vfs_subr.c revision 162945
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_subr.c 162945 2006-10-02 07:25:58Z kib $");
43
44#include "opt_ddb.h"
45#include "opt_mac.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/bio.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/event.h>
54#include <sys/eventhandler.h>
55#include <sys/extattr.h>
56#include <sys/file.h>
57#include <sys/fcntl.h>
58#include <sys/kdb.h>
59#include <sys/kernel.h>
60#include <sys/kthread.h>
61#include <sys/mac.h>
62#include <sys/malloc.h>
63#include <sys/mount.h>
64#include <sys/namei.h>
65#include <sys/reboot.h>
66#include <sys/sleepqueue.h>
67#include <sys/stat.h>
68#include <sys/sysctl.h>
69#include <sys/syslog.h>
70#include <sys/vmmeter.h>
71#include <sys/vnode.h>
72
73#include <machine/stdarg.h>
74
75#include <vm/vm.h>
76#include <vm/vm_object.h>
77#include <vm/vm_extern.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_page.h>
81#include <vm/vm_kern.h>
82#include <vm/uma.h>
83
84#ifdef DDB
85#include <ddb/ddb.h>
86#endif
87
88static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure");
89
90static void	delmntque(struct vnode *vp);
91static void	insmntque(struct vnode *vp, struct mount *mp);
92static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
93		    int slpflag, int slptimeo);
94static void	syncer_shutdown(void *arg, int howto);
95static int	vtryrecycle(struct vnode *vp);
96static void	vbusy(struct vnode *vp);
97static void	vdropl(struct vnode *vp);
98static void	vinactive(struct vnode *, struct thread *);
99static void	v_incr_usecount(struct vnode *);
100static void	v_decr_usecount(struct vnode *);
101static void	v_decr_useonly(struct vnode *);
102static void	v_upgrade_usecount(struct vnode *);
103static void	vfree(struct vnode *);
104static void	vnlru_free(int);
105static void	vdestroy(struct vnode *);
106static void	vgonel(struct vnode *);
107static void	vfs_knllock(void *arg);
108static void	vfs_knlunlock(void *arg);
109static int	vfs_knllocked(void *arg);
110
111
112/*
113 * Enable Giant pushdown based on whether or not the vm is mpsafe in this
114 * build.  Without mpsafevm the buffer cache can not run Giant free.
115 */
116#if !defined(__powerpc__)
117int mpsafe_vfs = 1;
118#else
119int mpsafe_vfs;
120#endif
121TUNABLE_INT("debug.mpsafevfs", &mpsafe_vfs);
122SYSCTL_INT(_debug, OID_AUTO, mpsafevfs, CTLFLAG_RD, &mpsafe_vfs, 0,
123    "MPSAFE VFS");
124
125/*
126 * Number of vnodes in existence.  Increased whenever getnewvnode()
127 * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed
128 * vnode.
129 */
130static unsigned long	numvnodes;
131
132SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
133
134/*
135 * Conversion tables for conversion from vnode types to inode formats
136 * and back.
137 */
138enum vtype iftovt_tab[16] = {
139	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
140	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
141};
142int vttoif_tab[10] = {
143	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
144	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
145};
146
147/*
148 * List of vnodes that are ready for recycling.
149 */
150static TAILQ_HEAD(freelst, vnode) vnode_free_list;
151
152/*
153 * Free vnode target.  Free vnodes may simply be files which have been stat'd
154 * but not read.  This is somewhat common, and a small cache of such files
155 * should be kept to avoid recreation costs.
156 */
157static u_long wantfreevnodes;
158SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
159/* Number of vnodes in the free list. */
160static u_long freevnodes;
161SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
162
163/*
164 * Various variables used for debugging the new implementation of
165 * reassignbuf().
166 * XXX these are probably of (very) limited utility now.
167 */
168static int reassignbufcalls;
169SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
170
171/*
172 * Cache for the mount type id assigned to NFS.  This is used for
173 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
174 */
175int	nfs_mount_type = -1;
176
177/* To keep more than one thread at a time from running vfs_getnewfsid */
178static struct mtx mntid_mtx;
179
180/*
181 * Lock for any access to the following:
182 *	vnode_free_list
183 *	numvnodes
184 *	freevnodes
185 */
186static struct mtx vnode_free_list_mtx;
187
188/* Publicly exported FS */
189struct nfs_public nfs_pub;
190
191/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
192static uma_zone_t vnode_zone;
193static uma_zone_t vnodepoll_zone;
194
195/* Set to 1 to print out reclaim of active vnodes */
196int	prtactive;
197
198/*
199 * The workitem queue.
200 *
201 * It is useful to delay writes of file data and filesystem metadata
202 * for tens of seconds so that quickly created and deleted files need
203 * not waste disk bandwidth being created and removed. To realize this,
204 * we append vnodes to a "workitem" queue. When running with a soft
205 * updates implementation, most pending metadata dependencies should
206 * not wait for more than a few seconds. Thus, mounted on block devices
207 * are delayed only about a half the time that file data is delayed.
208 * Similarly, directory updates are more critical, so are only delayed
209 * about a third the time that file data is delayed. Thus, there are
210 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
211 * one each second (driven off the filesystem syncer process). The
212 * syncer_delayno variable indicates the next queue that is to be processed.
213 * Items that need to be processed soon are placed in this queue:
214 *
215 *	syncer_workitem_pending[syncer_delayno]
216 *
217 * A delay of fifteen seconds is done by placing the request fifteen
218 * entries later in the queue:
219 *
220 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
221 *
222 */
223static int syncer_delayno;
224static long syncer_mask;
225LIST_HEAD(synclist, bufobj);
226static struct synclist *syncer_workitem_pending;
227/*
228 * The sync_mtx protects:
229 *	bo->bo_synclist
230 *	sync_vnode_count
231 *	syncer_delayno
232 *	syncer_state
233 *	syncer_workitem_pending
234 *	syncer_worklist_len
235 *	rushjob
236 */
237static struct mtx sync_mtx;
238
239#define SYNCER_MAXDELAY		32
240static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
241static int syncdelay = 30;		/* max time to delay syncing data */
242static int filedelay = 30;		/* time to delay syncing files */
243SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
244static int dirdelay = 29;		/* time to delay syncing directories */
245SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
246static int metadelay = 28;		/* time to delay syncing metadata */
247SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
248static int rushjob;		/* number of slots to run ASAP */
249static int stat_rush_requests;	/* number of times I/O speeded up */
250SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
251
252/*
253 * When shutting down the syncer, run it at four times normal speed.
254 */
255#define SYNCER_SHUTDOWN_SPEEDUP		4
256static int sync_vnode_count;
257static int syncer_worklist_len;
258static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
259    syncer_state;
260
261/*
262 * Number of vnodes we want to exist at any one time.  This is mostly used
263 * to size hash tables in vnode-related code.  It is normally not used in
264 * getnewvnode(), as wantfreevnodes is normally nonzero.)
265 *
266 * XXX desiredvnodes is historical cruft and should not exist.
267 */
268int desiredvnodes;
269SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
270    &desiredvnodes, 0, "Maximum number of vnodes");
271SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
272    &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
273static int vnlru_nowhere;
274SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
275    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
276
277/*
278 * Macros to control when a vnode is freed and recycled.  All require
279 * the vnode interlock.
280 */
281#define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
282#define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
283#define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
284
285
286/*
287 * Initialize the vnode management data structures.
288 */
289#ifndef	MAXVNODES_MAX
290#define	MAXVNODES_MAX	100000
291#endif
292static void
293vntblinit(void *dummy __unused)
294{
295
296	/*
297	 * Desiredvnodes is a function of the physical memory size and
298	 * the kernel's heap size.  Specifically, desiredvnodes scales
299	 * in proportion to the physical memory size until two fifths
300	 * of the kernel's heap size is consumed by vnodes and vm
301	 * objects.
302	 */
303	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
304	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
305	if (desiredvnodes > MAXVNODES_MAX) {
306		if (bootverbose)
307			printf("Reducing kern.maxvnodes %d -> %d\n",
308			    desiredvnodes, MAXVNODES_MAX);
309		desiredvnodes = MAXVNODES_MAX;
310	}
311	wantfreevnodes = desiredvnodes / 4;
312	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
313	TAILQ_INIT(&vnode_free_list);
314	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
315	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
316	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
317	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
318	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
319	/*
320	 * Initialize the filesystem syncer.
321	 */
322	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
323		&syncer_mask);
324	syncer_maxdelay = syncer_mask + 1;
325	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
326}
327SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
328
329
330/*
331 * Mark a mount point as busy. Used to synchronize access and to delay
332 * unmounting. Interlock is not released on failure.
333 */
334int
335vfs_busy(struct mount *mp, int flags, struct mtx *interlkp,
336    struct thread *td)
337{
338	int lkflags;
339
340	MNT_ILOCK(mp);
341	MNT_REF(mp);
342	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
343		if (flags & LK_NOWAIT) {
344			MNT_REL(mp);
345			MNT_IUNLOCK(mp);
346			return (ENOENT);
347		}
348		if (interlkp)
349			mtx_unlock(interlkp);
350		mp->mnt_kern_flag |= MNTK_MWAIT;
351		/*
352		 * Since all busy locks are shared except the exclusive
353		 * lock granted when unmounting, the only place that a
354		 * wakeup needs to be done is at the release of the
355		 * exclusive lock at the end of dounmount.
356		 */
357		msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
358		MNT_REL(mp);
359		MNT_IUNLOCK(mp);
360		if (interlkp)
361			mtx_lock(interlkp);
362		return (ENOENT);
363	}
364	if (interlkp)
365		mtx_unlock(interlkp);
366	lkflags = LK_SHARED | LK_INTERLOCK;
367	if (lockmgr(&mp->mnt_lock, lkflags, MNT_MTX(mp), td))
368		panic("vfs_busy: unexpected lock failure");
369	return (0);
370}
371
372/*
373 * Free a busy filesystem.
374 */
375void
376vfs_unbusy(struct mount *mp, struct thread *td)
377{
378
379	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
380	vfs_rel(mp);
381}
382
383/*
384 * Lookup a mount point by filesystem identifier.
385 */
386struct mount *
387vfs_getvfs(fsid_t *fsid)
388{
389	struct mount *mp;
390
391	mtx_lock(&mountlist_mtx);
392	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
393		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
394		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
395			vfs_ref(mp);
396			mtx_unlock(&mountlist_mtx);
397			return (mp);
398		}
399	}
400	mtx_unlock(&mountlist_mtx);
401	return ((struct mount *) 0);
402}
403
404/*
405 * Check if a user can access priveledged mount options.
406 */
407int
408vfs_suser(struct mount *mp, struct thread *td)
409{
410	int error;
411
412	if ((mp->mnt_flag & MNT_USER) == 0 ||
413	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
414		if ((error = suser(td)) != 0)
415			return (error);
416	}
417	return (0);
418}
419
420/*
421 * Get a new unique fsid.  Try to make its val[0] unique, since this value
422 * will be used to create fake device numbers for stat().  Also try (but
423 * not so hard) make its val[0] unique mod 2^16, since some emulators only
424 * support 16-bit device numbers.  We end up with unique val[0]'s for the
425 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
426 *
427 * Keep in mind that several mounts may be running in parallel.  Starting
428 * the search one past where the previous search terminated is both a
429 * micro-optimization and a defense against returning the same fsid to
430 * different mounts.
431 */
432void
433vfs_getnewfsid(struct mount *mp)
434{
435	static u_int16_t mntid_base;
436	struct mount *nmp;
437	fsid_t tfsid;
438	int mtype;
439
440	mtx_lock(&mntid_mtx);
441	mtype = mp->mnt_vfc->vfc_typenum;
442	tfsid.val[1] = mtype;
443	mtype = (mtype & 0xFF) << 24;
444	for (;;) {
445		tfsid.val[0] = makedev(255,
446		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
447		mntid_base++;
448		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
449			break;
450		vfs_rel(nmp);
451	}
452	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
453	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
454	mtx_unlock(&mntid_mtx);
455}
456
457/*
458 * Knob to control the precision of file timestamps:
459 *
460 *   0 = seconds only; nanoseconds zeroed.
461 *   1 = seconds and nanoseconds, accurate within 1/HZ.
462 *   2 = seconds and nanoseconds, truncated to microseconds.
463 * >=3 = seconds and nanoseconds, maximum precision.
464 */
465enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
466
467static int timestamp_precision = TSP_SEC;
468SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
469    &timestamp_precision, 0, "");
470
471/*
472 * Get a current timestamp.
473 */
474void
475vfs_timestamp(struct timespec *tsp)
476{
477	struct timeval tv;
478
479	switch (timestamp_precision) {
480	case TSP_SEC:
481		tsp->tv_sec = time_second;
482		tsp->tv_nsec = 0;
483		break;
484	case TSP_HZ:
485		getnanotime(tsp);
486		break;
487	case TSP_USEC:
488		microtime(&tv);
489		TIMEVAL_TO_TIMESPEC(&tv, tsp);
490		break;
491	case TSP_NSEC:
492	default:
493		nanotime(tsp);
494		break;
495	}
496}
497
498/*
499 * Set vnode attributes to VNOVAL
500 */
501void
502vattr_null(struct vattr *vap)
503{
504
505	vap->va_type = VNON;
506	vap->va_size = VNOVAL;
507	vap->va_bytes = VNOVAL;
508	vap->va_mode = VNOVAL;
509	vap->va_nlink = VNOVAL;
510	vap->va_uid = VNOVAL;
511	vap->va_gid = VNOVAL;
512	vap->va_fsid = VNOVAL;
513	vap->va_fileid = VNOVAL;
514	vap->va_blocksize = VNOVAL;
515	vap->va_rdev = VNOVAL;
516	vap->va_atime.tv_sec = VNOVAL;
517	vap->va_atime.tv_nsec = VNOVAL;
518	vap->va_mtime.tv_sec = VNOVAL;
519	vap->va_mtime.tv_nsec = VNOVAL;
520	vap->va_ctime.tv_sec = VNOVAL;
521	vap->va_ctime.tv_nsec = VNOVAL;
522	vap->va_birthtime.tv_sec = VNOVAL;
523	vap->va_birthtime.tv_nsec = VNOVAL;
524	vap->va_flags = VNOVAL;
525	vap->va_gen = VNOVAL;
526	vap->va_vaflags = 0;
527}
528
529/*
530 * This routine is called when we have too many vnodes.  It attempts
531 * to free <count> vnodes and will potentially free vnodes that still
532 * have VM backing store (VM backing store is typically the cause
533 * of a vnode blowout so we want to do this).  Therefore, this operation
534 * is not considered cheap.
535 *
536 * A number of conditions may prevent a vnode from being reclaimed.
537 * the buffer cache may have references on the vnode, a directory
538 * vnode may still have references due to the namei cache representing
539 * underlying files, or the vnode may be in active use.   It is not
540 * desireable to reuse such vnodes.  These conditions may cause the
541 * number of vnodes to reach some minimum value regardless of what
542 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
543 */
544static int
545vlrureclaim(struct mount *mp)
546{
547	struct thread *td;
548	struct vnode *vp;
549	int done;
550	int trigger;
551	int usevnodes;
552	int count;
553
554	/*
555	 * Calculate the trigger point, don't allow user
556	 * screwups to blow us up.   This prevents us from
557	 * recycling vnodes with lots of resident pages.  We
558	 * aren't trying to free memory, we are trying to
559	 * free vnodes.
560	 */
561	usevnodes = desiredvnodes;
562	if (usevnodes <= 0)
563		usevnodes = 1;
564	trigger = cnt.v_page_count * 2 / usevnodes;
565	done = 0;
566	td = curthread;
567	vn_start_write(NULL, &mp, V_WAIT);
568	MNT_ILOCK(mp);
569	count = mp->mnt_nvnodelistsize / 10 + 1;
570	while (count != 0) {
571		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
572		while (vp != NULL && vp->v_type == VMARKER)
573			vp = TAILQ_NEXT(vp, v_nmntvnodes);
574		if (vp == NULL)
575			break;
576		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
577		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
578		--count;
579		if (!VI_TRYLOCK(vp))
580			goto next_iter;
581		/*
582		 * If it's been deconstructed already, it's still
583		 * referenced, or it exceeds the trigger, skip it.
584		 */
585		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
586		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
587		    vp->v_object->resident_page_count > trigger)) {
588			VI_UNLOCK(vp);
589			goto next_iter;
590		}
591		MNT_IUNLOCK(mp);
592		vholdl(vp);
593		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT, td)) {
594			vdrop(vp);
595			goto next_iter_mntunlocked;
596		}
597		VI_LOCK(vp);
598		/*
599		 * v_usecount may have been bumped after VOP_LOCK() dropped
600		 * the vnode interlock and before it was locked again.
601		 *
602		 * It is not necessary to recheck VI_DOOMED because it can
603		 * only be set by another thread that holds both the vnode
604		 * lock and vnode interlock.  If another thread has the
605		 * vnode lock before we get to VOP_LOCK() and obtains the
606		 * vnode interlock after VOP_LOCK() drops the vnode
607		 * interlock, the other thread will be unable to drop the
608		 * vnode lock before our VOP_LOCK() call fails.
609		 */
610		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
611		    (vp->v_object != NULL &&
612		    vp->v_object->resident_page_count > trigger)) {
613			VOP_UNLOCK(vp, LK_INTERLOCK, td);
614			goto next_iter_mntunlocked;
615		}
616		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
617		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
618		vgonel(vp);
619		VOP_UNLOCK(vp, 0, td);
620		vdropl(vp);
621		done++;
622next_iter_mntunlocked:
623		if ((count % 256) != 0)
624			goto relock_mnt;
625		goto yield;
626next_iter:
627		if ((count % 256) != 0)
628			continue;
629		MNT_IUNLOCK(mp);
630yield:
631		uio_yield();
632relock_mnt:
633		MNT_ILOCK(mp);
634	}
635	MNT_IUNLOCK(mp);
636	vn_finished_write(mp);
637	return done;
638}
639
640/*
641 * Attempt to keep the free list at wantfreevnodes length.
642 */
643static void
644vnlru_free(int count)
645{
646	struct vnode *vp;
647	int vfslocked;
648
649	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
650	for (; count > 0; count--) {
651		vp = TAILQ_FIRST(&vnode_free_list);
652		/*
653		 * The list can be modified while the free_list_mtx
654		 * has been dropped and vp could be NULL here.
655		 */
656		if (!vp)
657			break;
658		VNASSERT(vp->v_op != NULL, vp,
659		    ("vnlru_free: vnode already reclaimed."));
660		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
661		/*
662		 * Don't recycle if we can't get the interlock.
663		 */
664		if (!VI_TRYLOCK(vp)) {
665			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
666			continue;
667		}
668		VNASSERT(VCANRECYCLE(vp), vp,
669		    ("vp inconsistent on freelist"));
670		freevnodes--;
671		vp->v_iflag &= ~VI_FREE;
672		vholdl(vp);
673		mtx_unlock(&vnode_free_list_mtx);
674		VI_UNLOCK(vp);
675		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
676		vtryrecycle(vp);
677		VFS_UNLOCK_GIANT(vfslocked);
678		/*
679		 * If the recycled succeeded this vdrop will actually free
680		 * the vnode.  If not it will simply place it back on
681		 * the free list.
682		 */
683		vdrop(vp);
684		mtx_lock(&vnode_free_list_mtx);
685	}
686}
687/*
688 * Attempt to recycle vnodes in a context that is always safe to block.
689 * Calling vlrurecycle() from the bowels of filesystem code has some
690 * interesting deadlock problems.
691 */
692static struct proc *vnlruproc;
693static int vnlruproc_sig;
694
695static void
696vnlru_proc(void)
697{
698	struct mount *mp, *nmp;
699	int done;
700	struct proc *p = vnlruproc;
701	struct thread *td = FIRST_THREAD_IN_PROC(p);
702
703	mtx_lock(&Giant);
704
705	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
706	    SHUTDOWN_PRI_FIRST);
707
708	for (;;) {
709		kthread_suspend_check(p);
710		mtx_lock(&vnode_free_list_mtx);
711		if (freevnodes > wantfreevnodes)
712			vnlru_free(freevnodes - wantfreevnodes);
713		if (numvnodes <= desiredvnodes * 9 / 10) {
714			vnlruproc_sig = 0;
715			wakeup(&vnlruproc_sig);
716			msleep(vnlruproc, &vnode_free_list_mtx,
717			    PVFS|PDROP, "vlruwt", hz);
718			continue;
719		}
720		mtx_unlock(&vnode_free_list_mtx);
721		done = 0;
722		mtx_lock(&mountlist_mtx);
723		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
724			int vfsunlocked;
725			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
726				nmp = TAILQ_NEXT(mp, mnt_list);
727				continue;
728			}
729			if (!VFS_NEEDSGIANT(mp)) {
730				mtx_unlock(&Giant);
731				vfsunlocked = 1;
732			} else
733				vfsunlocked = 0;
734			done += vlrureclaim(mp);
735			if (vfsunlocked)
736				mtx_lock(&Giant);
737			mtx_lock(&mountlist_mtx);
738			nmp = TAILQ_NEXT(mp, mnt_list);
739			vfs_unbusy(mp, td);
740		}
741		mtx_unlock(&mountlist_mtx);
742		if (done == 0) {
743#if 0
744			/* These messages are temporary debugging aids */
745			if (vnlru_nowhere < 5)
746				printf("vnlru process getting nowhere..\n");
747			else if (vnlru_nowhere == 5)
748				printf("vnlru process messages stopped.\n");
749#endif
750			vnlru_nowhere++;
751			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
752		} else
753			uio_yield();
754	}
755}
756
757static struct kproc_desc vnlru_kp = {
758	"vnlru",
759	vnlru_proc,
760	&vnlruproc
761};
762SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
763
764/*
765 * Routines having to do with the management of the vnode table.
766 */
767
768static void
769vdestroy(struct vnode *vp)
770{
771	struct bufobj *bo;
772
773	CTR1(KTR_VFS, "vdestroy vp %p", vp);
774	mtx_lock(&vnode_free_list_mtx);
775	numvnodes--;
776	mtx_unlock(&vnode_free_list_mtx);
777	bo = &vp->v_bufobj;
778	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
779	    ("cleaned vnode still on the free list."));
780	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
781	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
782	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
783	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
784	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
785	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
786	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
787	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
788	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
789	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
790	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
791	VI_UNLOCK(vp);
792#ifdef MAC
793	mac_destroy_vnode(vp);
794#endif
795	if (vp->v_pollinfo != NULL) {
796		knlist_destroy(&vp->v_pollinfo->vpi_selinfo.si_note);
797		mtx_destroy(&vp->v_pollinfo->vpi_lock);
798		uma_zfree(vnodepoll_zone, vp->v_pollinfo);
799	}
800#ifdef INVARIANTS
801	/* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
802	vp->v_op = NULL;
803#endif
804	lockdestroy(vp->v_vnlock);
805	mtx_destroy(&vp->v_interlock);
806	uma_zfree(vnode_zone, vp);
807}
808
809/*
810 * Try to recycle a freed vnode.  We abort if anyone picks up a reference
811 * before we actually vgone().  This function must be called with the vnode
812 * held to prevent the vnode from being returned to the free list midway
813 * through vgone().
814 */
815static int
816vtryrecycle(struct vnode *vp)
817{
818	struct thread *td = curthread;
819	struct mount *vnmp;
820
821	CTR1(KTR_VFS, "vtryrecycle: trying vp %p", vp);
822	VNASSERT(vp->v_holdcnt, vp,
823	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
824	/*
825	 * This vnode may found and locked via some other list, if so we
826	 * can't recycle it yet.
827	 */
828	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
829		return (EWOULDBLOCK);
830	/*
831	 * Don't recycle if its filesystem is being suspended.
832	 */
833	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
834		VOP_UNLOCK(vp, 0, td);
835		return (EBUSY);
836	}
837	/*
838	 * If we got this far, we need to acquire the interlock and see if
839	 * anyone picked up this vnode from another list.  If not, we will
840	 * mark it with DOOMED via vgonel() so that anyone who does find it
841	 * will skip over it.
842	 */
843	VI_LOCK(vp);
844	if (vp->v_usecount) {
845		VOP_UNLOCK(vp, LK_INTERLOCK, td);
846		vn_finished_write(vnmp);
847		return (EBUSY);
848	}
849	if ((vp->v_iflag & VI_DOOMED) == 0)
850		vgonel(vp);
851	VOP_UNLOCK(vp, LK_INTERLOCK, td);
852	vn_finished_write(vnmp);
853	CTR1(KTR_VFS, "vtryrecycle: recycled vp %p", vp);
854	return (0);
855}
856
857/*
858 * Return the next vnode from the free list.
859 */
860int
861getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
862    struct vnode **vpp)
863{
864	struct vnode *vp = NULL;
865	struct bufobj *bo;
866
867	mtx_lock(&vnode_free_list_mtx);
868	/*
869	 * Lend our context to reclaim vnodes if they've exceeded the max.
870	 */
871	if (freevnodes > wantfreevnodes)
872		vnlru_free(1);
873	/*
874	 * Wait for available vnodes.
875	 */
876	if (numvnodes > desiredvnodes) {
877		if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
878			/*
879			 * File system is beeing suspended, we cannot risk a
880			 * deadlock here, so allocate new vnode anyway.
881			 */
882			if (freevnodes > wantfreevnodes)
883				vnlru_free(freevnodes - wantfreevnodes);
884			goto alloc;
885		}
886		if (vnlruproc_sig == 0) {
887			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
888			wakeup(vnlruproc);
889		}
890		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
891		    "vlruwk", hz);
892#if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
893		if (numvnodes > desiredvnodes) {
894			mtx_unlock(&vnode_free_list_mtx);
895			return (ENFILE);
896		}
897#endif
898	}
899alloc:
900	numvnodes++;
901	mtx_unlock(&vnode_free_list_mtx);
902	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
903	/*
904	 * Setup locks.
905	 */
906	vp->v_vnlock = &vp->v_lock;
907	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
908	/*
909	 * By default, don't allow shared locks unless filesystems
910	 * opt-in.
911	 */
912	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
913	/*
914	 * Initialize bufobj.
915	 */
916	bo = &vp->v_bufobj;
917	bo->__bo_vnode = vp;
918	bo->bo_mtx = &vp->v_interlock;
919	bo->bo_ops = &buf_ops_bio;
920	bo->bo_private = vp;
921	TAILQ_INIT(&bo->bo_clean.bv_hd);
922	TAILQ_INIT(&bo->bo_dirty.bv_hd);
923	/*
924	 * Initialize namecache.
925	 */
926	LIST_INIT(&vp->v_cache_src);
927	TAILQ_INIT(&vp->v_cache_dst);
928	/*
929	 * Finalize various vnode identity bits.
930	 */
931	vp->v_type = VNON;
932	vp->v_tag = tag;
933	vp->v_op = vops;
934	v_incr_usecount(vp);
935	vp->v_data = 0;
936#ifdef MAC
937	mac_init_vnode(vp);
938	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
939		mac_associate_vnode_singlelabel(mp, vp);
940	else if (mp == NULL)
941		printf("NULL mp in getnewvnode()\n");
942#endif
943	if (mp != NULL) {
944		insmntque(vp, mp);
945		bo->bo_bsize = mp->mnt_stat.f_iosize;
946		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
947			vp->v_vflag |= VV_NOKNOTE;
948	}
949
950	CTR2(KTR_VFS, "getnewvnode: mp %p vp %p", mp, vp);
951	*vpp = vp;
952	return (0);
953}
954
955/*
956 * Delete from old mount point vnode list, if on one.
957 */
958static void
959delmntque(struct vnode *vp)
960{
961	struct mount *mp;
962
963	mp = vp->v_mount;
964	if (mp == NULL)
965		return;
966	MNT_ILOCK(mp);
967	vp->v_mount = NULL;
968	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
969		("bad mount point vnode list size"));
970	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
971	mp->mnt_nvnodelistsize--;
972	MNT_REL(mp);
973	MNT_IUNLOCK(mp);
974}
975
976/*
977 * Insert into list of vnodes for the new mount point, if available.
978 */
979static void
980insmntque(struct vnode *vp, struct mount *mp)
981{
982
983	vp->v_mount = mp;
984	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
985	MNT_ILOCK(mp);
986	MNT_REF(mp);
987	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
988	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
989		("neg mount point vnode list size"));
990	mp->mnt_nvnodelistsize++;
991	MNT_IUNLOCK(mp);
992}
993
994/*
995 * Flush out and invalidate all buffers associated with a bufobj
996 * Called with the underlying object locked.
997 */
998int
999bufobj_invalbuf(struct bufobj *bo, int flags, struct thread *td, int slpflag,
1000    int slptimeo)
1001{
1002	int error;
1003
1004	BO_LOCK(bo);
1005	if (flags & V_SAVE) {
1006		error = bufobj_wwait(bo, slpflag, slptimeo);
1007		if (error) {
1008			BO_UNLOCK(bo);
1009			return (error);
1010		}
1011		if (bo->bo_dirty.bv_cnt > 0) {
1012			BO_UNLOCK(bo);
1013			if ((error = BO_SYNC(bo, MNT_WAIT, td)) != 0)
1014				return (error);
1015			/*
1016			 * XXX We could save a lock/unlock if this was only
1017			 * enabled under INVARIANTS
1018			 */
1019			BO_LOCK(bo);
1020			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1021				panic("vinvalbuf: dirty bufs");
1022		}
1023	}
1024	/*
1025	 * If you alter this loop please notice that interlock is dropped and
1026	 * reacquired in flushbuflist.  Special care is needed to ensure that
1027	 * no race conditions occur from this.
1028	 */
1029	do {
1030		error = flushbuflist(&bo->bo_clean,
1031		    flags, bo, slpflag, slptimeo);
1032		if (error == 0)
1033			error = flushbuflist(&bo->bo_dirty,
1034			    flags, bo, slpflag, slptimeo);
1035		if (error != 0 && error != EAGAIN) {
1036			BO_UNLOCK(bo);
1037			return (error);
1038		}
1039	} while (error != 0);
1040
1041	/*
1042	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1043	 * have write I/O in-progress but if there is a VM object then the
1044	 * VM object can also have read-I/O in-progress.
1045	 */
1046	do {
1047		bufobj_wwait(bo, 0, 0);
1048		BO_UNLOCK(bo);
1049		if (bo->bo_object != NULL) {
1050			VM_OBJECT_LOCK(bo->bo_object);
1051			vm_object_pip_wait(bo->bo_object, "bovlbx");
1052			VM_OBJECT_UNLOCK(bo->bo_object);
1053		}
1054		BO_LOCK(bo);
1055	} while (bo->bo_numoutput > 0);
1056	BO_UNLOCK(bo);
1057
1058	/*
1059	 * Destroy the copy in the VM cache, too.
1060	 */
1061	if (bo->bo_object != NULL) {
1062		VM_OBJECT_LOCK(bo->bo_object);
1063		vm_object_page_remove(bo->bo_object, 0, 0,
1064			(flags & V_SAVE) ? TRUE : FALSE);
1065		VM_OBJECT_UNLOCK(bo->bo_object);
1066	}
1067
1068#ifdef INVARIANTS
1069	BO_LOCK(bo);
1070	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1071	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1072		panic("vinvalbuf: flush failed");
1073	BO_UNLOCK(bo);
1074#endif
1075	return (0);
1076}
1077
1078/*
1079 * Flush out and invalidate all buffers associated with a vnode.
1080 * Called with the underlying object locked.
1081 */
1082int
1083vinvalbuf(struct vnode *vp, int flags, struct thread *td, int slpflag,
1084    int slptimeo)
1085{
1086
1087	CTR2(KTR_VFS, "vinvalbuf vp %p flags %d", vp, flags);
1088	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1089	return (bufobj_invalbuf(&vp->v_bufobj, flags, td, slpflag, slptimeo));
1090}
1091
1092/*
1093 * Flush out buffers on the specified list.
1094 *
1095 */
1096static int
1097flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1098    int slptimeo)
1099{
1100	struct buf *bp, *nbp;
1101	int retval, error;
1102	daddr_t lblkno;
1103	b_xflags_t xflags;
1104
1105	ASSERT_BO_LOCKED(bo);
1106
1107	retval = 0;
1108	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1109		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1110		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1111			continue;
1112		}
1113		lblkno = 0;
1114		xflags = 0;
1115		if (nbp != NULL) {
1116			lblkno = nbp->b_lblkno;
1117			xflags = nbp->b_xflags &
1118				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1119		}
1120		retval = EAGAIN;
1121		error = BUF_TIMELOCK(bp,
1122		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1123		    "flushbuf", slpflag, slptimeo);
1124		if (error) {
1125			BO_LOCK(bo);
1126			return (error != ENOLCK ? error : EAGAIN);
1127		}
1128		KASSERT(bp->b_bufobj == bo,
1129	            ("bp %p wrong b_bufobj %p should be %p",
1130		    bp, bp->b_bufobj, bo));
1131		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1132			BUF_UNLOCK(bp);
1133			BO_LOCK(bo);
1134			return (EAGAIN);
1135		}
1136		/*
1137		 * XXX Since there are no node locks for NFS, I
1138		 * believe there is a slight chance that a delayed
1139		 * write will occur while sleeping just above, so
1140		 * check for it.
1141		 */
1142		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1143		    (flags & V_SAVE)) {
1144			bremfree(bp);
1145			bp->b_flags |= B_ASYNC;
1146			bwrite(bp);
1147			BO_LOCK(bo);
1148			return (EAGAIN);	/* XXX: why not loop ? */
1149		}
1150		bremfree(bp);
1151		bp->b_flags |= (B_INVAL | B_RELBUF);
1152		bp->b_flags &= ~B_ASYNC;
1153		brelse(bp);
1154		BO_LOCK(bo);
1155		if (nbp != NULL &&
1156		    (nbp->b_bufobj != bo ||
1157		     nbp->b_lblkno != lblkno ||
1158		     (nbp->b_xflags &
1159		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1160			break;			/* nbp invalid */
1161	}
1162	return (retval);
1163}
1164
1165/*
1166 * Truncate a file's buffer and pages to a specified length.  This
1167 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1168 * sync activity.
1169 */
1170int
1171vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td,
1172    off_t length, int blksize)
1173{
1174	struct buf *bp, *nbp;
1175	int anyfreed;
1176	int trunclbn;
1177	struct bufobj *bo;
1178
1179	CTR2(KTR_VFS, "vtruncbuf vp %p length %jd", vp, length);
1180	/*
1181	 * Round up to the *next* lbn.
1182	 */
1183	trunclbn = (length + blksize - 1) / blksize;
1184
1185	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1186restart:
1187	VI_LOCK(vp);
1188	bo = &vp->v_bufobj;
1189	anyfreed = 1;
1190	for (;anyfreed;) {
1191		anyfreed = 0;
1192		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1193			if (bp->b_lblkno < trunclbn)
1194				continue;
1195			if (BUF_LOCK(bp,
1196			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1197			    VI_MTX(vp)) == ENOLCK)
1198				goto restart;
1199
1200			bremfree(bp);
1201			bp->b_flags |= (B_INVAL | B_RELBUF);
1202			bp->b_flags &= ~B_ASYNC;
1203			brelse(bp);
1204			anyfreed = 1;
1205
1206			if (nbp != NULL &&
1207			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1208			    (nbp->b_vp != vp) ||
1209			    (nbp->b_flags & B_DELWRI))) {
1210				goto restart;
1211			}
1212			VI_LOCK(vp);
1213		}
1214
1215		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1216			if (bp->b_lblkno < trunclbn)
1217				continue;
1218			if (BUF_LOCK(bp,
1219			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1220			    VI_MTX(vp)) == ENOLCK)
1221				goto restart;
1222			bremfree(bp);
1223			bp->b_flags |= (B_INVAL | B_RELBUF);
1224			bp->b_flags &= ~B_ASYNC;
1225			brelse(bp);
1226			anyfreed = 1;
1227			if (nbp != NULL &&
1228			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1229			    (nbp->b_vp != vp) ||
1230			    (nbp->b_flags & B_DELWRI) == 0)) {
1231				goto restart;
1232			}
1233			VI_LOCK(vp);
1234		}
1235	}
1236
1237	if (length > 0) {
1238restartsync:
1239		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1240			if (bp->b_lblkno > 0)
1241				continue;
1242			/*
1243			 * Since we hold the vnode lock this should only
1244			 * fail if we're racing with the buf daemon.
1245			 */
1246			if (BUF_LOCK(bp,
1247			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1248			    VI_MTX(vp)) == ENOLCK) {
1249				goto restart;
1250			}
1251			VNASSERT((bp->b_flags & B_DELWRI), vp,
1252			    ("buf(%p) on dirty queue without DELWRI", bp));
1253
1254			bremfree(bp);
1255			bawrite(bp);
1256			VI_LOCK(vp);
1257			goto restartsync;
1258		}
1259	}
1260
1261	bufobj_wwait(bo, 0, 0);
1262	VI_UNLOCK(vp);
1263	vnode_pager_setsize(vp, length);
1264
1265	return (0);
1266}
1267
1268/*
1269 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1270 * 		 a vnode.
1271 *
1272 *	NOTE: We have to deal with the special case of a background bitmap
1273 *	buffer, a situation where two buffers will have the same logical
1274 *	block offset.  We want (1) only the foreground buffer to be accessed
1275 *	in a lookup and (2) must differentiate between the foreground and
1276 *	background buffer in the splay tree algorithm because the splay
1277 *	tree cannot normally handle multiple entities with the same 'index'.
1278 *	We accomplish this by adding differentiating flags to the splay tree's
1279 *	numerical domain.
1280 */
1281static
1282struct buf *
1283buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1284{
1285	struct buf dummy;
1286	struct buf *lefttreemax, *righttreemin, *y;
1287
1288	if (root == NULL)
1289		return (NULL);
1290	lefttreemax = righttreemin = &dummy;
1291	for (;;) {
1292		if (lblkno < root->b_lblkno ||
1293		    (lblkno == root->b_lblkno &&
1294		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1295			if ((y = root->b_left) == NULL)
1296				break;
1297			if (lblkno < y->b_lblkno) {
1298				/* Rotate right. */
1299				root->b_left = y->b_right;
1300				y->b_right = root;
1301				root = y;
1302				if ((y = root->b_left) == NULL)
1303					break;
1304			}
1305			/* Link into the new root's right tree. */
1306			righttreemin->b_left = root;
1307			righttreemin = root;
1308		} else if (lblkno > root->b_lblkno ||
1309		    (lblkno == root->b_lblkno &&
1310		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1311			if ((y = root->b_right) == NULL)
1312				break;
1313			if (lblkno > y->b_lblkno) {
1314				/* Rotate left. */
1315				root->b_right = y->b_left;
1316				y->b_left = root;
1317				root = y;
1318				if ((y = root->b_right) == NULL)
1319					break;
1320			}
1321			/* Link into the new root's left tree. */
1322			lefttreemax->b_right = root;
1323			lefttreemax = root;
1324		} else {
1325			break;
1326		}
1327		root = y;
1328	}
1329	/* Assemble the new root. */
1330	lefttreemax->b_right = root->b_left;
1331	righttreemin->b_left = root->b_right;
1332	root->b_left = dummy.b_right;
1333	root->b_right = dummy.b_left;
1334	return (root);
1335}
1336
1337static void
1338buf_vlist_remove(struct buf *bp)
1339{
1340	struct buf *root;
1341	struct bufv *bv;
1342
1343	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1344	ASSERT_BO_LOCKED(bp->b_bufobj);
1345	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1346	    (BX_VNDIRTY|BX_VNCLEAN),
1347	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1348	if (bp->b_xflags & BX_VNDIRTY)
1349		bv = &bp->b_bufobj->bo_dirty;
1350	else
1351		bv = &bp->b_bufobj->bo_clean;
1352	if (bp != bv->bv_root) {
1353		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1354		KASSERT(root == bp, ("splay lookup failed in remove"));
1355	}
1356	if (bp->b_left == NULL) {
1357		root = bp->b_right;
1358	} else {
1359		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1360		root->b_right = bp->b_right;
1361	}
1362	bv->bv_root = root;
1363	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1364	bv->bv_cnt--;
1365	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1366}
1367
1368/*
1369 * Add the buffer to the sorted clean or dirty block list using a
1370 * splay tree algorithm.
1371 *
1372 * NOTE: xflags is passed as a constant, optimizing this inline function!
1373 */
1374static void
1375buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1376{
1377	struct buf *root;
1378	struct bufv *bv;
1379
1380	ASSERT_BO_LOCKED(bo);
1381	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1382	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1383	bp->b_xflags |= xflags;
1384	if (xflags & BX_VNDIRTY)
1385		bv = &bo->bo_dirty;
1386	else
1387		bv = &bo->bo_clean;
1388
1389	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1390	if (root == NULL) {
1391		bp->b_left = NULL;
1392		bp->b_right = NULL;
1393		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1394	} else if (bp->b_lblkno < root->b_lblkno ||
1395	    (bp->b_lblkno == root->b_lblkno &&
1396	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1397		bp->b_left = root->b_left;
1398		bp->b_right = root;
1399		root->b_left = NULL;
1400		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1401	} else {
1402		bp->b_right = root->b_right;
1403		bp->b_left = root;
1404		root->b_right = NULL;
1405		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1406	}
1407	bv->bv_cnt++;
1408	bv->bv_root = bp;
1409}
1410
1411/*
1412 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1413 * shadow buffers used in background bitmap writes.
1414 *
1415 * This code isn't quite efficient as it could be because we are maintaining
1416 * two sorted lists and do not know which list the block resides in.
1417 *
1418 * During a "make buildworld" the desired buffer is found at one of
1419 * the roots more than 60% of the time.  Thus, checking both roots
1420 * before performing either splay eliminates unnecessary splays on the
1421 * first tree splayed.
1422 */
1423struct buf *
1424gbincore(struct bufobj *bo, daddr_t lblkno)
1425{
1426	struct buf *bp;
1427
1428	ASSERT_BO_LOCKED(bo);
1429	if ((bp = bo->bo_clean.bv_root) != NULL &&
1430	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1431		return (bp);
1432	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1433	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1434		return (bp);
1435	if ((bp = bo->bo_clean.bv_root) != NULL) {
1436		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1437		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1438			return (bp);
1439	}
1440	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1441		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1442		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1443			return (bp);
1444	}
1445	return (NULL);
1446}
1447
1448/*
1449 * Associate a buffer with a vnode.
1450 */
1451void
1452bgetvp(struct vnode *vp, struct buf *bp)
1453{
1454
1455	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1456
1457	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1458	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1459	    ("bgetvp: bp already attached! %p", bp));
1460
1461	ASSERT_VI_LOCKED(vp, "bgetvp");
1462	vholdl(vp);
1463	if (VFS_NEEDSGIANT(vp->v_mount) ||
1464	    vp->v_bufobj.bo_flag & BO_NEEDSGIANT)
1465		bp->b_flags |= B_NEEDSGIANT;
1466	bp->b_vp = vp;
1467	bp->b_bufobj = &vp->v_bufobj;
1468	/*
1469	 * Insert onto list for new vnode.
1470	 */
1471	buf_vlist_add(bp, &vp->v_bufobj, BX_VNCLEAN);
1472}
1473
1474/*
1475 * Disassociate a buffer from a vnode.
1476 */
1477void
1478brelvp(struct buf *bp)
1479{
1480	struct bufobj *bo;
1481	struct vnode *vp;
1482
1483	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1484	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1485
1486	/*
1487	 * Delete from old vnode list, if on one.
1488	 */
1489	vp = bp->b_vp;		/* XXX */
1490	bo = bp->b_bufobj;
1491	BO_LOCK(bo);
1492	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1493		buf_vlist_remove(bp);
1494	else
1495		panic("brelvp: Buffer %p not on queue.", bp);
1496	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1497		bo->bo_flag &= ~BO_ONWORKLST;
1498		mtx_lock(&sync_mtx);
1499		LIST_REMOVE(bo, bo_synclist);
1500 		syncer_worklist_len--;
1501		mtx_unlock(&sync_mtx);
1502	}
1503	bp->b_flags &= ~B_NEEDSGIANT;
1504	bp->b_vp = NULL;
1505	bp->b_bufobj = NULL;
1506	vdropl(vp);
1507}
1508
1509/*
1510 * Add an item to the syncer work queue.
1511 */
1512static void
1513vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1514{
1515	int slot;
1516
1517	ASSERT_BO_LOCKED(bo);
1518
1519	mtx_lock(&sync_mtx);
1520	if (bo->bo_flag & BO_ONWORKLST)
1521		LIST_REMOVE(bo, bo_synclist);
1522	else {
1523		bo->bo_flag |= BO_ONWORKLST;
1524 		syncer_worklist_len++;
1525	}
1526
1527	if (delay > syncer_maxdelay - 2)
1528		delay = syncer_maxdelay - 2;
1529	slot = (syncer_delayno + delay) & syncer_mask;
1530
1531	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1532	mtx_unlock(&sync_mtx);
1533}
1534
1535static int
1536sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1537{
1538	int error, len;
1539
1540	mtx_lock(&sync_mtx);
1541	len = syncer_worklist_len - sync_vnode_count;
1542	mtx_unlock(&sync_mtx);
1543	error = SYSCTL_OUT(req, &len, sizeof(len));
1544	return (error);
1545}
1546
1547SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1548    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1549
1550static struct proc *updateproc;
1551static void sched_sync(void);
1552static struct kproc_desc up_kp = {
1553	"syncer",
1554	sched_sync,
1555	&updateproc
1556};
1557SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1558
1559static int
1560sync_vnode(struct bufobj *bo, struct thread *td)
1561{
1562	struct vnode *vp;
1563	struct mount *mp;
1564
1565	vp = bo->__bo_vnode; 	/* XXX */
1566	if (VOP_ISLOCKED(vp, NULL) != 0)
1567		return (1);
1568	if (VI_TRYLOCK(vp) == 0)
1569		return (1);
1570	/*
1571	 * We use vhold in case the vnode does not
1572	 * successfully sync.  vhold prevents the vnode from
1573	 * going away when we unlock the sync_mtx so that
1574	 * we can acquire the vnode interlock.
1575	 */
1576	vholdl(vp);
1577	mtx_unlock(&sync_mtx);
1578	VI_UNLOCK(vp);
1579	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1580		vdrop(vp);
1581		mtx_lock(&sync_mtx);
1582		return (1);
1583	}
1584	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1585	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1586	VOP_UNLOCK(vp, 0, td);
1587	vn_finished_write(mp);
1588	VI_LOCK(vp);
1589	if ((bo->bo_flag & BO_ONWORKLST) != 0) {
1590		/*
1591		 * Put us back on the worklist.  The worklist
1592		 * routine will remove us from our current
1593		 * position and then add us back in at a later
1594		 * position.
1595		 */
1596		vn_syncer_add_to_worklist(bo, syncdelay);
1597	}
1598	vdropl(vp);
1599	mtx_lock(&sync_mtx);
1600	return (0);
1601}
1602
1603/*
1604 * System filesystem synchronizer daemon.
1605 */
1606static void
1607sched_sync(void)
1608{
1609	struct synclist *next;
1610	struct synclist *slp;
1611	struct bufobj *bo;
1612	long starttime;
1613	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);
1614	static int dummychan;
1615	int last_work_seen;
1616	int net_worklist_len;
1617	int syncer_final_iter;
1618	int first_printf;
1619	int error;
1620
1621	mtx_lock(&Giant);
1622	last_work_seen = 0;
1623	syncer_final_iter = 0;
1624	first_printf = 1;
1625	syncer_state = SYNCER_RUNNING;
1626	starttime = time_uptime;
1627	td->td_pflags |= TDP_NORUNNINGBUF;
1628
1629	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1630	    SHUTDOWN_PRI_LAST);
1631
1632	for (;;) {
1633		mtx_lock(&sync_mtx);
1634		if (syncer_state == SYNCER_FINAL_DELAY &&
1635		    syncer_final_iter == 0) {
1636			mtx_unlock(&sync_mtx);
1637			kthread_suspend_check(td->td_proc);
1638			mtx_lock(&sync_mtx);
1639		}
1640		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1641		if (syncer_state != SYNCER_RUNNING &&
1642		    starttime != time_uptime) {
1643			if (first_printf) {
1644				printf("\nSyncing disks, vnodes remaining...");
1645				first_printf = 0;
1646			}
1647			printf("%d ", net_worklist_len);
1648		}
1649		starttime = time_uptime;
1650
1651		/*
1652		 * Push files whose dirty time has expired.  Be careful
1653		 * of interrupt race on slp queue.
1654		 *
1655		 * Skip over empty worklist slots when shutting down.
1656		 */
1657		do {
1658			slp = &syncer_workitem_pending[syncer_delayno];
1659			syncer_delayno += 1;
1660			if (syncer_delayno == syncer_maxdelay)
1661				syncer_delayno = 0;
1662			next = &syncer_workitem_pending[syncer_delayno];
1663			/*
1664			 * If the worklist has wrapped since the
1665			 * it was emptied of all but syncer vnodes,
1666			 * switch to the FINAL_DELAY state and run
1667			 * for one more second.
1668			 */
1669			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1670			    net_worklist_len == 0 &&
1671			    last_work_seen == syncer_delayno) {
1672				syncer_state = SYNCER_FINAL_DELAY;
1673				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1674			}
1675		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1676		    syncer_worklist_len > 0);
1677
1678		/*
1679		 * Keep track of the last time there was anything
1680		 * on the worklist other than syncer vnodes.
1681		 * Return to the SHUTTING_DOWN state if any
1682		 * new work appears.
1683		 */
1684		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1685			last_work_seen = syncer_delayno;
1686		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1687			syncer_state = SYNCER_SHUTTING_DOWN;
1688		while ((bo = LIST_FIRST(slp)) != NULL) {
1689			error = sync_vnode(bo, td);
1690			if (error == 1) {
1691				LIST_REMOVE(bo, bo_synclist);
1692				LIST_INSERT_HEAD(next, bo, bo_synclist);
1693				continue;
1694			}
1695		}
1696		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1697			syncer_final_iter--;
1698		mtx_unlock(&sync_mtx);
1699		/*
1700		 * The variable rushjob allows the kernel to speed up the
1701		 * processing of the filesystem syncer process. A rushjob
1702		 * value of N tells the filesystem syncer to process the next
1703		 * N seconds worth of work on its queue ASAP. Currently rushjob
1704		 * is used by the soft update code to speed up the filesystem
1705		 * syncer process when the incore state is getting so far
1706		 * ahead of the disk that the kernel memory pool is being
1707		 * threatened with exhaustion.
1708		 */
1709		mtx_lock(&sync_mtx);
1710		if (rushjob > 0) {
1711			rushjob -= 1;
1712			mtx_unlock(&sync_mtx);
1713			continue;
1714		}
1715		mtx_unlock(&sync_mtx);
1716		/*
1717		 * Just sleep for a short period if time between
1718		 * iterations when shutting down to allow some I/O
1719		 * to happen.
1720		 *
1721		 * If it has taken us less than a second to process the
1722		 * current work, then wait. Otherwise start right over
1723		 * again. We can still lose time if any single round
1724		 * takes more than two seconds, but it does not really
1725		 * matter as we are just trying to generally pace the
1726		 * filesystem activity.
1727		 */
1728		if (syncer_state != SYNCER_RUNNING)
1729			tsleep(&dummychan, PPAUSE, "syncfnl",
1730			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1731		else if (time_uptime == starttime)
1732			tsleep(&lbolt, PPAUSE, "syncer", 0);
1733	}
1734}
1735
1736/*
1737 * Request the syncer daemon to speed up its work.
1738 * We never push it to speed up more than half of its
1739 * normal turn time, otherwise it could take over the cpu.
1740 */
1741int
1742speedup_syncer()
1743{
1744	struct thread *td;
1745	int ret = 0;
1746
1747	td = FIRST_THREAD_IN_PROC(updateproc);
1748	sleepq_remove(td, &lbolt);
1749	mtx_lock(&sync_mtx);
1750	if (rushjob < syncdelay / 2) {
1751		rushjob += 1;
1752		stat_rush_requests += 1;
1753		ret = 1;
1754	}
1755	mtx_unlock(&sync_mtx);
1756	return (ret);
1757}
1758
1759/*
1760 * Tell the syncer to speed up its work and run though its work
1761 * list several times, then tell it to shut down.
1762 */
1763static void
1764syncer_shutdown(void *arg, int howto)
1765{
1766	struct thread *td;
1767
1768	if (howto & RB_NOSYNC)
1769		return;
1770	td = FIRST_THREAD_IN_PROC(updateproc);
1771	sleepq_remove(td, &lbolt);
1772	mtx_lock(&sync_mtx);
1773	syncer_state = SYNCER_SHUTTING_DOWN;
1774	rushjob = 0;
1775	mtx_unlock(&sync_mtx);
1776	kproc_shutdown(arg, howto);
1777}
1778
1779/*
1780 * Reassign a buffer from one vnode to another.
1781 * Used to assign file specific control information
1782 * (indirect blocks) to the vnode to which they belong.
1783 */
1784void
1785reassignbuf(struct buf *bp)
1786{
1787	struct vnode *vp;
1788	struct bufobj *bo;
1789	int delay;
1790#ifdef INVARIANTS
1791	struct bufv *bv;
1792#endif
1793
1794	vp = bp->b_vp;
1795	bo = bp->b_bufobj;
1796	++reassignbufcalls;
1797
1798	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1799	    bp, bp->b_vp, bp->b_flags);
1800	/*
1801	 * B_PAGING flagged buffers cannot be reassigned because their vp
1802	 * is not fully linked in.
1803	 */
1804	if (bp->b_flags & B_PAGING)
1805		panic("cannot reassign paging buffer");
1806
1807	/*
1808	 * Delete from old vnode list, if on one.
1809	 */
1810	VI_LOCK(vp);
1811	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1812		buf_vlist_remove(bp);
1813	else
1814		panic("reassignbuf: Buffer %p not on queue.", bp);
1815	/*
1816	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1817	 * of clean buffers.
1818	 */
1819	if (bp->b_flags & B_DELWRI) {
1820		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1821			switch (vp->v_type) {
1822			case VDIR:
1823				delay = dirdelay;
1824				break;
1825			case VCHR:
1826				delay = metadelay;
1827				break;
1828			default:
1829				delay = filedelay;
1830			}
1831			vn_syncer_add_to_worklist(bo, delay);
1832		}
1833		buf_vlist_add(bp, bo, BX_VNDIRTY);
1834	} else {
1835		buf_vlist_add(bp, bo, BX_VNCLEAN);
1836
1837		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1838			mtx_lock(&sync_mtx);
1839			LIST_REMOVE(bo, bo_synclist);
1840 			syncer_worklist_len--;
1841			mtx_unlock(&sync_mtx);
1842			bo->bo_flag &= ~BO_ONWORKLST;
1843		}
1844	}
1845#ifdef INVARIANTS
1846	bv = &bo->bo_clean;
1847	bp = TAILQ_FIRST(&bv->bv_hd);
1848	KASSERT(bp == NULL || bp->b_bufobj == bo,
1849	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1850	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1851	KASSERT(bp == NULL || bp->b_bufobj == bo,
1852	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1853	bv = &bo->bo_dirty;
1854	bp = TAILQ_FIRST(&bv->bv_hd);
1855	KASSERT(bp == NULL || bp->b_bufobj == bo,
1856	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1857	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1858	KASSERT(bp == NULL || bp->b_bufobj == bo,
1859	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1860#endif
1861	VI_UNLOCK(vp);
1862}
1863
1864/*
1865 * Increment the use and hold counts on the vnode, taking care to reference
1866 * the driver's usecount if this is a chardev.  The vholdl() will remove
1867 * the vnode from the free list if it is presently free.  Requires the
1868 * vnode interlock and returns with it held.
1869 */
1870static void
1871v_incr_usecount(struct vnode *vp)
1872{
1873
1874	CTR3(KTR_VFS, "v_incr_usecount: vp %p holdcnt %d usecount %d\n",
1875	    vp, vp->v_holdcnt, vp->v_usecount);
1876	vp->v_usecount++;
1877	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1878		dev_lock();
1879		vp->v_rdev->si_usecount++;
1880		dev_unlock();
1881	}
1882	vholdl(vp);
1883}
1884
1885/*
1886 * Turn a holdcnt into a use+holdcnt such that only one call to
1887 * v_decr_usecount is needed.
1888 */
1889static void
1890v_upgrade_usecount(struct vnode *vp)
1891{
1892
1893	CTR3(KTR_VFS, "v_upgrade_usecount: vp %p holdcnt %d usecount %d\n",
1894	    vp, vp->v_holdcnt, vp->v_usecount);
1895	vp->v_usecount++;
1896	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1897		dev_lock();
1898		vp->v_rdev->si_usecount++;
1899		dev_unlock();
1900	}
1901}
1902
1903/*
1904 * Decrement the vnode use and hold count along with the driver's usecount
1905 * if this is a chardev.  The vdropl() below releases the vnode interlock
1906 * as it may free the vnode.
1907 */
1908static void
1909v_decr_usecount(struct vnode *vp)
1910{
1911
1912	CTR3(KTR_VFS, "v_decr_usecount: vp %p holdcnt %d usecount %d\n",
1913	    vp, vp->v_holdcnt, vp->v_usecount);
1914	ASSERT_VI_LOCKED(vp, __FUNCTION__);
1915	VNASSERT(vp->v_usecount > 0, vp,
1916	    ("v_decr_usecount: negative usecount"));
1917	vp->v_usecount--;
1918	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1919		dev_lock();
1920		vp->v_rdev->si_usecount--;
1921		dev_unlock();
1922	}
1923	vdropl(vp);
1924}
1925
1926/*
1927 * Decrement only the use count and driver use count.  This is intended to
1928 * be paired with a follow on vdropl() to release the remaining hold count.
1929 * In this way we may vgone() a vnode with a 0 usecount without risk of
1930 * having it end up on a free list because the hold count is kept above 0.
1931 */
1932static void
1933v_decr_useonly(struct vnode *vp)
1934{
1935
1936	CTR3(KTR_VFS, "v_decr_useonly: vp %p holdcnt %d usecount %d\n",
1937	    vp, vp->v_holdcnt, vp->v_usecount);
1938	ASSERT_VI_LOCKED(vp, __FUNCTION__);
1939	VNASSERT(vp->v_usecount > 0, vp,
1940	    ("v_decr_useonly: negative usecount"));
1941	vp->v_usecount--;
1942	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1943		dev_lock();
1944		vp->v_rdev->si_usecount--;
1945		dev_unlock();
1946	}
1947}
1948
1949/*
1950 * Grab a particular vnode from the free list, increment its
1951 * reference count and lock it. The vnode lock bit is set if the
1952 * vnode is being eliminated in vgone. The process is awakened
1953 * when the transition is completed, and an error returned to
1954 * indicate that the vnode is no longer usable (possibly having
1955 * been changed to a new filesystem type).
1956 */
1957int
1958vget(struct vnode *vp, int flags, struct thread *td)
1959{
1960	int oweinact;
1961	int oldflags;
1962	int error;
1963
1964	error = 0;
1965	oldflags = flags;
1966	oweinact = 0;
1967	VFS_ASSERT_GIANT(vp->v_mount);
1968	if ((flags & LK_INTERLOCK) == 0)
1969		VI_LOCK(vp);
1970	/*
1971	 * If the inactive call was deferred because vput() was called
1972	 * with a shared lock, we have to do it here before another thread
1973	 * gets a reference to data that should be dead.
1974	 */
1975	if (vp->v_iflag & VI_OWEINACT) {
1976		if (flags & LK_NOWAIT) {
1977			VI_UNLOCK(vp);
1978			return (EBUSY);
1979		}
1980		flags &= ~LK_TYPE_MASK;
1981		flags |= LK_EXCLUSIVE;
1982		oweinact = 1;
1983	}
1984	vholdl(vp);
1985	if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1986		vdrop(vp);
1987		return (error);
1988	}
1989	VI_LOCK(vp);
1990	/* Upgrade our holdcnt to a usecount. */
1991	v_upgrade_usecount(vp);
1992	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
1993		panic("vget: vn_lock failed to return ENOENT\n");
1994	if (oweinact) {
1995		if (vp->v_iflag & VI_OWEINACT)
1996			vinactive(vp, td);
1997		VI_UNLOCK(vp);
1998		if ((oldflags & LK_TYPE_MASK) == 0)
1999			VOP_UNLOCK(vp, 0, td);
2000	} else
2001		VI_UNLOCK(vp);
2002	return (0);
2003}
2004
2005/*
2006 * Increase the reference count of a vnode.
2007 */
2008void
2009vref(struct vnode *vp)
2010{
2011
2012	VI_LOCK(vp);
2013	v_incr_usecount(vp);
2014	VI_UNLOCK(vp);
2015}
2016
2017/*
2018 * Return reference count of a vnode.
2019 *
2020 * The results of this call are only guaranteed when some mechanism other
2021 * than the VI lock is used to stop other processes from gaining references
2022 * to the vnode.  This may be the case if the caller holds the only reference.
2023 * This is also useful when stale data is acceptable as race conditions may
2024 * be accounted for by some other means.
2025 */
2026int
2027vrefcnt(struct vnode *vp)
2028{
2029	int usecnt;
2030
2031	VI_LOCK(vp);
2032	usecnt = vp->v_usecount;
2033	VI_UNLOCK(vp);
2034
2035	return (usecnt);
2036}
2037
2038
2039/*
2040 * Vnode put/release.
2041 * If count drops to zero, call inactive routine and return to freelist.
2042 */
2043void
2044vrele(struct vnode *vp)
2045{
2046	struct thread *td = curthread;	/* XXX */
2047
2048	KASSERT(vp != NULL, ("vrele: null vp"));
2049	VFS_ASSERT_GIANT(vp->v_mount);
2050
2051	VI_LOCK(vp);
2052
2053	/* Skip this v_writecount check if we're going to panic below. */
2054	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2055	    ("vrele: missed vn_close"));
2056
2057	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2058	    vp->v_usecount == 1)) {
2059		v_decr_usecount(vp);
2060		return;
2061	}
2062	if (vp->v_usecount != 1) {
2063#ifdef DIAGNOSTIC
2064		vprint("vrele: negative ref count", vp);
2065#endif
2066		VI_UNLOCK(vp);
2067		panic("vrele: negative ref cnt");
2068	}
2069	/*
2070	 * We want to hold the vnode until the inactive finishes to
2071	 * prevent vgone() races.  We drop the use count here and the
2072	 * hold count below when we're done.
2073	 */
2074	v_decr_useonly(vp);
2075	/*
2076	 * We must call VOP_INACTIVE with the node locked. Mark
2077	 * as VI_DOINGINACT to avoid recursion.
2078	 */
2079	vp->v_iflag |= VI_OWEINACT;
2080	if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
2081		VI_LOCK(vp);
2082		if (vp->v_usecount > 0)
2083			vp->v_iflag &= ~VI_OWEINACT;
2084		if (vp->v_iflag & VI_OWEINACT)
2085			vinactive(vp, td);
2086		VOP_UNLOCK(vp, 0, td);
2087	} else {
2088		VI_LOCK(vp);
2089		if (vp->v_usecount > 0)
2090			vp->v_iflag &= ~VI_OWEINACT;
2091	}
2092	vdropl(vp);
2093}
2094
2095/*
2096 * Release an already locked vnode.  This give the same effects as
2097 * unlock+vrele(), but takes less time and avoids releasing and
2098 * re-aquiring the lock (as vrele() aquires the lock internally.)
2099 */
2100void
2101vput(struct vnode *vp)
2102{
2103	struct thread *td = curthread;	/* XXX */
2104	int error;
2105
2106	KASSERT(vp != NULL, ("vput: null vp"));
2107	ASSERT_VOP_LOCKED(vp, "vput");
2108	VFS_ASSERT_GIANT(vp->v_mount);
2109	VI_LOCK(vp);
2110	/* Skip this v_writecount check if we're going to panic below. */
2111	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2112	    ("vput: missed vn_close"));
2113	error = 0;
2114
2115	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2116	    vp->v_usecount == 1)) {
2117		VOP_UNLOCK(vp, 0, td);
2118		v_decr_usecount(vp);
2119		return;
2120	}
2121
2122	if (vp->v_usecount != 1) {
2123#ifdef DIAGNOSTIC
2124		vprint("vput: negative ref count", vp);
2125#endif
2126		panic("vput: negative ref cnt");
2127	}
2128	/*
2129	 * We want to hold the vnode until the inactive finishes to
2130	 * prevent vgone() races.  We drop the use count here and the
2131	 * hold count below when we're done.
2132	 */
2133	v_decr_useonly(vp);
2134	vp->v_iflag |= VI_OWEINACT;
2135	if (VOP_ISLOCKED(vp, NULL) != LK_EXCLUSIVE) {
2136		error = VOP_LOCK(vp, LK_EXCLUPGRADE|LK_INTERLOCK|LK_NOWAIT, td);
2137		VI_LOCK(vp);
2138		if (error) {
2139			if (vp->v_usecount > 0)
2140				vp->v_iflag &= ~VI_OWEINACT;
2141			goto done;
2142		}
2143	}
2144	if (vp->v_usecount > 0)
2145		vp->v_iflag &= ~VI_OWEINACT;
2146	if (vp->v_iflag & VI_OWEINACT)
2147		vinactive(vp, td);
2148	VOP_UNLOCK(vp, 0, td);
2149done:
2150	vdropl(vp);
2151}
2152
2153/*
2154 * Somebody doesn't want the vnode recycled.
2155 */
2156void
2157vhold(struct vnode *vp)
2158{
2159
2160	VI_LOCK(vp);
2161	vholdl(vp);
2162	VI_UNLOCK(vp);
2163}
2164
2165void
2166vholdl(struct vnode *vp)
2167{
2168
2169	vp->v_holdcnt++;
2170	if (VSHOULDBUSY(vp))
2171		vbusy(vp);
2172}
2173
2174/*
2175 * Note that there is one less who cares about this vnode.  vdrop() is the
2176 * opposite of vhold().
2177 */
2178void
2179vdrop(struct vnode *vp)
2180{
2181
2182	VI_LOCK(vp);
2183	vdropl(vp);
2184}
2185
2186/*
2187 * Drop the hold count of the vnode.  If this is the last reference to
2188 * the vnode we will free it if it has been vgone'd otherwise it is
2189 * placed on the free list.
2190 */
2191static void
2192vdropl(struct vnode *vp)
2193{
2194
2195	if (vp->v_holdcnt <= 0)
2196		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2197	vp->v_holdcnt--;
2198	if (vp->v_holdcnt == 0) {
2199		if (vp->v_iflag & VI_DOOMED) {
2200			vdestroy(vp);
2201			return;
2202		} else
2203			vfree(vp);
2204	}
2205	VI_UNLOCK(vp);
2206}
2207
2208/*
2209 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2210 * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2211 * OWEINACT tracks whether a vnode missed a call to inactive due to a
2212 * failed lock upgrade.
2213 */
2214static void
2215vinactive(struct vnode *vp, struct thread *td)
2216{
2217
2218	ASSERT_VOP_LOCKED(vp, "vinactive");
2219	ASSERT_VI_LOCKED(vp, "vinactive");
2220	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2221	    ("vinactive: recursed on VI_DOINGINACT"));
2222	vp->v_iflag |= VI_DOINGINACT;
2223	vp->v_iflag &= ~VI_OWEINACT;
2224	VI_UNLOCK(vp);
2225	VOP_INACTIVE(vp, td);
2226	VI_LOCK(vp);
2227	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2228	    ("vinactive: lost VI_DOINGINACT"));
2229	vp->v_iflag &= ~VI_DOINGINACT;
2230}
2231
2232/*
2233 * Remove any vnodes in the vnode table belonging to mount point mp.
2234 *
2235 * If FORCECLOSE is not specified, there should not be any active ones,
2236 * return error if any are found (nb: this is a user error, not a
2237 * system error). If FORCECLOSE is specified, detach any active vnodes
2238 * that are found.
2239 *
2240 * If WRITECLOSE is set, only flush out regular file vnodes open for
2241 * writing.
2242 *
2243 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2244 *
2245 * `rootrefs' specifies the base reference count for the root vnode
2246 * of this filesystem. The root vnode is considered busy if its
2247 * v_usecount exceeds this value. On a successful return, vflush(, td)
2248 * will call vrele() on the root vnode exactly rootrefs times.
2249 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2250 * be zero.
2251 */
2252#ifdef DIAGNOSTIC
2253static int busyprt = 0;		/* print out busy vnodes */
2254SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2255#endif
2256
2257int
2258vflush( struct mount *mp, int rootrefs, int flags, struct thread *td)
2259{
2260	struct vnode *vp, *mvp, *rootvp = NULL;
2261	struct vattr vattr;
2262	int busy = 0, error;
2263
2264	CTR1(KTR_VFS, "vflush: mp %p", mp);
2265	if (rootrefs > 0) {
2266		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2267		    ("vflush: bad args"));
2268		/*
2269		 * Get the filesystem root vnode. We can vput() it
2270		 * immediately, since with rootrefs > 0, it won't go away.
2271		 */
2272		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp, td)) != 0)
2273			return (error);
2274		vput(rootvp);
2275
2276	}
2277	MNT_ILOCK(mp);
2278loop:
2279	MNT_VNODE_FOREACH(vp, mp, mvp) {
2280
2281		VI_LOCK(vp);
2282		vholdl(vp);
2283		MNT_IUNLOCK(mp);
2284		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td);
2285		if (error) {
2286			vdrop(vp);
2287			MNT_ILOCK(mp);
2288			MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
2289			goto loop;
2290		}
2291		/*
2292		 * Skip over a vnodes marked VV_SYSTEM.
2293		 */
2294		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2295			VOP_UNLOCK(vp, 0, td);
2296			vdrop(vp);
2297			MNT_ILOCK(mp);
2298			continue;
2299		}
2300		/*
2301		 * If WRITECLOSE is set, flush out unlinked but still open
2302		 * files (even if open only for reading) and regular file
2303		 * vnodes open for writing.
2304		 */
2305		if (flags & WRITECLOSE) {
2306			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2307			VI_LOCK(vp);
2308
2309			if ((vp->v_type == VNON ||
2310			    (error == 0 && vattr.va_nlink > 0)) &&
2311			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2312				VOP_UNLOCK(vp, 0, td);
2313				vdropl(vp);
2314				MNT_ILOCK(mp);
2315				continue;
2316			}
2317		} else
2318			VI_LOCK(vp);
2319		/*
2320		 * With v_usecount == 0, all we need to do is clear out the
2321		 * vnode data structures and we are done.
2322		 *
2323		 * If FORCECLOSE is set, forcibly close the vnode.
2324		 */
2325		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2326			VNASSERT(vp->v_usecount == 0 ||
2327			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2328			    ("device VNODE %p is FORCECLOSED", vp));
2329			vgonel(vp);
2330		} else {
2331			busy++;
2332#ifdef DIAGNOSTIC
2333			if (busyprt)
2334				vprint("vflush: busy vnode", vp);
2335#endif
2336		}
2337		VOP_UNLOCK(vp, 0, td);
2338		vdropl(vp);
2339		MNT_ILOCK(mp);
2340	}
2341	MNT_IUNLOCK(mp);
2342	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2343		/*
2344		 * If just the root vnode is busy, and if its refcount
2345		 * is equal to `rootrefs', then go ahead and kill it.
2346		 */
2347		VI_LOCK(rootvp);
2348		KASSERT(busy > 0, ("vflush: not busy"));
2349		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2350		    ("vflush: usecount %d < rootrefs %d",
2351		     rootvp->v_usecount, rootrefs));
2352		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2353			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK, td);
2354			vgone(rootvp);
2355			VOP_UNLOCK(rootvp, 0, td);
2356			busy = 0;
2357		} else
2358			VI_UNLOCK(rootvp);
2359	}
2360	if (busy)
2361		return (EBUSY);
2362	for (; rootrefs > 0; rootrefs--)
2363		vrele(rootvp);
2364	return (0);
2365}
2366
2367/*
2368 * Recycle an unused vnode to the front of the free list.
2369 */
2370int
2371vrecycle(struct vnode *vp, struct thread *td)
2372{
2373	int recycled;
2374
2375	ASSERT_VOP_LOCKED(vp, "vrecycle");
2376	recycled = 0;
2377	VI_LOCK(vp);
2378	if (vp->v_usecount == 0) {
2379		recycled = 1;
2380		vgonel(vp);
2381	}
2382	VI_UNLOCK(vp);
2383	return (recycled);
2384}
2385
2386/*
2387 * Eliminate all activity associated with a vnode
2388 * in preparation for reuse.
2389 */
2390void
2391vgone(struct vnode *vp)
2392{
2393	VI_LOCK(vp);
2394	vgonel(vp);
2395	VI_UNLOCK(vp);
2396}
2397
2398/*
2399 * vgone, with the vp interlock held.
2400 */
2401void
2402vgonel(struct vnode *vp)
2403{
2404	struct thread *td;
2405	int oweinact;
2406	int active;
2407	struct mount *mp;
2408
2409	CTR1(KTR_VFS, "vgonel: vp %p", vp);
2410	ASSERT_VOP_LOCKED(vp, "vgonel");
2411	ASSERT_VI_LOCKED(vp, "vgonel");
2412	VNASSERT(vp->v_holdcnt, vp,
2413	    ("vgonel: vp %p has no reference.", vp));
2414	td = curthread;
2415
2416	/*
2417	 * Don't vgonel if we're already doomed.
2418	 */
2419	if (vp->v_iflag & VI_DOOMED)
2420		return;
2421	vp->v_iflag |= VI_DOOMED;
2422	/*
2423	 * Check to see if the vnode is in use.  If so, we have to call
2424	 * VOP_CLOSE() and VOP_INACTIVE().
2425	 */
2426	active = vp->v_usecount;
2427	oweinact = (vp->v_iflag & VI_OWEINACT);
2428	VI_UNLOCK(vp);
2429	/*
2430	 * Clean out any buffers associated with the vnode.
2431	 * If the flush fails, just toss the buffers.
2432	 */
2433	mp = NULL;
2434	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2435		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2436	if (vinvalbuf(vp, V_SAVE, td, 0, 0) != 0)
2437		vinvalbuf(vp, 0, td, 0, 0);
2438
2439	/*
2440	 * If purging an active vnode, it must be closed and
2441	 * deactivated before being reclaimed.
2442	 */
2443	if (active)
2444		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2445	if (oweinact || active) {
2446		VI_LOCK(vp);
2447		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2448			vinactive(vp, td);
2449		VI_UNLOCK(vp);
2450	}
2451	/*
2452	 * Reclaim the vnode.
2453	 */
2454	if (VOP_RECLAIM(vp, td))
2455		panic("vgone: cannot reclaim");
2456	if (mp != NULL)
2457		vn_finished_secondary_write(mp);
2458	VNASSERT(vp->v_object == NULL, vp,
2459	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2460	/*
2461	 * Delete from old mount point vnode list.
2462	 */
2463	delmntque(vp);
2464	cache_purge(vp);
2465	/*
2466	 * Done with purge, reset to the standard lock and invalidate
2467	 * the vnode.
2468	 */
2469	VI_LOCK(vp);
2470	vp->v_vnlock = &vp->v_lock;
2471	vp->v_op = &dead_vnodeops;
2472	vp->v_tag = "none";
2473	vp->v_type = VBAD;
2474}
2475
2476/*
2477 * Calculate the total number of references to a special device.
2478 */
2479int
2480vcount(struct vnode *vp)
2481{
2482	int count;
2483
2484	dev_lock();
2485	count = vp->v_rdev->si_usecount;
2486	dev_unlock();
2487	return (count);
2488}
2489
2490/*
2491 * Same as above, but using the struct cdev *as argument
2492 */
2493int
2494count_dev(struct cdev *dev)
2495{
2496	int count;
2497
2498	dev_lock();
2499	count = dev->si_usecount;
2500	dev_unlock();
2501	return(count);
2502}
2503
2504/*
2505 * Print out a description of a vnode.
2506 */
2507static char *typename[] =
2508{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2509 "VMARKER"};
2510
2511void
2512vn_printf(struct vnode *vp, const char *fmt, ...)
2513{
2514	va_list ap;
2515	char buf[96];
2516
2517	va_start(ap, fmt);
2518	vprintf(fmt, ap);
2519	va_end(ap);
2520	printf("%p: ", (void *)vp);
2521	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2522	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2523	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2524	buf[0] = '\0';
2525	buf[1] = '\0';
2526	if (vp->v_vflag & VV_ROOT)
2527		strcat(buf, "|VV_ROOT");
2528	if (vp->v_vflag & VV_TEXT)
2529		strcat(buf, "|VV_TEXT");
2530	if (vp->v_vflag & VV_SYSTEM)
2531		strcat(buf, "|VV_SYSTEM");
2532	if (vp->v_iflag & VI_DOOMED)
2533		strcat(buf, "|VI_DOOMED");
2534	if (vp->v_iflag & VI_FREE)
2535		strcat(buf, "|VI_FREE");
2536	printf("    flags (%s)\n", buf + 1);
2537	if (mtx_owned(VI_MTX(vp)))
2538		printf(" VI_LOCKed");
2539	if (vp->v_object != NULL)
2540		printf("    v_object %p ref %d pages %d\n",
2541		    vp->v_object, vp->v_object->ref_count,
2542		    vp->v_object->resident_page_count);
2543	printf("    ");
2544	lockmgr_printinfo(vp->v_vnlock);
2545	printf("\n");
2546	if (vp->v_data != NULL)
2547		VOP_PRINT(vp);
2548}
2549
2550#ifdef DDB
2551/*
2552 * List all of the locked vnodes in the system.
2553 * Called when debugging the kernel.
2554 */
2555DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2556{
2557	struct mount *mp, *nmp;
2558	struct vnode *vp;
2559
2560	/*
2561	 * Note: because this is DDB, we can't obey the locking semantics
2562	 * for these structures, which means we could catch an inconsistent
2563	 * state and dereference a nasty pointer.  Not much to be done
2564	 * about that.
2565	 */
2566	printf("Locked vnodes\n");
2567	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2568		nmp = TAILQ_NEXT(mp, mnt_list);
2569		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2570			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp, NULL))
2571				vprint("", vp);
2572		}
2573		nmp = TAILQ_NEXT(mp, mnt_list);
2574	}
2575}
2576
2577/*
2578 * Show details about the given vnode.
2579 */
2580DB_SHOW_COMMAND(vnode, db_show_vnode)
2581{
2582	struct vnode *vp;
2583
2584	if (!have_addr)
2585		return;
2586	vp = (struct vnode *)addr;
2587	vn_printf(vp, "vnode ");
2588}
2589#endif	/* DDB */
2590
2591/*
2592 * Fill in a struct xvfsconf based on a struct vfsconf.
2593 */
2594static void
2595vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2596{
2597
2598	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2599	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2600	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2601	xvfsp->vfc_flags = vfsp->vfc_flags;
2602	/*
2603	 * These are unused in userland, we keep them
2604	 * to not break binary compatibility.
2605	 */
2606	xvfsp->vfc_vfsops = NULL;
2607	xvfsp->vfc_next = NULL;
2608}
2609
2610/*
2611 * Top level filesystem related information gathering.
2612 */
2613static int
2614sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2615{
2616	struct vfsconf *vfsp;
2617	struct xvfsconf xvfsp;
2618	int error;
2619
2620	error = 0;
2621	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2622		bzero(&xvfsp, sizeof(xvfsp));
2623		vfsconf2x(vfsp, &xvfsp);
2624		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2625		if (error)
2626			break;
2627	}
2628	return (error);
2629}
2630
2631SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2632    "S,xvfsconf", "List of all configured filesystems");
2633
2634#ifndef BURN_BRIDGES
2635static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2636
2637static int
2638vfs_sysctl(SYSCTL_HANDLER_ARGS)
2639{
2640	int *name = (int *)arg1 - 1;	/* XXX */
2641	u_int namelen = arg2 + 1;	/* XXX */
2642	struct vfsconf *vfsp;
2643	struct xvfsconf xvfsp;
2644
2645	printf("WARNING: userland calling deprecated sysctl, "
2646	    "please rebuild world\n");
2647
2648#if 1 || defined(COMPAT_PRELITE2)
2649	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2650	if (namelen == 1)
2651		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2652#endif
2653
2654	switch (name[1]) {
2655	case VFS_MAXTYPENUM:
2656		if (namelen != 2)
2657			return (ENOTDIR);
2658		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2659	case VFS_CONF:
2660		if (namelen != 3)
2661			return (ENOTDIR);	/* overloaded */
2662		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2663			if (vfsp->vfc_typenum == name[2])
2664				break;
2665		if (vfsp == NULL)
2666			return (EOPNOTSUPP);
2667		bzero(&xvfsp, sizeof(xvfsp));
2668		vfsconf2x(vfsp, &xvfsp);
2669		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2670	}
2671	return (EOPNOTSUPP);
2672}
2673
2674static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
2675	vfs_sysctl, "Generic filesystem");
2676
2677#if 1 || defined(COMPAT_PRELITE2)
2678
2679static int
2680sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2681{
2682	int error;
2683	struct vfsconf *vfsp;
2684	struct ovfsconf ovfs;
2685
2686	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2687		bzero(&ovfs, sizeof(ovfs));
2688		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2689		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2690		ovfs.vfc_index = vfsp->vfc_typenum;
2691		ovfs.vfc_refcount = vfsp->vfc_refcount;
2692		ovfs.vfc_flags = vfsp->vfc_flags;
2693		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2694		if (error)
2695			return error;
2696	}
2697	return 0;
2698}
2699
2700#endif /* 1 || COMPAT_PRELITE2 */
2701#endif /* !BURN_BRIDGES */
2702
2703#define KINFO_VNODESLOP		10
2704#ifdef notyet
2705/*
2706 * Dump vnode list (via sysctl).
2707 */
2708/* ARGSUSED */
2709static int
2710sysctl_vnode(SYSCTL_HANDLER_ARGS)
2711{
2712	struct xvnode *xvn;
2713	struct thread *td = req->td;
2714	struct mount *mp;
2715	struct vnode *vp;
2716	int error, len, n;
2717
2718	/*
2719	 * Stale numvnodes access is not fatal here.
2720	 */
2721	req->lock = 0;
2722	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2723	if (!req->oldptr)
2724		/* Make an estimate */
2725		return (SYSCTL_OUT(req, 0, len));
2726
2727	error = sysctl_wire_old_buffer(req, 0);
2728	if (error != 0)
2729		return (error);
2730	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2731	n = 0;
2732	mtx_lock(&mountlist_mtx);
2733	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2734		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
2735			continue;
2736		MNT_ILOCK(mp);
2737		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2738			if (n == len)
2739				break;
2740			vref(vp);
2741			xvn[n].xv_size = sizeof *xvn;
2742			xvn[n].xv_vnode = vp;
2743			xvn[n].xv_id = 0;	/* XXX compat */
2744#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
2745			XV_COPY(usecount);
2746			XV_COPY(writecount);
2747			XV_COPY(holdcnt);
2748			XV_COPY(mount);
2749			XV_COPY(numoutput);
2750			XV_COPY(type);
2751#undef XV_COPY
2752			xvn[n].xv_flag = vp->v_vflag;
2753
2754			switch (vp->v_type) {
2755			case VREG:
2756			case VDIR:
2757			case VLNK:
2758				break;
2759			case VBLK:
2760			case VCHR:
2761				if (vp->v_rdev == NULL) {
2762					vrele(vp);
2763					continue;
2764				}
2765				xvn[n].xv_dev = dev2udev(vp->v_rdev);
2766				break;
2767			case VSOCK:
2768				xvn[n].xv_socket = vp->v_socket;
2769				break;
2770			case VFIFO:
2771				xvn[n].xv_fifo = vp->v_fifoinfo;
2772				break;
2773			case VNON:
2774			case VBAD:
2775			default:
2776				/* shouldn't happen? */
2777				vrele(vp);
2778				continue;
2779			}
2780			vrele(vp);
2781			++n;
2782		}
2783		MNT_IUNLOCK(mp);
2784		mtx_lock(&mountlist_mtx);
2785		vfs_unbusy(mp, td);
2786		if (n == len)
2787			break;
2788	}
2789	mtx_unlock(&mountlist_mtx);
2790
2791	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
2792	free(xvn, M_TEMP);
2793	return (error);
2794}
2795
2796SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2797	0, 0, sysctl_vnode, "S,xvnode", "");
2798#endif
2799
2800/*
2801 * Unmount all filesystems. The list is traversed in reverse order
2802 * of mounting to avoid dependencies.
2803 */
2804void
2805vfs_unmountall(void)
2806{
2807	struct mount *mp;
2808	struct thread *td;
2809	int error;
2810
2811	KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
2812	td = curthread;
2813	/*
2814	 * Since this only runs when rebooting, it is not interlocked.
2815	 */
2816	while(!TAILQ_EMPTY(&mountlist)) {
2817		mp = TAILQ_LAST(&mountlist, mntlist);
2818		error = dounmount(mp, MNT_FORCE, td);
2819		if (error) {
2820			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2821			/*
2822			 * XXX: Due to the way in which we mount the root
2823			 * file system off of devfs, devfs will generate a
2824			 * "busy" warning when we try to unmount it before
2825			 * the root.  Don't print a warning as a result in
2826			 * order to avoid false positive errors that may
2827			 * cause needless upset.
2828			 */
2829			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
2830				printf("unmount of %s failed (",
2831				    mp->mnt_stat.f_mntonname);
2832				if (error == EBUSY)
2833					printf("BUSY)\n");
2834				else
2835					printf("%d)\n", error);
2836			}
2837		} else {
2838			/* The unmount has removed mp from the mountlist */
2839		}
2840	}
2841}
2842
2843/*
2844 * perform msync on all vnodes under a mount point
2845 * the mount point must be locked.
2846 */
2847void
2848vfs_msync(struct mount *mp, int flags)
2849{
2850	struct vnode *vp, *mvp;
2851	struct vm_object *obj;
2852
2853	MNT_ILOCK(mp);
2854	MNT_VNODE_FOREACH(vp, mp, mvp) {
2855		VI_LOCK(vp);
2856		if ((vp->v_iflag & VI_OBJDIRTY) &&
2857		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2858			MNT_IUNLOCK(mp);
2859			if (!vget(vp,
2860			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
2861			    curthread)) {
2862				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
2863					vput(vp);
2864					MNT_ILOCK(mp);
2865					continue;
2866				}
2867
2868				obj = vp->v_object;
2869				if (obj != NULL) {
2870					VM_OBJECT_LOCK(obj);
2871					vm_object_page_clean(obj, 0, 0,
2872					    flags == MNT_WAIT ?
2873					    OBJPC_SYNC : OBJPC_NOSYNC);
2874					VM_OBJECT_UNLOCK(obj);
2875				}
2876				vput(vp);
2877			}
2878			MNT_ILOCK(mp);
2879		} else
2880			VI_UNLOCK(vp);
2881	}
2882	MNT_IUNLOCK(mp);
2883}
2884
2885/*
2886 * Mark a vnode as free, putting it up for recycling.
2887 */
2888static void
2889vfree(struct vnode *vp)
2890{
2891
2892	CTR1(KTR_VFS, "vfree vp %p", vp);
2893	ASSERT_VI_LOCKED(vp, "vfree");
2894	mtx_lock(&vnode_free_list_mtx);
2895	VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
2896	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
2897	VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
2898	VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
2899	    ("vfree: Freeing doomed vnode"));
2900	if (vp->v_iflag & VI_AGE) {
2901		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2902	} else {
2903		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2904	}
2905	freevnodes++;
2906	vp->v_iflag &= ~VI_AGE;
2907	vp->v_iflag |= VI_FREE;
2908	mtx_unlock(&vnode_free_list_mtx);
2909}
2910
2911/*
2912 * Opposite of vfree() - mark a vnode as in use.
2913 */
2914static void
2915vbusy(struct vnode *vp)
2916{
2917	CTR1(KTR_VFS, "vbusy vp %p", vp);
2918	ASSERT_VI_LOCKED(vp, "vbusy");
2919	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
2920	VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));
2921
2922	mtx_lock(&vnode_free_list_mtx);
2923	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2924	freevnodes--;
2925	vp->v_iflag &= ~(VI_FREE|VI_AGE);
2926	mtx_unlock(&vnode_free_list_mtx);
2927}
2928
2929/*
2930 * Initalize per-vnode helper structure to hold poll-related state.
2931 */
2932void
2933v_addpollinfo(struct vnode *vp)
2934{
2935	struct vpollinfo *vi;
2936
2937	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
2938	if (vp->v_pollinfo != NULL) {
2939		uma_zfree(vnodepoll_zone, vi);
2940		return;
2941	}
2942	vp->v_pollinfo = vi;
2943	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
2944	knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note, vp, vfs_knllock,
2945	    vfs_knlunlock, vfs_knllocked);
2946}
2947
2948/*
2949 * Record a process's interest in events which might happen to
2950 * a vnode.  Because poll uses the historic select-style interface
2951 * internally, this routine serves as both the ``check for any
2952 * pending events'' and the ``record my interest in future events''
2953 * functions.  (These are done together, while the lock is held,
2954 * to avoid race conditions.)
2955 */
2956int
2957vn_pollrecord(struct vnode *vp, struct thread *td, int events)
2958{
2959
2960	if (vp->v_pollinfo == NULL)
2961		v_addpollinfo(vp);
2962	mtx_lock(&vp->v_pollinfo->vpi_lock);
2963	if (vp->v_pollinfo->vpi_revents & events) {
2964		/*
2965		 * This leaves events we are not interested
2966		 * in available for the other process which
2967		 * which presumably had requested them
2968		 * (otherwise they would never have been
2969		 * recorded).
2970		 */
2971		events &= vp->v_pollinfo->vpi_revents;
2972		vp->v_pollinfo->vpi_revents &= ~events;
2973
2974		mtx_unlock(&vp->v_pollinfo->vpi_lock);
2975		return events;
2976	}
2977	vp->v_pollinfo->vpi_events |= events;
2978	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
2979	mtx_unlock(&vp->v_pollinfo->vpi_lock);
2980	return 0;
2981}
2982
2983/*
2984 * Routine to create and manage a filesystem syncer vnode.
2985 */
2986#define sync_close ((int (*)(struct  vop_close_args *))nullop)
2987static int	sync_fsync(struct  vop_fsync_args *);
2988static int	sync_inactive(struct  vop_inactive_args *);
2989static int	sync_reclaim(struct  vop_reclaim_args *);
2990
2991static struct vop_vector sync_vnodeops = {
2992	.vop_bypass =	VOP_EOPNOTSUPP,
2993	.vop_close =	sync_close,		/* close */
2994	.vop_fsync =	sync_fsync,		/* fsync */
2995	.vop_inactive =	sync_inactive,	/* inactive */
2996	.vop_reclaim =	sync_reclaim,	/* reclaim */
2997	.vop_lock =	vop_stdlock,	/* lock */
2998	.vop_unlock =	vop_stdunlock,	/* unlock */
2999	.vop_islocked =	vop_stdislocked,	/* islocked */
3000};
3001
3002/*
3003 * Create a new filesystem syncer vnode for the specified mount point.
3004 */
3005int
3006vfs_allocate_syncvnode(struct mount *mp)
3007{
3008	struct vnode *vp;
3009	static long start, incr, next;
3010	int error;
3011
3012	/* Allocate a new vnode */
3013	if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
3014		mp->mnt_syncer = NULL;
3015		return (error);
3016	}
3017	vp->v_type = VNON;
3018	/*
3019	 * Place the vnode onto the syncer worklist. We attempt to
3020	 * scatter them about on the list so that they will go off
3021	 * at evenly distributed times even if all the filesystems
3022	 * are mounted at once.
3023	 */
3024	next += incr;
3025	if (next == 0 || next > syncer_maxdelay) {
3026		start /= 2;
3027		incr /= 2;
3028		if (start == 0) {
3029			start = syncer_maxdelay / 2;
3030			incr = syncer_maxdelay;
3031		}
3032		next = start;
3033	}
3034	VI_LOCK(vp);
3035	vn_syncer_add_to_worklist(&vp->v_bufobj,
3036	    syncdelay > 0 ? next % syncdelay : 0);
3037	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3038	mtx_lock(&sync_mtx);
3039	sync_vnode_count++;
3040	mtx_unlock(&sync_mtx);
3041	VI_UNLOCK(vp);
3042	mp->mnt_syncer = vp;
3043	return (0);
3044}
3045
3046/*
3047 * Do a lazy sync of the filesystem.
3048 */
3049static int
3050sync_fsync(struct vop_fsync_args *ap)
3051{
3052	struct vnode *syncvp = ap->a_vp;
3053	struct mount *mp = syncvp->v_mount;
3054	struct thread *td = ap->a_td;
3055	int error;
3056	struct bufobj *bo;
3057
3058	/*
3059	 * We only need to do something if this is a lazy evaluation.
3060	 */
3061	if (ap->a_waitfor != MNT_LAZY)
3062		return (0);
3063
3064	/*
3065	 * Move ourselves to the back of the sync list.
3066	 */
3067	bo = &syncvp->v_bufobj;
3068	BO_LOCK(bo);
3069	vn_syncer_add_to_worklist(bo, syncdelay);
3070	BO_UNLOCK(bo);
3071
3072	/*
3073	 * Walk the list of vnodes pushing all that are dirty and
3074	 * not already on the sync list.
3075	 */
3076	mtx_lock(&mountlist_mtx);
3077	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3078		mtx_unlock(&mountlist_mtx);
3079		return (0);
3080	}
3081	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3082		vfs_unbusy(mp, td);
3083		return (0);
3084	}
3085	MNT_ILOCK(mp);
3086	mp->mnt_noasync++;
3087	mp->mnt_kern_flag &= ~MNTK_ASYNC;
3088	MNT_IUNLOCK(mp);
3089	vfs_msync(mp, MNT_NOWAIT);
3090	error = VFS_SYNC(mp, MNT_LAZY, td);
3091	MNT_ILOCK(mp);
3092	mp->mnt_noasync--;
3093	if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0)
3094		mp->mnt_kern_flag |= MNTK_ASYNC;
3095	MNT_IUNLOCK(mp);
3096	vn_finished_write(mp);
3097	vfs_unbusy(mp, td);
3098	return (error);
3099}
3100
3101/*
3102 * The syncer vnode is no referenced.
3103 */
3104static int
3105sync_inactive(struct vop_inactive_args *ap)
3106{
3107
3108	vgone(ap->a_vp);
3109	return (0);
3110}
3111
3112/*
3113 * The syncer vnode is no longer needed and is being decommissioned.
3114 *
3115 * Modifications to the worklist must be protected by sync_mtx.
3116 */
3117static int
3118sync_reclaim(struct vop_reclaim_args *ap)
3119{
3120	struct vnode *vp = ap->a_vp;
3121	struct bufobj *bo;
3122
3123	VI_LOCK(vp);
3124	bo = &vp->v_bufobj;
3125	vp->v_mount->mnt_syncer = NULL;
3126	if (bo->bo_flag & BO_ONWORKLST) {
3127		mtx_lock(&sync_mtx);
3128		LIST_REMOVE(bo, bo_synclist);
3129 		syncer_worklist_len--;
3130		sync_vnode_count--;
3131		mtx_unlock(&sync_mtx);
3132		bo->bo_flag &= ~BO_ONWORKLST;
3133	}
3134	VI_UNLOCK(vp);
3135
3136	return (0);
3137}
3138
3139/*
3140 * Check if vnode represents a disk device
3141 */
3142int
3143vn_isdisk(struct vnode *vp, int *errp)
3144{
3145	int error;
3146
3147	error = 0;
3148	dev_lock();
3149	if (vp->v_type != VCHR)
3150		error = ENOTBLK;
3151	else if (vp->v_rdev == NULL)
3152		error = ENXIO;
3153	else if (vp->v_rdev->si_devsw == NULL)
3154		error = ENXIO;
3155	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3156		error = ENOTBLK;
3157	dev_unlock();
3158	if (errp != NULL)
3159		*errp = error;
3160	return (error == 0);
3161}
3162
3163/*
3164 * Common filesystem object access control check routine.  Accepts a
3165 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3166 * and optional call-by-reference privused argument allowing vaccess()
3167 * to indicate to the caller whether privilege was used to satisfy the
3168 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3169 *
3170 * The ifdef'd CAPABILITIES version is here for reference, but is not
3171 * actually used.
3172 */
3173int
3174vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3175    mode_t acc_mode, struct ucred *cred, int *privused)
3176{
3177	mode_t dac_granted;
3178#ifdef CAPABILITIES
3179	mode_t cap_granted;
3180#endif
3181
3182	/*
3183	 * Look for a normal, non-privileged way to access the file/directory
3184	 * as requested.  If it exists, go with that.
3185	 */
3186
3187	if (privused != NULL)
3188		*privused = 0;
3189
3190	dac_granted = 0;
3191
3192	/* Check the owner. */
3193	if (cred->cr_uid == file_uid) {
3194		dac_granted |= VADMIN;
3195		if (file_mode & S_IXUSR)
3196			dac_granted |= VEXEC;
3197		if (file_mode & S_IRUSR)
3198			dac_granted |= VREAD;
3199		if (file_mode & S_IWUSR)
3200			dac_granted |= (VWRITE | VAPPEND);
3201
3202		if ((acc_mode & dac_granted) == acc_mode)
3203			return (0);
3204
3205		goto privcheck;
3206	}
3207
3208	/* Otherwise, check the groups (first match) */
3209	if (groupmember(file_gid, cred)) {
3210		if (file_mode & S_IXGRP)
3211			dac_granted |= VEXEC;
3212		if (file_mode & S_IRGRP)
3213			dac_granted |= VREAD;
3214		if (file_mode & S_IWGRP)
3215			dac_granted |= (VWRITE | VAPPEND);
3216
3217		if ((acc_mode & dac_granted) == acc_mode)
3218			return (0);
3219
3220		goto privcheck;
3221	}
3222
3223	/* Otherwise, check everyone else. */
3224	if (file_mode & S_IXOTH)
3225		dac_granted |= VEXEC;
3226	if (file_mode & S_IROTH)
3227		dac_granted |= VREAD;
3228	if (file_mode & S_IWOTH)
3229		dac_granted |= (VWRITE | VAPPEND);
3230	if ((acc_mode & dac_granted) == acc_mode)
3231		return (0);
3232
3233privcheck:
3234	if (!suser_cred(cred, SUSER_ALLOWJAIL)) {
3235		/* XXX audit: privilege used */
3236		if (privused != NULL)
3237			*privused = 1;
3238		return (0);
3239	}
3240
3241#ifdef CAPABILITIES
3242	/*
3243	 * Build a capability mask to determine if the set of capabilities
3244	 * satisfies the requirements when combined with the granted mask
3245	 * from above.  For each capability, if the capability is required,
3246	 * bitwise or the request type onto the cap_granted mask.
3247	 *
3248	 * Note: This is never actually used, but is here for reference
3249	 * purposes.
3250	 */
3251	cap_granted = 0;
3252
3253	if (type == VDIR) {
3254		/*
3255		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3256		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3257		 */
3258		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3259		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH,
3260		    SUSER_ALLOWJAIL))
3261			cap_granted |= VEXEC;
3262	} else {
3263		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3264		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, SUSER_ALLOWJAIL))
3265			cap_granted |= VEXEC;
3266	}
3267
3268	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3269	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3270		cap_granted |= VREAD;
3271
3272	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3273	    !cap_check(cred, NULL, CAP_DAC_WRITE, SUSER_ALLOWJAIL))
3274		cap_granted |= (VWRITE | VAPPEND);
3275
3276	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3277	    !cap_check(cred, NULL, CAP_FOWNER, SUSER_ALLOWJAIL))
3278		cap_granted |= VADMIN;
3279
3280	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3281		/* XXX audit: privilege used */
3282		if (privused != NULL)
3283			*privused = 1;
3284		return (0);
3285	}
3286#endif
3287
3288	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3289}
3290
3291/*
3292 * Credential check based on process requesting service, and per-attribute
3293 * permissions.
3294 */
3295int
3296extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3297    struct thread *td, int access)
3298{
3299
3300	/*
3301	 * Kernel-invoked always succeeds.
3302	 */
3303	if (cred == NOCRED)
3304		return (0);
3305
3306	/*
3307	 * Do not allow privileged processes in jail to directly
3308	 * manipulate system attributes.
3309	 *
3310	 * XXX What capability should apply here?
3311	 * Probably CAP_SYS_SETFFLAG.
3312	 */
3313	switch (attrnamespace) {
3314	case EXTATTR_NAMESPACE_SYSTEM:
3315		/* Potentially should be: return (EPERM); */
3316		return (suser_cred(cred, 0));
3317	case EXTATTR_NAMESPACE_USER:
3318		return (VOP_ACCESS(vp, access, cred, td));
3319	default:
3320		return (EPERM);
3321	}
3322}
3323
3324#ifdef DEBUG_VFS_LOCKS
3325/*
3326 * This only exists to supress warnings from unlocked specfs accesses.  It is
3327 * no longer ok to have an unlocked VFS.
3328 */
3329#define	IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
3330
3331int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3332SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3333
3334int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3335SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3336
3337int vfs_badlock_print = 1;	/* Print lock violations. */
3338SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3339
3340#ifdef KDB
3341int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3342SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3343#endif
3344
3345static void
3346vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3347{
3348
3349#ifdef KDB
3350	if (vfs_badlock_backtrace)
3351		kdb_backtrace();
3352#endif
3353	if (vfs_badlock_print)
3354		printf("%s: %p %s\n", str, (void *)vp, msg);
3355	if (vfs_badlock_ddb)
3356		kdb_enter("lock violation");
3357}
3358
3359void
3360assert_vi_locked(struct vnode *vp, const char *str)
3361{
3362
3363	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3364		vfs_badlock("interlock is not locked but should be", str, vp);
3365}
3366
3367void
3368assert_vi_unlocked(struct vnode *vp, const char *str)
3369{
3370
3371	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3372		vfs_badlock("interlock is locked but should not be", str, vp);
3373}
3374
3375void
3376assert_vop_locked(struct vnode *vp, const char *str)
3377{
3378
3379	if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
3380		vfs_badlock("is not locked but should be", str, vp);
3381}
3382
3383void
3384assert_vop_unlocked(struct vnode *vp, const char *str)
3385{
3386
3387	if (vp && !IGNORE_LOCK(vp) &&
3388	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
3389		vfs_badlock("is locked but should not be", str, vp);
3390}
3391
3392void
3393assert_vop_elocked(struct vnode *vp, const char *str)
3394{
3395
3396	if (vp && !IGNORE_LOCK(vp) &&
3397	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
3398		vfs_badlock("is not exclusive locked but should be", str, vp);
3399}
3400
3401#if 0
3402void
3403assert_vop_elocked_other(struct vnode *vp, const char *str)
3404{
3405
3406	if (vp && !IGNORE_LOCK(vp) &&
3407	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
3408		vfs_badlock("is not exclusive locked by another thread",
3409		    str, vp);
3410}
3411
3412void
3413assert_vop_slocked(struct vnode *vp, const char *str)
3414{
3415
3416	if (vp && !IGNORE_LOCK(vp) &&
3417	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
3418		vfs_badlock("is not locked shared but should be", str, vp);
3419}
3420#endif /* 0 */
3421#endif /* DEBUG_VFS_LOCKS */
3422
3423void
3424vop_rename_pre(void *ap)
3425{
3426	struct vop_rename_args *a = ap;
3427
3428#ifdef DEBUG_VFS_LOCKS
3429	if (a->a_tvp)
3430		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3431	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3432	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3433	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3434
3435	/* Check the source (from). */
3436	if (a->a_tdvp != a->a_fdvp && a->a_tvp != a->a_fdvp)
3437		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3438	if (a->a_tvp != a->a_fvp)
3439		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked");
3440
3441	/* Check the target. */
3442	if (a->a_tvp)
3443		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3444	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3445#endif
3446	if (a->a_tdvp != a->a_fdvp)
3447		vhold(a->a_fdvp);
3448	if (a->a_tvp != a->a_fvp)
3449		vhold(a->a_fvp);
3450	vhold(a->a_tdvp);
3451	if (a->a_tvp)
3452		vhold(a->a_tvp);
3453}
3454
3455void
3456vop_strategy_pre(void *ap)
3457{
3458#ifdef DEBUG_VFS_LOCKS
3459	struct vop_strategy_args *a;
3460	struct buf *bp;
3461
3462	a = ap;
3463	bp = a->a_bp;
3464
3465	/*
3466	 * Cluster ops lock their component buffers but not the IO container.
3467	 */
3468	if ((bp->b_flags & B_CLUSTER) != 0)
3469		return;
3470
3471	if (BUF_REFCNT(bp) < 1) {
3472		if (vfs_badlock_print)
3473			printf(
3474			    "VOP_STRATEGY: bp is not locked but should be\n");
3475		if (vfs_badlock_ddb)
3476			kdb_enter("lock violation");
3477	}
3478#endif
3479}
3480
3481void
3482vop_lookup_pre(void *ap)
3483{
3484#ifdef DEBUG_VFS_LOCKS
3485	struct vop_lookup_args *a;
3486	struct vnode *dvp;
3487
3488	a = ap;
3489	dvp = a->a_dvp;
3490	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3491	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3492#endif
3493}
3494
3495void
3496vop_lookup_post(void *ap, int rc)
3497{
3498#ifdef DEBUG_VFS_LOCKS
3499	struct vop_lookup_args *a;
3500	struct vnode *dvp;
3501	struct vnode *vp;
3502
3503	a = ap;
3504	dvp = a->a_dvp;
3505	vp = *(a->a_vpp);
3506
3507	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3508	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3509
3510	if (!rc)
3511		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
3512#endif
3513}
3514
3515void
3516vop_lock_pre(void *ap)
3517{
3518#ifdef DEBUG_VFS_LOCKS
3519	struct vop_lock_args *a = ap;
3520
3521	if ((a->a_flags & LK_INTERLOCK) == 0)
3522		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3523	else
3524		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3525#endif
3526}
3527
3528void
3529vop_lock_post(void *ap, int rc)
3530{
3531#ifdef DEBUG_VFS_LOCKS
3532	struct vop_lock_args *a = ap;
3533
3534	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3535	if (rc == 0)
3536		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3537#endif
3538}
3539
3540void
3541vop_unlock_pre(void *ap)
3542{
3543#ifdef DEBUG_VFS_LOCKS
3544	struct vop_unlock_args *a = ap;
3545
3546	if (a->a_flags & LK_INTERLOCK)
3547		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3548	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3549#endif
3550}
3551
3552void
3553vop_unlock_post(void *ap, int rc)
3554{
3555#ifdef DEBUG_VFS_LOCKS
3556	struct vop_unlock_args *a = ap;
3557
3558	if (a->a_flags & LK_INTERLOCK)
3559		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3560#endif
3561}
3562
3563void
3564vop_create_post(void *ap, int rc)
3565{
3566	struct vop_create_args *a = ap;
3567
3568	if (!rc)
3569		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3570}
3571
3572void
3573vop_link_post(void *ap, int rc)
3574{
3575	struct vop_link_args *a = ap;
3576
3577	if (!rc) {
3578		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
3579		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
3580	}
3581}
3582
3583void
3584vop_mkdir_post(void *ap, int rc)
3585{
3586	struct vop_mkdir_args *a = ap;
3587
3588	if (!rc)
3589		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3590}
3591
3592void
3593vop_mknod_post(void *ap, int rc)
3594{
3595	struct vop_mknod_args *a = ap;
3596
3597	if (!rc)
3598		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3599}
3600
3601void
3602vop_remove_post(void *ap, int rc)
3603{
3604	struct vop_remove_args *a = ap;
3605
3606	if (!rc) {
3607		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3608		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3609	}
3610}
3611
3612void
3613vop_rename_post(void *ap, int rc)
3614{
3615	struct vop_rename_args *a = ap;
3616
3617	if (!rc) {
3618		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
3619		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
3620		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
3621		if (a->a_tvp)
3622			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
3623	}
3624	if (a->a_tdvp != a->a_fdvp)
3625		vdrop(a->a_fdvp);
3626	if (a->a_tvp != a->a_fvp)
3627		vdrop(a->a_fvp);
3628	vdrop(a->a_tdvp);
3629	if (a->a_tvp)
3630		vdrop(a->a_tvp);
3631}
3632
3633void
3634vop_rmdir_post(void *ap, int rc)
3635{
3636	struct vop_rmdir_args *a = ap;
3637
3638	if (!rc) {
3639		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3640		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3641	}
3642}
3643
3644void
3645vop_setattr_post(void *ap, int rc)
3646{
3647	struct vop_setattr_args *a = ap;
3648
3649	if (!rc)
3650		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
3651}
3652
3653void
3654vop_symlink_post(void *ap, int rc)
3655{
3656	struct vop_symlink_args *a = ap;
3657
3658	if (!rc)
3659		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3660}
3661
3662static struct knlist fs_knlist;
3663
3664static void
3665vfs_event_init(void *arg)
3666{
3667	knlist_init(&fs_knlist, NULL, NULL, NULL, NULL);
3668}
3669/* XXX - correct order? */
3670SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3671
3672void
3673vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
3674{
3675
3676	KNOTE_UNLOCKED(&fs_knlist, event);
3677}
3678
3679static int	filt_fsattach(struct knote *kn);
3680static void	filt_fsdetach(struct knote *kn);
3681static int	filt_fsevent(struct knote *kn, long hint);
3682
3683struct filterops fs_filtops =
3684	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
3685
3686static int
3687filt_fsattach(struct knote *kn)
3688{
3689
3690	kn->kn_flags |= EV_CLEAR;
3691	knlist_add(&fs_knlist, kn, 0);
3692	return (0);
3693}
3694
3695static void
3696filt_fsdetach(struct knote *kn)
3697{
3698
3699	knlist_remove(&fs_knlist, kn, 0);
3700}
3701
3702static int
3703filt_fsevent(struct knote *kn, long hint)
3704{
3705
3706	kn->kn_fflags |= hint;
3707	return (kn->kn_fflags != 0);
3708}
3709
3710static int
3711sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
3712{
3713	struct vfsidctl vc;
3714	int error;
3715	struct mount *mp;
3716
3717	error = SYSCTL_IN(req, &vc, sizeof(vc));
3718	if (error)
3719		return (error);
3720	if (vc.vc_vers != VFS_CTL_VERS1)
3721		return (EINVAL);
3722	mp = vfs_getvfs(&vc.vc_fsid);
3723	if (mp == NULL)
3724		return (ENOENT);
3725	/* ensure that a specific sysctl goes to the right filesystem. */
3726	if (strcmp(vc.vc_fstypename, "*") != 0 &&
3727	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
3728		vfs_rel(mp);
3729		return (EINVAL);
3730	}
3731	VCTLTOREQ(&vc, req);
3732	error = VFS_SYSCTL(mp, vc.vc_op, req);
3733	vfs_rel(mp);
3734	return (error);
3735}
3736
3737SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR,
3738        NULL, 0, sysctl_vfs_ctl, "", "Sysctl by fsid");
3739
3740/*
3741 * Function to initialize a va_filerev field sensibly.
3742 * XXX: Wouldn't a random number make a lot more sense ??
3743 */
3744u_quad_t
3745init_va_filerev(void)
3746{
3747	struct bintime bt;
3748
3749	getbinuptime(&bt);
3750	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
3751}
3752
3753static int	filt_vfsread(struct knote *kn, long hint);
3754static int	filt_vfswrite(struct knote *kn, long hint);
3755static int	filt_vfsvnode(struct knote *kn, long hint);
3756static void	filt_vfsdetach(struct knote *kn);
3757static struct filterops vfsread_filtops =
3758	{ 1, NULL, filt_vfsdetach, filt_vfsread };
3759static struct filterops vfswrite_filtops =
3760	{ 1, NULL, filt_vfsdetach, filt_vfswrite };
3761static struct filterops vfsvnode_filtops =
3762	{ 1, NULL, filt_vfsdetach, filt_vfsvnode };
3763
3764static void
3765vfs_knllock(void *arg)
3766{
3767	struct vnode *vp = arg;
3768
3769	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
3770}
3771
3772static void
3773vfs_knlunlock(void *arg)
3774{
3775	struct vnode *vp = arg;
3776
3777	VOP_UNLOCK(vp, 0, curthread);
3778}
3779
3780static int
3781vfs_knllocked(void *arg)
3782{
3783	struct vnode *vp = arg;
3784
3785	return (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE);
3786}
3787
3788int
3789vfs_kqfilter(struct vop_kqfilter_args *ap)
3790{
3791	struct vnode *vp = ap->a_vp;
3792	struct knote *kn = ap->a_kn;
3793	struct knlist *knl;
3794
3795	switch (kn->kn_filter) {
3796	case EVFILT_READ:
3797		kn->kn_fop = &vfsread_filtops;
3798		break;
3799	case EVFILT_WRITE:
3800		kn->kn_fop = &vfswrite_filtops;
3801		break;
3802	case EVFILT_VNODE:
3803		kn->kn_fop = &vfsvnode_filtops;
3804		break;
3805	default:
3806		return (EINVAL);
3807	}
3808
3809	kn->kn_hook = (caddr_t)vp;
3810
3811	if (vp->v_pollinfo == NULL)
3812		v_addpollinfo(vp);
3813	if (vp->v_pollinfo == NULL)
3814		return (ENOMEM);
3815	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
3816	knlist_add(knl, kn, 0);
3817
3818	return (0);
3819}
3820
3821/*
3822 * Detach knote from vnode
3823 */
3824static void
3825filt_vfsdetach(struct knote *kn)
3826{
3827	struct vnode *vp = (struct vnode *)kn->kn_hook;
3828
3829	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
3830	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
3831}
3832
3833/*ARGSUSED*/
3834static int
3835filt_vfsread(struct knote *kn, long hint)
3836{
3837	struct vnode *vp = (struct vnode *)kn->kn_hook;
3838	struct vattr va;
3839
3840	/*
3841	 * filesystem is gone, so set the EOF flag and schedule
3842	 * the knote for deletion.
3843	 */
3844	if (hint == NOTE_REVOKE) {
3845		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
3846		return (1);
3847	}
3848
3849	if (VOP_GETATTR(vp, &va, curthread->td_ucred, curthread))
3850		return (0);
3851
3852	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
3853	return (kn->kn_data != 0);
3854}
3855
3856/*ARGSUSED*/
3857static int
3858filt_vfswrite(struct knote *kn, long hint)
3859{
3860	/*
3861	 * filesystem is gone, so set the EOF flag and schedule
3862	 * the knote for deletion.
3863	 */
3864	if (hint == NOTE_REVOKE)
3865		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
3866
3867	kn->kn_data = 0;
3868	return (1);
3869}
3870
3871static int
3872filt_vfsvnode(struct knote *kn, long hint)
3873{
3874	if (kn->kn_sfflags & hint)
3875		kn->kn_fflags |= hint;
3876	if (hint == NOTE_REVOKE) {
3877		kn->kn_flags |= EV_EOF;
3878		return (1);
3879	}
3880	return (kn->kn_fflags != 0);
3881}
3882
3883int
3884vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
3885{
3886	int error;
3887
3888	if (dp->d_reclen > ap->a_uio->uio_resid)
3889		return (ENAMETOOLONG);
3890	error = uiomove(dp, dp->d_reclen, ap->a_uio);
3891	if (error) {
3892		if (ap->a_ncookies != NULL) {
3893			if (ap->a_cookies != NULL)
3894				free(ap->a_cookies, M_TEMP);
3895			ap->a_cookies = NULL;
3896			*ap->a_ncookies = 0;
3897		}
3898		return (error);
3899	}
3900	if (ap->a_ncookies == NULL)
3901		return (0);
3902
3903	KASSERT(ap->a_cookies,
3904	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
3905
3906	*ap->a_cookies = realloc(*ap->a_cookies,
3907	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
3908	(*ap->a_cookies)[*ap->a_ncookies] = off;
3909	return (0);
3910}
3911
3912/*
3913 * Mark for update the access time of the file if the filesystem
3914 * supports VA_MARK_ATIME.  This functionality is used by execve
3915 * and mmap, so we want to avoid the synchronous I/O implied by
3916 * directly setting va_atime for the sake of efficiency.
3917 */
3918void
3919vfs_mark_atime(struct vnode *vp, struct thread *td)
3920{
3921	struct vattr atimeattr;
3922
3923	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
3924		VATTR_NULL(&atimeattr);
3925		atimeattr.va_vaflags |= VA_MARK_ATIME;
3926		(void)VOP_SETATTR(vp, &atimeattr, td->td_ucred, td);
3927	}
3928}
3929