updates implementation, most pending metadata dependencies should
208 * not wait for more than a few seconds. Thus, mounted on block devices
209 * are delayed only about a half the time that file data is delayed.
210 * Similarly, directory updates are more critical, so are only delayed
211 * about a third the time that file data is delayed. Thus, there are
212 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
213 * one each second (driven off the filesystem syncer process). The
214 * syncer_delayno variable indicates the next queue that is to be processed.
215 * Items that need to be processed soon are placed in this queue:
216 *
217 *	syncer_workitem_pending[syncer_delayno]
218 *
219 * A delay of fifteen seconds is done by placing the request fifteen
220 * entries later in the queue:
221 *
222 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
223 *
224 */
225static int syncer_delayno;
226static long syncer_mask;
227LIST_HEAD(synclist, bufobj);
228static struct synclist *syncer_workitem_pending[2];
229/*
230 * The sync_mtx protects:
231 *	bo->bo_synclist
232 *	sync_vnode_count
233 *	syncer_delayno
234 *	syncer_state
235 *	syncer_workitem_pending
236 *	syncer_worklist_len
237 *	rushjob
238 */
239static struct mtx sync_mtx;
240static struct cv sync_wakeup;
241
242#define SYNCER_MAXDELAY		32
243static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
244static int syncdelay = 30;		/* max time to delay syncing data */
245static int filedelay = 30;		/* time to delay syncing files */
246SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
247static int dirdelay = 29;		/* time to delay syncing directories */
248SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
249static int metadelay = 28;		/* time to delay syncing metadata */
250SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
251static int rushjob;		/* number of slots to run ASAP */
252static int stat_rush_requests;	/* number of times I/O speeded up */
253SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
254
255/*
256 * When shutting down the syncer, run it at four times normal speed.
257 */
258#define SYNCER_SHUTDOWN_SPEEDUP		4
259static int sync_vnode_count;
260static int syncer_worklist_len;
261static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
262    syncer_state;
263
264/*
265 * Number of vnodes we want to exist at any one time.  This is mostly used
266 * to size hash tables in vnode-related code.  It is normally not used in
267 * getnewvnode(), as wantfreevnodes is normally nonzero.)
268 *
269 * XXX desiredvnodes is historical cruft and should not exist.
270 */
271int desiredvnodes;
272SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
273    &desiredvnodes, 0, "Maximum number of vnodes");
274SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
275    &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
276static int vnlru_nowhere;
277SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
278    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
279
280/*
281 * Macros to control when a vnode is freed and recycled.  All require
282 * the vnode interlock.
283 */
284#define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
285#define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
286#define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
287
288
289/*
290 * Initialize the vnode management data structures.
291 */
292#ifndef	MAXVNODES_MAX
293#define	MAXVNODES_MAX	100000
294#endif
295static void
296vntblinit(void *dummy __unused)
297{
298
299	/*
300	 * Desiredvnodes is a function of the physical memory size and
301	 * the kernel's heap size.  Specifically, desiredvnodes scales
302	 * in proportion to the physical memory size until two fifths
303	 * of the kernel's heap size is consumed by vnodes and vm
304	 * objects.
305	 */
306	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
307	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
308	if (desiredvnodes > MAXVNODES_MAX) {
309		if (bootverbose)
310			printf("Reducing kern.maxvnodes %d -> %d\n",
311			    desiredvnodes, MAXVNODES_MAX);
312		desiredvnodes = MAXVNODES_MAX;
313	}
314	wantfreevnodes = desiredvnodes / 4;
315	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
316	TAILQ_INIT(&vnode_free_list);
317	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
318	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
319	    NULL, NULL, UMA_ALIGN_PTR, 0);
320	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
321	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
322	/*
323	 * Initialize the filesystem syncer.
324	 */
325	syncer_workitem_pending[WI_MPSAFEQ] = hashinit(syncer_maxdelay, M_VNODE,
326	    &syncer_mask);
327	syncer_workitem_pending[WI_GIANTQ] = hashinit(syncer_maxdelay, M_VNODE,
328	    &syncer_mask);
329	syncer_maxdelay = syncer_mask + 1;
330	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
331	cv_init(&sync_wakeup, "syncer");
332}
333SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
334
335
336/*
337 * Mark a mount point as busy. Used to synchronize access and to delay
338 * unmounting. Interlock is not released on failure.
339 */
340int
341vfs_busy(struct mount *mp, int flags, struct mtx *interlkp)
342{
343	int lkflags;
344
345	MNT_ILOCK(mp);
346	MNT_REF(mp);
347	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
348		if (flags & LK_NOWAIT) {
349			MNT_REL(mp);
350			MNT_IUNLOCK(mp);
351			return (ENOENT);
352		}
353		if (interlkp)
354			mtx_unlock(interlkp);
355		mp->mnt_kern_flag |= MNTK_MWAIT;
356		/*
357		 * Since all busy locks are shared except the exclusive
358		 * lock granted when unmounting, the only place that a
359		 * wakeup needs to be done is at the release of the
360		 * exclusive lock at the end of dounmount.
361		 */
362		msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
363		MNT_REL(mp);
364		MNT_IUNLOCK(mp);
365		if (interlkp)
366			mtx_lock(interlkp);
367		return (ENOENT);
368	}
369	if (interlkp)
370		mtx_unlock(interlkp);
371	lkflags = LK_SHARED | LK_INTERLOCK | LK_NOWAIT;
372	if (lockmgr(&mp->mnt_lock, lkflags, MNT_MTX(mp)))
373		panic("vfs_busy: unexpected lock failure");
374	return (0);
375}
376
377/*
378 * Free a busy filesystem.
379 */
380void
381vfs_unbusy(struct mount *mp)
382{
383
384	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL);
385	vfs_rel(mp);
386}
387
388/*
389 * Lookup a mount point by filesystem identifier.
390 */
391struct mount *
392vfs_getvfs(fsid_t *fsid)
393{
394	struct mount *mp;
395
396	mtx_lock(&mountlist_mtx);
397	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
398		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
399		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
400			vfs_ref(mp);
401			mtx_unlock(&mountlist_mtx);
402			return (mp);
403		}
404	}
405	mtx_unlock(&mountlist_mtx);
406	return ((struct mount *) 0);
407}
408
409/*
410 * Check if a user can access privileged mount options.
411 */
412int
413vfs_suser(struct mount *mp, struct thread *td)
414{
415	int error;
416
417	/*
418	 * If the thread is jailed, but this is not a jail-friendly file
419	 * system, deny immediately.
420	 */
421	if (jailed(td->td_ucred) && !(mp->mnt_vfc->vfc_flags & VFCF_JAIL))
422		return (EPERM);
423
424	/*
425	 * If the file system was mounted outside a jail and a jailed thread
426	 * tries to access it, deny immediately.
427	 */
428	if (!jailed(mp->mnt_cred) && jailed(td->td_ucred))
429		return (EPERM);
430
431	/*
432	 * If the file system was mounted inside different jail that the jail of
433	 * the calling thread, deny immediately.
434	 */
435	if (jailed(mp->mnt_cred) && jailed(td->td_ucred) &&
436	    mp->mnt_cred->cr_prison != td->td_ucred->cr_prison) {
437		return (EPERM);
438	}
439
440	if ((mp->mnt_flag & MNT_USER) == 0 ||
441	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
442		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
443			return (error);
444	}
445	return (0);
446}
447
448/*
449 * Get a new unique fsid.  Try to make its val[0] unique, since this value
450 * will be used to create fake device numbers for stat().  Also try (but
451 * not so hard) make its val[0] unique mod 2^16, since some emulators only
452 * support 16-bit device numbers.  We end up with unique val[0]'s for the
453 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
454 *
455 * Keep in mind that several mounts may be running in parallel.  Starting
456 * the search one past where the previous search terminated is both a
457 * micro-optimization and a defense against returning the same fsid to
458 * different mounts.
459 */
460void
461vfs_getnewfsid(struct mount *mp)
462{
463	static u_int16_t mntid_base;
464	struct mount *nmp;
465	fsid_t tfsid;
466	int mtype;
467
468	mtx_lock(&mntid_mtx);
469	mtype = mp->mnt_vfc->vfc_typenum;
470	tfsid.val[1] = mtype;
471	mtype = (mtype & 0xFF) << 24;
472	for (;;) {
473		tfsid.val[0] = makedev(255,
474		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
475		mntid_base++;
476		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
477			break;
478		vfs_rel(nmp);
479	}
480	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
481	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
482	mtx_unlock(&mntid_mtx);
483}
484
485/*
486 * Knob to control the precision of file timestamps:
487 *
488 *   0 = seconds only; nanoseconds zeroed.
489 *   1 = seconds and nanoseconds, accurate within 1/HZ.
490 *   2 = seconds and nanoseconds, truncated to microseconds.
491 * >=3 = seconds and nanoseconds, maximum precision.
492 */
493enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
494
495static int timestamp_precision = TSP_SEC;
496SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
497    &timestamp_precision, 0, "");
498
499/*
500 * Get a current timestamp.
501 */
502void
503vfs_timestamp(struct timespec *tsp)
504{
505	struct timeval tv;
506
507	switch (timestamp_precision) {
508	case TSP_SEC:
509		tsp->tv_sec = time_second;
510		tsp->tv_nsec = 0;
511		break;
512	case TSP_HZ:
513		getnanotime(tsp);
514		break;
515	case TSP_USEC:
516		microtime(&tv);
517		TIMEVAL_TO_TIMESPEC(&tv, tsp);
518		break;
519	case TSP_NSEC:
520	default:
521		nanotime(tsp);
522		break;
523	}
524}
525
526/*
527 * Set vnode attributes to VNOVAL
528 */
529void
530vattr_null(struct vattr *vap)
531{
532
533	vap->va_type = VNON;
534	vap->va_size = VNOVAL;
535	vap->va_bytes = VNOVAL;
536	vap->va_mode = VNOVAL;
537	vap->va_nlink = VNOVAL;
538	vap->va_uid = VNOVAL;
539	vap->va_gid = VNOVAL;
540	vap->va_fsid = VNOVAL;
541	vap->va_fileid = VNOVAL;
542	vap->va_blocksize = VNOVAL;
543	vap->va_rdev = VNOVAL;
544	vap->va_atime.tv_sec = VNOVAL;
545	vap->va_atime.tv_nsec = VNOVAL;
546	vap->va_mtime.tv_sec = VNOVAL;
547	vap->va_mtime.tv_nsec = VNOVAL;
548	vap->va_ctime.tv_sec = VNOVAL;
549	vap->va_ctime.tv_nsec = VNOVAL;
550	vap->va_birthtime.tv_sec = VNOVAL;
551	vap->va_birthtime.tv_nsec = VNOVAL;
552	vap->va_flags = VNOVAL;
553	vap->va_gen = VNOVAL;
554	vap->va_vaflags = 0;
555}
556
557/*
558 * This routine is called when we have too many vnodes.  It attempts
559 * to free <count> vnodes and will potentially free vnodes that still
560 * have VM backing store (VM backing store is typically the cause
561 * of a vnode blowout so we want to do this).  Therefore, this operation
562 * is not considered cheap.
563 *
564 * A number of conditions may prevent a vnode from being reclaimed.
565 * the buffer cache may have references on the vnode, a directory
566 * vnode may still have references due to the namei cache representing
567 * underlying files, or the vnode may be in active use.   It is not
568 * desireable to reuse such vnodes.  These conditions may cause the
569 * number of vnodes to reach some minimum value regardless of what
570 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
571 */
572static int
573vlrureclaim(struct mount *mp)
574{
575	struct vnode *vp;
576	int done;
577	int trigger;
578	int usevnodes;
579	int count;
580
581	/*
582	 * Calculate the trigger point, don't allow user
583	 * screwups to blow us up.   This prevents us from
584	 * recycling vnodes with lots of resident pages.  We
585	 * aren't trying to free memory, we are trying to
586	 * free vnodes.
587	 */
588	usevnodes = desiredvnodes;
589	if (usevnodes <= 0)
590		usevnodes = 1;
591	trigger = cnt.v_page_count * 2 / usevnodes;
592	done = 0;
593	vn_start_write(NULL, &mp, V_WAIT);
594	MNT_ILOCK(mp);
595	count = mp->mnt_nvnodelistsize / 10 + 1;
596	while (count != 0) {
597		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
598		while (vp != NULL && vp->v_type == VMARKER)
599			vp = TAILQ_NEXT(vp, v_nmntvnodes);
600		if (vp == NULL)
601			break;
602		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
603		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
604		--count;
605		if (!VI_TRYLOCK(vp))
606			goto next_iter;
607		/*
608		 * If it's been deconstructed already, it's still
609		 * referenced, or it exceeds the trigger, skip it.
610		 */
611		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
612		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
613		    vp->v_object->resident_page_count > trigger)) {
614			VI_UNLOCK(vp);
615			goto next_iter;
616		}
617		MNT_IUNLOCK(mp);
618		vholdl(vp);
619		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
620			vdrop(vp);
621			goto next_iter_mntunlocked;
622		}
623		VI_LOCK(vp);
624		/*
625		 * v_usecount may have been bumped after VOP_LOCK() dropped
626		 * the vnode interlock and before it was locked again.
627		 *
628		 * It is not necessary to recheck VI_DOOMED because it can
629		 * only be set by another thread that holds both the vnode
630		 * lock and vnode interlock.  If another thread has the
631		 * vnode lock before we get to VOP_LOCK() and obtains the
632		 * vnode interlock after VOP_LOCK() drops the vnode
633		 * interlock, the other thread will be unable to drop the
634		 * vnode lock before our VOP_LOCK() call fails.
635		 */
636		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
637		    (vp->v_object != NULL &&
638		    vp->v_object->resident_page_count > trigger)) {
639			VOP_UNLOCK(vp, LK_INTERLOCK);
640			goto next_iter_mntunlocked;
641		}
642		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
643		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
644		vgonel(vp);
645		VOP_UNLOCK(vp, 0);
646		vdropl(vp);
647		done++;
648next_iter_mntunlocked:
649		if ((count % 256) != 0)
650			goto relock_mnt;
651		goto yield;
652next_iter:
653		if ((count % 256) != 0)
654			continue;
655		MNT_IUNLOCK(mp);
656yield:
657		uio_yield();
658relock_mnt:
659		MNT_ILOCK(mp);
660	}
661	MNT_IUNLOCK(mp);
662	vn_finished_write(mp);
663	return done;
664}
665
666/*
667 * Attempt to keep the free list at wantfreevnodes length.
668 */
669static void
670vnlru_free(int count)
671{
672	struct vnode *vp;
673	int vfslocked;
674
675	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
676	for (; count > 0; count--) {
677		vp = TAILQ_FIRST(&vnode_free_list);
678		/*
679		 * The list can be modified while the free_list_mtx
680		 * has been dropped and vp could be NULL here.
681		 */
682		if (!vp)
683			break;
684		VNASSERT(vp->v_op != NULL, vp,
685		    ("vnlru_free: vnode already reclaimed."));
686		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
687		/*
688		 * Don't recycle if we can't get the interlock.
689		 */
690		if (!VI_TRYLOCK(vp)) {
691			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
692			continue;
693		}
694		VNASSERT(VCANRECYCLE(vp), vp,
695		    ("vp inconsistent on freelist"));
696		freevnodes--;
697		vp->v_iflag &= ~VI_FREE;
698		vholdl(vp);
699		mtx_unlock(&vnode_free_list_mtx);
700		VI_UNLOCK(vp);
701		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
702		vtryrecycle(vp);
703		VFS_UNLOCK_GIANT(vfslocked);
704		/*
705		 * If the recycled succeeded this vdrop will actually free
706		 * the vnode.  If not it will simply place it back on
707		 * the free list.
708		 */
709		vdrop(vp);
710		mtx_lock(&vnode_free_list_mtx);
711	}
712}
713/*
714 * Attempt to recycle vnodes in a context that is always safe to block.
715 * Calling vlrurecycle() from the bowels of filesystem code has some
716 * interesting deadlock problems.
717 */
718static struct proc *vnlruproc;
719static int vnlruproc_sig;
720
721static void
722vnlru_proc(void)
723{
724	struct mount *mp, *nmp;
725	int done;
726	struct proc *p = vnlruproc;
727
728	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
729	    SHUTDOWN_PRI_FIRST);
730
731	mtx_lock(&Giant);
732
733	for (;;) {
734		kproc_suspend_check(p);
735		mtx_lock(&vnode_free_list_mtx);
736		if (freevnodes > wantfreevnodes)
737			vnlru_free(freevnodes - wantfreevnodes);
738		if (numvnodes <= desiredvnodes * 9 / 10) {
739			vnlruproc_sig = 0;
740			wakeup(&vnlruproc_sig);
741			msleep(vnlruproc, &vnode_free_list_mtx,
742			    PVFS|PDROP, "vlruwt", hz);
743			continue;
744		}
745		mtx_unlock(&vnode_free_list_mtx);
746		done = 0;
747		mtx_lock(&mountlist_mtx);
748		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
749			int vfsunlocked;
750			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx)) {
751				nmp = TAILQ_NEXT(mp, mnt_list);
752				continue;
753			}
754			if (!VFS_NEEDSGIANT(mp)) {
755				mtx_unlock(&Giant);
756				vfsunlocked = 1;
757			} else
758				vfsunlocked = 0;
759			done += vlrureclaim(mp);
760			if (vfsunlocked)
761				mtx_lock(&Giant);
762			mtx_lock(&mountlist_mtx);
763			nmp = TAILQ_NEXT(mp, mnt_list);
764			vfs_unbusy(mp);
765		}
766		mtx_unlock(&mountlist_mtx);
767		if (done == 0) {
768			EVENTHANDLER_INVOKE(vfs_lowvnodes, desiredvnodes / 10);
769#if 0
770			/* These messages are temporary debugging aids */
771			if (vnlru_nowhere < 5)
772				printf("vnlru process getting nowhere..\n");
773			else if (vnlru_nowhere == 5)
774				printf("vnlru process messages stopped.\n");
775#endif
776			vnlru_nowhere++;
777			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
778		} else
779			uio_yield();
780	}
781}
782
783static struct kproc_desc vnlru_kp = {
784	"vnlru",
785	vnlru_proc,
786	&vnlruproc
787};
788SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
789    &vnlru_kp);
790
791/*
792 * Routines having to do with the management of the vnode table.
793 */
794
795static void
796vdestroy(struct vnode *vp)
797{
798	struct bufobj *bo;
799
800	CTR1(KTR_VFS, "vdestroy vp %p", vp);
801	mtx_lock(&vnode_free_list_mtx);
802	numvnodes--;
803	mtx_unlock(&vnode_free_list_mtx);
804	bo = &vp->v_bufobj;
805	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
806	    ("cleaned vnode still on the free list."));
807	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
808	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
809	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
810	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
811	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
812	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
813	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
814	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
815	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
816	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
817	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
818	VI_UNLOCK(vp);
819#ifdef MAC
820	mac_vnode_destroy(vp);
821#endif
822	if (vp->v_pollinfo != NULL)
823		destroy_vpollinfo(vp->v_pollinfo);
824#ifdef INVARIANTS
825	/* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
826	vp->v_op = NULL;
827#endif
828	lockdestroy(vp->v_vnlock);
829	mtx_destroy(&vp->v_interlock);
830	mtx_destroy(BO_MTX(bo));
831	uma_zfree(vnode_zone, vp);
832}
833
834/*
835 * Try to recycle a freed vnode.  We abort if anyone picks up a reference
836 * before we actually vgone().  This function must be called with the vnode
837 * held to prevent the vnode from being returned to the free list midway
838 * through vgone().
839 */
840static int
841vtryrecycle(struct vnode *vp)
842{
843	struct mount *vnmp;
844
845	CTR1(KTR_VFS, "vtryrecycle: trying vp %p", vp);
846	VNASSERT(vp->v_holdcnt, vp,
847	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
848	/*
849	 * This vnode may found and locked via some other list, if so we
850	 * can't recycle it yet.
851	 */
852	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
853		return (EWOULDBLOCK);
854	/*
855	 * Don't recycle if its filesystem is being suspended.
856	 */
857	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
858		VOP_UNLOCK(vp, 0);
859		return (EBUSY);
860	}
861	/*
862	 * If we got this far, we need to acquire the interlock and see if
863	 * anyone picked up this vnode from another list.  If not, we will
864	 * mark it with DOOMED via vgonel() so that anyone who does find it
865	 * will skip over it.
866	 */
867	VI_LOCK(vp);
868	if (vp->v_usecount) {
869		VOP_UNLOCK(vp, LK_INTERLOCK);
870		vn_finished_write(vnmp);
871		return (EBUSY);
872	}
873	if ((vp->v_iflag & VI_DOOMED) == 0)
874		vgonel(vp);
875	VOP_UNLOCK(vp, LK_INTERLOCK);
876	vn_finished_write(vnmp);
877	CTR1(KTR_VFS, "vtryrecycle: recycled vp %p", vp);
878	return (0);
879}
880
881/*
882 * Return the next vnode from the free list.
883 */
884int
885getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
886    struct vnode **vpp)
887{
888	struct vnode *vp = NULL;
889	struct bufobj *bo;
890
891	mtx_lock(&vnode_free_list_mtx);
892	/*
893	 * Lend our context to reclaim vnodes if they've exceeded the max.
894	 */
895	if (freevnodes > wantfreevnodes)
896		vnlru_free(1);
897	/*
898	 * Wait for available vnodes.
899	 */
900	if (numvnodes > desiredvnodes) {
901		if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
902			/*
903			 * File system is beeing suspended, we cannot risk a
904			 * deadlock here, so allocate new vnode anyway.
905			 */
906			if (freevnodes > wantfreevnodes)
907				vnlru_free(freevnodes - wantfreevnodes);
908			goto alloc;
909		}
910		if (vnlruproc_sig == 0) {
911			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
912			wakeup(vnlruproc);
913		}
914		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
915		    "vlruwk", hz);
916#if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
917		if (numvnodes > desiredvnodes) {
918			mtx_unlock(&vnode_free_list_mtx);
919			return (ENFILE);
920		}
921#endif
922	}
923alloc:
924	numvnodes++;
925	mtx_unlock(&vnode_free_list_mtx);
926	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
927	/*
928	 * Setup locks.
929	 */
930	vp->v_vnlock = &vp->v_lock;
931	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
932	/*
933	 * By default, don't allow shared locks unless filesystems
934	 * opt-in.
935	 */
936	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
937	/*
938	 * Initialize bufobj.
939	 */
940	bo = &vp->v_bufobj;
941	bo->__bo_vnode = vp;
942	mtx_init(BO_MTX(bo), "bufobj interlock", NULL, MTX_DEF);
943	bo->bo_ops = &buf_ops_bio;
944	bo->bo_private = vp;
945	TAILQ_INIT(&bo->bo_clean.bv_hd);
946	TAILQ_INIT(&bo->bo_dirty.bv_hd);
947	/*
948	 * Initialize namecache.
949	 */
950	LIST_INIT(&vp->v_cache_src);
951	TAILQ_INIT(&vp->v_cache_dst);
952	/*
953	 * Finalize various vnode identity bits.
954	 */
955	vp->v_type = VNON;
956	vp->v_tag = tag;
957	vp->v_op = vops;
958	v_incr_usecount(vp);
959	vp->v_data = 0;
960#ifdef MAC
961	mac_vnode_init(vp);
962	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
963		mac_vnode_associate_singlelabel(mp, vp);
964	else if (mp == NULL && vops != &dead_vnodeops)
965		printf("NULL mp in getnewvnode()\n");
966#endif
967	if (mp != NULL) {
968		bo->bo_bsize = mp->mnt_stat.f_iosize;
969		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
970			vp->v_vflag |= VV_NOKNOTE;
971	}
972
973	CTR2(KTR_VFS, "getnewvnode: mp %p vp %p", mp, vp);
974	*vpp = vp;
975	return (0);
976}
977
978/*
979 * Delete from old mount point vnode list, if on one.
980 */
981static void
982delmntque(struct vnode *vp)
983{
984	struct mount *mp;
985
986	mp = vp->v_mount;
987	if (mp == NULL)
988		return;
989	MNT_ILOCK(mp);
990	vp->v_mount = NULL;
991	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
992		("bad mount point vnode list size"));
993	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
994	mp->mnt_nvnodelistsize--;
995	MNT_REL(mp);
996	MNT_IUNLOCK(mp);
997}
998
999static void
1000insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1001{
1002
1003	vp->v_data = NULL;
1004	vp->v_op = &dead_vnodeops;
1005	/* XXX non mp-safe fs may still call insmntque with vnode
1006	   unlocked */
1007	if (!VOP_ISLOCKED(vp))
1008		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1009	vgone(vp);
1010	vput(vp);
1011}
1012
1013/*
1014 * Insert into list of vnodes for the new mount point, if available.
1015 */
1016int
1017insmntque1(struct vnode *vp, struct mount *mp,
1018	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1019{
1020	int locked;
1021
1022	KASSERT(vp->v_mount == NULL,
1023		("insmntque: vnode already on per mount vnode list"));
1024	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1025#ifdef DEBUG_VFS_LOCKS
1026	if (!VFS_NEEDSGIANT(mp))
1027		ASSERT_VOP_ELOCKED(vp,
1028		    "insmntque: mp-safe fs and non-locked vp");
1029#endif
1030	MNT_ILOCK(mp);
1031	if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1032	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1033	     mp->mnt_nvnodelistsize == 0)) {
1034		locked = VOP_ISLOCKED(vp);
1035		if (!locked || (locked == LK_EXCLUSIVE &&
1036		     (vp->v_vflag & VV_FORCEINSMQ) == 0)) {
1037			MNT_IUNLOCK(mp);
1038			if (dtr != NULL)
1039				dtr(vp, dtr_arg);
1040			return (EBUSY);
1041		}
1042	}
1043	vp->v_mount = mp;
1044	MNT_REF(mp);
1045	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1046	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1047		("neg mount point vnode list size"));
1048	mp->mnt_nvnodelistsize++;
1049	MNT_IUNLOCK(mp);
1050	return (0);
1051}
1052
1053int
1054insmntque(struct vnode *vp, struct mount *mp)
1055{
1056
1057	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1058}
1059
1060/*
1061 * Flush out and invalidate all buffers associated with a bufobj
1062 * Called with the underlying object locked.
1063 */
1064int
1065bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1066{
1067	int error;
1068
1069	BO_LOCK(bo);
1070	if (flags & V_SAVE) {
1071		error = bufobj_wwait(bo, slpflag, slptimeo);
1072		if (error) {
1073			BO_UNLOCK(bo);
1074			return (error);
1075		}
1076		if (bo->bo_dirty.bv_cnt > 0) {
1077			BO_UNLOCK(bo);
1078			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1079				return (error);
1080			/*
1081			 * XXX We could save a lock/unlock if this was only
1082			 * enabled under INVARIANTS
1083			 */
1084			BO_LOCK(bo);
1085			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1086				panic("vinvalbuf: dirty bufs");
1087		}
1088	}
1089	/*
1090	 * If you alter this loop please notice that interlock is dropped and
1091	 * reacquired in flushbuflist.  Special care is needed to ensure that
1092	 * no race conditions occur from this.
1093	 */
1094	do {
1095		error = flushbuflist(&bo->bo_clean,
1096		    flags, bo, slpflag, slptimeo);
1097		if (error == 0)
1098			error = flushbuflist(&bo->bo_dirty,
1099			    flags, bo, slpflag, slptimeo);
1100		if (error != 0 && error != EAGAIN) {
1101			BO_UNLOCK(bo);
1102			return (error);
1103		}
1104	} while (error != 0);
1105
1106	/*
1107	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1108	 * have write I/O in-progress but if there is a VM object then the
1109	 * VM object can also have read-I/O in-progress.
1110	 */
1111	do {
1112		bufobj_wwait(bo, 0, 0);
1113		BO_UNLOCK(bo);
1114		if (bo->bo_object != NULL) {
1115			VM_OBJECT_LOCK(bo->bo_object);
1116			vm_object_pip_wait(bo->bo_object, "bovlbx");
1117			VM_OBJECT_UNLOCK(bo->bo_object);
1118		}
1119		BO_LOCK(bo);
1120	} while (bo->bo_numoutput > 0);
1121	BO_UNLOCK(bo);
1122
1123	/*
1124	 * Destroy the copy in the VM cache, too.
1125	 */
1126	if (bo->bo_object != NULL) {
1127		VM_OBJECT_LOCK(bo->bo_object);
1128		vm_object_page_remove(bo->bo_object, 0, 0,
1129			(flags & V_SAVE) ? TRUE : FALSE);
1130		VM_OBJECT_UNLOCK(bo->bo_object);
1131	}
1132
1133#ifdef INVARIANTS
1134	BO_LOCK(bo);
1135	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1136	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1137		panic("vinvalbuf: flush failed");
1138	BO_UNLOCK(bo);
1139#endif
1140	return (0);
1141}
1142
1143/*
1144 * Flush out and invalidate all buffers associated with a vnode.
1145 * Called with the underlying object locked.
1146 */
1147int
1148vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1149{
1150
1151	CTR2(KTR_VFS, "vinvalbuf vp %p flags %d", vp, flags);
1152	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1153	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1154}
1155
1156/*
1157 * Flush out buffers on the specified list.
1158 *
1159 */
1160static int
1161flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1162    int slptimeo)
1163{
1164	struct buf *bp, *nbp;
1165	int retval, error;
1166	daddr_t lblkno;
1167	b_xflags_t xflags;
1168
1169	ASSERT_BO_LOCKED(bo);
1170
1171	retval = 0;
1172	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1173		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1174		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1175			continue;
1176		}
1177		lblkno = 0;
1178		xflags = 0;
1179		if (nbp != NULL) {
1180			lblkno = nbp->b_lblkno;
1181			xflags = nbp->b_xflags &
1182				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1183		}
1184		retval = EAGAIN;
1185		error = BUF_TIMELOCK(bp,
1186		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1187		    "flushbuf", slpflag, slptimeo);
1188		if (error) {
1189			BO_LOCK(bo);
1190			return (error != ENOLCK ? error : EAGAIN);
1191		}
1192		KASSERT(bp->b_bufobj == bo,
1193		    ("bp %p wrong b_bufobj %p should be %p",
1194		    bp, bp->b_bufobj, bo));
1195		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1196			BUF_UNLOCK(bp);
1197			BO_LOCK(bo);
1198			return (EAGAIN);
1199		}
1200		/*
1201		 * XXX Since there are no node locks for NFS, I
1202		 * believe there is a slight chance that a delayed
1203		 * write will occur while sleeping just above, so
1204		 * check for it.
1205		 */
1206		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1207		    (flags & V_SAVE)) {
1208			bremfree(bp);
1209			bp->b_flags |= B_ASYNC;
1210			bwrite(bp);
1211			BO_LOCK(bo);
1212			return (EAGAIN);	/* XXX: why not loop ? */
1213		}
1214		bremfree(bp);
1215		bp->b_flags |= (B_INVAL | B_RELBUF);
1216		bp->b_flags &= ~B_ASYNC;
1217		brelse(bp);
1218		BO_LOCK(bo);
1219		if (nbp != NULL &&
1220		    (nbp->b_bufobj != bo ||
1221		     nbp->b_lblkno != lblkno ||
1222		     (nbp->b_xflags &
1223		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1224			break;			/* nbp invalid */
1225	}
1226	return (retval);
1227}
1228
1229/*
1230 * Truncate a file's buffer and pages to a specified length.  This
1231 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1232 * sync activity.
1233 */
1234int
1235vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td,
1236    off_t length, int blksize)
1237{
1238	struct buf *bp, *nbp;
1239	int anyfreed;
1240	int trunclbn;
1241	struct bufobj *bo;
1242
1243	CTR2(KTR_VFS, "vtruncbuf vp %p length %jd", vp, length);
1244	/*
1245	 * Round up to the *next* lbn.
1246	 */
1247	trunclbn = (length + blksize - 1) / blksize;
1248
1249	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1250restart:
1251	bo = &vp->v_bufobj;
1252	BO_LOCK(bo);
1253	anyfreed = 1;
1254	for (;anyfreed;) {
1255		anyfreed = 0;
1256		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1257			if (bp->b_lblkno < trunclbn)
1258				continue;
1259			if (BUF_LOCK(bp,
1260			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1261			    BO_MTX(bo)) == ENOLCK)
1262				goto restart;
1263
1264			bremfree(bp);
1265			bp->b_flags |= (B_INVAL | B_RELBUF);
1266			bp->b_flags &= ~B_ASYNC;
1267			brelse(bp);
1268			anyfreed = 1;
1269
1270			if (nbp != NULL &&
1271			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1272			    (nbp->b_vp != vp) ||
1273			    (nbp->b_flags & B_DELWRI))) {
1274				goto restart;
1275			}
1276			BO_LOCK(bo);
1277		}
1278
1279		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1280			if (bp->b_lblkno < trunclbn)
1281				continue;
1282			if (BUF_LOCK(bp,
1283			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1284			    BO_MTX(bo)) == ENOLCK)
1285				goto restart;
1286			bremfree(bp);
1287			bp->b_flags |= (B_INVAL | B_RELBUF);
1288			bp->b_flags &= ~B_ASYNC;
1289			brelse(bp);
1290			anyfreed = 1;
1291			if (nbp != NULL &&
1292			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1293			    (nbp->b_vp != vp) ||
1294			    (nbp->b_flags & B_DELWRI) == 0)) {
1295				goto restart;
1296			}
1297			BO_LOCK(bo);
1298		}
1299	}
1300
1301	if (length > 0) {
1302restartsync:
1303		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1304			if (bp->b_lblkno > 0)
1305				continue;
1306			/*
1307			 * Since we hold the vnode lock this should only
1308			 * fail if we're racing with the buf daemon.
1309			 */
1310			if (BUF_LOCK(bp,
1311			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1312			    BO_MTX(bo)) == ENOLCK) {
1313				goto restart;
1314			}
1315			VNASSERT((bp->b_flags & B_DELWRI), vp,
1316			    ("buf(%p) on dirty queue without DELWRI", bp));
1317
1318			bremfree(bp);
1319			bawrite(bp);
1320			BO_LOCK(bo);
1321			goto restartsync;
1322		}
1323	}
1324
1325	bufobj_wwait(bo, 0, 0);
1326	BO_UNLOCK(bo);
1327	vnode_pager_setsize(vp, length);
1328
1329	return (0);
1330}
1331
1332/*
1333 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1334 * 		 a vnode.
1335 *
1336 *	NOTE: We have to deal with the special case of a background bitmap
1337 *	buffer, a situation where two buffers will have the same logical
1338 *	block offset.  We want (1) only the foreground buffer to be accessed
1339 *	in a lookup and (2) must differentiate between the foreground and
1340 *	background buffer in the splay tree algorithm because the splay
1341 *	tree cannot normally handle multiple entities with the same 'index'.
1342 *	We accomplish this by adding differentiating flags to the splay tree's
1343 *	numerical domain.
1344 */
1345static
1346struct buf *
1347buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1348{
1349	struct buf dummy;
1350	struct buf *lefttreemax, *righttreemin, *y;
1351
1352	if (root == NULL)
1353		return (NULL);
1354	lefttreemax = righttreemin = &dummy;
1355	for (;;) {
1356		if (lblkno < root->b_lblkno ||
1357		    (lblkno == root->b_lblkno &&
1358		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1359			if ((y = root->b_left) == NULL)
1360				break;
1361			if (lblkno < y->b_lblkno) {
1362				/* Rotate right. */
1363				root->b_left = y->b_right;
1364				y->b_right = root;
1365				root = y;
1366				if ((y = root->b_left) == NULL)
1367					break;
1368			}
1369			/* Link into the new root's right tree. */
1370			righttreemin->b_left = root;
1371			righttreemin = root;
1372		} else if (lblkno > root->b_lblkno ||
1373		    (lblkno == root->b_lblkno &&
1374		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1375			if ((y = root->b_right) == NULL)
1376				break;
1377			if (lblkno > y->b_lblkno) {
1378				/* Rotate left. */
1379				root->b_right = y->b_left;
1380				y->b_left = root;
1381				root = y;
1382				if ((y = root->b_right) == NULL)
1383					break;
1384			}
1385			/* Link into the new root's left tree. */
1386			lefttreemax->b_right = root;
1387			lefttreemax = root;
1388		} else {
1389			break;
1390		}
1391		root = y;
1392	}
1393	/* Assemble the new root. */
1394	lefttreemax->b_right = root->b_left;
1395	righttreemin->b_left = root->b_right;
1396	root->b_left = dummy.b_right;
1397	root->b_right = dummy.b_left;
1398	return (root);
1399}
1400
1401static void
1402buf_vlist_remove(struct buf *bp)
1403{
1404	struct buf *root;
1405	struct bufv *bv;
1406
1407	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1408	ASSERT_BO_LOCKED(bp->b_bufobj);
1409	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1410	    (BX_VNDIRTY|BX_VNCLEAN),
1411	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1412	if (bp->b_xflags & BX_VNDIRTY)
1413		bv = &bp->b_bufobj->bo_dirty;
1414	else
1415		bv = &bp->b_bufobj->bo_clean;
1416	if (bp != bv->bv_root) {
1417		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1418		KASSERT(root == bp, ("splay lookup failed in remove"));
1419	}
1420	if (bp->b_left == NULL) {
1421		root = bp->b_right;
1422	} else {
1423		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1424		root->b_right = bp->b_right;
1425	}
1426	bv->bv_root = root;
1427	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1428	bv->bv_cnt--;
1429	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1430}
1431
1432/*
1433 * Add the buffer to the sorted clean or dirty block list using a
1434 * splay tree algorithm.
1435 *
1436 * NOTE: xflags is passed as a constant, optimizing this inline function!
1437 */
1438static void
1439buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1440{
1441	struct buf *root;
1442	struct bufv *bv;
1443
1444	ASSERT_BO_LOCKED(bo);
1445	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1446	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1447	bp->b_xflags |= xflags;
1448	if (xflags & BX_VNDIRTY)
1449		bv = &bo->bo_dirty;
1450	else
1451		bv = &bo->bo_clean;
1452
1453	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1454	if (root == NULL) {
1455		bp->b_left = NULL;
1456		bp->b_right = NULL;
1457		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1458	} else if (bp->b_lblkno < root->b_lblkno ||
1459	    (bp->b_lblkno == root->b_lblkno &&
1460	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1461		bp->b_left = root->b_left;
1462		bp->b_right = root;
1463		root->b_left = NULL;
1464		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1465	} else {
1466		bp->b_right = root->b_right;
1467		bp->b_left = root;
1468		root->b_right = NULL;
1469		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1470	}
1471	bv->bv_cnt++;
1472	bv->bv_root = bp;
1473}
1474
1475/*
1476 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1477 * shadow buffers used in background bitmap writes.
1478 *
1479 * This code isn't quite efficient as it could be because we are maintaining
1480 * two sorted lists and do not know which list the block resides in.
1481 *
1482 * During a "make buildworld" the desired buffer is found at one of
1483 * the roots more than 60% of the time.  Thus, checking both roots
1484 * before performing either splay eliminates unnecessary splays on the
1485 * first tree splayed.
1486 */
1487struct buf *
1488gbincore(struct bufobj *bo, daddr_t lblkno)
1489{
1490	struct buf *bp;
1491
1492	ASSERT_BO_LOCKED(bo);
1493	if ((bp = bo->bo_clean.bv_root) != NULL &&
1494	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1495		return (bp);
1496	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1497	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1498		return (bp);
1499	if ((bp = bo->bo_clean.bv_root) != NULL) {
1500		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1501		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1502			return (bp);
1503	}
1504	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1505		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1506		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1507			return (bp);
1508	}
1509	return (NULL);
1510}
1511
1512/*
1513 * Associate a buffer with a vnode.
1514 */
1515void
1516bgetvp(struct vnode *vp, struct buf *bp)
1517{
1518	struct bufobj *bo;
1519
1520	bo = &vp->v_bufobj;
1521	ASSERT_BO_LOCKED(bo);
1522	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1523
1524	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1525	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1526	    ("bgetvp: bp already attached! %p", bp));
1527
1528	vhold(vp);
1529	if (VFS_NEEDSGIANT(vp->v_mount) || bo->bo_flag & BO_NEEDSGIANT)
1530		bp->b_flags |= B_NEEDSGIANT;
1531	bp->b_vp = vp;
1532	bp->b_bufobj = bo;
1533	/*
1534	 * Insert onto list for new vnode.
1535	 */
1536	buf_vlist_add(bp, bo, BX_VNCLEAN);
1537}
1538
1539/*
1540 * Disassociate a buffer from a vnode.
1541 */
1542void
1543brelvp(struct buf *bp)
1544{
1545	struct bufobj *bo;
1546	struct vnode *vp;
1547
1548	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1549	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1550
1551	/*
1552	 * Delete from old vnode list, if on one.
1553	 */
1554	vp = bp->b_vp;		/* XXX */
1555	bo = bp->b_bufobj;
1556	BO_LOCK(bo);
1557	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1558		buf_vlist_remove(bp);
1559	else
1560		panic("brelvp: Buffer %p not on queue.", bp);
1561	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1562		bo->bo_flag &= ~BO_ONWORKLST;
1563		mtx_lock(&sync_mtx);
1564		LIST_REMOVE(bo, bo_synclist);
1565		syncer_worklist_len--;
1566		mtx_unlock(&sync_mtx);
1567	}
1568	bp->b_flags &= ~B_NEEDSGIANT;
1569	bp->b_vp = NULL;
1570	bp->b_bufobj = NULL;
1571	BO_UNLOCK(bo);
1572	vdrop(vp);
1573}
1574
1575/*
1576 * Add an item to the syncer work queue.
1577 */
1578static void
1579vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1580{
1581	int queue, slot;
1582
1583	ASSERT_BO_LOCKED(bo);
1584
1585	mtx_lock(&sync_mtx);
1586	if (bo->bo_flag & BO_ONWORKLST)
1587		LIST_REMOVE(bo, bo_synclist);
1588	else {
1589		bo->bo_flag |= BO_ONWORKLST;
1590		syncer_worklist_len++;
1591	}
1592
1593	if (delay > syncer_maxdelay - 2)
1594		delay = syncer_maxdelay - 2;
1595	slot = (syncer_delayno + delay) & syncer_mask;
1596
1597	queue = VFS_NEEDSGIANT(bo->__bo_vnode->v_mount) ? WI_GIANTQ :
1598	    WI_MPSAFEQ;
1599	LIST_INSERT_HEAD(&syncer_workitem_pending[queue][slot], bo,
1600	    bo_synclist);
1601	mtx_unlock(&sync_mtx);
1602}
1603
1604static int
1605sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1606{
1607	int error, len;
1608
1609	mtx_lock(&sync_mtx);
1610	len = syncer_worklist_len - sync_vnode_count;
1611	mtx_unlock(&sync_mtx);
1612	error = SYSCTL_OUT(req, &len, sizeof(len));
1613	return (error);
1614}
1615
1616SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1617    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1618
1619static struct proc *updateproc;
1620static void sched_sync(void);
1621static struct kproc_desc up_kp = {
1622	"syncer",
1623	sched_sync,
1624	&updateproc
1625};
1626SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1627
1628static int
1629sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1630{
1631	struct vnode *vp;
1632	struct mount *mp;
1633
1634	*bo = LIST_FIRST(slp);
1635	if (*bo == NULL)
1636		return (0);
1637	vp = (*bo)->__bo_vnode;	/* XXX */
1638	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1639		return (1);
1640	/*
1641	 * We use vhold in case the vnode does not
1642	 * successfully sync.  vhold prevents the vnode from
1643	 * going away when we unlock the sync_mtx so that
1644	 * we can acquire the vnode interlock.
1645	 */
1646	vholdl(vp);
1647	mtx_unlock(&sync_mtx);
1648	VI_UNLOCK(vp);
1649	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1650		vdrop(vp);
1651		mtx_lock(&sync_mtx);
1652		return (*bo == LIST_FIRST(slp));
1653	}
1654	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1655	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1656	VOP_UNLOCK(vp, 0);
1657	vn_finished_write(mp);
1658	BO_LOCK(*bo);
1659	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1660		/*
1661		 * Put us back on the worklist.  The worklist
1662		 * routine will remove us from our current
1663		 * position and then add us back in at a later
1664		 * position.
1665		 */
1666		vn_syncer_add_to_worklist(*bo, syncdelay);
1667	}
1668	BO_UNLOCK(*bo);
1669	vdrop(vp);
1670	mtx_lock(&sync_mtx);
1671	return (0);
1672}
1673
1674/*
1675 * System filesystem synchronizer daemon.
1676 */
1677static void
1678sched_sync(void)
1679{
1680	struct synclist *gnext, *next;
1681	struct synclist *gslp, *slp;
1682	struct bufobj *bo;
1683	long starttime;
1684	struct thread *td = curthread;
1685	int last_work_seen;
1686	int net_worklist_len;
1687	int syncer_final_iter;
1688	int first_printf;
1689	int error;
1690
1691	last_work_seen = 0;
1692	syncer_final_iter = 0;
1693	first_printf = 1;
1694	syncer_state = SYNCER_RUNNING;
1695	starttime = time_uptime;
1696	td->td_pflags |= TDP_NORUNNINGBUF;
1697
1698	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1699	    SHUTDOWN_PRI_LAST);
1700
1701	mtx_lock(&sync_mtx);
1702	for (;;) {
1703		if (syncer_state == SYNCER_FINAL_DELAY &&
1704		    syncer_final_iter == 0) {
1705			mtx_unlock(&sync_mtx);
1706			kproc_suspend_check(td->td_proc);
1707			mtx_lock(&sync_mtx);
1708		}
1709		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1710		if (syncer_state != SYNCER_RUNNING &&
1711		    starttime != time_uptime) {
1712			if (first_printf) {
1713				printf("\nSyncing disks, vnodes remaining...");
1714				first_printf = 0;
1715			}
1716			printf("%d ", net_worklist_len);
1717		}
1718		starttime = time_uptime;
1719
1720		/*
1721		 * Push files whose dirty time has expired.  Be careful
1722		 * of interrupt race on slp queue.
1723		 *
1724		 * Skip over empty worklist slots when shutting down.
1725		 */
1726		do {
1727			slp = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1728			gslp = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1729			syncer_delayno += 1;
1730			if (syncer_delayno == syncer_maxdelay)
1731				syncer_delayno = 0;
1732			next = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1733			gnext = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1734			/*
1735			 * If the worklist has wrapped since the
1736			 * it was emptied of all but syncer vnodes,
1737			 * switch to the FINAL_DELAY state and run
1738			 * for one more second.
1739			 */
1740			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1741			    net_worklist_len == 0 &&
1742			    last_work_seen == syncer_delayno) {
1743				syncer_state = SYNCER_FINAL_DELAY;
1744				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1745			}
1746		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1747		    LIST_EMPTY(gslp) && syncer_worklist_len > 0);
1748
1749		/*
1750		 * Keep track of the last time there was anything
1751		 * on the worklist other than syncer vnodes.
1752		 * Return to the SHUTTING_DOWN state if any
1753		 * new work appears.
1754		 */
1755		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1756			last_work_seen = syncer_delayno;
1757		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1758			syncer_state = SYNCER_SHUTTING_DOWN;
1759		while (!LIST_EMPTY(slp)) {
1760			error = sync_vnode(slp, &bo, td);
1761			if (error == 1) {
1762				LIST_REMOVE(bo, bo_synclist);
1763				LIST_INSERT_HEAD(next, bo, bo_synclist);
1764				continue;
1765			}
1766		}
1767		if (!LIST_EMPTY(gslp)) {
1768			mtx_unlock(&sync_mtx);
1769			mtx_lock(&Giant);
1770			mtx_lock(&sync_mtx);
1771			while (!LIST_EMPTY(gslp)) {
1772				error = sync_vnode(gslp, &bo, td);
1773				if (error == 1) {
1774					LIST_REMOVE(bo, bo_synclist);
1775					LIST_INSERT_HEAD(gnext, bo,
1776					    bo_synclist);
1777					continue;
1778				}
1779			}
1780			mtx_unlock(&Giant);
1781		}
1782		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1783			syncer_final_iter--;
1784		/*
1785		 * The variable rushjob allows the kernel to speed up the
1786		 * processing of the filesystem syncer process. A rushjob
1787		 * value of N tells the filesystem syncer to process the next
1788		 * N seconds worth of work on its queue ASAP. Currently rushjob
1789		 * is used by the soft update code to speed up the filesystem
1790		 * syncer process when the incore state is getting so far
1791		 * ahead of the disk that the kernel memory pool is being
1792		 * threatened with exhaustion.
1793		 */
1794		if (rushjob > 0) {
1795			rushjob -= 1;
1796			continue;
1797		}
1798		/*
1799		 * Just sleep for a short period of time between
1800		 * iterations when shutting down to allow some I/O
1801		 * to happen.
1802		 *
1803		 * If it has taken us less than a second to process the
1804		 * current work, then wait. Otherwise start right over
1805		 * again. We can still lose time if any single round
1806		 * takes more than two seconds, but it does not really
1807		 * matter as we are just trying to generally pace the
1808		 * filesystem activity.
1809		 */
1810		if (syncer_state != SYNCER_RUNNING)
1811			cv_timedwait(&sync_wakeup, &sync_mtx,
1812			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1813		else if (time_uptime == starttime)
1814			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
1815	}
1816}
1817
1818/*
1819 * Request the syncer daemon to speed up its work.
1820 * We never push it to speed up more than half of its
1821 * normal turn time, otherwise it could take over the cpu.
1822 */
1823int
1824speedup_syncer(void)
1825{
1826	int ret = 0;
1827
1828	mtx_lock(&sync_mtx);
1829	if (rushjob < syncdelay / 2) {
1830		rushjob += 1;
1831		stat_rush_requests += 1;
1832		ret = 1;
1833	}
1834	mtx_unlock(&sync_mtx);
1835	cv_broadcast(&sync_wakeup);
1836	return (ret);
1837}
1838
1839/*
1840 * Tell the syncer to speed up its work and run though its work
1841 * list several times, then tell it to shut down.
1842 */
1843static void
1844syncer_shutdown(void *arg, int howto)
1845{
1846
1847	if (howto & RB_NOSYNC)
1848		return;
1849	mtx_lock(&sync_mtx);
1850	syncer_state = SYNCER_SHUTTING_DOWN;
1851	rushjob = 0;
1852	mtx_unlock(&sync_mtx);
1853	cv_broadcast(&sync_wakeup);
1854	kproc_shutdown(arg, howto);
1855}
1856
1857/*
1858 * Reassign a buffer from one vnode to another.
1859 * Used to assign file specific control information
1860 * (indirect blocks) to the vnode to which they belong.
1861 */
1862void
1863reassignbuf(struct buf *bp)
1864{
1865	struct vnode *vp;
1866	struct bufobj *bo;
1867	int delay;
1868#ifdef INVARIANTS
1869	struct bufv *bv;
1870#endif
1871
1872	vp = bp->b_vp;
1873	bo = bp->b_bufobj;
1874	++reassignbufcalls;
1875
1876	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1877	    bp, bp->b_vp, bp->b_flags);
1878	/*
1879	 * B_PAGING flagged buffers cannot be reassigned because their vp
1880	 * is not fully linked in.
1881	 */
1882	if (bp->b_flags & B_PAGING)
1883		panic("cannot reassign paging buffer");
1884
1885	/*
1886	 * Delete from old vnode list, if on one.
1887	 */
1888	BO_LOCK(bo);
1889	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1890		buf_vlist_remove(bp);
1891	else
1892		panic("reassignbuf: Buffer %p not on queue.", bp);
1893	/*
1894	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1895	 * of clean buffers.
1896	 */
1897	if (bp->b_flags & B_DELWRI) {
1898		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1899			switch (vp->v_type) {
1900			case VDIR:
1901				delay = dirdelay;
1902				break;
1903			case VCHR:
1904				delay = metadelay;
1905				break;
1906			default:
1907				delay = filedelay;
1908			}
1909			vn_syncer_add_to_worklist(bo, delay);
1910		}
1911		buf_vlist_add(bp, bo, BX_VNDIRTY);
1912	} else {
1913		buf_vlist_add(bp, bo, BX_VNCLEAN);
1914
1915		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1916			mtx_lock(&sync_mtx);
1917			LIST_REMOVE(bo, bo_synclist);
1918			syncer_worklist_len--;
1919			mtx_unlock(&sync_mtx);
1920			bo->bo_flag &= ~BO_ONWORKLST;
1921		}
1922	}
1923#ifdef INVARIANTS
1924	bv = &bo->bo_clean;
1925	bp = TAILQ_FIRST(&bv->bv_hd);
1926	KASSERT(bp == NULL || bp->b_bufobj == bo,
1927	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1928	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1929	KASSERT(bp == NULL || bp->b_bufobj == bo,
1930	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1931	bv = &bo->bo_dirty;
1932	bp = TAILQ_FIRST(&bv->bv_hd);
1933	KASSERT(bp == NULL || bp->b_bufobj == bo,
1934	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1935	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1936	KASSERT(bp == NULL || bp->b_bufobj == bo,
1937	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1938#endif
1939	BO_UNLOCK(bo);
1940}
1941
1942/*
1943 * Increment the use and hold counts on the vnode, taking care to reference
1944 * the driver's usecount if this is a chardev.  The vholdl() will remove
1945 * the vnode from the free list if it is presently free.  Requires the
1946 * vnode interlock and returns with it held.
1947 */
1948static void
1949v_incr_usecount(struct vnode *vp)
1950{
1951
1952	CTR3(KTR_VFS, "v_incr_usecount: vp %p holdcnt %d usecount %d\n",
1953	    vp, vp->v_holdcnt, vp->v_usecount);
1954	vp->v_usecount++;
1955	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1956		dev_lock();
1957		vp->v_rdev->si_usecount++;
1958		dev_unlock();
1959	}
1960	vholdl(vp);
1961}
1962
1963/*
1964 * Turn a holdcnt into a use+holdcnt such that only one call to
1965 * v_decr_usecount is needed.
1966 */
1967static void
1968v_upgrade_usecount(struct vnode *vp)
1969{
1970
1971	CTR3(KTR_VFS, "v_upgrade_usecount: vp %p holdcnt %d usecount %d\n",
1972	    vp, vp->v_holdcnt, vp->v_usecount);
1973	vp->v_usecount++;
1974	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1975		dev_lock();
1976		vp->v_rdev->si_usecount++;
1977		dev_unlock();
1978	}
1979}
1980
1981/*
1982 * Decrement the vnode use and hold count along with the driver's usecount
1983 * if this is a chardev.  The vdropl() below releases the vnode interlock
1984 * as it may free the vnode.
1985 */
1986static void
1987v_decr_usecount(struct vnode *vp)
1988{
1989
1990	CTR3(KTR_VFS, "v_decr_usecount: vp %p holdcnt %d usecount %d\n",
1991	    vp, vp->v_holdcnt, vp->v_usecount);
1992	ASSERT_VI_LOCKED(vp, __FUNCTION__);
1993	VNASSERT(vp->v_usecount > 0, vp,
1994	    ("v_decr_usecount: negative usecount"));
1995	vp->v_usecount--;
1996	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1997		dev_lock();
1998		vp->v_rdev->si_usecount--;
1999		dev_unlock();
2000	}
2001	vdropl(vp);
2002}
2003
2004/*
2005 * Decrement only the use count and driver use count.  This is intended to
2006 * be paired with a follow on vdropl() to release the remaining hold count.
2007 * In this way we may vgone() a vnode with a 0 usecount without risk of
2008 * having it end up on a free list because the hold count is kept above 0.
2009 */
2010static void
2011v_decr_useonly(struct vnode *vp)
2012{
2013
2014	CTR3(KTR_VFS, "v_decr_useonly: vp %p holdcnt %d usecount %d\n",
2015	    vp, vp->v_holdcnt, vp->v_usecount);
2016	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2017	VNASSERT(vp->v_usecount > 0, vp,
2018	    ("v_decr_useonly: negative usecount"));
2019	vp->v_usecount--;
2020	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2021		dev_lock();
2022		vp->v_rdev->si_usecount--;
2023		dev_unlock();
2024	}
2025}
2026
2027/*
2028 * Grab a particular vnode from the free list, increment its
2029 * reference count and lock it.  VI_DOOMED is set if the vnode
2030 * is being destroyed.  Only callers who specify LK_RETRY will
2031 * see doomed vnodes.  If inactive processing was delayed in
2032 * vput try to do it here.
2033 */
2034int
2035vget(struct vnode *vp, int flags, struct thread *td)
2036{
2037	int error;
2038
2039	error = 0;
2040	VFS_ASSERT_GIANT(vp->v_mount);
2041	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2042	    ("vget: invalid lock operation"));
2043	if ((flags & LK_INTERLOCK) == 0)
2044		VI_LOCK(vp);
2045	vholdl(vp);
2046	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2047		vdrop(vp);
2048		return (error);
2049	}
2050	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2051		panic("vget: vn_lock failed to return ENOENT\n");
2052	VI_LOCK(vp);
2053	/* Upgrade our holdcnt to a usecount. */
2054	v_upgrade_usecount(vp);
2055	/*
2056 	 * We don't guarantee that any particular close will
2057	 * trigger inactive processing so just make a best effort
2058	 * here at preventing a reference to a removed file.  If
2059	 * we don't succeed no harm is done.
2060	 */
2061	if (vp->v_iflag & VI_OWEINACT) {
2062		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2063		    (flags & LK_NOWAIT) == 0)
2064			vinactive(vp, td);
2065		vp->v_iflag &= ~VI_OWEINACT;
2066	}
2067	VI_UNLOCK(vp);
2068	return (0);
2069}
2070
2071/*
2072 * Increase the reference count of a vnode.
2073 */
2074void
2075vref(struct vnode *vp)
2076{
2077
2078	VI_LOCK(vp);
2079	v_incr_usecount(vp);
2080	VI_UNLOCK(vp);
2081}
2082
2083/*
2084 * Return reference count of a vnode.
2085 *
2086 * The results of this call are only guaranteed when some mechanism other
2087 * than the VI lock is used to stop other processes from gaining references
2088 * to the vnode.  This may be the case if the caller holds the only reference.
2089 * This is also useful when stale data is acceptable as race conditions may
2090 * be accounted for by some other means.
2091 */
2092int
2093vrefcnt(struct vnode *vp)
2094{
2095	int usecnt;
2096
2097	VI_LOCK(vp);
2098	usecnt = vp->v_usecount;
2099	VI_UNLOCK(vp);
2100
2101	return (usecnt);
2102}
2103
2104
2105/*
2106 * Vnode put/release.
2107 * If count drops to zero, call inactive routine and return to freelist.
2108 */
2109void
2110vrele(struct vnode *vp)
2111{
2112	struct thread *td = curthread;	/* XXX */
2113
2114	KASSERT(vp != NULL, ("vrele: null vp"));
2115	VFS_ASSERT_GIANT(vp->v_mount);
2116
2117	VI_LOCK(vp);
2118
2119	/* Skip this v_writecount check if we're going to panic below. */
2120	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2121	    ("vrele: missed vn_close"));
2122
2123	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2124	    vp->v_usecount == 1)) {
2125		v_decr_usecount(vp);
2126		return;
2127	}
2128	if (vp->v_usecount != 1) {
2129#ifdef DIAGNOSTIC
2130		vprint("vrele: negative ref count", vp);
2131#endif
2132		VI_UNLOCK(vp);
2133		panic("vrele: negative ref cnt");
2134	}
2135	/*
2136	 * We want to hold the vnode until the inactive finishes to
2137	 * prevent vgone() races.  We drop the use count here and the
2138	 * hold count below when we're done.
2139	 */
2140	v_decr_useonly(vp);
2141	/*
2142	 * We must call VOP_INACTIVE with the node locked. Mark
2143	 * as VI_DOINGINACT to avoid recursion.
2144	 */
2145	vp->v_iflag |= VI_OWEINACT;
2146	if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK) == 0) {
2147		VI_LOCK(vp);
2148		if (vp->v_usecount > 0)
2149			vp->v_iflag &= ~VI_OWEINACT;
2150		if (vp->v_iflag & VI_OWEINACT)
2151			vinactive(vp, td);
2152		VOP_UNLOCK(vp, 0);
2153	} else {
2154		VI_LOCK(vp);
2155		if (vp->v_usecount > 0)
2156			vp->v_iflag &= ~VI_OWEINACT;
2157	}
2158	vdropl(vp);
2159}
2160
2161/*
2162 * Release an already locked vnode.  This give the same effects as
2163 * unlock+vrele(), but takes less time and avoids releasing and
2164 * re-aquiring the lock (as vrele() acquires the lock internally.)
2165 */
2166void
2167vput(struct vnode *vp)
2168{
2169	struct thread *td = curthread;	/* XXX */
2170	int error;
2171
2172	KASSERT(vp != NULL, ("vput: null vp"));
2173	ASSERT_VOP_LOCKED(vp, "vput");
2174	VFS_ASSERT_GIANT(vp->v_mount);
2175	VI_LOCK(vp);
2176	/* Skip this v_writecount check if we're going to panic below. */
2177	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2178	    ("vput: missed vn_close"));
2179	error = 0;
2180
2181	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2182	    vp->v_usecount == 1)) {
2183		VOP_UNLOCK(vp, 0);
2184		v_decr_usecount(vp);
2185		return;
2186	}
2187
2188	if (vp->v_usecount != 1) {
2189#ifdef DIAGNOSTIC
2190		vprint("vput: negative ref count", vp);
2191#endif
2192		panic("vput: negative ref cnt");
2193	}
2194	/*
2195	 * We want to hold the vnode until the inactive finishes to
2196	 * prevent vgone() races.  We drop the use count here and the
2197	 * hold count below when we're done.
2198	 */
2199	v_decr_useonly(vp);
2200	vp->v_iflag |= VI_OWEINACT;
2201	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2202		error = VOP_LOCK(vp, LK_UPGRADE|LK_INTERLOCK|LK_NOWAIT);
2203		VI_LOCK(vp);
2204		if (error) {
2205			if (vp->v_usecount > 0)
2206				vp->v_iflag &= ~VI_OWEINACT;
2207			goto done;
2208		}
2209	}
2210	if (vp->v_usecount > 0)
2211		vp->v_iflag &= ~VI_OWEINACT;
2212	if (vp->v_iflag & VI_OWEINACT)
2213		vinactive(vp, td);
2214	VOP_UNLOCK(vp, 0);
2215done:
2216	vdropl(vp);
2217}
2218
2219/*
2220 * Somebody doesn't want the vnode recycled.
2221 */
2222void
2223vhold(struct vnode *vp)
2224{
2225
2226	VI_LOCK(vp);
2227	vholdl(vp);
2228	VI_UNLOCK(vp);
2229}
2230
2231void
2232vholdl(struct vnode *vp)
2233{
2234
2235	vp->v_holdcnt++;
2236	if (VSHOULDBUSY(vp))
2237		vbusy(vp);
2238}
2239
2240/*
2241 * Note that there is one less who cares about this vnode.  vdrop() is the
2242 * opposite of vhold().
2243 */
2244void
2245vdrop(struct vnode *vp)
2246{
2247
2248	VI_LOCK(vp);
2249	vdropl(vp);
2250}
2251
2252/*
2253 * Drop the hold count of the vnode.  If this is the last reference to
2254 * the vnode we will free it if it has been vgone'd otherwise it is
2255 * placed on the free list.
2256 */
2257void
2258vdropl(struct vnode *vp)
2259{
2260
2261	ASSERT_VI_LOCKED(vp, "vdropl");
2262	if (vp->v_holdcnt <= 0)
2263		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2264	vp->v_holdcnt--;
2265	if (vp->v_holdcnt == 0) {
2266		if (vp->v_iflag & VI_DOOMED) {
2267			vdestroy(vp);
2268			return;
2269		} else
2270			vfree(vp);
2271	}
2272	VI_UNLOCK(vp);
2273}
2274
2275/*
2276 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2277 * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2278 * OWEINACT tracks whether a vnode missed a call to inactive due to a
2279 * failed lock upgrade.
2280 */
2281static void
2282vinactive(struct vnode *vp, struct thread *td)
2283{
2284
2285	ASSERT_VOP_ELOCKED(vp, "vinactive");
2286	ASSERT_VI_LOCKED(vp, "vinactive");
2287	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2288	    ("vinactive: recursed on VI_DOINGINACT"));
2289	vp->v_iflag |= VI_DOINGINACT;
2290	vp->v_iflag &= ~VI_OWEINACT;
2291	VI_UNLOCK(vp);
2292	VOP_INACTIVE(vp, td);
2293	VI_LOCK(vp);
2294	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2295	    ("vinactive: lost VI_DOINGINACT"));
2296	vp->v_iflag &= ~VI_DOINGINACT;
2297}
2298
2299/*
2300 * Remove any vnodes in the vnode table belonging to mount point mp.
2301 *
2302 * If FORCECLOSE is not specified, there should not be any active ones,
2303 * return error if any are found (nb: this is a user error, not a
2304 * system error). If FORCECLOSE is specified, detach any active vnodes
2305 * that are found.
2306 *
2307 * If WRITECLOSE is set, only flush out regular file vnodes open for
2308 * writing.
2309 *
2310 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2311 *
2312 * `rootrefs' specifies the base reference count for the root vnode
2313 * of this filesystem. The root vnode is considered busy if its
2314 * v_usecount exceeds this value. On a successful return, vflush(, td)
2315 * will call vrele() on the root vnode exactly rootrefs times.
2316 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2317 * be zero.
2318 */
2319#ifdef DIAGNOSTIC
2320static int busyprt = 0;		/* print out busy vnodes */
2321SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2322#endif
2323
2324int
2325vflush( struct mount *mp, int rootrefs, int flags, struct thread *td)
2326{
2327	struct vnode *vp, *mvp, *rootvp = NULL;
2328	struct vattr vattr;
2329	int busy = 0, error;
2330
2331	CTR1(KTR_VFS, "vflush: mp %p", mp);
2332	if (rootrefs > 0) {
2333		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2334		    ("vflush: bad args"));
2335		/*
2336		 * Get the filesystem root vnode. We can vput() it
2337		 * immediately, since with rootrefs > 0, it won't go away.
2338		 */
2339		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp, td)) != 0)
2340			return (error);
2341		vput(rootvp);
2342
2343	}
2344	MNT_ILOCK(mp);
2345loop:
2346	MNT_VNODE_FOREACH(vp, mp, mvp) {
2347
2348		VI_LOCK(vp);
2349		vholdl(vp);
2350		MNT_IUNLOCK(mp);
2351		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2352		if (error) {
2353			vdrop(vp);
2354			MNT_ILOCK(mp);
2355			MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
2356			goto loop;
2357		}
2358		/*
2359		 * Skip over a vnodes marked VV_SYSTEM.
2360		 */
2361		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2362			VOP_UNLOCK(vp, 0);
2363			vdrop(vp);
2364			MNT_ILOCK(mp);
2365			continue;
2366		}
2367		/*
2368		 * If WRITECLOSE is set, flush out unlinked but still open
2369		 * files (even if open only for reading) and regular file
2370		 * vnodes open for writing.
2371		 */
2372		if (flags & WRITECLOSE) {
2373			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2374			VI_LOCK(vp);
2375
2376			if ((vp->v_type == VNON ||
2377			    (error == 0 && vattr.va_nlink > 0)) &&
2378			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2379				VOP_UNLOCK(vp, 0);
2380				vdropl(vp);
2381				MNT_ILOCK(mp);
2382				continue;
2383			}
2384		} else
2385			VI_LOCK(vp);
2386		/*
2387		 * With v_usecount == 0, all we need to do is clear out the
2388		 * vnode data structures and we are done.
2389		 *
2390		 * If FORCECLOSE is set, forcibly close the vnode.
2391		 */
2392		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2393			VNASSERT(vp->v_usecount == 0 ||
2394			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2395			    ("device VNODE %p is FORCECLOSED", vp));
2396			vgonel(vp);
2397		} else {
2398			busy++;
2399#ifdef DIAGNOSTIC
2400			if (busyprt)
2401				vprint("vflush: busy vnode", vp);
2402#endif
2403		}
2404		VOP_UNLOCK(vp, 0);
2405		vdropl(vp);
2406		MNT_ILOCK(mp);
2407	}
2408	MNT_IUNLOCK(mp);
2409	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2410		/*
2411		 * If just the root vnode is busy, and if its refcount
2412		 * is equal to `rootrefs', then go ahead and kill it.
2413		 */
2414		VI_LOCK(rootvp);
2415		KASSERT(busy > 0, ("vflush: not busy"));
2416		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2417		    ("vflush: usecount %d < rootrefs %d",
2418		     rootvp->v_usecount, rootrefs));
2419		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2420			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2421			vgone(rootvp);
2422			VOP_UNLOCK(rootvp, 0);
2423			busy = 0;
2424		} else
2425			VI_UNLOCK(rootvp);
2426	}
2427	if (busy)
2428		return (EBUSY);
2429	for (; rootrefs > 0; rootrefs--)
2430		vrele(rootvp);
2431	return (0);
2432}
2433
2434/*
2435 * Recycle an unused vnode to the front of the free list.
2436 */
2437int
2438vrecycle(struct vnode *vp, struct thread *td)
2439{
2440	int recycled;
2441
2442	ASSERT_VOP_ELOCKED(vp, "vrecycle");
2443	recycled = 0;
2444	VI_LOCK(vp);
2445	if (vp->v_usecount == 0) {
2446		recycled = 1;
2447		vgonel(vp);
2448	}
2449	VI_UNLOCK(vp);
2450	return (recycled);
2451}
2452
2453/*
2454 * Eliminate all activity associated with a vnode
2455 * in preparation for reuse.
2456 */
2457void
2458vgone(struct vnode *vp)
2459{
2460	VI_LOCK(vp);
2461	vgonel(vp);
2462	VI_UNLOCK(vp);
2463}
2464
2465/*
2466 * vgone, with the vp interlock held.
2467 */
2468void
2469vgonel(struct vnode *vp)
2470{
2471	struct thread *td;
2472	int oweinact;
2473	int active;
2474	struct mount *mp;
2475
2476	CTR1(KTR_VFS, "vgonel: vp %p", vp);
2477	ASSERT_VOP_ELOCKED(vp, "vgonel");
2478	ASSERT_VI_LOCKED(vp, "vgonel");
2479	VNASSERT(vp->v_holdcnt, vp,
2480	    ("vgonel: vp %p has no reference.", vp));
2481	td = curthread;
2482
2483	/*
2484	 * Don't vgonel if we're already doomed.
2485	 */
2486	if (vp->v_iflag & VI_DOOMED)
2487		return;
2488	vp->v_iflag |= VI_DOOMED;
2489	/*
2490	 * Check to see if the vnode is in use.  If so, we have to call
2491	 * VOP_CLOSE() and VOP_INACTIVE().
2492	 */
2493	active = vp->v_usecount;
2494	oweinact = (vp->v_iflag & VI_OWEINACT);
2495	VI_UNLOCK(vp);
2496	/*
2497	 * Clean out any buffers associated with the vnode.
2498	 * If the flush fails, just toss the buffers.
2499	 */
2500	mp = NULL;
2501	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2502		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2503	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0)
2504		vinvalbuf(vp, 0, 0, 0);
2505
2506	/*
2507	 * If purging an active vnode, it must be closed and
2508	 * deactivated before being reclaimed.
2509	 */
2510	if (active)
2511		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2512	if (oweinact || active) {
2513		VI_LOCK(vp);
2514		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2515			vinactive(vp, td);
2516		VI_UNLOCK(vp);
2517	}
2518	/*
2519	 * Reclaim the vnode.
2520	 */
2521	if (VOP_RECLAIM(vp, td))
2522		panic("vgone: cannot reclaim");
2523	if (mp != NULL)
2524		vn_finished_secondary_write(mp);
2525	VNASSERT(vp->v_object == NULL, vp,
2526	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2527	/*
2528	 * Clear the advisory locks and wake up waiting threads.
2529	 */
2530	lf_purgelocks(vp, &(vp->v_lockf));
2531	/*
2532	 * Delete from old mount point vnode list.
2533	 */
2534	delmntque(vp);
2535	cache_purge(vp);
2536	/*
2537	 * Done with purge, reset to the standard lock and invalidate
2538	 * the vnode.
2539	 */
2540	VI_LOCK(vp);
2541	vp->v_vnlock = &vp->v_lock;
2542	vp->v_op = &dead_vnodeops;
2543	vp->v_tag = "none";
2544	vp->v_type = VBAD;
2545}
2546
2547/*
2548 * Calculate the total number of references to a special device.
2549 */
2550int
2551vcount(struct vnode *vp)
2552{
2553	int count;
2554
2555	dev_lock();
2556	count = vp->v_rdev->si_usecount;
2557	dev_unlock();
2558	return (count);
2559}
2560
2561/*
2562 * Same as above, but using the struct cdev *as argument
2563 */
2564int
2565count_dev(struct cdev *dev)
2566{
2567	int count;
2568
2569	dev_lock();
2570	count = dev->si_usecount;
2571	dev_unlock();
2572	return(count);
2573}
2574
2575/*
2576 * Print out a description of a vnode.
2577 */
2578static char *typename[] =
2579{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2580 "VMARKER"};
2581
2582void
2583vn_printf(struct vnode *vp, const char *fmt, ...)
2584{
2585	va_list ap;
2586	char buf[256], buf2[16];
2587	u_long flags;
2588
2589	va_start(ap, fmt);
2590	vprintf(fmt, ap);
2591	va_end(ap);
2592	printf("%p: ", (void *)vp);
2593	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2594	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2595	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2596	buf[0] = '\0';
2597	buf[1] = '\0';
2598	if (vp->v_vflag & VV_ROOT)
2599		strlcat(buf, "|VV_ROOT", sizeof(buf));
2600	if (vp->v_vflag & VV_ISTTY)
2601		strlcat(buf, "|VV_ISTTY", sizeof(buf));
2602	if (vp->v_vflag & VV_NOSYNC)
2603		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2604	if (vp->v_vflag & VV_CACHEDLABEL)
2605		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2606	if (vp->v_vflag & VV_TEXT)
2607		strlcat(buf, "|VV_TEXT", sizeof(buf));
2608	if (vp->v_vflag & VV_COPYONWRITE)
2609		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2610	if (vp->v_vflag & VV_SYSTEM)
2611		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2612	if (vp->v_vflag & VV_PROCDEP)
2613		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2614	if (vp->v_vflag & VV_NOKNOTE)
2615		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2616	if (vp->v_vflag & VV_DELETED)
2617		strlcat(buf, "|VV_DELETED", sizeof(buf));
2618	if (vp->v_vflag & VV_MD)
2619		strlcat(buf, "|VV_MD", sizeof(buf));
2620	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC |
2621	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2622	    VV_NOKNOTE | VV_DELETED | VV_MD);
2623	if (flags != 0) {
2624		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2625		strlcat(buf, buf2, sizeof(buf));
2626	}
2627	if (vp->v_iflag & VI_MOUNT)
2628		strlcat(buf, "|VI_MOUNT", sizeof(buf));
2629	if (vp->v_iflag & VI_AGE)
2630		strlcat(buf, "|VI_AGE", sizeof(buf));
2631	if (vp->v_iflag & VI_DOOMED)
2632		strlcat(buf, "|VI_DOOMED", sizeof(buf));
2633	if (vp->v_iflag & VI_FREE)
2634		strlcat(buf, "|VI_FREE", sizeof(buf));
2635	if (vp->v_iflag & VI_OBJDIRTY)
2636		strlcat(buf, "|VI_OBJDIRTY", sizeof(buf));
2637	if (vp->v_iflag & VI_DOINGINACT)
2638		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2639	if (vp->v_iflag & VI_OWEINACT)
2640		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2641	flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2642	    VI_OBJDIRTY | VI_DOINGINACT | VI_OWEINACT);
2643	if (flags != 0) {
2644		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2645		strlcat(buf, buf2, sizeof(buf));
2646	}
2647	printf("    flags (%s)\n", buf + 1);
2648	if (mtx_owned(VI_MTX(vp)))
2649		printf(" VI_LOCKed");
2650	if (vp->v_object != NULL)
2651		printf("    v_object %p ref %d pages %d\n",
2652		    vp->v_object, vp->v_object->ref_count,
2653		    vp->v_object->resident_page_count);
2654	printf("    ");
2655	lockmgr_printinfo(vp->v_vnlock);
2656	printf("\n");
2657	if (vp->v_data != NULL)
2658		VOP_PRINT(vp);
2659}
2660
2661#ifdef DDB
2662/*
2663 * List all of the locked vnodes in the system.
2664 * Called when debugging the kernel.
2665 */
2666DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2667{
2668	struct mount *mp, *nmp;
2669	struct vnode *vp;
2670
2671	/*
2672	 * Note: because this is DDB, we can't obey the locking semantics
2673	 * for these structures, which means we could catch an inconsistent
2674	 * state and dereference a nasty pointer.  Not much to be done
2675	 * about that.
2676	 */
2677	db_printf("Locked vnodes\n");
2678	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2679		nmp = TAILQ_NEXT(mp, mnt_list);
2680		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2681			if (vp->v_type != VMARKER &&
2682			    VOP_ISLOCKED(vp))
2683				vprint("", vp);
2684		}
2685		nmp = TAILQ_NEXT(mp, mnt_list);
2686	}
2687}
2688
2689/*
2690 * Show details about the given vnode.
2691 */
2692DB_SHOW_COMMAND(vnode, db_show_vnode)
2693{
2694	struct vnode *vp;
2695
2696	if (!have_addr)
2697		return;
2698	vp = (struct vnode *)addr;
2699	vn_printf(vp, "vnode ");
2700}
2701
2702/*
2703 * Show details about the given mount point.
2704 */
2705DB_SHOW_COMMAND(mount, db_show_mount)
2706{
2707	struct mount *mp;
2708	struct statfs *sp;
2709	struct vnode *vp;
2710	char buf[512];
2711	u_int flags;
2712
2713	if (!have_addr) {
2714		/* No address given, print short info about all mount points. */
2715		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2716			db_printf("%p %s on %s (%s)\n", mp,
2717			    mp->mnt_stat.f_mntfromname,
2718			    mp->mnt_stat.f_mntonname,
2719			    mp->mnt_stat.f_fstypename);
2720			if (db_pager_quit)
2721				break;
2722		}
2723		db_printf("\nMore info: show mount <addr>\n");
2724		return;
2725	}
2726
2727	mp = (struct mount *)addr;
2728	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
2729	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
2730
2731	buf[0] = '\0';
2732	flags = mp->mnt_flag;
2733#define	MNT_FLAG(flag)	do {						\
2734	if (flags & (flag)) {						\
2735		if (buf[0] != '\0')					\
2736			strlcat(buf, ", ", sizeof(buf));		\
2737		strlcat(buf, (#flag) + 4, sizeof(buf));			\
2738		flags &= ~(flag);					\
2739	}								\
2740} while (0)
2741	MNT_FLAG(MNT_RDONLY);
2742	MNT_FLAG(MNT_SYNCHRONOUS);
2743	MNT_FLAG(MNT_NOEXEC);
2744	MNT_FLAG(MNT_NOSUID);
2745	MNT_FLAG(MNT_UNION);
2746	MNT_FLAG(MNT_ASYNC);
2747	MNT_FLAG(MNT_SUIDDIR);
2748	MNT_FLAG(MNT_SOFTDEP);
2749	MNT_FLAG(MNT_NOSYMFOLLOW);
2750	MNT_FLAG(MNT_GJOURNAL);
2751	MNT_FLAG(MNT_MULTILABEL);
2752	MNT_FLAG(MNT_ACLS);
2753	MNT_FLAG(MNT_NOATIME);
2754	MNT_FLAG(MNT_NOCLUSTERR);
2755	MNT_FLAG(MNT_NOCLUSTERW);
2756	MNT_FLAG(MNT_EXRDONLY);
2757	MNT_FLAG(MNT_EXPORTED);
2758	MNT_FLAG(MNT_DEFEXPORTED);
2759	MNT_FLAG(MNT_EXPORTANON);
2760	MNT_FLAG(MNT_EXKERB);
2761	MNT_FLAG(MNT_EXPUBLIC);
2762	MNT_FLAG(MNT_LOCAL);
2763	MNT_FLAG(MNT_QUOTA);
2764	MNT_FLAG(MNT_ROOTFS);
2765	MNT_FLAG(MNT_USER);
2766	MNT_FLAG(MNT_IGNORE);
2767	MNT_FLAG(MNT_UPDATE);
2768	MNT_FLAG(MNT_DELEXPORT);
2769	MNT_FLAG(MNT_RELOAD);
2770	MNT_FLAG(MNT_FORCE);
2771	MNT_FLAG(MNT_SNAPSHOT);
2772	MNT_FLAG(MNT_BYFSID);
2773#undef MNT_FLAG
2774	if (flags != 0) {
2775		if (buf[0] != '\0')
2776			strlcat(buf, ", ", sizeof(buf));
2777		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2778		    "0x%08x", flags);
2779	}
2780	db_printf("    mnt_flag = %s\n", buf);
2781
2782	buf[0] = '\0';
2783	flags = mp->mnt_kern_flag;
2784#define	MNT_KERN_FLAG(flag)	do {					\
2785	if (flags & (flag)) {						\
2786		if (buf[0] != '\0')					\
2787			strlcat(buf, ", ", sizeof(buf));		\
2788		strlcat(buf, (#flag) + 5, sizeof(buf));			\
2789		flags &= ~(flag);					\
2790	}								\
2791} while (0)
2792	MNT_KERN_FLAG(MNTK_UNMOUNTF);
2793	MNT_KERN_FLAG(MNTK_ASYNC);
2794	MNT_KERN_FLAG(MNTK_SOFTDEP);
2795	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
2796	MNT_KERN_FLAG(MNTK_UNMOUNT);
2797	MNT_KERN_FLAG(MNTK_MWAIT);
2798	MNT_KERN_FLAG(MNTK_SUSPEND);
2799	MNT_KERN_FLAG(MNTK_SUSPEND2);
2800	MNT_KERN_FLAG(MNTK_SUSPENDED);
2801	MNT_KERN_FLAG(MNTK_MPSAFE);
2802	MNT_KERN_FLAG(MNTK_NOKNOTE);
2803	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
2804#undef MNT_KERN_FLAG
2805	if (flags != 0) {
2806		if (buf[0] != '\0')
2807			strlcat(buf, ", ", sizeof(buf));
2808		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2809		    "0x%08x", flags);
2810	}
2811	db_printf("    mnt_kern_flag = %s\n", buf);
2812
2813	sp = &mp->mnt_stat;
2814	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
2815	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
2816	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
2817	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
2818	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
2819	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
2820	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
2821	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
2822	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
2823	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
2824	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
2825	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
2826
2827	db_printf("    mnt_cred = { uid=%u ruid=%u",
2828	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
2829	if (mp->mnt_cred->cr_prison != NULL)
2830		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
2831	db_printf(" }\n");
2832	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
2833	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
2834	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
2835	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
2836	db_printf("    mnt_noasync = %u\n", mp->mnt_noasync);
2837	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
2838	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
2839	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
2840	db_printf("    mnt_markercnt = %d\n", mp->mnt_markercnt);
2841	db_printf("    mnt_holdcnt = %d\n", mp->mnt_holdcnt);
2842	db_printf("    mnt_holdcntwaiters = %d\n", mp->mnt_holdcntwaiters);
2843	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
2844	db_printf("    mnt_secondary_accwrites = %d\n",
2845	    mp->mnt_secondary_accwrites);
2846	db_printf("    mnt_gjprovider = %s\n",
2847	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
2848	db_printf("\n");
2849
2850	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2851		if (vp->v_type != VMARKER) {
2852			vn_printf(vp, "vnode ");
2853			if (db_pager_quit)
2854				break;
2855		}
2856	}
2857}
2858#endif	/* DDB */
2859
2860/*
2861 * Fill in a struct xvfsconf based on a struct vfsconf.
2862 */
2863static void
2864vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2865{
2866
2867	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2868	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2869	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2870	xvfsp->vfc_flags = vfsp->vfc_flags;
2871	/*
2872	 * These are unused in userland, we keep them
2873	 * to not break binary compatibility.
2874	 */
2875	xvfsp->vfc_vfsops = NULL;
2876	xvfsp->vfc_next = NULL;
2877}
2878
2879/*
2880 * Top level filesystem related information gathering.
2881 */
2882static int
2883sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2884{
2885	struct vfsconf *vfsp;
2886	struct xvfsconf xvfsp;
2887	int error;
2888
2889	error = 0;
2890	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2891		bzero(&xvfsp, sizeof(xvfsp));
2892		vfsconf2x(vfsp, &xvfsp);
2893		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2894		if (error)
2895			break;
2896	}
2897	return (error);
2898}
2899
2900SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2901    "S,xvfsconf", "List of all configured filesystems");
2902
2903#ifndef BURN_BRIDGES
2904static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2905
2906static int
2907vfs_sysctl(SYSCTL_HANDLER_ARGS)
2908{
2909	int *name = (int *)arg1 - 1;	/* XXX */
2910	u_int namelen = arg2 + 1;	/* XXX */
2911	struct vfsconf *vfsp;
2912	struct xvfsconf xvfsp;
2913
2914	printf("WARNING: userland calling deprecated sysctl, "
2915	    "please rebuild world\n");
2916
2917#if 1 || defined(COMPAT_PRELITE2)
2918	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2919	if (namelen == 1)
2920		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2921#endif
2922
2923	switch (name[1]) {
2924	case VFS_MAXTYPENUM:
2925		if (namelen != 2)
2926			return (ENOTDIR);
2927		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2928	case VFS_CONF:
2929		if (namelen != 3)
2930			return (ENOTDIR);	/* overloaded */
2931		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2932			if (vfsp->vfc_typenum == name[2])
2933				break;
2934		if (vfsp == NULL)
2935			return (EOPNOTSUPP);
2936		bzero(&xvfsp, sizeof(xvfsp));
2937		vfsconf2x(vfsp, &xvfsp);
2938		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2939	}
2940	return (EOPNOTSUPP);
2941}
2942
2943static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
2944	vfs_sysctl, "Generic filesystem");
2945
2946#if 1 || defined(COMPAT_PRELITE2)
2947
2948static int
2949sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2950{
2951	int error;
2952	struct vfsconf *vfsp;
2953	struct ovfsconf ovfs;
2954
2955	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2956		bzero(&ovfs, sizeof(ovfs));
2957		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2958		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2959		ovfs.vfc_index = vfsp->vfc_typenum;
2960		ovfs.vfc_refcount = vfsp->vfc_refcount;
2961		ovfs.vfc_flags = vfsp->vfc_flags;
2962		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2963		if (error)
2964			return error;
2965	}
2966	return 0;
2967}
2968
2969#endif /* 1 || COMPAT_PRELITE2 */
2970#endif /* !BURN_BRIDGES */
2971
2972#define KINFO_VNODESLOP		10
2973#ifdef notyet
2974/*
2975 * Dump vnode list (via sysctl).
2976 */
2977/* ARGSUSED */
2978static int
2979sysctl_vnode(SYSCTL_HANDLER_ARGS)
2980{
2981	struct xvnode *xvn;
2982	struct mount *mp;
2983	struct vnode *vp;
2984	int error, len, n;
2985
2986	/*
2987	 * Stale numvnodes access is not fatal here.
2988	 */
2989	req->lock = 0;
2990	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2991	if (!req->oldptr)
2992		/* Make an estimate */
2993		return (SYSCTL_OUT(req, 0, len));
2994
2995	error = sysctl_wire_old_buffer(req, 0);
2996	if (error != 0)
2997		return (error);
2998	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2999	n = 0;
3000	mtx_lock(&mountlist_mtx);
3001	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3002		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx))
3003			continue;
3004		MNT_ILOCK(mp);
3005		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3006			if (n == len)
3007				break;
3008			vref(vp);
3009			xvn[n].xv_size = sizeof *xvn;
3010			xvn[n].xv_vnode = vp;
3011			xvn[n].xv_id = 0;	/* XXX compat */
3012#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3013			XV_COPY(usecount);
3014			XV_COPY(writecount);
3015			XV_COPY(holdcnt);
3016			XV_COPY(mount);
3017			XV_COPY(numoutput);
3018			XV_COPY(type);
3019#undef XV_COPY
3020			xvn[n].xv_flag = vp->v_vflag;
3021
3022			switch (vp->v_type) {
3023			case VREG:
3024			case VDIR:
3025			case VLNK:
3026				break;
3027			case VBLK:
3028			case VCHR:
3029				if (vp->v_rdev == NULL) {
3030					vrele(vp);
3031					continue;
3032				}
3033				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3034				break;
3035			case VSOCK:
3036				xvn[n].xv_socket = vp->v_socket;
3037				break;
3038			case VFIFO:
3039				xvn[n].xv_fifo = vp->v_fifoinfo;
3040				break;
3041			case VNON:
3042			case VBAD:
3043			default:
3044				/* shouldn't happen? */
3045				vrele(vp);
3046				continue;
3047			}
3048			vrele(vp);
3049			++n;
3050		}
3051		MNT_IUNLOCK(mp);
3052		mtx_lock(&mountlist_mtx);
3053		vfs_unbusy(mp);
3054		if (n == len)
3055			break;
3056	}
3057	mtx_unlock(&mountlist_mtx);
3058
3059	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3060	free(xvn, M_TEMP);
3061	return (error);
3062}
3063
3064SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3065	0, 0, sysctl_vnode, "S,xvnode", "");
3066#endif
3067
3068/*
3069 * Unmount all filesystems. The list is traversed in reverse order
3070 * of mounting to avoid dependencies.
3071 */
3072void
3073vfs_unmountall(void)
3074{
3075	struct mount *mp;
3076	struct thread *td;
3077	int error;
3078
3079	KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
3080	td = curthread;
3081	/*
3082	 * Since this only runs when rebooting, it is not interlocked.
3083	 */
3084	while(!TAILQ_EMPTY(&mountlist)) {
3085		mp = TAILQ_LAST(&mountlist, mntlist);
3086		error = dounmount(mp, MNT_FORCE, td);
3087		if (error) {
3088			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3089			/*
3090			 * XXX: Due to the way in which we mount the root
3091			 * file system off of devfs, devfs will generate a
3092			 * "busy" warning when we try to unmount it before
3093			 * the root.  Don't print a warning as a result in
3094			 * order to avoid false positive errors that may
3095			 * cause needless upset.
3096			 */
3097			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3098				printf("unmount of %s failed (",
3099				    mp->mnt_stat.f_mntonname);
3100				if (error == EBUSY)
3101					printf("BUSY)\n");
3102				else
3103					printf("%d)\n", error);
3104			}
3105		} else {
3106			/* The unmount has removed mp from the mountlist */
3107		}
3108	}
3109}
3110
3111/*
3112 * perform msync on all vnodes under a mount point
3113 * the mount point must be locked.
3114 */
3115void
3116vfs_msync(struct mount *mp, int flags)
3117{
3118	struct vnode *vp, *mvp;
3119	struct vm_object *obj;
3120
3121	MNT_ILOCK(mp);
3122	MNT_VNODE_FOREACH(vp, mp, mvp) {
3123		VI_LOCK(vp);
3124		if ((vp->v_iflag & VI_OBJDIRTY) &&
3125		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3126			MNT_IUNLOCK(mp);
3127			if (!vget(vp,
3128			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3129			    curthread)) {
3130				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3131					vput(vp);
3132					MNT_ILOCK(mp);
3133					continue;
3134				}
3135
3136				obj = vp->v_object;
3137				if (obj != NULL) {
3138					VM_OBJECT_LOCK(obj);
3139					vm_object_page_clean(obj, 0, 0,
3140					    flags == MNT_WAIT ?
3141					    OBJPC_SYNC : OBJPC_NOSYNC);
3142					VM_OBJECT_UNLOCK(obj);
3143				}
3144				vput(vp);
3145			}
3146			MNT_ILOCK(mp);
3147		} else
3148			VI_UNLOCK(vp);
3149	}
3150	MNT_IUNLOCK(mp);
3151}
3152
3153/*
3154 * Mark a vnode as free, putting it up for recycling.
3155 */
3156static void
3157vfree(struct vnode *vp)
3158{
3159
3160	CTR1(KTR_VFS, "vfree vp %p", vp);
3161	ASSERT_VI_LOCKED(vp, "vfree");
3162	mtx_lock(&vnode_free_list_mtx);
3163	VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
3164	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
3165	VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
3166	VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
3167	    ("vfree: Freeing doomed vnode"));
3168	if (vp->v_iflag & VI_AGE) {
3169		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3170	} else {
3171		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3172	}
3173	freevnodes++;
3174	vp->v_iflag &= ~VI_AGE;
3175	vp->v_iflag |= VI_FREE;
3176	mtx_unlock(&vnode_free_list_mtx);
3177}
3178
3179/*
3180 * Opposite of vfree() - mark a vnode as in use.
3181 */
3182static void
3183vbusy(struct vnode *vp)
3184{
3185	CTR1(KTR_VFS, "vbusy vp %p", vp);
3186	ASSERT_VI_LOCKED(vp, "vbusy");
3187	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
3188	VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));
3189
3190	mtx_lock(&vnode_free_list_mtx);
3191	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3192	freevnodes--;
3193	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3194	mtx_unlock(&vnode_free_list_mtx);
3195}
3196
3197static void
3198destroy_vpollinfo(struct vpollinfo *vi)
3199{
3200	knlist_destroy(&vi->vpi_selinfo.si_note);
3201	mtx_destroy(&vi->vpi_lock);
3202	uma_zfree(vnodepoll_zone, vi);
3203}
3204
3205/*
3206 * Initalize per-vnode helper structure to hold poll-related state.
3207 */
3208void
3209v_addpollinfo(struct vnode *vp)
3210{
3211	struct vpollinfo *vi;
3212
3213	if (vp->v_pollinfo != NULL)
3214		return;
3215	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3216	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3217	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3218	    vfs_knlunlock, vfs_knllocked);
3219	VI_LOCK(vp);
3220	if (vp->v_pollinfo != NULL) {
3221		VI_UNLOCK(vp);
3222		destroy_vpollinfo(vi);
3223		return;
3224	}
3225	vp->v_pollinfo = vi;
3226	VI_UNLOCK(vp);
3227}
3228
3229/*
3230 * Record a process's interest in events which might happen to
3231 * a vnode.  Because poll uses the historic select-style interface
3232 * internally, this routine serves as both the ``check for any
3233 * pending events'' and the ``record my interest in future events''
3234 * functions.  (These are done together, while the lock is held,
3235 * to avoid race conditions.)
3236 */
3237int
3238vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3239{
3240
3241	v_addpollinfo(vp);
3242	mtx_lock(&vp->v_pollinfo->vpi_lock);
3243	if (vp->v_pollinfo->vpi_revents & events) {
3244		/*
3245		 * This leaves events we are not interested
3246		 * in available for the other process which
3247		 * which presumably had requested them
3248		 * (otherwise they would never have been
3249		 * recorded).
3250		 */
3251		events &= vp->v_pollinfo->vpi_revents;
3252		vp->v_pollinfo->vpi_revents &= ~events;
3253
3254		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3255		return events;
3256	}
3257	vp->v_pollinfo->vpi_events |= events;
3258	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3259	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3260	return 0;
3261}
3262
3263/*
3264 * Routine to create and manage a filesystem syncer vnode.
3265 */
3266#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3267static int	sync_fsync(struct  vop_fsync_args *);
3268static int	sync_inactive(struct  vop_inactive_args *);
3269static int	sync_reclaim(struct  vop_reclaim_args *);
3270
3271static struct vop_vector sync_vnodeops = {
3272	.vop_bypass =	VOP_EOPNOTSUPP,
3273	.vop_close =	sync_close,		/* close */
3274	.vop_fsync =	sync_fsync,		/* fsync */
3275	.vop_inactive =	sync_inactive,	/* inactive */
3276	.vop_reclaim =	sync_reclaim,	/* reclaim */
3277	.vop_lock1 =	vop_stdlock,	/* lock */
3278	.vop_unlock =	vop_stdunlock,	/* unlock */
3279	.vop_islocked =	vop_stdislocked,	/* islocked */
3280};
3281
3282/*
3283 * Create a new filesystem syncer vnode for the specified mount point.
3284 */
3285int
3286vfs_allocate_syncvnode(struct mount *mp)
3287{
3288	struct vnode *vp;
3289	struct bufobj *bo;
3290	static long start, incr, next;
3291	int error;
3292
3293	/* Allocate a new vnode */
3294	if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
3295		mp->mnt_syncer = NULL;
3296		return (error);
3297	}
3298	vp->v_type = VNON;
3299	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3300	vp->v_vflag |= VV_FORCEINSMQ;
3301	error = insmntque(vp, mp);
3302	if (error != 0)
3303		panic("vfs_allocate_syncvnode: insmntque failed");
3304	vp->v_vflag &= ~VV_FORCEINSMQ;
3305	VOP_UNLOCK(vp, 0);
3306	/*
3307	 * Place the vnode onto the syncer worklist. We attempt to
3308	 * scatter them about on the list so that they will go off
3309	 * at evenly distributed times even if all the filesystems
3310	 * are mounted at once.
3311	 */
3312	next += incr;
3313	if (next == 0 || next > syncer_maxdelay) {
3314		start /= 2;
3315		incr /= 2;
3316		if (start == 0) {
3317			start = syncer_maxdelay / 2;
3318			incr = syncer_maxdelay;
3319		}
3320		next = start;
3321	}
3322	bo = &vp->v_bufobj;
3323	BO_LOCK(bo);
3324	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3325	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3326	mtx_lock(&sync_mtx);
3327	sync_vnode_count++;
3328	mtx_unlock(&sync_mtx);
3329	BO_UNLOCK(bo);
3330	mp->mnt_syncer = vp;
3331	return (0);
3332}
3333
3334/*
3335 * Do a lazy sync of the filesystem.
3336 */
3337static int
3338sync_fsync(struct vop_fsync_args *ap)
3339{
3340	struct vnode *syncvp = ap->a_vp;
3341	struct mount *mp = syncvp->v_mount;
3342	int error;
3343	struct bufobj *bo;
3344
3345	/*
3346	 * We only need to do something if this is a lazy evaluation.
3347	 */
3348	if (ap->a_waitfor != MNT_LAZY)
3349		return (0);
3350
3351	/*
3352	 * Move ourselves to the back of the sync list.
3353	 */
3354	bo = &syncvp->v_bufobj;
3355	BO_LOCK(bo);
3356	vn_syncer_add_to_worklist(bo, syncdelay);
3357	BO_UNLOCK(bo);
3358
3359	/*
3360	 * Walk the list of vnodes pushing all that are dirty and
3361	 * not already on the sync list.
3362	 */
3363	mtx_lock(&mountlist_mtx);
3364	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx) != 0) {
3365		mtx_unlock(&mountlist_mtx);
3366		return (0);
3367	}
3368	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3369		vfs_unbusy(mp);
3370		return (0);
3371	}
3372	MNT_ILOCK(mp);
3373	mp->mnt_noasync++;
3374	mp->mnt_kern_flag &= ~MNTK_ASYNC;
3375	MNT_IUNLOCK(mp);
3376	vfs_msync(mp, MNT_NOWAIT);
3377	error = VFS_SYNC(mp, MNT_LAZY, ap->a_td);
3378	MNT_ILOCK(mp);
3379	mp->mnt_noasync--;
3380	if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0)
3381		mp->mnt_kern_flag |= MNTK_ASYNC;
3382	MNT_IUNLOCK(mp);
3383	vn_finished_write(mp);
3384	vfs_unbusy(mp);
3385	return (error);
3386}
3387
3388/*
3389 * The syncer vnode is no referenced.
3390 */
3391static int
3392sync_inactive(struct vop_inactive_args *ap)
3393{
3394
3395	vgone(ap->a_vp);
3396	return (0);
3397}
3398
3399/*
3400 * The syncer vnode is no longer needed and is being decommissioned.
3401 *
3402 * Modifications to the worklist must be protected by sync_mtx.
3403 */
3404static int
3405sync_reclaim(struct vop_reclaim_args *ap)
3406{
3407	struct vnode *vp = ap->a_vp;
3408	struct bufobj *bo;
3409
3410	bo = &vp->v_bufobj;
3411	BO_LOCK(bo);
3412	vp->v_mount->mnt_syncer = NULL;
3413	if (bo->bo_flag & BO_ONWORKLST) {
3414		mtx_lock(&sync_mtx);
3415		LIST_REMOVE(bo, bo_synclist);
3416		syncer_worklist_len--;
3417		sync_vnode_count--;
3418		mtx_unlock(&sync_mtx);
3419		bo->bo_flag &= ~BO_ONWORKLST;
3420	}
3421	BO_UNLOCK(bo);
3422
3423	return (0);
3424}
3425
3426/*
3427 * Check if vnode represents a disk device
3428 */
3429int
3430vn_isdisk(struct vnode *vp, int *errp)
3431{
3432	int error;
3433
3434	error = 0;
3435	dev_lock();
3436	if (vp->v_type != VCHR)
3437		error = ENOTBLK;
3438	else if (vp->v_rdev == NULL)
3439		error = ENXIO;
3440	else if (vp->v_rdev->si_devsw == NULL)
3441		error = ENXIO;
3442	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3443		error = ENOTBLK;
3444	dev_unlock();
3445	if (errp != NULL)
3446		*errp = error;
3447	return (error == 0);
3448}
3449
3450/*
3451 * Common filesystem object access control check routine.  Accepts a
3452 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3453 * and optional call-by-reference privused argument allowing vaccess()
3454 * to indicate to the caller whether privilege was used to satisfy the
3455 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3456 *
3457 * The ifdef'd CAPABILITIES version is here for reference, but is not
3458 * actually used.
3459 */
3460int
3461vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3462    mode_t acc_mode, struct ucred *cred, int *privused)
3463{
3464	mode_t dac_granted;
3465	mode_t priv_granted;
3466
3467	/*
3468	 * Look for a normal, non-privileged way to access the file/directory
3469	 * as requested.  If it exists, go with that.
3470	 */
3471
3472	if (privused != NULL)
3473		*privused = 0;
3474
3475	dac_granted = 0;
3476
3477	/* Check the owner. */
3478	if (cred->cr_uid == file_uid) {
3479		dac_granted |= VADMIN;
3480		if (file_mode & S_IXUSR)
3481			dac_granted |= VEXEC;
3482		if (file_mode & S_IRUSR)
3483			dac_granted |= VREAD;
3484		if (file_mode & S_IWUSR)
3485			dac_granted |= (VWRITE | VAPPEND);
3486
3487		if ((acc_mode & dac_granted) == acc_mode)
3488			return (0);
3489
3490		goto privcheck;
3491	}
3492
3493	/* Otherwise, check the groups (first match) */
3494	if (groupmember(file_gid, cred)) {
3495		if (file_mode & S_IXGRP)
3496			dac_granted |= VEXEC;
3497		if (file_mode & S_IRGRP)
3498			dac_granted |= VREAD;
3499		if (file_mode & S_IWGRP)
3500			dac_granted |= (VWRITE | VAPPEND);
3501
3502		if ((acc_mode & dac_granted) == acc_mode)
3503			return (0);
3504
3505		goto privcheck;
3506	}
3507
3508	/* Otherwise, check everyone else. */
3509	if (file_mode & S_IXOTH)
3510		dac_granted |= VEXEC;
3511	if (file_mode & S_IROTH)
3512		dac_granted |= VREAD;
3513	if (file_mode & S_IWOTH)
3514		dac_granted |= (VWRITE | VAPPEND);
3515	if ((acc_mode & dac_granted) == acc_mode)
3516		return (0);
3517
3518privcheck:
3519	/*
3520	 * Build a privilege mask to determine if the set of privileges
3521	 * satisfies the requirements when combined with the granted mask
3522	 * from above.  For each privilege, if the privilege is required,
3523	 * bitwise or the request type onto the priv_granted mask.
3524	 */
3525	priv_granted = 0;
3526
3527	if (type == VDIR) {
3528		/*
3529		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3530		 * requests, instead of PRIV_VFS_EXEC.
3531		 */
3532		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3533		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3534			priv_granted |= VEXEC;
3535	} else {
3536		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3537		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3538			priv_granted |= VEXEC;
3539	}
3540
3541	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3542	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
3543		priv_granted |= VREAD;
3544
3545	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3546	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3547		priv_granted |= (VWRITE | VAPPEND);
3548
3549	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3550	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3551		priv_granted |= VADMIN;
3552
3553	if ((acc_mode & (priv_granted | dac_granted)) == acc_mode) {
3554		/* XXX audit: privilege used */
3555		if (privused != NULL)
3556			*privused = 1;
3557		return (0);
3558	}
3559
3560	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3561}
3562
3563/*
3564 * Credential check based on process requesting service, and per-attribute
3565 * permissions.
3566 */
3567int
3568extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3569    struct thread *td, int access)
3570{
3571
3572	/*
3573	 * Kernel-invoked always succeeds.
3574	 */
3575	if (cred == NOCRED)
3576		return (0);
3577
3578	/*
3579	 * Do not allow privileged processes in jail to directly manipulate
3580	 * system attributes.
3581	 */
3582	switch (attrnamespace) {
3583	case EXTATTR_NAMESPACE_SYSTEM:
3584		/* Potentially should be: return (EPERM); */
3585		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3586	case EXTATTR_NAMESPACE_USER:
3587		return (VOP_ACCESS(vp, access, cred, td));
3588	default:
3589		return (EPERM);
3590	}
3591}
3592
3593#ifdef DEBUG_VFS_LOCKS
3594/*
3595 * This only exists to supress warnings from unlocked specfs accesses.  It is
3596 * no longer ok to have an unlocked VFS.
3597 */
3598#define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
3599	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
3600
3601int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3602SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3603
3604int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3605SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3606
3607int vfs_badlock_print = 1;	/* Print lock violations. */
3608SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3609
3610#ifdef KDB
3611int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3612SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3613#endif
3614
3615static void
3616vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3617{
3618
3619#ifdef KDB
3620	if (vfs_badlock_backtrace)
3621		kdb_backtrace();
3622#endif
3623	if (vfs_badlock_print)
3624		printf("%s: %p %s\n", str, (void *)vp, msg);
3625	if (vfs_badlock_ddb)
3626		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3627}
3628
3629void
3630assert_vi_locked(struct vnode *vp, const char *str)
3631{
3632
3633	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3634		vfs_badlock("interlock is not locked but should be", str, vp);
3635}
3636
3637void
3638assert_vi_unlocked(struct vnode *vp, const char *str)
3639{
3640
3641	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3642		vfs_badlock("interlock is locked but should not be", str, vp);
3643}
3644
3645void
3646assert_vop_locked(struct vnode *vp, const char *str)
3647{
3648
3649	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == 0)
3650		vfs_badlock("is not locked but should be", str, vp);
3651}
3652
3653void
3654assert_vop_unlocked(struct vnode *vp, const char *str)
3655{
3656
3657	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
3658		vfs_badlock("is locked but should not be", str, vp);
3659}
3660
3661void
3662assert_vop_elocked(struct vnode *vp, const char *str)
3663{
3664
3665	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
3666		vfs_badlock("is not exclusive locked but should be", str, vp);
3667}
3668
3669#if 0
3670void
3671assert_vop_elocked_other(struct vnode *vp, const char *str)
3672{
3673
3674	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
3675		vfs_badlock("is not exclusive locked by another thread",
3676		    str, vp);
3677}
3678
3679void
3680assert_vop_slocked(struct vnode *vp, const char *str)
3681{
3682
3683	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
3684		vfs_badlock("is not locked shared but should be", str, vp);
3685}
3686#endif /* 0 */
3687#endif /* DEBUG_VFS_LOCKS */
3688
3689void
3690vop_rename_pre(void *ap)
3691{
3692	struct vop_rename_args *a = ap;
3693
3694#ifdef DEBUG_VFS_LOCKS
3695	if (a->a_tvp)
3696		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3697	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3698	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3699	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3700
3701	/* Check the source (from). */
3702	if (a->a_tdvp != a->a_fdvp && a->a_tvp != a->a_fdvp)
3703		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3704	if (a->a_tvp != a->a_fvp)
3705		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
3706
3707	/* Check the target. */
3708	if (a->a_tvp)
3709		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3710	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3711#endif
3712	if (a->a_tdvp != a->a_fdvp)
3713		vhold(a->a_fdvp);
3714	if (a->a_tvp != a->a_fvp)
3715		vhold(a->a_fvp);
3716	vhold(a->a_tdvp);
3717	if (a->a_tvp)
3718		vhold(a->a_tvp);
3719}
3720
3721void
3722vop_strategy_pre(void *ap)
3723{
3724#ifdef DEBUG_VFS_LOCKS
3725	struct vop_strategy_args *a;
3726	struct buf *bp;
3727
3728	a = ap;
3729	bp = a->a_bp;
3730
3731	/*
3732	 * Cluster ops lock their component buffers but not the IO container.
3733	 */
3734	if ((bp->b_flags & B_CLUSTER) != 0)
3735		return;
3736
3737	if (!BUF_ISLOCKED(bp)) {
3738		if (vfs_badlock_print)
3739			printf(
3740			    "VOP_STRATEGY: bp is not locked but should be\n");
3741		if (vfs_badlock_ddb)
3742			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3743	}
3744#endif
3745}
3746
3747void
3748vop_lookup_pre(void *ap)
3749{
3750#ifdef DEBUG_VFS_LOCKS
3751	struct vop_lookup_args *a;
3752	struct vnode *dvp;
3753
3754	a = ap;
3755	dvp = a->a_dvp;
3756	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3757	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3758#endif
3759}
3760
3761void
3762vop_lookup_post(void *ap, int rc)
3763{
3764#ifdef DEBUG_VFS_LOCKS
3765	struct vop_lookup_args *a;
3766	struct vnode *dvp;
3767	struct vnode *vp;
3768
3769	a = ap;
3770	dvp = a->a_dvp;
3771	vp = *(a->a_vpp);
3772
3773	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3774	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3775
3776	if (!rc)
3777		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
3778#endif
3779}
3780
3781void
3782vop_lock_pre(void *ap)
3783{
3784#ifdef DEBUG_VFS_LOCKS
3785	struct vop_lock1_args *a = ap;
3786
3787	if ((a->a_flags & LK_INTERLOCK) == 0)
3788		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3789	else
3790		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3791#endif
3792}
3793
3794void
3795vop_lock_post(void *ap, int rc)
3796{
3797#ifdef DEBUG_VFS_LOCKS
3798	struct vop_lock1_args *a = ap;
3799
3800	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3801	if (rc == 0)
3802		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3803#endif
3804}
3805
3806void
3807vop_unlock_pre(void *ap)
3808{
3809#ifdef DEBUG_VFS_LOCKS
3810	struct vop_unlock_args *a = ap;
3811
3812	if (a->a_flags & LK_INTERLOCK)
3813		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3814	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3815#endif
3816}
3817
3818void
3819vop_unlock_post(void *ap, int rc)
3820{
3821#ifdef DEBUG_VFS_LOCKS
3822	struct vop_unlock_args *a = ap;
3823
3824	if (a->a_flags & LK_INTERLOCK)
3825		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3826#endif
3827}
3828
3829void
3830vop_create_post(void *ap, int rc)
3831{
3832	struct vop_create_args *a = ap;
3833
3834	if (!rc)
3835		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3836}
3837
3838void
3839vop_link_post(void *ap, int rc)
3840{
3841	struct vop_link_args *a = ap;
3842
3843	if (!rc) {
3844		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
3845		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
3846	}
3847}
3848
3849void
3850vop_mkdir_post(void *ap, int rc)
3851{
3852	struct vop_mkdir_args *a = ap;
3853
3854	if (!rc)
3855		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3856}
3857
3858void
3859vop_mknod_post(void *ap, int rc)
3860{
3861	struct vop_mknod_args *a = ap;
3862
3863	if (!rc)
3864		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3865}
3866
3867void
3868vop_remove_post(void *ap, int rc)
3869{
3870	struct vop_remove_args *a = ap;
3871
3872	if (!rc) {
3873		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3874		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3875	}
3876}
3877
3878void
3879vop_rename_post(void *ap, int rc)
3880{
3881	struct vop_rename_args *a = ap;
3882
3883	if (!rc) {
3884		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
3885		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
3886		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
3887		if (a->a_tvp)
3888			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
3889	}
3890	if (a->a_tdvp != a->a_fdvp)
3891		vdrop(a->a_fdvp);
3892	if (a->a_tvp != a->a_fvp)
3893		vdrop(a->a_fvp);
3894	vdrop(a->a_tdvp);
3895	if (a->a_tvp)
3896		vdrop(a->a_tvp);
3897}
3898
3899void
3900vop_rmdir_post(void *ap, int rc)
3901{
3902	struct vop_rmdir_args *a = ap;
3903
3904	if (!rc) {
3905		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3906		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3907	}
3908}
3909
3910void
3911vop_setattr_post(void *ap, int rc)
3912{
3913	struct vop_setattr_args *a = ap;
3914
3915	if (!rc)
3916		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
3917}
3918
3919void
3920vop_symlink_post(void *ap, int rc)
3921{
3922	struct vop_symlink_args *a = ap;
3923
3924	if (!rc)
3925		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3926}
3927
3928static struct knlist fs_knlist;
3929
3930static void
3931vfs_event_init(void *arg)
3932{
3933	knlist_init(&fs_knlist, NULL, NULL, NULL, NULL);
3934}
3935/* XXX - correct order? */
3936SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3937
3938void
3939vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
3940{
3941
3942	KNOTE_UNLOCKED(&fs_knlist, event);
3943}
3944
3945static int	filt_fsattach(struct knote *kn);
3946static void	filt_fsdetach(struct knote *kn);
3947static int	filt_fsevent(struct knote *kn, long hint);
3948
3949struct filterops fs_filtops =
3950	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
3951
3952static int
3953filt_fsattach(struct knote *kn)
3954{
3955
3956	kn->kn_flags |= EV_CLEAR;
3957	knlist_add(&fs_knlist, kn, 0);
3958	return (0);
3959}
3960
3961static void
3962filt_fsdetach(struct knote *kn)
3963{
3964
3965	knlist_remove(&fs_knlist, kn, 0);
3966}
3967
3968static int
3969filt_fsevent(struct knote *kn, long hint)
3970{
3971
3972	kn->kn_fflags |= hint;
3973	return (kn->kn_fflags != 0);
3974}
3975
3976static int
3977sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
3978{
3979	struct vfsidctl vc;
3980	int error;
3981	struct mount *mp;
3982
3983	error = SYSCTL_IN(req, &vc, sizeof(vc));
3984	if (error)
3985		return (error);
3986	if (vc.vc_vers != VFS_CTL_VERS1)
3987		return (EINVAL);
3988	mp = vfs_getvfs(&vc.vc_fsid);
3989	if (mp == NULL)
3990		return (ENOENT);
3991	/* ensure that a specific sysctl goes to the right filesystem. */
3992	if (strcmp(vc.vc_fstypename, "*") != 0 &&
3993	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
3994		vfs_rel(mp);
3995		return (EINVAL);
3996	}
3997	VCTLTOREQ(&vc, req);
3998	error = VFS_SYSCTL(mp, vc.vc_op, req);
3999	vfs_rel(mp);
4000	return (error);
4001}
4002
4003SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR, NULL, 0, sysctl_vfs_ctl, "",
4004    "Sysctl by fsid");
4005
4006/*
4007 * Function to initialize a va_filerev field sensibly.
4008 * XXX: Wouldn't a random number make a lot more sense ??
4009 */
4010u_quad_t
4011init_va_filerev(void)
4012{
4013	struct bintime bt;
4014
4015	getbinuptime(&bt);
4016	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4017}
4018
4019static int	filt_vfsread(struct knote *kn, long hint);
4020static int	filt_vfswrite(struct knote *kn, long hint);
4021static int	filt_vfsvnode(struct knote *kn, long hint);
4022static void	filt_vfsdetach(struct knote *kn);
4023static struct filterops vfsread_filtops =
4024	{ 1, NULL, filt_vfsdetach, filt_vfsread };
4025static struct filterops vfswrite_filtops =
4026	{ 1, NULL, filt_vfsdetach, filt_vfswrite };
4027static struct filterops vfsvnode_filtops =
4028	{ 1, NULL, filt_vfsdetach, filt_vfsvnode };
4029
4030static void
4031vfs_knllock(void *arg)
4032{
4033	struct vnode *vp = arg;
4034
4035	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4036}
4037
4038static void
4039vfs_knlunlock(void *arg)
4040{
4041	struct vnode *vp = arg;
4042
4043	VOP_UNLOCK(vp, 0);
4044}
4045
4046static int
4047vfs_knllocked(void *arg)
4048{
4049	struct vnode *vp = arg;
4050
4051	return (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
4052}
4053
4054int
4055vfs_kqfilter(struct vop_kqfilter_args *ap)
4056{
4057	struct vnode *vp = ap->a_vp;
4058	struct knote *kn = ap->a_kn;
4059	struct knlist *knl;
4060
4061	switch (kn->kn_filter) {
4062	case EVFILT_READ:
4063		kn->kn_fop = &vfsread_filtops;
4064		break;
4065	case EVFILT_WRITE:
4066		kn->kn_fop = &vfswrite_filtops;
4067		break;
4068	case EVFILT_VNODE:
4069		kn->kn_fop = &vfsvnode_filtops;
4070		break;
4071	default:
4072		return (EINVAL);
4073	}
4074
4075	kn->kn_hook = (caddr_t)vp;
4076
4077	v_addpollinfo(vp);
4078	if (vp->v_pollinfo == NULL)
4079		return (ENOMEM);
4080	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4081	knlist_add(knl, kn, 0);
4082
4083	return (0);
4084}
4085
4086/*
4087 * Detach knote from vnode
4088 */
4089static void
4090filt_vfsdetach(struct knote *kn)
4091{
4092	struct vnode *vp = (struct vnode *)kn->kn_hook;
4093
4094	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4095	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4096}
4097
4098/*ARGSUSED*/
4099static int
4100filt_vfsread(struct knote *kn, long hint)
4101{
4102	struct vnode *vp = (struct vnode *)kn->kn_hook;
4103	struct vattr va;
4104
4105	/*
4106	 * filesystem is gone, so set the EOF flag and schedule
4107	 * the knote for deletion.
4108	 */
4109	if (hint == NOTE_REVOKE) {
4110		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4111		return (1);
4112	}
4113
4114	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4115		return (0);
4116
4117	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4118	return (kn->kn_data != 0);
4119}
4120
4121/*ARGSUSED*/
4122static int
4123filt_vfswrite(struct knote *kn, long hint)
4124{
4125	/*
4126	 * filesystem is gone, so set the EOF flag and schedule
4127	 * the knote for deletion.
4128	 */
4129	if (hint == NOTE_REVOKE)
4130		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4131
4132	kn->kn_data = 0;
4133	return (1);
4134}
4135
4136static int
4137filt_vfsvnode(struct knote *kn, long hint)
4138{
4139	if (kn->kn_sfflags & hint)
4140		kn->kn_fflags |= hint;
4141	if (hint == NOTE_REVOKE) {
4142		kn->kn_flags |= EV_EOF;
4143		return (1);
4144	}
4145	return (kn->kn_fflags != 0);
4146}
4147
4148int
4149vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4150{
4151	int error;
4152
4153	if (dp->d_reclen > ap->a_uio->uio_resid)
4154		return (ENAMETOOLONG);
4155	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4156	if (error) {
4157		if (ap->a_ncookies != NULL) {
4158			if (ap->a_cookies != NULL)
4159				free(ap->a_cookies, M_TEMP);
4160			ap->a_cookies = NULL;
4161			*ap->a_ncookies = 0;
4162		}
4163		return (error);
4164	}
4165	if (ap->a_ncookies == NULL)
4166		return (0);
4167
4168	KASSERT(ap->a_cookies,
4169	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4170
4171	*ap->a_cookies = realloc(*ap->a_cookies,
4172	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4173	(*ap->a_cookies)[*ap->a_ncookies] = off;
4174	return (0);
4175}
4176
4177/*
4178 * Mark for update the access time of the file if the filesystem
4179 * supports VA_MARK_ATIME.  This functionality is used by execve
4180 * and mmap, so we want to avoid the synchronous I/O implied by
4181 * directly setting va_atime for the sake of efficiency.
4182 */
4183void
4184vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4185{
4186	struct vattr atimeattr;
4187
4188	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
4189		VATTR_NULL(&atimeattr);
4190		atimeattr.va_vaflags |= VA_MARK_ATIME;
4191		(void)VOP_SETATTR(vp, &atimeattr, cred);
4192	}
4193}
4194