vfs_subr.c revision 159964
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_subr.c 159964 2006-06-26 22:03:22Z babkin $");
43
44#include "opt_ddb.h"
45#include "opt_mac.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/bio.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/event.h>
54#include <sys/eventhandler.h>
55#include <sys/extattr.h>
56#include <sys/file.h>
57#include <sys/fcntl.h>
58#include <sys/kdb.h>
59#include <sys/kernel.h>
60#include <sys/kthread.h>
61#include <sys/mac.h>
62#include <sys/malloc.h>
63#include <sys/mount.h>
64#include <sys/namei.h>
65#include <sys/reboot.h>
66#include <sys/sleepqueue.h>
67#include <sys/stat.h>
68#include <sys/sysctl.h>
69#include <sys/syslog.h>
70#include <sys/vmmeter.h>
71#include <sys/vnode.h>
72
73#include <machine/stdarg.h>
74
75#include <vm/vm.h>
76#include <vm/vm_object.h>
77#include <vm/vm_extern.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_page.h>
81#include <vm/vm_kern.h>
82#include <vm/uma.h>
83
84static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure");
85
86static void	delmntque(struct vnode *vp);
87static void	insmntque(struct vnode *vp, struct mount *mp);
88static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
89		    int slpflag, int slptimeo);
90static void	syncer_shutdown(void *arg, int howto);
91static int	vtryrecycle(struct vnode *vp);
92static void	vbusy(struct vnode *vp);
93static void	vdropl(struct vnode *vp);
94static void	vinactive(struct vnode *, struct thread *);
95static void	v_incr_usecount(struct vnode *);
96static void	v_decr_usecount(struct vnode *);
97static void	v_decr_useonly(struct vnode *);
98static void	v_upgrade_usecount(struct vnode *);
99static void	vfree(struct vnode *);
100static void	vnlru_free(int);
101static void	vdestroy(struct vnode *);
102static void	vgonel(struct vnode *);
103static void	vfs_knllock(void *arg);
104static void	vfs_knlunlock(void *arg);
105static int	vfs_knllocked(void *arg);
106
107
108/*
109 * Enable Giant pushdown based on whether or not the vm is mpsafe in this
110 * build.  Without mpsafevm the buffer cache can not run Giant free.
111 */
112#if defined(__amd64__) || defined(__i386__) || \
113	defined(__ia64__) || defined(__sparc64__)
114int mpsafe_vfs = 1;
115#else
116int mpsafe_vfs;
117#endif
118TUNABLE_INT("debug.mpsafevfs", &mpsafe_vfs);
119SYSCTL_INT(_debug, OID_AUTO, mpsafevfs, CTLFLAG_RD, &mpsafe_vfs, 0,
120    "MPSAFE VFS");
121
122/*
123 * Number of vnodes in existence.  Increased whenever getnewvnode()
124 * allocates a new vnode, never decreased.
125 */
126static unsigned long	numvnodes;
127
128SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
129
130/*
131 * Conversion tables for conversion from vnode types to inode formats
132 * and back.
133 */
134enum vtype iftovt_tab[16] = {
135	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
136	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
137};
138int vttoif_tab[10] = {
139	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
140	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
141};
142
143/*
144 * List of vnodes that are ready for recycling.
145 */
146static TAILQ_HEAD(freelst, vnode) vnode_free_list;
147
148/*
149 * Free vnode target.  Free vnodes may simply be files which have been stat'd
150 * but not read.  This is somewhat common, and a small cache of such files
151 * should be kept to avoid recreation costs.
152 */
153static u_long wantfreevnodes;
154SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
155/* Number of vnodes in the free list. */
156static u_long freevnodes;
157SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
158
159/*
160 * Various variables used for debugging the new implementation of
161 * reassignbuf().
162 * XXX these are probably of (very) limited utility now.
163 */
164static int reassignbufcalls;
165SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
166
167/*
168 * Cache for the mount type id assigned to NFS.  This is used for
169 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
170 */
171int	nfs_mount_type = -1;
172
173/* To keep more than one thread at a time from running vfs_getnewfsid */
174static struct mtx mntid_mtx;
175
176/*
177 * Lock for any access to the following:
178 *	vnode_free_list
179 *	numvnodes
180 *	freevnodes
181 */
182static struct mtx vnode_free_list_mtx;
183
184/* Publicly exported FS */
185struct nfs_public nfs_pub;
186
187/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
188static uma_zone_t vnode_zone;
189static uma_zone_t vnodepoll_zone;
190
191/* Set to 1 to print out reclaim of active vnodes */
192int	prtactive;
193
194/*
195 * The workitem queue.
196 *
197 * It is useful to delay writes of file data and filesystem metadata
198 * for tens of seconds so that quickly created and deleted files need
199 * not waste disk bandwidth being created and removed. To realize this,
200 * we append vnodes to a "workitem" queue. When running with a soft
201 * updates implementation, most pending metadata dependencies should
202 * not wait for more than a few seconds. Thus, mounted on block devices
203 * are delayed only about a half the time that file data is delayed.
204 * Similarly, directory updates are more critical, so are only delayed
205 * about a third the time that file data is delayed. Thus, there are
206 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
207 * one each second (driven off the filesystem syncer process). The
208 * syncer_delayno variable indicates the next queue that is to be processed.
209 * Items that need to be processed soon are placed in this queue:
210 *
211 *	syncer_workitem_pending[syncer_delayno]
212 *
213 * A delay of fifteen seconds is done by placing the request fifteen
214 * entries later in the queue:
215 *
216 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
217 *
218 */
219static int syncer_delayno;
220static long syncer_mask;
221LIST_HEAD(synclist, bufobj);
222static struct synclist *syncer_workitem_pending;
223/*
224 * The sync_mtx protects:
225 *	bo->bo_synclist
226 *	sync_vnode_count
227 *	syncer_delayno
228 *	syncer_state
229 *	syncer_workitem_pending
230 *	syncer_worklist_len
231 *	rushjob
232 */
233static struct mtx sync_mtx;
234
235#define SYNCER_MAXDELAY		32
236static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
237static int syncdelay = 30;		/* max time to delay syncing data */
238static int filedelay = 30;		/* time to delay syncing files */
239SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
240static int dirdelay = 29;		/* time to delay syncing directories */
241SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
242static int metadelay = 28;		/* time to delay syncing metadata */
243SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
244static int rushjob;		/* number of slots to run ASAP */
245static int stat_rush_requests;	/* number of times I/O speeded up */
246SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
247
248/*
249 * When shutting down the syncer, run it at four times normal speed.
250 */
251#define SYNCER_SHUTDOWN_SPEEDUP		4
252static int sync_vnode_count;
253static int syncer_worklist_len;
254static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
255    syncer_state;
256
257/*
258 * Number of vnodes we want to exist at any one time.  This is mostly used
259 * to size hash tables in vnode-related code.  It is normally not used in
260 * getnewvnode(), as wantfreevnodes is normally nonzero.)
261 *
262 * XXX desiredvnodes is historical cruft and should not exist.
263 */
264int desiredvnodes;
265SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
266    &desiredvnodes, 0, "Maximum number of vnodes");
267SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
268    &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
269static int vnlru_nowhere;
270SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
271    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
272
273/*
274 * Macros to control when a vnode is freed and recycled.  All require
275 * the vnode interlock.
276 */
277#define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
278#define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
279#define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
280
281
282/*
283 * Initialize the vnode management data structures.
284 */
285#ifndef	MAXVNODES_MAX
286#define	MAXVNODES_MAX	100000
287#endif
288static void
289vntblinit(void *dummy __unused)
290{
291
292	/*
293	 * Desiredvnodes is a function of the physical memory size and
294	 * the kernel's heap size.  Specifically, desiredvnodes scales
295	 * in proportion to the physical memory size until two fifths
296	 * of the kernel's heap size is consumed by vnodes and vm
297	 * objects.
298	 */
299	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
300	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
301	if (desiredvnodes > MAXVNODES_MAX) {
302		if (bootverbose)
303			printf("Reducing kern.maxvnodes %d -> %d\n",
304			    desiredvnodes, MAXVNODES_MAX);
305		desiredvnodes = MAXVNODES_MAX;
306	}
307	wantfreevnodes = desiredvnodes / 4;
308	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
309	TAILQ_INIT(&vnode_free_list);
310	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
311	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
312	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
313	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
314	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315	/*
316	 * Initialize the filesystem syncer.
317	 */
318	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
319		&syncer_mask);
320	syncer_maxdelay = syncer_mask + 1;
321	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
322}
323SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
324
325
326/*
327 * Mark a mount point as busy. Used to synchronize access and to delay
328 * unmounting. Interlock is not released on failure.
329 */
330int
331vfs_busy(struct mount *mp, int flags, struct mtx *interlkp,
332    struct thread *td)
333{
334	int lkflags;
335
336	MNT_ILOCK(mp);
337	MNT_REF(mp);
338	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
339		if (flags & LK_NOWAIT) {
340			MNT_REL(mp);
341			MNT_IUNLOCK(mp);
342			return (ENOENT);
343		}
344		if (interlkp)
345			mtx_unlock(interlkp);
346		mp->mnt_kern_flag |= MNTK_MWAIT;
347		/*
348		 * Since all busy locks are shared except the exclusive
349		 * lock granted when unmounting, the only place that a
350		 * wakeup needs to be done is at the release of the
351		 * exclusive lock at the end of dounmount.
352		 */
353		msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
354		MNT_REL(mp);
355		MNT_IUNLOCK(mp);
356		if (interlkp)
357			mtx_lock(interlkp);
358		return (ENOENT);
359	}
360	if (interlkp)
361		mtx_unlock(interlkp);
362	lkflags = LK_SHARED | LK_INTERLOCK;
363	if (lockmgr(&mp->mnt_lock, lkflags, MNT_MTX(mp), td))
364		panic("vfs_busy: unexpected lock failure");
365	return (0);
366}
367
368/*
369 * Free a busy filesystem.
370 */
371void
372vfs_unbusy(struct mount *mp, struct thread *td)
373{
374
375	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
376	vfs_rel(mp);
377}
378
379/*
380 * Lookup a mount point by filesystem identifier.
381 */
382struct mount *
383vfs_getvfs(fsid_t *fsid)
384{
385	struct mount *mp;
386
387	mtx_lock(&mountlist_mtx);
388	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
389		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
390		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
391			vfs_ref(mp);
392			mtx_unlock(&mountlist_mtx);
393			return (mp);
394		}
395	}
396	mtx_unlock(&mountlist_mtx);
397	return ((struct mount *) 0);
398}
399
400/*
401 * Check if a user can access priveledged mount options.
402 */
403int
404vfs_suser(struct mount *mp, struct thread *td)
405{
406	int error;
407
408	if ((mp->mnt_flag & MNT_USER) == 0 ||
409	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
410		if ((error = suser(td)) != 0)
411			return (error);
412	}
413	return (0);
414}
415
416/*
417 * Get a new unique fsid.  Try to make its val[0] unique, since this value
418 * will be used to create fake device numbers for stat().  Also try (but
419 * not so hard) make its val[0] unique mod 2^16, since some emulators only
420 * support 16-bit device numbers.  We end up with unique val[0]'s for the
421 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
422 *
423 * Keep in mind that several mounts may be running in parallel.  Starting
424 * the search one past where the previous search terminated is both a
425 * micro-optimization and a defense against returning the same fsid to
426 * different mounts.
427 */
428void
429vfs_getnewfsid(struct mount *mp)
430{
431	static u_int16_t mntid_base;
432	struct mount *nmp;
433	fsid_t tfsid;
434	int mtype;
435
436	mtx_lock(&mntid_mtx);
437	mtype = mp->mnt_vfc->vfc_typenum;
438	tfsid.val[1] = mtype;
439	mtype = (mtype & 0xFF) << 24;
440	for (;;) {
441		tfsid.val[0] = makedev(255,
442		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
443		mntid_base++;
444		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
445			break;
446		vfs_rel(nmp);
447	}
448	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
449	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
450	mtx_unlock(&mntid_mtx);
451}
452
453/*
454 * Knob to control the precision of file timestamps:
455 *
456 *   0 = seconds only; nanoseconds zeroed.
457 *   1 = seconds and nanoseconds, accurate within 1/HZ.
458 *   2 = seconds and nanoseconds, truncated to microseconds.
459 * >=3 = seconds and nanoseconds, maximum precision.
460 */
461enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
462
463static int timestamp_precision = TSP_SEC;
464SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
465    &timestamp_precision, 0, "");
466
467/*
468 * Get a current timestamp.
469 */
470void
471vfs_timestamp(struct timespec *tsp)
472{
473	struct timeval tv;
474
475	switch (timestamp_precision) {
476	case TSP_SEC:
477		tsp->tv_sec = time_second;
478		tsp->tv_nsec = 0;
479		break;
480	case TSP_HZ:
481		getnanotime(tsp);
482		break;
483	case TSP_USEC:
484		microtime(&tv);
485		TIMEVAL_TO_TIMESPEC(&tv, tsp);
486		break;
487	case TSP_NSEC:
488	default:
489		nanotime(tsp);
490		break;
491	}
492}
493
494/*
495 * Set vnode attributes to VNOVAL
496 */
497void
498vattr_null(struct vattr *vap)
499{
500
501	vap->va_type = VNON;
502	vap->va_size = VNOVAL;
503	vap->va_bytes = VNOVAL;
504	vap->va_mode = VNOVAL;
505	vap->va_nlink = VNOVAL;
506	vap->va_uid = VNOVAL;
507	vap->va_gid = VNOVAL;
508	vap->va_fsid = VNOVAL;
509	vap->va_fileid = VNOVAL;
510	vap->va_blocksize = VNOVAL;
511	vap->va_rdev = VNOVAL;
512	vap->va_atime.tv_sec = VNOVAL;
513	vap->va_atime.tv_nsec = VNOVAL;
514	vap->va_mtime.tv_sec = VNOVAL;
515	vap->va_mtime.tv_nsec = VNOVAL;
516	vap->va_ctime.tv_sec = VNOVAL;
517	vap->va_ctime.tv_nsec = VNOVAL;
518	vap->va_birthtime.tv_sec = VNOVAL;
519	vap->va_birthtime.tv_nsec = VNOVAL;
520	vap->va_flags = VNOVAL;
521	vap->va_gen = VNOVAL;
522	vap->va_vaflags = 0;
523}
524
525/*
526 * This routine is called when we have too many vnodes.  It attempts
527 * to free <count> vnodes and will potentially free vnodes that still
528 * have VM backing store (VM backing store is typically the cause
529 * of a vnode blowout so we want to do this).  Therefore, this operation
530 * is not considered cheap.
531 *
532 * A number of conditions may prevent a vnode from being reclaimed.
533 * the buffer cache may have references on the vnode, a directory
534 * vnode may still have references due to the namei cache representing
535 * underlying files, or the vnode may be in active use.   It is not
536 * desireable to reuse such vnodes.  These conditions may cause the
537 * number of vnodes to reach some minimum value regardless of what
538 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
539 */
540static int
541vlrureclaim(struct mount *mp)
542{
543	struct thread *td;
544	struct vnode *vp;
545	int done;
546	int trigger;
547	int usevnodes;
548	int count;
549
550	/*
551	 * Calculate the trigger point, don't allow user
552	 * screwups to blow us up.   This prevents us from
553	 * recycling vnodes with lots of resident pages.  We
554	 * aren't trying to free memory, we are trying to
555	 * free vnodes.
556	 */
557	usevnodes = desiredvnodes;
558	if (usevnodes <= 0)
559		usevnodes = 1;
560	trigger = cnt.v_page_count * 2 / usevnodes;
561	done = 0;
562	td = curthread;
563	vn_start_write(NULL, &mp, V_WAIT);
564	MNT_ILOCK(mp);
565	count = mp->mnt_nvnodelistsize / 10 + 1;
566	while (count != 0) {
567		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
568		while (vp != NULL && vp->v_type == VMARKER)
569			vp = TAILQ_NEXT(vp, v_nmntvnodes);
570		if (vp == NULL)
571			break;
572		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
573		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
574		--count;
575		if (!VI_TRYLOCK(vp))
576			goto next_iter;
577		/*
578		 * If it's been deconstructed already, it's still
579		 * referenced, or it exceeds the trigger, skip it.
580		 */
581		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
582		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
583		    vp->v_object->resident_page_count > trigger)) {
584			VI_UNLOCK(vp);
585			goto next_iter;
586		}
587		MNT_IUNLOCK(mp);
588		vholdl(vp);
589		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT, td)) {
590			vdrop(vp);
591			goto next_iter_mntunlocked;
592		}
593		VI_LOCK(vp);
594		/*
595		 * v_usecount may have been bumped after VOP_LOCK() dropped
596		 * the vnode interlock and before it was locked again.
597		 *
598		 * It is not necessary to recheck VI_DOOMED because it can
599		 * only be set by another thread that holds both the vnode
600		 * lock and vnode interlock.  If another thread has the
601		 * vnode lock before we get to VOP_LOCK() and obtains the
602		 * vnode interlock after VOP_LOCK() drops the vnode
603		 * interlock, the other thread will be unable to drop the
604		 * vnode lock before our VOP_LOCK() call fails.
605		 */
606		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
607		    (vp->v_object != NULL &&
608		    vp->v_object->resident_page_count > trigger)) {
609			VOP_UNLOCK(vp, LK_INTERLOCK, td);
610			goto next_iter_mntunlocked;
611		}
612		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
613		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
614		vgonel(vp);
615		VOP_UNLOCK(vp, 0, td);
616		vdropl(vp);
617		done++;
618next_iter_mntunlocked:
619		if ((count % 256) != 0)
620			goto relock_mnt;
621		goto yield;
622next_iter:
623		if ((count % 256) != 0)
624			continue;
625		MNT_IUNLOCK(mp);
626yield:
627		uio_yield();
628relock_mnt:
629		MNT_ILOCK(mp);
630	}
631	MNT_IUNLOCK(mp);
632	vn_finished_write(mp);
633	return done;
634}
635
636/*
637 * Attempt to keep the free list at wantfreevnodes length.
638 */
639static void
640vnlru_free(int count)
641{
642	struct vnode *vp;
643	int vfslocked;
644
645	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
646	for (; count > 0; count--) {
647		vp = TAILQ_FIRST(&vnode_free_list);
648		/*
649		 * The list can be modified while the free_list_mtx
650		 * has been dropped and vp could be NULL here.
651		 */
652		if (!vp)
653			break;
654		VNASSERT(vp->v_op != NULL, vp,
655		    ("vnlru_free: vnode already reclaimed."));
656		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
657		/*
658		 * Don't recycle if we can't get the interlock.
659		 */
660		if (!VI_TRYLOCK(vp)) {
661			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
662			continue;
663		}
664		VNASSERT(VCANRECYCLE(vp), vp,
665		    ("vp inconsistent on freelist"));
666		freevnodes--;
667		vp->v_iflag &= ~VI_FREE;
668		vholdl(vp);
669		mtx_unlock(&vnode_free_list_mtx);
670		VI_UNLOCK(vp);
671		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
672		vtryrecycle(vp);
673		VFS_UNLOCK_GIANT(vfslocked);
674		/*
675		 * If the recycled succeeded this vdrop will actually free
676		 * the vnode.  If not it will simply place it back on
677		 * the free list.
678		 */
679		vdrop(vp);
680		mtx_lock(&vnode_free_list_mtx);
681	}
682}
683/*
684 * Attempt to recycle vnodes in a context that is always safe to block.
685 * Calling vlrurecycle() from the bowels of filesystem code has some
686 * interesting deadlock problems.
687 */
688static struct proc *vnlruproc;
689static int vnlruproc_sig;
690
691static void
692vnlru_proc(void)
693{
694	struct mount *mp, *nmp;
695	int done;
696	struct proc *p = vnlruproc;
697	struct thread *td = FIRST_THREAD_IN_PROC(p);
698
699	mtx_lock(&Giant);
700
701	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
702	    SHUTDOWN_PRI_FIRST);
703
704	for (;;) {
705		kthread_suspend_check(p);
706		mtx_lock(&vnode_free_list_mtx);
707		if (freevnodes > wantfreevnodes)
708			vnlru_free(freevnodes - wantfreevnodes);
709		if (numvnodes <= desiredvnodes * 9 / 10) {
710			vnlruproc_sig = 0;
711			wakeup(&vnlruproc_sig);
712			msleep(vnlruproc, &vnode_free_list_mtx,
713			    PVFS|PDROP, "vlruwt", hz);
714			continue;
715		}
716		mtx_unlock(&vnode_free_list_mtx);
717		done = 0;
718		mtx_lock(&mountlist_mtx);
719		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
720			int vfsunlocked;
721			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
722				nmp = TAILQ_NEXT(mp, mnt_list);
723				continue;
724			}
725			if (!VFS_NEEDSGIANT(mp)) {
726				mtx_unlock(&Giant);
727				vfsunlocked = 1;
728			} else
729				vfsunlocked = 0;
730			done += vlrureclaim(mp);
731			if (vfsunlocked)
732				mtx_lock(&Giant);
733			mtx_lock(&mountlist_mtx);
734			nmp = TAILQ_NEXT(mp, mnt_list);
735			vfs_unbusy(mp, td);
736		}
737		mtx_unlock(&mountlist_mtx);
738		if (done == 0) {
739#if 0
740			/* These messages are temporary debugging aids */
741			if (vnlru_nowhere < 5)
742				printf("vnlru process getting nowhere..\n");
743			else if (vnlru_nowhere == 5)
744				printf("vnlru process messages stopped.\n");
745#endif
746			vnlru_nowhere++;
747			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
748		} else
749			uio_yield();
750	}
751}
752
753static struct kproc_desc vnlru_kp = {
754	"vnlru",
755	vnlru_proc,
756	&vnlruproc
757};
758SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
759
760/*
761 * Routines having to do with the management of the vnode table.
762 */
763
764static void
765vdestroy(struct vnode *vp)
766{
767	struct bufobj *bo;
768
769	CTR1(KTR_VFS, "vdestroy vp %p", vp);
770	mtx_lock(&vnode_free_list_mtx);
771	numvnodes--;
772	mtx_unlock(&vnode_free_list_mtx);
773	bo = &vp->v_bufobj;
774	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
775	    ("cleaned vnode still on the free list."));
776	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
777	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
778	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
779	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
780	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
781	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
782	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
783	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
784	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
785	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
786	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
787	VI_UNLOCK(vp);
788	if (vp->v_pollinfo != NULL) {
789		knlist_destroy(&vp->v_pollinfo->vpi_selinfo.si_note);
790		mtx_destroy(&vp->v_pollinfo->vpi_lock);
791		uma_zfree(vnodepoll_zone, vp->v_pollinfo);
792	}
793#ifdef INVARIANTS
794	/* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
795	vp->v_op = NULL;
796#endif
797	lockdestroy(vp->v_vnlock);
798	mtx_destroy(&vp->v_interlock);
799#ifdef MAC
800	mac_destroy_vnode(vp);
801#endif
802	uma_zfree(vnode_zone, vp);
803}
804
805/*
806 * Try to recycle a freed vnode.  We abort if anyone picks up a reference
807 * before we actually vgone().  This function must be called with the vnode
808 * held to prevent the vnode from being returned to the free list midway
809 * through vgone().
810 */
811static int
812vtryrecycle(struct vnode *vp)
813{
814	struct thread *td = curthread;
815	struct mount *vnmp;
816
817	CTR1(KTR_VFS, "vtryrecycle: trying vp %p", vp);
818	VNASSERT(vp->v_holdcnt, vp,
819	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
820	/*
821	 * This vnode may found and locked via some other list, if so we
822	 * can't recycle it yet.
823	 */
824	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
825		return (EWOULDBLOCK);
826	/*
827	 * Don't recycle if its filesystem is being suspended.
828	 */
829	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
830		VOP_UNLOCK(vp, 0, td);
831		return (EBUSY);
832	}
833	/*
834	 * If we got this far, we need to acquire the interlock and see if
835	 * anyone picked up this vnode from another list.  If not, we will
836	 * mark it with DOOMED via vgonel() so that anyone who does find it
837	 * will skip over it.
838	 */
839	VI_LOCK(vp);
840	if (vp->v_usecount) {
841		VOP_UNLOCK(vp, LK_INTERLOCK, td);
842		vn_finished_write(vnmp);
843		return (EBUSY);
844	}
845	if ((vp->v_iflag & VI_DOOMED) == 0)
846		vgonel(vp);
847	VOP_UNLOCK(vp, LK_INTERLOCK, td);
848	vn_finished_write(vnmp);
849	CTR1(KTR_VFS, "vtryrecycle: recycled vp %p", vp);
850	return (0);
851}
852
853/*
854 * Return the next vnode from the free list.
855 */
856int
857getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
858    struct vnode **vpp)
859{
860	struct vnode *vp = NULL;
861	struct bufobj *bo;
862
863	mtx_lock(&vnode_free_list_mtx);
864	/*
865	 * Lend our context to reclaim vnodes if they've exceeded the max.
866	 */
867	if (freevnodes > wantfreevnodes)
868		vnlru_free(1);
869	/*
870	 * Wait for available vnodes.
871	 */
872	if (numvnodes > desiredvnodes) {
873		if (vnlruproc_sig == 0) {
874			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
875			wakeup(vnlruproc);
876		}
877		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
878		    "vlruwk", hz);
879#if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
880		if (numvnodes > desiredvnodes) {
881			mtx_unlock(&vnode_free_list_mtx);
882			return (ENFILE);
883		}
884#endif
885	}
886	numvnodes++;
887	mtx_unlock(&vnode_free_list_mtx);
888	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
889	/*
890	 * Setup locks.
891	 */
892	vp->v_vnlock = &vp->v_lock;
893	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
894	/*
895	 * By default, don't allow shared locks unless filesystems
896	 * opt-in.
897	 */
898	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
899	/*
900	 * Initialize bufobj.
901	 */
902	bo = &vp->v_bufobj;
903	bo->__bo_vnode = vp;
904	bo->bo_mtx = &vp->v_interlock;
905	bo->bo_ops = &buf_ops_bio;
906	bo->bo_private = vp;
907	TAILQ_INIT(&bo->bo_clean.bv_hd);
908	TAILQ_INIT(&bo->bo_dirty.bv_hd);
909	/*
910	 * Initialize namecache.
911	 */
912	LIST_INIT(&vp->v_cache_src);
913	TAILQ_INIT(&vp->v_cache_dst);
914	/*
915	 * Finalize various vnode identity bits.
916	 */
917	vp->v_type = VNON;
918	vp->v_tag = tag;
919	vp->v_op = vops;
920	v_incr_usecount(vp);
921	vp->v_data = 0;
922#ifdef MAC
923	mac_init_vnode(vp);
924	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
925		mac_associate_vnode_singlelabel(mp, vp);
926	else if (mp == NULL)
927		printf("NULL mp in getnewvnode()\n");
928#endif
929	if (mp != NULL) {
930		insmntque(vp, mp);
931		bo->bo_bsize = mp->mnt_stat.f_iosize;
932		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
933			vp->v_vflag |= VV_NOKNOTE;
934	}
935
936	CTR2(KTR_VFS, "getnewvnode: mp %p vp %p", mp, vp);
937	*vpp = vp;
938	return (0);
939}
940
941/*
942 * Delete from old mount point vnode list, if on one.
943 */
944static void
945delmntque(struct vnode *vp)
946{
947	struct mount *mp;
948
949	mp = vp->v_mount;
950	if (mp == NULL)
951		return;
952	MNT_ILOCK(mp);
953	vp->v_mount = NULL;
954	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
955		("bad mount point vnode list size"));
956	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
957	mp->mnt_nvnodelistsize--;
958	MNT_REL(mp);
959	MNT_IUNLOCK(mp);
960}
961
962/*
963 * Insert into list of vnodes for the new mount point, if available.
964 */
965static void
966insmntque(struct vnode *vp, struct mount *mp)
967{
968
969	vp->v_mount = mp;
970	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
971	MNT_ILOCK(mp);
972	MNT_REF(mp);
973	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
974	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
975		("neg mount point vnode list size"));
976	mp->mnt_nvnodelistsize++;
977	MNT_IUNLOCK(mp);
978}
979
980/*
981 * Flush out and invalidate all buffers associated with a bufobj
982 * Called with the underlying object locked.
983 */
984int
985bufobj_invalbuf(struct bufobj *bo, int flags, struct thread *td, int slpflag,
986    int slptimeo)
987{
988	int error;
989
990	BO_LOCK(bo);
991	if (flags & V_SAVE) {
992		error = bufobj_wwait(bo, slpflag, slptimeo);
993		if (error) {
994			BO_UNLOCK(bo);
995			return (error);
996		}
997		if (bo->bo_dirty.bv_cnt > 0) {
998			BO_UNLOCK(bo);
999			if ((error = BO_SYNC(bo, MNT_WAIT, td)) != 0)
1000				return (error);
1001			/*
1002			 * XXX We could save a lock/unlock if this was only
1003			 * enabled under INVARIANTS
1004			 */
1005			BO_LOCK(bo);
1006			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1007				panic("vinvalbuf: dirty bufs");
1008		}
1009	}
1010	/*
1011	 * If you alter this loop please notice that interlock is dropped and
1012	 * reacquired in flushbuflist.  Special care is needed to ensure that
1013	 * no race conditions occur from this.
1014	 */
1015	do {
1016		error = flushbuflist(&bo->bo_clean,
1017		    flags, bo, slpflag, slptimeo);
1018		if (error == 0)
1019			error = flushbuflist(&bo->bo_dirty,
1020			    flags, bo, slpflag, slptimeo);
1021		if (error != 0 && error != EAGAIN) {
1022			BO_UNLOCK(bo);
1023			return (error);
1024		}
1025	} while (error != 0);
1026
1027	/*
1028	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1029	 * have write I/O in-progress but if there is a VM object then the
1030	 * VM object can also have read-I/O in-progress.
1031	 */
1032	do {
1033		bufobj_wwait(bo, 0, 0);
1034		BO_UNLOCK(bo);
1035		if (bo->bo_object != NULL) {
1036			VM_OBJECT_LOCK(bo->bo_object);
1037			vm_object_pip_wait(bo->bo_object, "bovlbx");
1038			VM_OBJECT_UNLOCK(bo->bo_object);
1039		}
1040		BO_LOCK(bo);
1041	} while (bo->bo_numoutput > 0);
1042	BO_UNLOCK(bo);
1043
1044	/*
1045	 * Destroy the copy in the VM cache, too.
1046	 */
1047	if (bo->bo_object != NULL) {
1048		VM_OBJECT_LOCK(bo->bo_object);
1049		vm_object_page_remove(bo->bo_object, 0, 0,
1050			(flags & V_SAVE) ? TRUE : FALSE);
1051		VM_OBJECT_UNLOCK(bo->bo_object);
1052	}
1053
1054#ifdef INVARIANTS
1055	BO_LOCK(bo);
1056	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1057	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1058		panic("vinvalbuf: flush failed");
1059	BO_UNLOCK(bo);
1060#endif
1061	return (0);
1062}
1063
1064/*
1065 * Flush out and invalidate all buffers associated with a vnode.
1066 * Called with the underlying object locked.
1067 */
1068int
1069vinvalbuf(struct vnode *vp, int flags, struct thread *td, int slpflag,
1070    int slptimeo)
1071{
1072
1073	CTR2(KTR_VFS, "vinvalbuf vp %p flags %d", vp, flags);
1074	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1075	return (bufobj_invalbuf(&vp->v_bufobj, flags, td, slpflag, slptimeo));
1076}
1077
1078/*
1079 * Flush out buffers on the specified list.
1080 *
1081 */
1082static int
1083flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1084    int slptimeo)
1085{
1086	struct buf *bp, *nbp;
1087	int retval, error;
1088	daddr_t lblkno;
1089	b_xflags_t xflags;
1090
1091	ASSERT_BO_LOCKED(bo);
1092
1093	retval = 0;
1094	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1095		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1096		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1097			continue;
1098		}
1099		lblkno = 0;
1100		xflags = 0;
1101		if (nbp != NULL) {
1102			lblkno = nbp->b_lblkno;
1103			xflags = nbp->b_xflags &
1104				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1105		}
1106		retval = EAGAIN;
1107		error = BUF_TIMELOCK(bp,
1108		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1109		    "flushbuf", slpflag, slptimeo);
1110		if (error) {
1111			BO_LOCK(bo);
1112			return (error != ENOLCK ? error : EAGAIN);
1113		}
1114		KASSERT(bp->b_bufobj == bo,
1115	            ("bp %p wrong b_bufobj %p should be %p",
1116		    bp, bp->b_bufobj, bo));
1117		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1118			BUF_UNLOCK(bp);
1119			BO_LOCK(bo);
1120			return (EAGAIN);
1121		}
1122		/*
1123		 * XXX Since there are no node locks for NFS, I
1124		 * believe there is a slight chance that a delayed
1125		 * write will occur while sleeping just above, so
1126		 * check for it.
1127		 */
1128		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1129		    (flags & V_SAVE)) {
1130			bremfree(bp);
1131			bp->b_flags |= B_ASYNC;
1132			bwrite(bp);
1133			BO_LOCK(bo);
1134			return (EAGAIN);	/* XXX: why not loop ? */
1135		}
1136		bremfree(bp);
1137		bp->b_flags |= (B_INVAL | B_RELBUF);
1138		bp->b_flags &= ~B_ASYNC;
1139		brelse(bp);
1140		BO_LOCK(bo);
1141		if (nbp != NULL &&
1142		    (nbp->b_bufobj != bo ||
1143		     nbp->b_lblkno != lblkno ||
1144		     (nbp->b_xflags &
1145		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1146			break;			/* nbp invalid */
1147	}
1148	return (retval);
1149}
1150
1151/*
1152 * Truncate a file's buffer and pages to a specified length.  This
1153 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1154 * sync activity.
1155 */
1156int
1157vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td,
1158    off_t length, int blksize)
1159{
1160	struct buf *bp, *nbp;
1161	int anyfreed;
1162	int trunclbn;
1163	struct bufobj *bo;
1164
1165	CTR2(KTR_VFS, "vtruncbuf vp %p length %jd", vp, length);
1166	/*
1167	 * Round up to the *next* lbn.
1168	 */
1169	trunclbn = (length + blksize - 1) / blksize;
1170
1171	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1172restart:
1173	VI_LOCK(vp);
1174	bo = &vp->v_bufobj;
1175	anyfreed = 1;
1176	for (;anyfreed;) {
1177		anyfreed = 0;
1178		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1179			if (bp->b_lblkno < trunclbn)
1180				continue;
1181			if (BUF_LOCK(bp,
1182			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1183			    VI_MTX(vp)) == ENOLCK)
1184				goto restart;
1185
1186			bremfree(bp);
1187			bp->b_flags |= (B_INVAL | B_RELBUF);
1188			bp->b_flags &= ~B_ASYNC;
1189			brelse(bp);
1190			anyfreed = 1;
1191
1192			if (nbp != NULL &&
1193			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1194			    (nbp->b_vp != vp) ||
1195			    (nbp->b_flags & B_DELWRI))) {
1196				goto restart;
1197			}
1198			VI_LOCK(vp);
1199		}
1200
1201		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1202			if (bp->b_lblkno < trunclbn)
1203				continue;
1204			if (BUF_LOCK(bp,
1205			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1206			    VI_MTX(vp)) == ENOLCK)
1207				goto restart;
1208			bremfree(bp);
1209			bp->b_flags |= (B_INVAL | B_RELBUF);
1210			bp->b_flags &= ~B_ASYNC;
1211			brelse(bp);
1212			anyfreed = 1;
1213			if (nbp != NULL &&
1214			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1215			    (nbp->b_vp != vp) ||
1216			    (nbp->b_flags & B_DELWRI) == 0)) {
1217				goto restart;
1218			}
1219			VI_LOCK(vp);
1220		}
1221	}
1222
1223	if (length > 0) {
1224restartsync:
1225		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1226			if (bp->b_lblkno > 0)
1227				continue;
1228			/*
1229			 * Since we hold the vnode lock this should only
1230			 * fail if we're racing with the buf daemon.
1231			 */
1232			if (BUF_LOCK(bp,
1233			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1234			    VI_MTX(vp)) == ENOLCK) {
1235				goto restart;
1236			}
1237			VNASSERT((bp->b_flags & B_DELWRI), vp,
1238			    ("buf(%p) on dirty queue without DELWRI", bp));
1239
1240			bremfree(bp);
1241			bawrite(bp);
1242			VI_LOCK(vp);
1243			goto restartsync;
1244		}
1245	}
1246
1247	bufobj_wwait(bo, 0, 0);
1248	VI_UNLOCK(vp);
1249	vnode_pager_setsize(vp, length);
1250
1251	return (0);
1252}
1253
1254/*
1255 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1256 * 		 a vnode.
1257 *
1258 *	NOTE: We have to deal with the special case of a background bitmap
1259 *	buffer, a situation where two buffers will have the same logical
1260 *	block offset.  We want (1) only the foreground buffer to be accessed
1261 *	in a lookup and (2) must differentiate between the foreground and
1262 *	background buffer in the splay tree algorithm because the splay
1263 *	tree cannot normally handle multiple entities with the same 'index'.
1264 *	We accomplish this by adding differentiating flags to the splay tree's
1265 *	numerical domain.
1266 */
1267static
1268struct buf *
1269buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1270{
1271	struct buf dummy;
1272	struct buf *lefttreemax, *righttreemin, *y;
1273
1274	if (root == NULL)
1275		return (NULL);
1276	lefttreemax = righttreemin = &dummy;
1277	for (;;) {
1278		if (lblkno < root->b_lblkno ||
1279		    (lblkno == root->b_lblkno &&
1280		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1281			if ((y = root->b_left) == NULL)
1282				break;
1283			if (lblkno < y->b_lblkno) {
1284				/* Rotate right. */
1285				root->b_left = y->b_right;
1286				y->b_right = root;
1287				root = y;
1288				if ((y = root->b_left) == NULL)
1289					break;
1290			}
1291			/* Link into the new root's right tree. */
1292			righttreemin->b_left = root;
1293			righttreemin = root;
1294		} else if (lblkno > root->b_lblkno ||
1295		    (lblkno == root->b_lblkno &&
1296		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1297			if ((y = root->b_right) == NULL)
1298				break;
1299			if (lblkno > y->b_lblkno) {
1300				/* Rotate left. */
1301				root->b_right = y->b_left;
1302				y->b_left = root;
1303				root = y;
1304				if ((y = root->b_right) == NULL)
1305					break;
1306			}
1307			/* Link into the new root's left tree. */
1308			lefttreemax->b_right = root;
1309			lefttreemax = root;
1310		} else {
1311			break;
1312		}
1313		root = y;
1314	}
1315	/* Assemble the new root. */
1316	lefttreemax->b_right = root->b_left;
1317	righttreemin->b_left = root->b_right;
1318	root->b_left = dummy.b_right;
1319	root->b_right = dummy.b_left;
1320	return (root);
1321}
1322
1323static void
1324buf_vlist_remove(struct buf *bp)
1325{
1326	struct buf *root;
1327	struct bufv *bv;
1328
1329	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1330	ASSERT_BO_LOCKED(bp->b_bufobj);
1331	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1332	    (BX_VNDIRTY|BX_VNCLEAN),
1333	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1334	if (bp->b_xflags & BX_VNDIRTY)
1335		bv = &bp->b_bufobj->bo_dirty;
1336	else
1337		bv = &bp->b_bufobj->bo_clean;
1338	if (bp != bv->bv_root) {
1339		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1340		KASSERT(root == bp, ("splay lookup failed in remove"));
1341	}
1342	if (bp->b_left == NULL) {
1343		root = bp->b_right;
1344	} else {
1345		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1346		root->b_right = bp->b_right;
1347	}
1348	bv->bv_root = root;
1349	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1350	bv->bv_cnt--;
1351	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1352}
1353
1354/*
1355 * Add the buffer to the sorted clean or dirty block list using a
1356 * splay tree algorithm.
1357 *
1358 * NOTE: xflags is passed as a constant, optimizing this inline function!
1359 */
1360static void
1361buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1362{
1363	struct buf *root;
1364	struct bufv *bv;
1365
1366	ASSERT_BO_LOCKED(bo);
1367	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1368	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1369	bp->b_xflags |= xflags;
1370	if (xflags & BX_VNDIRTY)
1371		bv = &bo->bo_dirty;
1372	else
1373		bv = &bo->bo_clean;
1374
1375	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1376	if (root == NULL) {
1377		bp->b_left = NULL;
1378		bp->b_right = NULL;
1379		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1380	} else if (bp->b_lblkno < root->b_lblkno ||
1381	    (bp->b_lblkno == root->b_lblkno &&
1382	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1383		bp->b_left = root->b_left;
1384		bp->b_right = root;
1385		root->b_left = NULL;
1386		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1387	} else {
1388		bp->b_right = root->b_right;
1389		bp->b_left = root;
1390		root->b_right = NULL;
1391		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1392	}
1393	bv->bv_cnt++;
1394	bv->bv_root = bp;
1395}
1396
1397/*
1398 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1399 * shadow buffers used in background bitmap writes.
1400 *
1401 * This code isn't quite efficient as it could be because we are maintaining
1402 * two sorted lists and do not know which list the block resides in.
1403 *
1404 * During a "make buildworld" the desired buffer is found at one of
1405 * the roots more than 60% of the time.  Thus, checking both roots
1406 * before performing either splay eliminates unnecessary splays on the
1407 * first tree splayed.
1408 */
1409struct buf *
1410gbincore(struct bufobj *bo, daddr_t lblkno)
1411{
1412	struct buf *bp;
1413
1414	ASSERT_BO_LOCKED(bo);
1415	if ((bp = bo->bo_clean.bv_root) != NULL &&
1416	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1417		return (bp);
1418	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1419	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1420		return (bp);
1421	if ((bp = bo->bo_clean.bv_root) != NULL) {
1422		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1423		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1424			return (bp);
1425	}
1426	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1427		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1428		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1429			return (bp);
1430	}
1431	return (NULL);
1432}
1433
1434/*
1435 * Associate a buffer with a vnode.
1436 */
1437void
1438bgetvp(struct vnode *vp, struct buf *bp)
1439{
1440
1441	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1442
1443	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1444	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1445	    ("bgetvp: bp already attached! %p", bp));
1446
1447	ASSERT_VI_LOCKED(vp, "bgetvp");
1448	vholdl(vp);
1449	if (VFS_NEEDSGIANT(vp->v_mount) ||
1450	    vp->v_bufobj.bo_flag & BO_NEEDSGIANT)
1451		bp->b_flags |= B_NEEDSGIANT;
1452	bp->b_vp = vp;
1453	bp->b_bufobj = &vp->v_bufobj;
1454	/*
1455	 * Insert onto list for new vnode.
1456	 */
1457	buf_vlist_add(bp, &vp->v_bufobj, BX_VNCLEAN);
1458}
1459
1460/*
1461 * Disassociate a buffer from a vnode.
1462 */
1463void
1464brelvp(struct buf *bp)
1465{
1466	struct bufobj *bo;
1467	struct vnode *vp;
1468
1469	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1470	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1471
1472	/*
1473	 * Delete from old vnode list, if on one.
1474	 */
1475	vp = bp->b_vp;		/* XXX */
1476	bo = bp->b_bufobj;
1477	BO_LOCK(bo);
1478	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1479		buf_vlist_remove(bp);
1480	else
1481		panic("brelvp: Buffer %p not on queue.", bp);
1482	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1483		bo->bo_flag &= ~BO_ONWORKLST;
1484		mtx_lock(&sync_mtx);
1485		LIST_REMOVE(bo, bo_synclist);
1486 		syncer_worklist_len--;
1487		mtx_unlock(&sync_mtx);
1488	}
1489	bp->b_flags &= ~B_NEEDSGIANT;
1490	bp->b_vp = NULL;
1491	bp->b_bufobj = NULL;
1492	vdropl(vp);
1493}
1494
1495/*
1496 * Add an item to the syncer work queue.
1497 */
1498static void
1499vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1500{
1501	int slot;
1502
1503	ASSERT_BO_LOCKED(bo);
1504
1505	mtx_lock(&sync_mtx);
1506	if (bo->bo_flag & BO_ONWORKLST)
1507		LIST_REMOVE(bo, bo_synclist);
1508	else {
1509		bo->bo_flag |= BO_ONWORKLST;
1510 		syncer_worklist_len++;
1511	}
1512
1513	if (delay > syncer_maxdelay - 2)
1514		delay = syncer_maxdelay - 2;
1515	slot = (syncer_delayno + delay) & syncer_mask;
1516
1517	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1518	mtx_unlock(&sync_mtx);
1519}
1520
1521static int
1522sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1523{
1524	int error, len;
1525
1526	mtx_lock(&sync_mtx);
1527	len = syncer_worklist_len - sync_vnode_count;
1528	mtx_unlock(&sync_mtx);
1529	error = SYSCTL_OUT(req, &len, sizeof(len));
1530	return (error);
1531}
1532
1533SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1534    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1535
1536static struct proc *updateproc;
1537static void sched_sync(void);
1538static struct kproc_desc up_kp = {
1539	"syncer",
1540	sched_sync,
1541	&updateproc
1542};
1543SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1544
1545static int
1546sync_vnode(struct bufobj *bo, struct thread *td)
1547{
1548	struct vnode *vp;
1549	struct mount *mp;
1550
1551	vp = bo->__bo_vnode; 	/* XXX */
1552	if (VOP_ISLOCKED(vp, NULL) != 0)
1553		return (1);
1554	if (VI_TRYLOCK(vp) == 0)
1555		return (1);
1556	/*
1557	 * We use vhold in case the vnode does not
1558	 * successfully sync.  vhold prevents the vnode from
1559	 * going away when we unlock the sync_mtx so that
1560	 * we can acquire the vnode interlock.
1561	 */
1562	vholdl(vp);
1563	mtx_unlock(&sync_mtx);
1564	VI_UNLOCK(vp);
1565	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1566		vdrop(vp);
1567		mtx_lock(&sync_mtx);
1568		return (1);
1569	}
1570	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1571	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1572	VOP_UNLOCK(vp, 0, td);
1573	vn_finished_write(mp);
1574	VI_LOCK(vp);
1575	if ((bo->bo_flag & BO_ONWORKLST) != 0) {
1576		/*
1577		 * Put us back on the worklist.  The worklist
1578		 * routine will remove us from our current
1579		 * position and then add us back in at a later
1580		 * position.
1581		 */
1582		vn_syncer_add_to_worklist(bo, syncdelay);
1583	}
1584	vdropl(vp);
1585	mtx_lock(&sync_mtx);
1586	return (0);
1587}
1588
1589/*
1590 * System filesystem synchronizer daemon.
1591 */
1592static void
1593sched_sync(void)
1594{
1595	struct synclist *next;
1596	struct synclist *slp;
1597	struct bufobj *bo;
1598	long starttime;
1599	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);
1600	static int dummychan;
1601	int last_work_seen;
1602	int net_worklist_len;
1603	int syncer_final_iter;
1604	int first_printf;
1605	int error;
1606
1607	mtx_lock(&Giant);
1608	last_work_seen = 0;
1609	syncer_final_iter = 0;
1610	first_printf = 1;
1611	syncer_state = SYNCER_RUNNING;
1612	starttime = time_uptime;
1613	td->td_pflags |= TDP_NORUNNINGBUF;
1614
1615	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1616	    SHUTDOWN_PRI_LAST);
1617
1618	for (;;) {
1619		mtx_lock(&sync_mtx);
1620		if (syncer_state == SYNCER_FINAL_DELAY &&
1621		    syncer_final_iter == 0) {
1622			mtx_unlock(&sync_mtx);
1623			kthread_suspend_check(td->td_proc);
1624			mtx_lock(&sync_mtx);
1625		}
1626		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1627		if (syncer_state != SYNCER_RUNNING &&
1628		    starttime != time_uptime) {
1629			if (first_printf) {
1630				printf("\nSyncing disks, vnodes remaining...");
1631				first_printf = 0;
1632			}
1633			printf("%d ", net_worklist_len);
1634		}
1635		starttime = time_uptime;
1636
1637		/*
1638		 * Push files whose dirty time has expired.  Be careful
1639		 * of interrupt race on slp queue.
1640		 *
1641		 * Skip over empty worklist slots when shutting down.
1642		 */
1643		do {
1644			slp = &syncer_workitem_pending[syncer_delayno];
1645			syncer_delayno += 1;
1646			if (syncer_delayno == syncer_maxdelay)
1647				syncer_delayno = 0;
1648			next = &syncer_workitem_pending[syncer_delayno];
1649			/*
1650			 * If the worklist has wrapped since the
1651			 * it was emptied of all but syncer vnodes,
1652			 * switch to the FINAL_DELAY state and run
1653			 * for one more second.
1654			 */
1655			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1656			    net_worklist_len == 0 &&
1657			    last_work_seen == syncer_delayno) {
1658				syncer_state = SYNCER_FINAL_DELAY;
1659				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1660			}
1661		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1662		    syncer_worklist_len > 0);
1663
1664		/*
1665		 * Keep track of the last time there was anything
1666		 * on the worklist other than syncer vnodes.
1667		 * Return to the SHUTTING_DOWN state if any
1668		 * new work appears.
1669		 */
1670		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1671			last_work_seen = syncer_delayno;
1672		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1673			syncer_state = SYNCER_SHUTTING_DOWN;
1674		while ((bo = LIST_FIRST(slp)) != NULL) {
1675			error = sync_vnode(bo, td);
1676			if (error == 1) {
1677				LIST_REMOVE(bo, bo_synclist);
1678				LIST_INSERT_HEAD(next, bo, bo_synclist);
1679				continue;
1680			}
1681		}
1682		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1683			syncer_final_iter--;
1684		mtx_unlock(&sync_mtx);
1685		/*
1686		 * The variable rushjob allows the kernel to speed up the
1687		 * processing of the filesystem syncer process. A rushjob
1688		 * value of N tells the filesystem syncer to process the next
1689		 * N seconds worth of work on its queue ASAP. Currently rushjob
1690		 * is used by the soft update code to speed up the filesystem
1691		 * syncer process when the incore state is getting so far
1692		 * ahead of the disk that the kernel memory pool is being
1693		 * threatened with exhaustion.
1694		 */
1695		mtx_lock(&sync_mtx);
1696		if (rushjob > 0) {
1697			rushjob -= 1;
1698			mtx_unlock(&sync_mtx);
1699			continue;
1700		}
1701		mtx_unlock(&sync_mtx);
1702		/*
1703		 * Just sleep for a short period if time between
1704		 * iterations when shutting down to allow some I/O
1705		 * to happen.
1706		 *
1707		 * If it has taken us less than a second to process the
1708		 * current work, then wait. Otherwise start right over
1709		 * again. We can still lose time if any single round
1710		 * takes more than two seconds, but it does not really
1711		 * matter as we are just trying to generally pace the
1712		 * filesystem activity.
1713		 */
1714		if (syncer_state != SYNCER_RUNNING)
1715			tsleep(&dummychan, PPAUSE, "syncfnl",
1716			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1717		else if (time_uptime == starttime)
1718			tsleep(&lbolt, PPAUSE, "syncer", 0);
1719	}
1720}
1721
1722/*
1723 * Request the syncer daemon to speed up its work.
1724 * We never push it to speed up more than half of its
1725 * normal turn time, otherwise it could take over the cpu.
1726 */
1727int
1728speedup_syncer()
1729{
1730	struct thread *td;
1731	int ret = 0;
1732
1733	td = FIRST_THREAD_IN_PROC(updateproc);
1734	sleepq_remove(td, &lbolt);
1735	mtx_lock(&sync_mtx);
1736	if (rushjob < syncdelay / 2) {
1737		rushjob += 1;
1738		stat_rush_requests += 1;
1739		ret = 1;
1740	}
1741	mtx_unlock(&sync_mtx);
1742	return (ret);
1743}
1744
1745/*
1746 * Tell the syncer to speed up its work and run though its work
1747 * list several times, then tell it to shut down.
1748 */
1749static void
1750syncer_shutdown(void *arg, int howto)
1751{
1752	struct thread *td;
1753
1754	if (howto & RB_NOSYNC)
1755		return;
1756	td = FIRST_THREAD_IN_PROC(updateproc);
1757	sleepq_remove(td, &lbolt);
1758	mtx_lock(&sync_mtx);
1759	syncer_state = SYNCER_SHUTTING_DOWN;
1760	rushjob = 0;
1761	mtx_unlock(&sync_mtx);
1762	kproc_shutdown(arg, howto);
1763}
1764
1765/*
1766 * Reassign a buffer from one vnode to another.
1767 * Used to assign file specific control information
1768 * (indirect blocks) to the vnode to which they belong.
1769 */
1770void
1771reassignbuf(struct buf *bp)
1772{
1773	struct vnode *vp;
1774	struct bufobj *bo;
1775	int delay;
1776#ifdef INVARIANTS
1777	struct bufv *bv;
1778#endif
1779
1780	vp = bp->b_vp;
1781	bo = bp->b_bufobj;
1782	++reassignbufcalls;
1783
1784	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1785	    bp, bp->b_vp, bp->b_flags);
1786	/*
1787	 * B_PAGING flagged buffers cannot be reassigned because their vp
1788	 * is not fully linked in.
1789	 */
1790	if (bp->b_flags & B_PAGING)
1791		panic("cannot reassign paging buffer");
1792
1793	/*
1794	 * Delete from old vnode list, if on one.
1795	 */
1796	VI_LOCK(vp);
1797	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1798		buf_vlist_remove(bp);
1799	else
1800		panic("reassignbuf: Buffer %p not on queue.", bp);
1801	/*
1802	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1803	 * of clean buffers.
1804	 */
1805	if (bp->b_flags & B_DELWRI) {
1806		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1807			switch (vp->v_type) {
1808			case VDIR:
1809				delay = dirdelay;
1810				break;
1811			case VCHR:
1812				delay = metadelay;
1813				break;
1814			default:
1815				delay = filedelay;
1816			}
1817			vn_syncer_add_to_worklist(bo, delay);
1818		}
1819		buf_vlist_add(bp, bo, BX_VNDIRTY);
1820	} else {
1821		buf_vlist_add(bp, bo, BX_VNCLEAN);
1822
1823		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1824			mtx_lock(&sync_mtx);
1825			LIST_REMOVE(bo, bo_synclist);
1826 			syncer_worklist_len--;
1827			mtx_unlock(&sync_mtx);
1828			bo->bo_flag &= ~BO_ONWORKLST;
1829		}
1830	}
1831#ifdef INVARIANTS
1832	bv = &bo->bo_clean;
1833	bp = TAILQ_FIRST(&bv->bv_hd);
1834	KASSERT(bp == NULL || bp->b_bufobj == bo,
1835	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1836	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1837	KASSERT(bp == NULL || bp->b_bufobj == bo,
1838	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1839	bv = &bo->bo_dirty;
1840	bp = TAILQ_FIRST(&bv->bv_hd);
1841	KASSERT(bp == NULL || bp->b_bufobj == bo,
1842	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1843	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1844	KASSERT(bp == NULL || bp->b_bufobj == bo,
1845	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1846#endif
1847	VI_UNLOCK(vp);
1848}
1849
1850/*
1851 * Increment the use and hold counts on the vnode, taking care to reference
1852 * the driver's usecount if this is a chardev.  The vholdl() will remove
1853 * the vnode from the free list if it is presently free.  Requires the
1854 * vnode interlock and returns with it held.
1855 */
1856static void
1857v_incr_usecount(struct vnode *vp)
1858{
1859
1860	CTR3(KTR_VFS, "v_incr_usecount: vp %p holdcnt %d usecount %d\n",
1861	    vp, vp->v_holdcnt, vp->v_usecount);
1862	vp->v_usecount++;
1863	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1864		dev_lock();
1865		vp->v_rdev->si_usecount++;
1866		dev_unlock();
1867	}
1868	vholdl(vp);
1869}
1870
1871/*
1872 * Turn a holdcnt into a use+holdcnt such that only one call to
1873 * v_decr_usecount is needed.
1874 */
1875static void
1876v_upgrade_usecount(struct vnode *vp)
1877{
1878
1879	CTR3(KTR_VFS, "v_upgrade_usecount: vp %p holdcnt %d usecount %d\n",
1880	    vp, vp->v_holdcnt, vp->v_usecount);
1881	vp->v_usecount++;
1882	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1883		dev_lock();
1884		vp->v_rdev->si_usecount++;
1885		dev_unlock();
1886	}
1887}
1888
1889/*
1890 * Decrement the vnode use and hold count along with the driver's usecount
1891 * if this is a chardev.  The vdropl() below releases the vnode interlock
1892 * as it may free the vnode.
1893 */
1894static void
1895v_decr_usecount(struct vnode *vp)
1896{
1897
1898	CTR3(KTR_VFS, "v_decr_usecount: vp %p holdcnt %d usecount %d\n",
1899	    vp, vp->v_holdcnt, vp->v_usecount);
1900	ASSERT_VI_LOCKED(vp, __FUNCTION__);
1901	VNASSERT(vp->v_usecount > 0, vp,
1902	    ("v_decr_usecount: negative usecount"));
1903	vp->v_usecount--;
1904	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1905		dev_lock();
1906		vp->v_rdev->si_usecount--;
1907		dev_unlock();
1908	}
1909	vdropl(vp);
1910}
1911
1912/*
1913 * Decrement only the use count and driver use count.  This is intended to
1914 * be paired with a follow on vdropl() to release the remaining hold count.
1915 * In this way we may vgone() a vnode with a 0 usecount without risk of
1916 * having it end up on a free list because the hold count is kept above 0.
1917 */
1918static void
1919v_decr_useonly(struct vnode *vp)
1920{
1921
1922	CTR3(KTR_VFS, "v_decr_useonly: vp %p holdcnt %d usecount %d\n",
1923	    vp, vp->v_holdcnt, vp->v_usecount);
1924	ASSERT_VI_LOCKED(vp, __FUNCTION__);
1925	VNASSERT(vp->v_usecount > 0, vp,
1926	    ("v_decr_useonly: negative usecount"));
1927	vp->v_usecount--;
1928	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1929		dev_lock();
1930		vp->v_rdev->si_usecount--;
1931		dev_unlock();
1932	}
1933}
1934
1935/*
1936 * Grab a particular vnode from the free list, increment its
1937 * reference count and lock it. The vnode lock bit is set if the
1938 * vnode is being eliminated in vgone. The process is awakened
1939 * when the transition is completed, and an error returned to
1940 * indicate that the vnode is no longer usable (possibly having
1941 * been changed to a new filesystem type).
1942 */
1943int
1944vget(struct vnode *vp, int flags, struct thread *td)
1945{
1946	int oweinact;
1947	int oldflags;
1948	int error;
1949
1950	error = 0;
1951	oldflags = flags;
1952	oweinact = 0;
1953	VFS_ASSERT_GIANT(vp->v_mount);
1954	if ((flags & LK_INTERLOCK) == 0)
1955		VI_LOCK(vp);
1956	/*
1957	 * If the inactive call was deferred because vput() was called
1958	 * with a shared lock, we have to do it here before another thread
1959	 * gets a reference to data that should be dead.
1960	 */
1961	if (vp->v_iflag & VI_OWEINACT) {
1962		if (flags & LK_NOWAIT) {
1963			VI_UNLOCK(vp);
1964			return (EBUSY);
1965		}
1966		flags &= ~LK_TYPE_MASK;
1967		flags |= LK_EXCLUSIVE;
1968		oweinact = 1;
1969	}
1970	vholdl(vp);
1971	if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1972		vdrop(vp);
1973		return (error);
1974	}
1975	VI_LOCK(vp);
1976	/* Upgrade our holdcnt to a usecount. */
1977	v_upgrade_usecount(vp);
1978	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
1979		panic("vget: vn_lock failed to return ENOENT\n");
1980	if (oweinact) {
1981		if (vp->v_iflag & VI_OWEINACT)
1982			vinactive(vp, td);
1983		VI_UNLOCK(vp);
1984		if ((oldflags & LK_TYPE_MASK) == 0)
1985			VOP_UNLOCK(vp, 0, td);
1986	} else
1987		VI_UNLOCK(vp);
1988	return (0);
1989}
1990
1991/*
1992 * Increase the reference count of a vnode.
1993 */
1994void
1995vref(struct vnode *vp)
1996{
1997
1998	VI_LOCK(vp);
1999	v_incr_usecount(vp);
2000	VI_UNLOCK(vp);
2001}
2002
2003/*
2004 * Return reference count of a vnode.
2005 *
2006 * The results of this call are only guaranteed when some mechanism other
2007 * than the VI lock is used to stop other processes from gaining references
2008 * to the vnode.  This may be the case if the caller holds the only reference.
2009 * This is also useful when stale data is acceptable as race conditions may
2010 * be accounted for by some other means.
2011 */
2012int
2013vrefcnt(struct vnode *vp)
2014{
2015	int usecnt;
2016
2017	VI_LOCK(vp);
2018	usecnt = vp->v_usecount;
2019	VI_UNLOCK(vp);
2020
2021	return (usecnt);
2022}
2023
2024
2025/*
2026 * Vnode put/release.
2027 * If count drops to zero, call inactive routine and return to freelist.
2028 */
2029void
2030vrele(struct vnode *vp)
2031{
2032	struct thread *td = curthread;	/* XXX */
2033
2034	KASSERT(vp != NULL, ("vrele: null vp"));
2035	VFS_ASSERT_GIANT(vp->v_mount);
2036
2037	VI_LOCK(vp);
2038
2039	/* Skip this v_writecount check if we're going to panic below. */
2040	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2041	    ("vrele: missed vn_close"));
2042
2043	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2044	    vp->v_usecount == 1)) {
2045		v_decr_usecount(vp);
2046		return;
2047	}
2048	if (vp->v_usecount != 1) {
2049#ifdef DIAGNOSTIC
2050		vprint("vrele: negative ref count", vp);
2051#endif
2052		VI_UNLOCK(vp);
2053		panic("vrele: negative ref cnt");
2054	}
2055	/*
2056	 * We want to hold the vnode until the inactive finishes to
2057	 * prevent vgone() races.  We drop the use count here and the
2058	 * hold count below when we're done.
2059	 */
2060	v_decr_useonly(vp);
2061	/*
2062	 * We must call VOP_INACTIVE with the node locked. Mark
2063	 * as VI_DOINGINACT to avoid recursion.
2064	 */
2065	vp->v_iflag |= VI_OWEINACT;
2066	if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
2067		VI_LOCK(vp);
2068		if (vp->v_usecount > 0)
2069			vp->v_iflag &= ~VI_OWEINACT;
2070		if (vp->v_iflag & VI_OWEINACT)
2071			vinactive(vp, td);
2072		VOP_UNLOCK(vp, 0, td);
2073	} else {
2074		VI_LOCK(vp);
2075		if (vp->v_usecount > 0)
2076			vp->v_iflag &= ~VI_OWEINACT;
2077	}
2078	vdropl(vp);
2079}
2080
2081/*
2082 * Release an already locked vnode.  This give the same effects as
2083 * unlock+vrele(), but takes less time and avoids releasing and
2084 * re-aquiring the lock (as vrele() aquires the lock internally.)
2085 */
2086void
2087vput(struct vnode *vp)
2088{
2089	struct thread *td = curthread;	/* XXX */
2090	int error;
2091
2092	KASSERT(vp != NULL, ("vput: null vp"));
2093	ASSERT_VOP_LOCKED(vp, "vput");
2094	VFS_ASSERT_GIANT(vp->v_mount);
2095	VI_LOCK(vp);
2096	/* Skip this v_writecount check if we're going to panic below. */
2097	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2098	    ("vput: missed vn_close"));
2099	error = 0;
2100
2101	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2102	    vp->v_usecount == 1)) {
2103		VOP_UNLOCK(vp, 0, td);
2104		v_decr_usecount(vp);
2105		return;
2106	}
2107
2108	if (vp->v_usecount != 1) {
2109#ifdef DIAGNOSTIC
2110		vprint("vput: negative ref count", vp);
2111#endif
2112		panic("vput: negative ref cnt");
2113	}
2114	/*
2115	 * We want to hold the vnode until the inactive finishes to
2116	 * prevent vgone() races.  We drop the use count here and the
2117	 * hold count below when we're done.
2118	 */
2119	v_decr_useonly(vp);
2120	vp->v_iflag |= VI_OWEINACT;
2121	if (VOP_ISLOCKED(vp, NULL) != LK_EXCLUSIVE) {
2122		error = VOP_LOCK(vp, LK_EXCLUPGRADE|LK_INTERLOCK|LK_NOWAIT, td);
2123		VI_LOCK(vp);
2124		if (error) {
2125			if (vp->v_usecount > 0)
2126				vp->v_iflag &= ~VI_OWEINACT;
2127			goto done;
2128		}
2129	}
2130	if (vp->v_usecount > 0)
2131		vp->v_iflag &= ~VI_OWEINACT;
2132	if (vp->v_iflag & VI_OWEINACT)
2133		vinactive(vp, td);
2134	VOP_UNLOCK(vp, 0, td);
2135done:
2136	vdropl(vp);
2137}
2138
2139/*
2140 * Somebody doesn't want the vnode recycled.
2141 */
2142void
2143vhold(struct vnode *vp)
2144{
2145
2146	VI_LOCK(vp);
2147	vholdl(vp);
2148	VI_UNLOCK(vp);
2149}
2150
2151void
2152vholdl(struct vnode *vp)
2153{
2154
2155	vp->v_holdcnt++;
2156	if (VSHOULDBUSY(vp))
2157		vbusy(vp);
2158}
2159
2160/*
2161 * Note that there is one less who cares about this vnode.  vdrop() is the
2162 * opposite of vhold().
2163 */
2164void
2165vdrop(struct vnode *vp)
2166{
2167
2168	VI_LOCK(vp);
2169	vdropl(vp);
2170}
2171
2172/*
2173 * Drop the hold count of the vnode.  If this is the last reference to
2174 * the vnode we will free it if it has been vgone'd otherwise it is
2175 * placed on the free list.
2176 */
2177static void
2178vdropl(struct vnode *vp)
2179{
2180
2181	if (vp->v_holdcnt <= 0)
2182		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2183	vp->v_holdcnt--;
2184	if (vp->v_holdcnt == 0) {
2185		if (vp->v_iflag & VI_DOOMED) {
2186			vdestroy(vp);
2187			return;
2188		} else
2189			vfree(vp);
2190	}
2191	VI_UNLOCK(vp);
2192}
2193
2194/*
2195 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2196 * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2197 * OWEINACT tracks whether a vnode missed a call to inactive due to a
2198 * failed lock upgrade.
2199 */
2200static void
2201vinactive(struct vnode *vp, struct thread *td)
2202{
2203
2204	ASSERT_VOP_LOCKED(vp, "vinactive");
2205	ASSERT_VI_LOCKED(vp, "vinactive");
2206	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2207	    ("vinactive: recursed on VI_DOINGINACT"));
2208	vp->v_iflag |= VI_DOINGINACT;
2209	vp->v_iflag &= ~VI_OWEINACT;
2210	VI_UNLOCK(vp);
2211	VOP_INACTIVE(vp, td);
2212	VI_LOCK(vp);
2213	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2214	    ("vinactive: lost VI_DOINGINACT"));
2215	vp->v_iflag &= ~VI_DOINGINACT;
2216}
2217
2218/*
2219 * Remove any vnodes in the vnode table belonging to mount point mp.
2220 *
2221 * If FORCECLOSE is not specified, there should not be any active ones,
2222 * return error if any are found (nb: this is a user error, not a
2223 * system error). If FORCECLOSE is specified, detach any active vnodes
2224 * that are found.
2225 *
2226 * If WRITECLOSE is set, only flush out regular file vnodes open for
2227 * writing.
2228 *
2229 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2230 *
2231 * `rootrefs' specifies the base reference count for the root vnode
2232 * of this filesystem. The root vnode is considered busy if its
2233 * v_usecount exceeds this value. On a successful return, vflush(, td)
2234 * will call vrele() on the root vnode exactly rootrefs times.
2235 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2236 * be zero.
2237 */
2238#ifdef DIAGNOSTIC
2239static int busyprt = 0;		/* print out busy vnodes */
2240SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2241#endif
2242
2243int
2244vflush( struct mount *mp, int rootrefs, int flags, struct thread *td)
2245{
2246	struct vnode *vp, *mvp, *rootvp = NULL;
2247	struct vattr vattr;
2248	int busy = 0, error;
2249
2250	CTR1(KTR_VFS, "vflush: mp %p", mp);
2251	if (rootrefs > 0) {
2252		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2253		    ("vflush: bad args"));
2254		/*
2255		 * Get the filesystem root vnode. We can vput() it
2256		 * immediately, since with rootrefs > 0, it won't go away.
2257		 */
2258		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp, td)) != 0)
2259			return (error);
2260		vput(rootvp);
2261
2262	}
2263	MNT_ILOCK(mp);
2264loop:
2265	MNT_VNODE_FOREACH(vp, mp, mvp) {
2266
2267		VI_LOCK(vp);
2268		vholdl(vp);
2269		MNT_IUNLOCK(mp);
2270		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td);
2271		if (error) {
2272			vdrop(vp);
2273			MNT_ILOCK(mp);
2274			MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
2275			goto loop;
2276		}
2277		/*
2278		 * Skip over a vnodes marked VV_SYSTEM.
2279		 */
2280		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2281			VOP_UNLOCK(vp, 0, td);
2282			vdrop(vp);
2283			MNT_ILOCK(mp);
2284			continue;
2285		}
2286		/*
2287		 * If WRITECLOSE is set, flush out unlinked but still open
2288		 * files (even if open only for reading) and regular file
2289		 * vnodes open for writing.
2290		 */
2291		if (flags & WRITECLOSE) {
2292			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2293			VI_LOCK(vp);
2294
2295			if ((vp->v_type == VNON ||
2296			    (error == 0 && vattr.va_nlink > 0)) &&
2297			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2298				VOP_UNLOCK(vp, 0, td);
2299				vdropl(vp);
2300				MNT_ILOCK(mp);
2301				continue;
2302			}
2303		} else
2304			VI_LOCK(vp);
2305		/*
2306		 * With v_usecount == 0, all we need to do is clear out the
2307		 * vnode data structures and we are done.
2308		 *
2309		 * If FORCECLOSE is set, forcibly close the vnode.
2310		 */
2311		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2312			VNASSERT(vp->v_usecount == 0 ||
2313			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2314			    ("device VNODE %p is FORCECLOSED", vp));
2315			vgonel(vp);
2316		} else {
2317			busy++;
2318#ifdef DIAGNOSTIC
2319			if (busyprt)
2320				vprint("vflush: busy vnode", vp);
2321#endif
2322		}
2323		VOP_UNLOCK(vp, 0, td);
2324		vdropl(vp);
2325		MNT_ILOCK(mp);
2326	}
2327	MNT_IUNLOCK(mp);
2328	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2329		/*
2330		 * If just the root vnode is busy, and if its refcount
2331		 * is equal to `rootrefs', then go ahead and kill it.
2332		 */
2333		VI_LOCK(rootvp);
2334		KASSERT(busy > 0, ("vflush: not busy"));
2335		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2336		    ("vflush: usecount %d < rootrefs %d",
2337		     rootvp->v_usecount, rootrefs));
2338		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2339			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK, td);
2340			vgone(rootvp);
2341			VOP_UNLOCK(rootvp, 0, td);
2342			busy = 0;
2343		} else
2344			VI_UNLOCK(rootvp);
2345	}
2346	if (busy)
2347		return (EBUSY);
2348	for (; rootrefs > 0; rootrefs--)
2349		vrele(rootvp);
2350	return (0);
2351}
2352
2353/*
2354 * Recycle an unused vnode to the front of the free list.
2355 */
2356int
2357vrecycle(struct vnode *vp, struct thread *td)
2358{
2359	int recycled;
2360
2361	ASSERT_VOP_LOCKED(vp, "vrecycle");
2362	recycled = 0;
2363	VI_LOCK(vp);
2364	if (vp->v_usecount == 0) {
2365		recycled = 1;
2366		vgonel(vp);
2367	}
2368	VI_UNLOCK(vp);
2369	return (recycled);
2370}
2371
2372/*
2373 * Eliminate all activity associated with a vnode
2374 * in preparation for reuse.
2375 */
2376void
2377vgone(struct vnode *vp)
2378{
2379	VI_LOCK(vp);
2380	vgonel(vp);
2381	VI_UNLOCK(vp);
2382}
2383
2384/*
2385 * vgone, with the vp interlock held.
2386 */
2387void
2388vgonel(struct vnode *vp)
2389{
2390	struct thread *td;
2391	int oweinact;
2392	int active;
2393	struct mount *mp;
2394
2395	CTR1(KTR_VFS, "vgonel: vp %p", vp);
2396	ASSERT_VOP_LOCKED(vp, "vgonel");
2397	ASSERT_VI_LOCKED(vp, "vgonel");
2398	VNASSERT(vp->v_holdcnt, vp,
2399	    ("vgonel: vp %p has no reference.", vp));
2400	td = curthread;
2401
2402	/*
2403	 * Don't vgonel if we're already doomed.
2404	 */
2405	if (vp->v_iflag & VI_DOOMED)
2406		return;
2407	vp->v_iflag |= VI_DOOMED;
2408	/*
2409	 * Check to see if the vnode is in use.  If so, we have to call
2410	 * VOP_CLOSE() and VOP_INACTIVE().
2411	 */
2412	active = vp->v_usecount;
2413	oweinact = (vp->v_iflag & VI_OWEINACT);
2414	VI_UNLOCK(vp);
2415	/*
2416	 * Clean out any buffers associated with the vnode.
2417	 * If the flush fails, just toss the buffers.
2418	 */
2419	mp = NULL;
2420	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2421		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2422	if (vinvalbuf(vp, V_SAVE, td, 0, 0) != 0)
2423		vinvalbuf(vp, 0, td, 0, 0);
2424
2425	/*
2426	 * If purging an active vnode, it must be closed and
2427	 * deactivated before being reclaimed.
2428	 */
2429	if (active)
2430		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2431	if (oweinact || active) {
2432		VI_LOCK(vp);
2433		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2434			vinactive(vp, td);
2435		VI_UNLOCK(vp);
2436	}
2437	/*
2438	 * Reclaim the vnode.
2439	 */
2440	if (VOP_RECLAIM(vp, td))
2441		panic("vgone: cannot reclaim");
2442	if (mp != NULL)
2443		vn_finished_secondary_write(mp);
2444	VNASSERT(vp->v_object == NULL, vp,
2445	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2446	/*
2447	 * Delete from old mount point vnode list.
2448	 */
2449	delmntque(vp);
2450	cache_purge(vp);
2451	/*
2452	 * Done with purge, reset to the standard lock and invalidate
2453	 * the vnode.
2454	 */
2455	VI_LOCK(vp);
2456	vp->v_vnlock = &vp->v_lock;
2457	vp->v_op = &dead_vnodeops;
2458	vp->v_tag = "none";
2459	vp->v_type = VBAD;
2460}
2461
2462/*
2463 * Calculate the total number of references to a special device.
2464 */
2465int
2466vcount(struct vnode *vp)
2467{
2468	int count;
2469
2470	dev_lock();
2471	count = vp->v_rdev->si_usecount;
2472	dev_unlock();
2473	return (count);
2474}
2475
2476/*
2477 * Same as above, but using the struct cdev *as argument
2478 */
2479int
2480count_dev(struct cdev *dev)
2481{
2482	int count;
2483
2484	dev_lock();
2485	count = dev->si_usecount;
2486	dev_unlock();
2487	return(count);
2488}
2489
2490/*
2491 * Print out a description of a vnode.
2492 */
2493static char *typename[] =
2494{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2495 "VMARKER"};
2496
2497void
2498vn_printf(struct vnode *vp, const char *fmt, ...)
2499{
2500	va_list ap;
2501	char buf[96];
2502
2503	va_start(ap, fmt);
2504	vprintf(fmt, ap);
2505	va_end(ap);
2506	printf("%p: ", (void *)vp);
2507	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2508	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2509	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2510	buf[0] = '\0';
2511	buf[1] = '\0';
2512	if (vp->v_vflag & VV_ROOT)
2513		strcat(buf, "|VV_ROOT");
2514	if (vp->v_vflag & VV_TEXT)
2515		strcat(buf, "|VV_TEXT");
2516	if (vp->v_vflag & VV_SYSTEM)
2517		strcat(buf, "|VV_SYSTEM");
2518	if (vp->v_iflag & VI_DOOMED)
2519		strcat(buf, "|VI_DOOMED");
2520	if (vp->v_iflag & VI_FREE)
2521		strcat(buf, "|VI_FREE");
2522	printf("    flags (%s)\n", buf + 1);
2523	if (mtx_owned(VI_MTX(vp)))
2524		printf(" VI_LOCKed");
2525	if (vp->v_object != NULL)
2526		printf("    v_object %p ref %d pages %d\n",
2527		    vp->v_object, vp->v_object->ref_count,
2528		    vp->v_object->resident_page_count);
2529	printf("    ");
2530	lockmgr_printinfo(vp->v_vnlock);
2531	printf("\n");
2532	if (vp->v_data != NULL)
2533		VOP_PRINT(vp);
2534}
2535
2536#ifdef DDB
2537#include <ddb/ddb.h>
2538/*
2539 * List all of the locked vnodes in the system.
2540 * Called when debugging the kernel.
2541 */
2542DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2543{
2544	struct mount *mp, *nmp;
2545	struct vnode *vp;
2546
2547	/*
2548	 * Note: because this is DDB, we can't obey the locking semantics
2549	 * for these structures, which means we could catch an inconsistent
2550	 * state and dereference a nasty pointer.  Not much to be done
2551	 * about that.
2552	 */
2553	printf("Locked vnodes\n");
2554	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2555		nmp = TAILQ_NEXT(mp, mnt_list);
2556		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2557			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp, NULL))
2558				vprint("", vp);
2559		}
2560		nmp = TAILQ_NEXT(mp, mnt_list);
2561	}
2562}
2563#endif
2564
2565/*
2566 * Fill in a struct xvfsconf based on a struct vfsconf.
2567 */
2568static void
2569vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2570{
2571
2572	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2573	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2574	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2575	xvfsp->vfc_flags = vfsp->vfc_flags;
2576	/*
2577	 * These are unused in userland, we keep them
2578	 * to not break binary compatibility.
2579	 */
2580	xvfsp->vfc_vfsops = NULL;
2581	xvfsp->vfc_next = NULL;
2582}
2583
2584/*
2585 * Top level filesystem related information gathering.
2586 */
2587static int
2588sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2589{
2590	struct vfsconf *vfsp;
2591	struct xvfsconf xvfsp;
2592	int error;
2593
2594	error = 0;
2595	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2596		bzero(&xvfsp, sizeof(xvfsp));
2597		vfsconf2x(vfsp, &xvfsp);
2598		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2599		if (error)
2600			break;
2601	}
2602	return (error);
2603}
2604
2605SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2606    "S,xvfsconf", "List of all configured filesystems");
2607
2608#ifndef BURN_BRIDGES
2609static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2610
2611static int
2612vfs_sysctl(SYSCTL_HANDLER_ARGS)
2613{
2614	int *name = (int *)arg1 - 1;	/* XXX */
2615	u_int namelen = arg2 + 1;	/* XXX */
2616	struct vfsconf *vfsp;
2617	struct xvfsconf xvfsp;
2618
2619	printf("WARNING: userland calling deprecated sysctl, "
2620	    "please rebuild world\n");
2621
2622#if 1 || defined(COMPAT_PRELITE2)
2623	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2624	if (namelen == 1)
2625		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2626#endif
2627
2628	switch (name[1]) {
2629	case VFS_MAXTYPENUM:
2630		if (namelen != 2)
2631			return (ENOTDIR);
2632		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2633	case VFS_CONF:
2634		if (namelen != 3)
2635			return (ENOTDIR);	/* overloaded */
2636		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2637			if (vfsp->vfc_typenum == name[2])
2638				break;
2639		if (vfsp == NULL)
2640			return (EOPNOTSUPP);
2641		bzero(&xvfsp, sizeof(xvfsp));
2642		vfsconf2x(vfsp, &xvfsp);
2643		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2644	}
2645	return (EOPNOTSUPP);
2646}
2647
2648static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
2649	vfs_sysctl, "Generic filesystem");
2650
2651#if 1 || defined(COMPAT_PRELITE2)
2652
2653static int
2654sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2655{
2656	int error;
2657	struct vfsconf *vfsp;
2658	struct ovfsconf ovfs;
2659
2660	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2661		bzero(&ovfs, sizeof(ovfs));
2662		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2663		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2664		ovfs.vfc_index = vfsp->vfc_typenum;
2665		ovfs.vfc_refcount = vfsp->vfc_refcount;
2666		ovfs.vfc_flags = vfsp->vfc_flags;
2667		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2668		if (error)
2669			return error;
2670	}
2671	return 0;
2672}
2673
2674#endif /* 1 || COMPAT_PRELITE2 */
2675#endif /* !BURN_BRIDGES */
2676
2677#define KINFO_VNODESLOP		10
2678#ifdef notyet
2679/*
2680 * Dump vnode list (via sysctl).
2681 */
2682/* ARGSUSED */
2683static int
2684sysctl_vnode(SYSCTL_HANDLER_ARGS)
2685{
2686	struct xvnode *xvn;
2687	struct thread *td = req->td;
2688	struct mount *mp;
2689	struct vnode *vp;
2690	int error, len, n;
2691
2692	/*
2693	 * Stale numvnodes access is not fatal here.
2694	 */
2695	req->lock = 0;
2696	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2697	if (!req->oldptr)
2698		/* Make an estimate */
2699		return (SYSCTL_OUT(req, 0, len));
2700
2701	error = sysctl_wire_old_buffer(req, 0);
2702	if (error != 0)
2703		return (error);
2704	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2705	n = 0;
2706	mtx_lock(&mountlist_mtx);
2707	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2708		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
2709			continue;
2710		MNT_ILOCK(mp);
2711		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2712			if (n == len)
2713				break;
2714			vref(vp);
2715			xvn[n].xv_size = sizeof *xvn;
2716			xvn[n].xv_vnode = vp;
2717			xvn[n].xv_id = 0;	/* XXX compat */
2718#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
2719			XV_COPY(usecount);
2720			XV_COPY(writecount);
2721			XV_COPY(holdcnt);
2722			XV_COPY(mount);
2723			XV_COPY(numoutput);
2724			XV_COPY(type);
2725#undef XV_COPY
2726			xvn[n].xv_flag = vp->v_vflag;
2727
2728			switch (vp->v_type) {
2729			case VREG:
2730			case VDIR:
2731			case VLNK:
2732				break;
2733			case VBLK:
2734			case VCHR:
2735				if (vp->v_rdev == NULL) {
2736					vrele(vp);
2737					continue;
2738				}
2739				xvn[n].xv_dev = dev2udev(vp->v_rdev);
2740				break;
2741			case VSOCK:
2742				xvn[n].xv_socket = vp->v_socket;
2743				break;
2744			case VFIFO:
2745				xvn[n].xv_fifo = vp->v_fifoinfo;
2746				break;
2747			case VNON:
2748			case VBAD:
2749			default:
2750				/* shouldn't happen? */
2751				vrele(vp);
2752				continue;
2753			}
2754			vrele(vp);
2755			++n;
2756		}
2757		MNT_IUNLOCK(mp);
2758		mtx_lock(&mountlist_mtx);
2759		vfs_unbusy(mp, td);
2760		if (n == len)
2761			break;
2762	}
2763	mtx_unlock(&mountlist_mtx);
2764
2765	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
2766	free(xvn, M_TEMP);
2767	return (error);
2768}
2769
2770SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2771	0, 0, sysctl_vnode, "S,xvnode", "");
2772#endif
2773
2774/*
2775 * Unmount all filesystems. The list is traversed in reverse order
2776 * of mounting to avoid dependencies.
2777 */
2778void
2779vfs_unmountall(void)
2780{
2781	struct mount *mp;
2782	struct thread *td;
2783	int error;
2784
2785	KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
2786	td = curthread;
2787	/*
2788	 * Since this only runs when rebooting, it is not interlocked.
2789	 */
2790	while(!TAILQ_EMPTY(&mountlist)) {
2791		mp = TAILQ_LAST(&mountlist, mntlist);
2792		error = dounmount(mp, MNT_FORCE, td);
2793		if (error) {
2794			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2795			/*
2796			 * XXX: Due to the way in which we mount the root
2797			 * file system off of devfs, devfs will generate a
2798			 * "busy" warning when we try to unmount it before
2799			 * the root.  Don't print a warning as a result in
2800			 * order to avoid false positive errors that may
2801			 * cause needless upset.
2802			 */
2803			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
2804				printf("unmount of %s failed (",
2805				    mp->mnt_stat.f_mntonname);
2806				if (error == EBUSY)
2807					printf("BUSY)\n");
2808				else
2809					printf("%d)\n", error);
2810			}
2811		} else {
2812			/* The unmount has removed mp from the mountlist */
2813		}
2814	}
2815}
2816
2817/*
2818 * perform msync on all vnodes under a mount point
2819 * the mount point must be locked.
2820 */
2821void
2822vfs_msync(struct mount *mp, int flags)
2823{
2824	struct vnode *vp, *mvp;
2825	struct vm_object *obj;
2826
2827	MNT_ILOCK(mp);
2828	MNT_VNODE_FOREACH(vp, mp, mvp) {
2829		VI_LOCK(vp);
2830		if ((vp->v_iflag & VI_OBJDIRTY) &&
2831		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2832			MNT_IUNLOCK(mp);
2833			if (!vget(vp,
2834			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
2835			    curthread)) {
2836				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
2837					vput(vp);
2838					MNT_ILOCK(mp);
2839					continue;
2840				}
2841
2842				obj = vp->v_object;
2843				if (obj != NULL) {
2844					VM_OBJECT_LOCK(obj);
2845					vm_object_page_clean(obj, 0, 0,
2846					    flags == MNT_WAIT ?
2847					    OBJPC_SYNC : OBJPC_NOSYNC);
2848					VM_OBJECT_UNLOCK(obj);
2849				}
2850				vput(vp);
2851			}
2852			MNT_ILOCK(mp);
2853		} else
2854			VI_UNLOCK(vp);
2855	}
2856	MNT_IUNLOCK(mp);
2857}
2858
2859/*
2860 * Mark a vnode as free, putting it up for recycling.
2861 */
2862static void
2863vfree(struct vnode *vp)
2864{
2865
2866	CTR1(KTR_VFS, "vfree vp %p", vp);
2867	ASSERT_VI_LOCKED(vp, "vfree");
2868	mtx_lock(&vnode_free_list_mtx);
2869	VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
2870	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
2871	VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
2872	VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
2873	    ("vfree: Freeing doomed vnode"));
2874	if (vp->v_iflag & VI_AGE) {
2875		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2876	} else {
2877		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2878	}
2879	freevnodes++;
2880	vp->v_iflag &= ~VI_AGE;
2881	vp->v_iflag |= VI_FREE;
2882	mtx_unlock(&vnode_free_list_mtx);
2883}
2884
2885/*
2886 * Opposite of vfree() - mark a vnode as in use.
2887 */
2888static void
2889vbusy(struct vnode *vp)
2890{
2891	CTR1(KTR_VFS, "vbusy vp %p", vp);
2892	ASSERT_VI_LOCKED(vp, "vbusy");
2893	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
2894	VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));
2895
2896	mtx_lock(&vnode_free_list_mtx);
2897	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2898	freevnodes--;
2899	vp->v_iflag &= ~(VI_FREE|VI_AGE);
2900	mtx_unlock(&vnode_free_list_mtx);
2901}
2902
2903/*
2904 * Initalize per-vnode helper structure to hold poll-related state.
2905 */
2906void
2907v_addpollinfo(struct vnode *vp)
2908{
2909	struct vpollinfo *vi;
2910
2911	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
2912	if (vp->v_pollinfo != NULL) {
2913		uma_zfree(vnodepoll_zone, vi);
2914		return;
2915	}
2916	vp->v_pollinfo = vi;
2917	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
2918	knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note, vp, vfs_knllock,
2919	    vfs_knlunlock, vfs_knllocked);
2920}
2921
2922/*
2923 * Record a process's interest in events which might happen to
2924 * a vnode.  Because poll uses the historic select-style interface
2925 * internally, this routine serves as both the ``check for any
2926 * pending events'' and the ``record my interest in future events''
2927 * functions.  (These are done together, while the lock is held,
2928 * to avoid race conditions.)
2929 */
2930int
2931vn_pollrecord(struct vnode *vp, struct thread *td, int events)
2932{
2933
2934	if (vp->v_pollinfo == NULL)
2935		v_addpollinfo(vp);
2936	mtx_lock(&vp->v_pollinfo->vpi_lock);
2937	if (vp->v_pollinfo->vpi_revents & events) {
2938		/*
2939		 * This leaves events we are not interested
2940		 * in available for the other process which
2941		 * which presumably had requested them
2942		 * (otherwise they would never have been
2943		 * recorded).
2944		 */
2945		events &= vp->v_pollinfo->vpi_revents;
2946		vp->v_pollinfo->vpi_revents &= ~events;
2947
2948		mtx_unlock(&vp->v_pollinfo->vpi_lock);
2949		return events;
2950	}
2951	vp->v_pollinfo->vpi_events |= events;
2952	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
2953	mtx_unlock(&vp->v_pollinfo->vpi_lock);
2954	return 0;
2955}
2956
2957/*
2958 * Routine to create and manage a filesystem syncer vnode.
2959 */
2960#define sync_close ((int (*)(struct  vop_close_args *))nullop)
2961static int	sync_fsync(struct  vop_fsync_args *);
2962static int	sync_inactive(struct  vop_inactive_args *);
2963static int	sync_reclaim(struct  vop_reclaim_args *);
2964
2965static struct vop_vector sync_vnodeops = {
2966	.vop_bypass =	VOP_EOPNOTSUPP,
2967	.vop_close =	sync_close,		/* close */
2968	.vop_fsync =	sync_fsync,		/* fsync */
2969	.vop_inactive =	sync_inactive,	/* inactive */
2970	.vop_reclaim =	sync_reclaim,	/* reclaim */
2971	.vop_lock =	vop_stdlock,	/* lock */
2972	.vop_unlock =	vop_stdunlock,	/* unlock */
2973	.vop_islocked =	vop_stdislocked,	/* islocked */
2974};
2975
2976/*
2977 * Create a new filesystem syncer vnode for the specified mount point.
2978 */
2979int
2980vfs_allocate_syncvnode(struct mount *mp)
2981{
2982	struct vnode *vp;
2983	static long start, incr, next;
2984	int error;
2985
2986	/* Allocate a new vnode */
2987	if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
2988		mp->mnt_syncer = NULL;
2989		return (error);
2990	}
2991	vp->v_type = VNON;
2992	/*
2993	 * Place the vnode onto the syncer worklist. We attempt to
2994	 * scatter them about on the list so that they will go off
2995	 * at evenly distributed times even if all the filesystems
2996	 * are mounted at once.
2997	 */
2998	next += incr;
2999	if (next == 0 || next > syncer_maxdelay) {
3000		start /= 2;
3001		incr /= 2;
3002		if (start == 0) {
3003			start = syncer_maxdelay / 2;
3004			incr = syncer_maxdelay;
3005		}
3006		next = start;
3007	}
3008	VI_LOCK(vp);
3009	vn_syncer_add_to_worklist(&vp->v_bufobj,
3010	    syncdelay > 0 ? next % syncdelay : 0);
3011	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3012	mtx_lock(&sync_mtx);
3013	sync_vnode_count++;
3014	mtx_unlock(&sync_mtx);
3015	VI_UNLOCK(vp);
3016	mp->mnt_syncer = vp;
3017	return (0);
3018}
3019
3020/*
3021 * Do a lazy sync of the filesystem.
3022 */
3023static int
3024sync_fsync(struct vop_fsync_args *ap)
3025{
3026	struct vnode *syncvp = ap->a_vp;
3027	struct mount *mp = syncvp->v_mount;
3028	struct thread *td = ap->a_td;
3029	int error, asyncflag;
3030	struct bufobj *bo;
3031
3032	/*
3033	 * We only need to do something if this is a lazy evaluation.
3034	 */
3035	if (ap->a_waitfor != MNT_LAZY)
3036		return (0);
3037
3038	/*
3039	 * Move ourselves to the back of the sync list.
3040	 */
3041	bo = &syncvp->v_bufobj;
3042	BO_LOCK(bo);
3043	vn_syncer_add_to_worklist(bo, syncdelay);
3044	BO_UNLOCK(bo);
3045
3046	/*
3047	 * Walk the list of vnodes pushing all that are dirty and
3048	 * not already on the sync list.
3049	 */
3050	mtx_lock(&mountlist_mtx);
3051	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3052		mtx_unlock(&mountlist_mtx);
3053		return (0);
3054	}
3055	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3056		vfs_unbusy(mp, td);
3057		return (0);
3058	}
3059	asyncflag = mp->mnt_flag & MNT_ASYNC;
3060	mp->mnt_flag &= ~MNT_ASYNC;
3061	vfs_msync(mp, MNT_NOWAIT);
3062	error = VFS_SYNC(mp, MNT_LAZY, td);
3063	if (asyncflag)
3064		mp->mnt_flag |= MNT_ASYNC;
3065	vn_finished_write(mp);
3066	vfs_unbusy(mp, td);
3067	return (error);
3068}
3069
3070/*
3071 * The syncer vnode is no referenced.
3072 */
3073static int
3074sync_inactive(struct vop_inactive_args *ap)
3075{
3076
3077	vgone(ap->a_vp);
3078	return (0);
3079}
3080
3081/*
3082 * The syncer vnode is no longer needed and is being decommissioned.
3083 *
3084 * Modifications to the worklist must be protected by sync_mtx.
3085 */
3086static int
3087sync_reclaim(struct vop_reclaim_args *ap)
3088{
3089	struct vnode *vp = ap->a_vp;
3090	struct bufobj *bo;
3091
3092	VI_LOCK(vp);
3093	bo = &vp->v_bufobj;
3094	vp->v_mount->mnt_syncer = NULL;
3095	if (bo->bo_flag & BO_ONWORKLST) {
3096		mtx_lock(&sync_mtx);
3097		LIST_REMOVE(bo, bo_synclist);
3098 		syncer_worklist_len--;
3099		sync_vnode_count--;
3100		mtx_unlock(&sync_mtx);
3101		bo->bo_flag &= ~BO_ONWORKLST;
3102	}
3103	VI_UNLOCK(vp);
3104
3105	return (0);
3106}
3107
3108/*
3109 * Check if vnode represents a disk device
3110 */
3111int
3112vn_isdisk(struct vnode *vp, int *errp)
3113{
3114	int error;
3115
3116	error = 0;
3117	dev_lock();
3118	if (vp->v_type != VCHR)
3119		error = ENOTBLK;
3120	else if (vp->v_rdev == NULL)
3121		error = ENXIO;
3122	else if (vp->v_rdev->si_devsw == NULL)
3123		error = ENXIO;
3124	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3125		error = ENOTBLK;
3126	dev_unlock();
3127	if (errp != NULL)
3128		*errp = error;
3129	return (error == 0);
3130}
3131
3132/*
3133 * Common filesystem object access control check routine.  Accepts a
3134 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3135 * and optional call-by-reference privused argument allowing vaccess()
3136 * to indicate to the caller whether privilege was used to satisfy the
3137 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3138 */
3139int
3140vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3141    mode_t acc_mode, struct ucred *cred, int *privused)
3142{
3143	mode_t dac_granted;
3144#ifdef CAPABILITIES
3145	mode_t cap_granted;
3146#endif
3147
3148	/*
3149	 * Look for a normal, non-privileged way to access the file/directory
3150	 * as requested.  If it exists, go with that.
3151	 */
3152
3153	if (privused != NULL)
3154		*privused = 0;
3155
3156	dac_granted = 0;
3157
3158	/* Check the owner. */
3159	if (cred->cr_uid == file_uid) {
3160		dac_granted |= VADMIN;
3161		if (file_mode & S_IXUSR)
3162			dac_granted |= VEXEC;
3163		if (file_mode & S_IRUSR)
3164			dac_granted |= VREAD;
3165		if (file_mode & S_IWUSR)
3166			dac_granted |= (VWRITE | VAPPEND);
3167
3168		if ((acc_mode & dac_granted) == acc_mode)
3169			return (0);
3170
3171		goto privcheck;
3172	}
3173
3174	/* Otherwise, check the groups (first match) */
3175	if (groupmember(file_gid, cred)) {
3176		if (file_mode & S_IXGRP)
3177			dac_granted |= VEXEC;
3178		if (file_mode & S_IRGRP)
3179			dac_granted |= VREAD;
3180		if (file_mode & S_IWGRP)
3181			dac_granted |= (VWRITE | VAPPEND);
3182
3183		if ((acc_mode & dac_granted) == acc_mode)
3184			return (0);
3185
3186		goto privcheck;
3187	}
3188
3189	/* Otherwise, check everyone else. */
3190	if (file_mode & S_IXOTH)
3191		dac_granted |= VEXEC;
3192	if (file_mode & S_IROTH)
3193		dac_granted |= VREAD;
3194	if (file_mode & S_IWOTH)
3195		dac_granted |= (VWRITE | VAPPEND);
3196	if ((acc_mode & dac_granted) == acc_mode)
3197		return (0);
3198
3199privcheck:
3200	if (!suser_cred(cred, SUSER_ALLOWJAIL)) {
3201		/* XXX audit: privilege used */
3202		if (privused != NULL)
3203			*privused = 1;
3204		return (0);
3205	}
3206
3207#ifdef CAPABILITIES
3208	/*
3209	 * Build a capability mask to determine if the set of capabilities
3210	 * satisfies the requirements when combined with the granted mask
3211	 * from above.
3212	 * For each capability, if the capability is required, bitwise
3213	 * or the request type onto the cap_granted mask.
3214	 */
3215	cap_granted = 0;
3216
3217	if (type == VDIR) {
3218		/*
3219		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3220		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3221		 */
3222		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3223		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3224			cap_granted |= VEXEC;
3225	} else {
3226		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3227		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, SUSER_ALLOWJAIL))
3228			cap_granted |= VEXEC;
3229	}
3230
3231	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3232	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3233		cap_granted |= VREAD;
3234
3235	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3236	    !cap_check(cred, NULL, CAP_DAC_WRITE, SUSER_ALLOWJAIL))
3237		cap_granted |= (VWRITE | VAPPEND);
3238
3239	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3240	    !cap_check(cred, NULL, CAP_FOWNER, SUSER_ALLOWJAIL))
3241		cap_granted |= VADMIN;
3242
3243	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3244		/* XXX audit: privilege used */
3245		if (privused != NULL)
3246			*privused = 1;
3247		return (0);
3248	}
3249#endif
3250
3251	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3252}
3253
3254/*
3255 * Credential check based on process requesting service, and per-attribute
3256 * permissions.
3257 */
3258int
3259extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3260    struct thread *td, int access)
3261{
3262
3263	/*
3264	 * Kernel-invoked always succeeds.
3265	 */
3266	if (cred == NOCRED)
3267		return (0);
3268
3269	/*
3270	 * Do not allow privileged processes in jail to directly
3271	 * manipulate system attributes.
3272	 *
3273	 * XXX What capability should apply here?
3274	 * Probably CAP_SYS_SETFFLAG.
3275	 */
3276	switch (attrnamespace) {
3277	case EXTATTR_NAMESPACE_SYSTEM:
3278		/* Potentially should be: return (EPERM); */
3279		return (suser_cred(cred, 0));
3280	case EXTATTR_NAMESPACE_USER:
3281		return (VOP_ACCESS(vp, access, cred, td));
3282	default:
3283		return (EPERM);
3284	}
3285}
3286
3287#ifdef DEBUG_VFS_LOCKS
3288/*
3289 * This only exists to supress warnings from unlocked specfs accesses.  It is
3290 * no longer ok to have an unlocked VFS.
3291 */
3292#define	IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
3293
3294int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3295SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3296
3297int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3298SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3299
3300int vfs_badlock_print = 1;	/* Print lock violations. */
3301SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3302
3303#ifdef KDB
3304int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3305SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3306#endif
3307
3308static void
3309vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3310{
3311
3312#ifdef KDB
3313	if (vfs_badlock_backtrace)
3314		kdb_backtrace();
3315#endif
3316	if (vfs_badlock_print)
3317		printf("%s: %p %s\n", str, (void *)vp, msg);
3318	if (vfs_badlock_ddb)
3319		kdb_enter("lock violation");
3320}
3321
3322void
3323assert_vi_locked(struct vnode *vp, const char *str)
3324{
3325
3326	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3327		vfs_badlock("interlock is not locked but should be", str, vp);
3328}
3329
3330void
3331assert_vi_unlocked(struct vnode *vp, const char *str)
3332{
3333
3334	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3335		vfs_badlock("interlock is locked but should not be", str, vp);
3336}
3337
3338void
3339assert_vop_locked(struct vnode *vp, const char *str)
3340{
3341
3342	if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
3343		vfs_badlock("is not locked but should be", str, vp);
3344}
3345
3346void
3347assert_vop_unlocked(struct vnode *vp, const char *str)
3348{
3349
3350	if (vp && !IGNORE_LOCK(vp) &&
3351	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
3352		vfs_badlock("is locked but should not be", str, vp);
3353}
3354
3355void
3356assert_vop_elocked(struct vnode *vp, const char *str)
3357{
3358
3359	if (vp && !IGNORE_LOCK(vp) &&
3360	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
3361		vfs_badlock("is not exclusive locked but should be", str, vp);
3362}
3363
3364#if 0
3365void
3366assert_vop_elocked_other(struct vnode *vp, const char *str)
3367{
3368
3369	if (vp && !IGNORE_LOCK(vp) &&
3370	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
3371		vfs_badlock("is not exclusive locked by another thread",
3372		    str, vp);
3373}
3374
3375void
3376assert_vop_slocked(struct vnode *vp, const char *str)
3377{
3378
3379	if (vp && !IGNORE_LOCK(vp) &&
3380	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
3381		vfs_badlock("is not locked shared but should be", str, vp);
3382}
3383#endif /* 0 */
3384#endif /* DEBUG_VFS_LOCKS */
3385
3386void
3387vop_rename_pre(void *ap)
3388{
3389	struct vop_rename_args *a = ap;
3390
3391#ifdef DEBUG_VFS_LOCKS
3392	if (a->a_tvp)
3393		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3394	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3395	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3396	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3397
3398	/* Check the source (from). */
3399	if (a->a_tdvp != a->a_fdvp && a->a_tvp != a->a_fdvp)
3400		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3401	if (a->a_tvp != a->a_fvp)
3402		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked");
3403
3404	/* Check the target. */
3405	if (a->a_tvp)
3406		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3407	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3408#endif
3409	if (a->a_tdvp != a->a_fdvp)
3410		vhold(a->a_fdvp);
3411	if (a->a_tvp != a->a_fvp)
3412		vhold(a->a_fvp);
3413	vhold(a->a_tdvp);
3414	if (a->a_tvp)
3415		vhold(a->a_tvp);
3416}
3417
3418void
3419vop_strategy_pre(void *ap)
3420{
3421#ifdef DEBUG_VFS_LOCKS
3422	struct vop_strategy_args *a;
3423	struct buf *bp;
3424
3425	a = ap;
3426	bp = a->a_bp;
3427
3428	/*
3429	 * Cluster ops lock their component buffers but not the IO container.
3430	 */
3431	if ((bp->b_flags & B_CLUSTER) != 0)
3432		return;
3433
3434	if (BUF_REFCNT(bp) < 1) {
3435		if (vfs_badlock_print)
3436			printf(
3437			    "VOP_STRATEGY: bp is not locked but should be\n");
3438		if (vfs_badlock_ddb)
3439			kdb_enter("lock violation");
3440	}
3441#endif
3442}
3443
3444void
3445vop_lookup_pre(void *ap)
3446{
3447#ifdef DEBUG_VFS_LOCKS
3448	struct vop_lookup_args *a;
3449	struct vnode *dvp;
3450
3451	a = ap;
3452	dvp = a->a_dvp;
3453	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3454	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3455#endif
3456}
3457
3458void
3459vop_lookup_post(void *ap, int rc)
3460{
3461#ifdef DEBUG_VFS_LOCKS
3462	struct vop_lookup_args *a;
3463	struct vnode *dvp;
3464	struct vnode *vp;
3465
3466	a = ap;
3467	dvp = a->a_dvp;
3468	vp = *(a->a_vpp);
3469
3470	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3471	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3472
3473	if (!rc)
3474		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
3475#endif
3476}
3477
3478void
3479vop_lock_pre(void *ap)
3480{
3481#ifdef DEBUG_VFS_LOCKS
3482	struct vop_lock_args *a = ap;
3483
3484	if ((a->a_flags & LK_INTERLOCK) == 0)
3485		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3486	else
3487		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3488#endif
3489}
3490
3491void
3492vop_lock_post(void *ap, int rc)
3493{
3494#ifdef DEBUG_VFS_LOCKS
3495	struct vop_lock_args *a = ap;
3496
3497	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3498	if (rc == 0)
3499		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3500#endif
3501}
3502
3503void
3504vop_unlock_pre(void *ap)
3505{
3506#ifdef DEBUG_VFS_LOCKS
3507	struct vop_unlock_args *a = ap;
3508
3509	if (a->a_flags & LK_INTERLOCK)
3510		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3511	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3512#endif
3513}
3514
3515void
3516vop_unlock_post(void *ap, int rc)
3517{
3518#ifdef DEBUG_VFS_LOCKS
3519	struct vop_unlock_args *a = ap;
3520
3521	if (a->a_flags & LK_INTERLOCK)
3522		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3523#endif
3524}
3525
3526void
3527vop_create_post(void *ap, int rc)
3528{
3529	struct vop_create_args *a = ap;
3530
3531	if (!rc)
3532		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3533}
3534
3535void
3536vop_link_post(void *ap, int rc)
3537{
3538	struct vop_link_args *a = ap;
3539
3540	if (!rc) {
3541		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
3542		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
3543	}
3544}
3545
3546void
3547vop_mkdir_post(void *ap, int rc)
3548{
3549	struct vop_mkdir_args *a = ap;
3550
3551	if (!rc)
3552		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3553}
3554
3555void
3556vop_mknod_post(void *ap, int rc)
3557{
3558	struct vop_mknod_args *a = ap;
3559
3560	if (!rc)
3561		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3562}
3563
3564void
3565vop_remove_post(void *ap, int rc)
3566{
3567	struct vop_remove_args *a = ap;
3568
3569	if (!rc) {
3570		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3571		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3572	}
3573}
3574
3575void
3576vop_rename_post(void *ap, int rc)
3577{
3578	struct vop_rename_args *a = ap;
3579
3580	if (!rc) {
3581		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
3582		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
3583		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
3584		if (a->a_tvp)
3585			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
3586	}
3587	if (a->a_tdvp != a->a_fdvp)
3588		vdrop(a->a_fdvp);
3589	if (a->a_tvp != a->a_fvp)
3590		vdrop(a->a_fvp);
3591	vdrop(a->a_tdvp);
3592	if (a->a_tvp)
3593		vdrop(a->a_tvp);
3594}
3595
3596void
3597vop_rmdir_post(void *ap, int rc)
3598{
3599	struct vop_rmdir_args *a = ap;
3600
3601	if (!rc) {
3602		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3603		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3604	}
3605}
3606
3607void
3608vop_setattr_post(void *ap, int rc)
3609{
3610	struct vop_setattr_args *a = ap;
3611
3612	if (!rc)
3613		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
3614}
3615
3616void
3617vop_symlink_post(void *ap, int rc)
3618{
3619	struct vop_symlink_args *a = ap;
3620
3621	if (!rc)
3622		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3623}
3624
3625static struct knlist fs_knlist;
3626
3627static void
3628vfs_event_init(void *arg)
3629{
3630	knlist_init(&fs_knlist, NULL, NULL, NULL, NULL);
3631}
3632/* XXX - correct order? */
3633SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3634
3635void
3636vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
3637{
3638
3639	KNOTE_UNLOCKED(&fs_knlist, event);
3640}
3641
3642static int	filt_fsattach(struct knote *kn);
3643static void	filt_fsdetach(struct knote *kn);
3644static int	filt_fsevent(struct knote *kn, long hint);
3645
3646struct filterops fs_filtops =
3647	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
3648
3649static int
3650filt_fsattach(struct knote *kn)
3651{
3652
3653	kn->kn_flags |= EV_CLEAR;
3654	knlist_add(&fs_knlist, kn, 0);
3655	return (0);
3656}
3657
3658static void
3659filt_fsdetach(struct knote *kn)
3660{
3661
3662	knlist_remove(&fs_knlist, kn, 0);
3663}
3664
3665static int
3666filt_fsevent(struct knote *kn, long hint)
3667{
3668
3669	kn->kn_fflags |= hint;
3670	return (kn->kn_fflags != 0);
3671}
3672
3673static int
3674sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
3675{
3676	struct vfsidctl vc;
3677	int error;
3678	struct mount *mp;
3679
3680	error = SYSCTL_IN(req, &vc, sizeof(vc));
3681	if (error)
3682		return (error);
3683	if (vc.vc_vers != VFS_CTL_VERS1)
3684		return (EINVAL);
3685	mp = vfs_getvfs(&vc.vc_fsid);
3686	if (mp == NULL)
3687		return (ENOENT);
3688	/* ensure that a specific sysctl goes to the right filesystem. */
3689	if (strcmp(vc.vc_fstypename, "*") != 0 &&
3690	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
3691		vfs_rel(mp);
3692		return (EINVAL);
3693	}
3694	VCTLTOREQ(&vc, req);
3695	error = VFS_SYSCTL(mp, vc.vc_op, req);
3696	vfs_rel(mp);
3697	return (error);
3698}
3699
3700SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR,
3701        NULL, 0, sysctl_vfs_ctl, "", "Sysctl by fsid");
3702
3703/*
3704 * Function to initialize a va_filerev field sensibly.
3705 * XXX: Wouldn't a random number make a lot more sense ??
3706 */
3707u_quad_t
3708init_va_filerev(void)
3709{
3710	struct bintime bt;
3711
3712	getbinuptime(&bt);
3713	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
3714}
3715
3716static int	filt_vfsread(struct knote *kn, long hint);
3717static int	filt_vfswrite(struct knote *kn, long hint);
3718static int	filt_vfsvnode(struct knote *kn, long hint);
3719static void	filt_vfsdetach(struct knote *kn);
3720static struct filterops vfsread_filtops =
3721	{ 1, NULL, filt_vfsdetach, filt_vfsread };
3722static struct filterops vfswrite_filtops =
3723	{ 1, NULL, filt_vfsdetach, filt_vfswrite };
3724static struct filterops vfsvnode_filtops =
3725	{ 1, NULL, filt_vfsdetach, filt_vfsvnode };
3726
3727static void
3728vfs_knllock(void *arg)
3729{
3730	struct vnode *vp = arg;
3731
3732	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
3733}
3734
3735static void
3736vfs_knlunlock(void *arg)
3737{
3738	struct vnode *vp = arg;
3739
3740	VOP_UNLOCK(vp, 0, curthread);
3741}
3742
3743static int
3744vfs_knllocked(void *arg)
3745{
3746	struct vnode *vp = arg;
3747
3748	return (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE);
3749}
3750
3751int
3752vfs_kqfilter(struct vop_kqfilter_args *ap)
3753{
3754	struct vnode *vp = ap->a_vp;
3755	struct knote *kn = ap->a_kn;
3756	struct knlist *knl;
3757
3758	switch (kn->kn_filter) {
3759	case EVFILT_READ:
3760		kn->kn_fop = &vfsread_filtops;
3761		break;
3762	case EVFILT_WRITE:
3763		kn->kn_fop = &vfswrite_filtops;
3764		break;
3765	case EVFILT_VNODE:
3766		kn->kn_fop = &vfsvnode_filtops;
3767		break;
3768	default:
3769		return (EINVAL);
3770	}
3771
3772	kn->kn_hook = (caddr_t)vp;
3773
3774	if (vp->v_pollinfo == NULL)
3775		v_addpollinfo(vp);
3776	if (vp->v_pollinfo == NULL)
3777		return (ENOMEM);
3778	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
3779	knlist_add(knl, kn, 0);
3780
3781	return (0);
3782}
3783
3784/*
3785 * Detach knote from vnode
3786 */
3787static void
3788filt_vfsdetach(struct knote *kn)
3789{
3790	struct vnode *vp = (struct vnode *)kn->kn_hook;
3791
3792	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
3793	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
3794}
3795
3796/*ARGSUSED*/
3797static int
3798filt_vfsread(struct knote *kn, long hint)
3799{
3800	struct vnode *vp = (struct vnode *)kn->kn_hook;
3801	struct vattr va;
3802
3803	/*
3804	 * filesystem is gone, so set the EOF flag and schedule
3805	 * the knote for deletion.
3806	 */
3807	if (hint == NOTE_REVOKE) {
3808		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
3809		return (1);
3810	}
3811
3812	if (VOP_GETATTR(vp, &va, curthread->td_ucred, curthread))
3813		return (0);
3814
3815	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
3816	return (kn->kn_data != 0);
3817}
3818
3819/*ARGSUSED*/
3820static int
3821filt_vfswrite(struct knote *kn, long hint)
3822{
3823	/*
3824	 * filesystem is gone, so set the EOF flag and schedule
3825	 * the knote for deletion.
3826	 */
3827	if (hint == NOTE_REVOKE)
3828		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
3829
3830	kn->kn_data = 0;
3831	return (1);
3832}
3833
3834static int
3835filt_vfsvnode(struct knote *kn, long hint)
3836{
3837	if (kn->kn_sfflags & hint)
3838		kn->kn_fflags |= hint;
3839	if (hint == NOTE_REVOKE) {
3840		kn->kn_flags |= EV_EOF;
3841		return (1);
3842	}
3843	return (kn->kn_fflags != 0);
3844}
3845
3846int
3847vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
3848{
3849	int error;
3850
3851	if (dp->d_reclen > ap->a_uio->uio_resid)
3852		return (ENAMETOOLONG);
3853	error = uiomove(dp, dp->d_reclen, ap->a_uio);
3854	if (error) {
3855		if (ap->a_ncookies != NULL) {
3856			if (ap->a_cookies != NULL)
3857				free(ap->a_cookies, M_TEMP);
3858			ap->a_cookies = NULL;
3859			*ap->a_ncookies = 0;
3860		}
3861		return (error);
3862	}
3863	if (ap->a_ncookies == NULL)
3864		return (0);
3865
3866	KASSERT(ap->a_cookies,
3867	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
3868
3869	*ap->a_cookies = realloc(*ap->a_cookies,
3870	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
3871	(*ap->a_cookies)[*ap->a_ncookies] = off;
3872	return (0);
3873}
3874
3875/*
3876 * Mark for update the access time of the file if the filesystem
3877 * supports VA_MARK_ATIME.  This functionality is used by execve
3878 * and mmap, so we want to avoid the synchronous I/O implied by
3879 * directly setting va_atime for the sake of efficiency.
3880 */
3881void
3882vfs_mark_atime(struct vnode *vp, struct thread *td)
3883{
3884	struct vattr atimeattr;
3885
3886	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
3887		VATTR_NULL(&atimeattr);
3888		atimeattr.va_vaflags |= VA_MARK_ATIME;
3889		(void)VOP_SETATTR(vp, &atimeattr, td->td_ucred, td);
3890	}
3891}
3892