vfs_subr.c revision 137050
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_subr.c 137050 2004-10-29 11:15:08Z phk $");
43
44#include "opt_ddb.h"
45#include "opt_mac.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/bio.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/event.h>
53#include <sys/eventhandler.h>
54#include <sys/extattr.h>
55#include <sys/fcntl.h>
56#include <sys/kdb.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/mac.h>
60#include <sys/malloc.h>
61#include <sys/mount.h>
62#include <sys/namei.h>
63#include <sys/reboot.h>
64#include <sys/sleepqueue.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <vm/vm.h>
72#include <vm/vm_object.h>
73#include <vm/vm_extern.h>
74#include <vm/pmap.h>
75#include <vm/vm_map.h>
76#include <vm/vm_page.h>
77#include <vm/vm_kern.h>
78#include <vm/uma.h>
79
80static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
81
82static void	addalias(struct vnode *vp, struct cdev *nvp_rdev);
83static void	delmntque(struct vnode *vp);
84static void	insmntque(struct vnode *vp, struct mount *mp);
85static void	vclean(struct vnode *vp, int flags, struct thread *td);
86static void	vlruvp(struct vnode *vp);
87static int	flushbuflist(struct buf *blist, int flags, struct vnode *vp,
88		    int slpflag, int slptimeo, int *errorp);
89static void	syncer_shutdown(void *arg, int howto);
90static int	vtryrecycle(struct vnode *vp);
91static void	vx_lock(struct vnode *vp);
92static void	vx_unlock(struct vnode *vp);
93static void	vgonechrl(struct vnode *vp, struct thread *td);
94
95
96/*
97 * Number of vnodes in existence.  Increased whenever getnewvnode()
98 * allocates a new vnode, never decreased.
99 */
100static unsigned long	numvnodes;
101
102SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
103
104/*
105 * Conversion tables for conversion from vnode types to inode formats
106 * and back.
107 */
108enum vtype iftovt_tab[16] = {
109	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
110	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
111};
112int vttoif_tab[9] = {
113	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
114	S_IFSOCK, S_IFIFO, S_IFMT,
115};
116
117/*
118 * List of vnodes that are ready for recycling.
119 */
120static TAILQ_HEAD(freelst, vnode) vnode_free_list;
121
122/*
123 * Minimum number of free vnodes.  If there are fewer than this free vnodes,
124 * getnewvnode() will return a newly allocated vnode.
125 */
126static u_long wantfreevnodes = 25;
127SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
128/* Number of vnodes in the free list. */
129static u_long freevnodes;
130SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
131
132/*
133 * Various variables used for debugging the new implementation of
134 * reassignbuf().
135 * XXX these are probably of (very) limited utility now.
136 */
137static int reassignbufcalls;
138SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
139static int nameileafonly;
140SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
141
142/*
143 * Cache for the mount type id assigned to NFS.  This is used for
144 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
145 */
146int	nfs_mount_type = -1;
147
148/* To keep more than one thread at a time from running vfs_getnewfsid */
149static struct mtx mntid_mtx;
150
151/*
152 * Lock for any access to the following:
153 *	vnode_free_list
154 *	numvnodes
155 *	freevnodes
156 */
157static struct mtx vnode_free_list_mtx;
158
159/* Publicly exported FS */
160struct nfs_public nfs_pub;
161
162/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
163static uma_zone_t vnode_zone;
164static uma_zone_t vnodepoll_zone;
165
166/* Set to 1 to print out reclaim of active vnodes */
167int	prtactive;
168
169/*
170 * The workitem queue.
171 *
172 * It is useful to delay writes of file data and filesystem metadata
173 * for tens of seconds so that quickly created and deleted files need
174 * not waste disk bandwidth being created and removed. To realize this,
175 * we append vnodes to a "workitem" queue. When running with a soft
176 * updates implementation, most pending metadata dependencies should
177 * not wait for more than a few seconds. Thus, mounted on block devices
178 * are delayed only about a half the time that file data is delayed.
179 * Similarly, directory updates are more critical, so are only delayed
180 * about a third the time that file data is delayed. Thus, there are
181 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
182 * one each second (driven off the filesystem syncer process). The
183 * syncer_delayno variable indicates the next queue that is to be processed.
184 * Items that need to be processed soon are placed in this queue:
185 *
186 *	syncer_workitem_pending[syncer_delayno]
187 *
188 * A delay of fifteen seconds is done by placing the request fifteen
189 * entries later in the queue:
190 *
191 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
192 *
193 */
194static int syncer_delayno;
195static long syncer_mask;
196LIST_HEAD(synclist, bufobj);
197static struct synclist *syncer_workitem_pending;
198/*
199 * The sync_mtx protects:
200 *	bo->bo_synclist
201 *	sync_vnode_count
202 *	syncer_delayno
203 *	syncer_state
204 *	syncer_workitem_pending
205 *	syncer_worklist_len
206 *	rushjob
207 */
208static struct mtx sync_mtx;
209
210#define SYNCER_MAXDELAY		32
211static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
212static int syncdelay = 30;		/* max time to delay syncing data */
213static int filedelay = 30;		/* time to delay syncing files */
214SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
215static int dirdelay = 29;		/* time to delay syncing directories */
216SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
217static int metadelay = 28;		/* time to delay syncing metadata */
218SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
219static int rushjob;		/* number of slots to run ASAP */
220static int stat_rush_requests;	/* number of times I/O speeded up */
221SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
222
223/*
224 * When shutting down the syncer, run it at four times normal speed.
225 */
226#define SYNCER_SHUTDOWN_SPEEDUP		4
227static int sync_vnode_count;
228static int syncer_worklist_len;
229static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
230    syncer_state;
231
232/*
233 * Number of vnodes we want to exist at any one time.  This is mostly used
234 * to size hash tables in vnode-related code.  It is normally not used in
235 * getnewvnode(), as wantfreevnodes is normally nonzero.)
236 *
237 * XXX desiredvnodes is historical cruft and should not exist.
238 */
239int desiredvnodes;
240SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
241    &desiredvnodes, 0, "Maximum number of vnodes");
242static int minvnodes;
243SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
244    &minvnodes, 0, "Minimum number of vnodes");
245static int vnlru_nowhere;
246SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
247    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
248
249/* Hook for calling soft updates. */
250int (*softdep_process_worklist_hook)(struct mount *);
251
252/*
253 * Initialize the vnode management data structures.
254 */
255#ifndef	MAXVNODES_MAX
256#define	MAXVNODES_MAX	100000
257#endif
258static void
259vntblinit(void *dummy __unused)
260{
261
262	/*
263	 * Desiredvnodes is a function of the physical memory size and
264	 * the kernel's heap size.  Specifically, desiredvnodes scales
265	 * in proportion to the physical memory size until two fifths
266	 * of the kernel's heap size is consumed by vnodes and vm
267	 * objects.
268	 */
269	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
270	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
271	if (desiredvnodes > MAXVNODES_MAX) {
272		if (bootverbose)
273			printf("Reducing kern.maxvnodes %d -> %d\n",
274			    desiredvnodes, MAXVNODES_MAX);
275		desiredvnodes = MAXVNODES_MAX;
276	}
277	minvnodes = desiredvnodes / 4;
278	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
279	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
280	TAILQ_INIT(&vnode_free_list);
281	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
282	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
283	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
284	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
285	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
286	/*
287	 * Initialize the filesystem syncer.
288	 */
289	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
290		&syncer_mask);
291	syncer_maxdelay = syncer_mask + 1;
292	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
293}
294SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
295
296
297/*
298 * Mark a mount point as busy. Used to synchronize access and to delay
299 * unmounting. Interlock is not released on failure.
300 */
301int
302vfs_busy(mp, flags, interlkp, td)
303	struct mount *mp;
304	int flags;
305	struct mtx *interlkp;
306	struct thread *td;
307{
308	int lkflags;
309
310	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
311		if (flags & LK_NOWAIT)
312			return (ENOENT);
313		mp->mnt_kern_flag |= MNTK_MWAIT;
314		/*
315		 * Since all busy locks are shared except the exclusive
316		 * lock granted when unmounting, the only place that a
317		 * wakeup needs to be done is at the release of the
318		 * exclusive lock at the end of dounmount.
319		 */
320		msleep(mp, interlkp, PVFS, "vfs_busy", 0);
321		return (ENOENT);
322	}
323	lkflags = LK_SHARED | LK_NOPAUSE;
324	if (interlkp)
325		lkflags |= LK_INTERLOCK;
326	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
327		panic("vfs_busy: unexpected lock failure");
328	return (0);
329}
330
331/*
332 * Free a busy filesystem.
333 */
334void
335vfs_unbusy(mp, td)
336	struct mount *mp;
337	struct thread *td;
338{
339
340	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
341}
342
343/*
344 * Lookup a mount point by filesystem identifier.
345 */
346struct mount *
347vfs_getvfs(fsid)
348	fsid_t *fsid;
349{
350	register struct mount *mp;
351
352	mtx_lock(&mountlist_mtx);
353	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
354		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
355		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
356			mtx_unlock(&mountlist_mtx);
357			return (mp);
358		}
359	}
360	mtx_unlock(&mountlist_mtx);
361	return ((struct mount *) 0);
362}
363
364/*
365 * Check if a user can access priveledged mount options.
366 */
367int
368vfs_suser(struct mount *mp, struct thread *td)
369{
370	int error;
371
372	if ((mp->mnt_flag & MNT_USER) == 0 ||
373	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
374		if ((error = suser(td)) != 0)
375			return (error);
376	}
377	return (0);
378}
379
380/*
381 * Get a new unique fsid.  Try to make its val[0] unique, since this value
382 * will be used to create fake device numbers for stat().  Also try (but
383 * not so hard) make its val[0] unique mod 2^16, since some emulators only
384 * support 16-bit device numbers.  We end up with unique val[0]'s for the
385 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
386 *
387 * Keep in mind that several mounts may be running in parallel.  Starting
388 * the search one past where the previous search terminated is both a
389 * micro-optimization and a defense against returning the same fsid to
390 * different mounts.
391 */
392void
393vfs_getnewfsid(mp)
394	struct mount *mp;
395{
396	static u_int16_t mntid_base;
397	fsid_t tfsid;
398	int mtype;
399
400	mtx_lock(&mntid_mtx);
401	mtype = mp->mnt_vfc->vfc_typenum;
402	tfsid.val[1] = mtype;
403	mtype = (mtype & 0xFF) << 24;
404	for (;;) {
405		tfsid.val[0] = makedev(255,
406		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
407		mntid_base++;
408		if (vfs_getvfs(&tfsid) == NULL)
409			break;
410	}
411	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
412	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
413	mtx_unlock(&mntid_mtx);
414}
415
416/*
417 * Knob to control the precision of file timestamps:
418 *
419 *   0 = seconds only; nanoseconds zeroed.
420 *   1 = seconds and nanoseconds, accurate within 1/HZ.
421 *   2 = seconds and nanoseconds, truncated to microseconds.
422 * >=3 = seconds and nanoseconds, maximum precision.
423 */
424enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
425
426static int timestamp_precision = TSP_SEC;
427SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
428    &timestamp_precision, 0, "");
429
430/*
431 * Get a current timestamp.
432 */
433void
434vfs_timestamp(tsp)
435	struct timespec *tsp;
436{
437	struct timeval tv;
438
439	switch (timestamp_precision) {
440	case TSP_SEC:
441		tsp->tv_sec = time_second;
442		tsp->tv_nsec = 0;
443		break;
444	case TSP_HZ:
445		getnanotime(tsp);
446		break;
447	case TSP_USEC:
448		microtime(&tv);
449		TIMEVAL_TO_TIMESPEC(&tv, tsp);
450		break;
451	case TSP_NSEC:
452	default:
453		nanotime(tsp);
454		break;
455	}
456}
457
458/*
459 * Set vnode attributes to VNOVAL
460 */
461void
462vattr_null(vap)
463	register struct vattr *vap;
464{
465
466	vap->va_type = VNON;
467	vap->va_size = VNOVAL;
468	vap->va_bytes = VNOVAL;
469	vap->va_mode = VNOVAL;
470	vap->va_nlink = VNOVAL;
471	vap->va_uid = VNOVAL;
472	vap->va_gid = VNOVAL;
473	vap->va_fsid = VNOVAL;
474	vap->va_fileid = VNOVAL;
475	vap->va_blocksize = VNOVAL;
476	vap->va_rdev = VNOVAL;
477	vap->va_atime.tv_sec = VNOVAL;
478	vap->va_atime.tv_nsec = VNOVAL;
479	vap->va_mtime.tv_sec = VNOVAL;
480	vap->va_mtime.tv_nsec = VNOVAL;
481	vap->va_ctime.tv_sec = VNOVAL;
482	vap->va_ctime.tv_nsec = VNOVAL;
483	vap->va_birthtime.tv_sec = VNOVAL;
484	vap->va_birthtime.tv_nsec = VNOVAL;
485	vap->va_flags = VNOVAL;
486	vap->va_gen = VNOVAL;
487	vap->va_vaflags = 0;
488}
489
490/*
491 * This routine is called when we have too many vnodes.  It attempts
492 * to free <count> vnodes and will potentially free vnodes that still
493 * have VM backing store (VM backing store is typically the cause
494 * of a vnode blowout so we want to do this).  Therefore, this operation
495 * is not considered cheap.
496 *
497 * A number of conditions may prevent a vnode from being reclaimed.
498 * the buffer cache may have references on the vnode, a directory
499 * vnode may still have references due to the namei cache representing
500 * underlying files, or the vnode may be in active use.   It is not
501 * desireable to reuse such vnodes.  These conditions may cause the
502 * number of vnodes to reach some minimum value regardless of what
503 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
504 */
505static int
506vlrureclaim(struct mount *mp)
507{
508	struct vnode *vp;
509	int done;
510	int trigger;
511	int usevnodes;
512	int count;
513
514	/*
515	 * Calculate the trigger point, don't allow user
516	 * screwups to blow us up.   This prevents us from
517	 * recycling vnodes with lots of resident pages.  We
518	 * aren't trying to free memory, we are trying to
519	 * free vnodes.
520	 */
521	usevnodes = desiredvnodes;
522	if (usevnodes <= 0)
523		usevnodes = 1;
524	trigger = cnt.v_page_count * 2 / usevnodes;
525
526	done = 0;
527	MNT_ILOCK(mp);
528	count = mp->mnt_nvnodelistsize / 10 + 1;
529	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
530		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
531		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
532
533		if (vp->v_type != VNON &&
534		    vp->v_type != VBAD &&
535		    VI_TRYLOCK(vp)) {
536			if (VMIGHTFREE(vp) &&           /* critical path opt */
537			    (vp->v_object == NULL ||
538			    vp->v_object->resident_page_count < trigger)) {
539				MNT_IUNLOCK(mp);
540				vgonel(vp, curthread);
541				done++;
542				MNT_ILOCK(mp);
543			} else
544				VI_UNLOCK(vp);
545		}
546		--count;
547	}
548	MNT_IUNLOCK(mp);
549	return done;
550}
551
552/*
553 * Attempt to recycle vnodes in a context that is always safe to block.
554 * Calling vlrurecycle() from the bowels of filesystem code has some
555 * interesting deadlock problems.
556 */
557static struct proc *vnlruproc;
558static int vnlruproc_sig;
559
560static void
561vnlru_proc(void)
562{
563	struct mount *mp, *nmp;
564	int done;
565	struct proc *p = vnlruproc;
566	struct thread *td = FIRST_THREAD_IN_PROC(p);
567
568	mtx_lock(&Giant);
569
570	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
571	    SHUTDOWN_PRI_FIRST);
572
573	for (;;) {
574		kthread_suspend_check(p);
575		mtx_lock(&vnode_free_list_mtx);
576		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
577			mtx_unlock(&vnode_free_list_mtx);
578			vnlruproc_sig = 0;
579			wakeup(&vnlruproc_sig);
580			tsleep(vnlruproc, PVFS, "vlruwt", hz);
581			continue;
582		}
583		mtx_unlock(&vnode_free_list_mtx);
584		done = 0;
585		mtx_lock(&mountlist_mtx);
586		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
587			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
588				nmp = TAILQ_NEXT(mp, mnt_list);
589				continue;
590			}
591			done += vlrureclaim(mp);
592			mtx_lock(&mountlist_mtx);
593			nmp = TAILQ_NEXT(mp, mnt_list);
594			vfs_unbusy(mp, td);
595		}
596		mtx_unlock(&mountlist_mtx);
597		if (done == 0) {
598#if 0
599			/* These messages are temporary debugging aids */
600			if (vnlru_nowhere < 5)
601				printf("vnlru process getting nowhere..\n");
602			else if (vnlru_nowhere == 5)
603				printf("vnlru process messages stopped.\n");
604#endif
605			vnlru_nowhere++;
606			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
607		}
608	}
609}
610
611static struct kproc_desc vnlru_kp = {
612	"vnlru",
613	vnlru_proc,
614	&vnlruproc
615};
616SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
617
618
619/*
620 * Routines having to do with the management of the vnode table.
621 */
622
623/*
624 * Check to see if a free vnode can be recycled. If it can,
625 * recycle it and return it with the vnode interlock held.
626 */
627static int
628vtryrecycle(struct vnode *vp)
629{
630	struct thread *td = curthread;
631	vm_object_t object;
632	struct mount *vnmp;
633	int error;
634
635	/* Don't recycle if we can't get the interlock */
636	if (!VI_TRYLOCK(vp))
637		return (EWOULDBLOCK);
638	/*
639	 * This vnode may found and locked via some other list, if so we
640	 * can't recycle it yet.
641	 */
642	if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
643		return (EWOULDBLOCK);
644	/*
645	 * Don't recycle if its filesystem is being suspended.
646	 */
647	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
648		VOP_UNLOCK(vp, 0, td);
649		return (EBUSY);
650	}
651
652	/*
653	 * Don't recycle if we still have cached pages.
654	 */
655	if (VOP_GETVOBJECT(vp, &object) == 0) {
656		VM_OBJECT_LOCK(object);
657		if (object->resident_page_count ||
658		    object->ref_count) {
659			VM_OBJECT_UNLOCK(object);
660			error = EBUSY;
661			goto done;
662		}
663		VM_OBJECT_UNLOCK(object);
664	}
665	if (LIST_FIRST(&vp->v_cache_src)) {
666		/*
667		 * note: nameileafonly sysctl is temporary,
668		 * for debugging only, and will eventually be
669		 * removed.
670		 */
671		if (nameileafonly > 0) {
672			/*
673			 * Do not reuse namei-cached directory
674			 * vnodes that have cached
675			 * subdirectories.
676			 */
677			if (cache_leaf_test(vp) < 0) {
678				error = EISDIR;
679				goto done;
680			}
681		} else if (nameileafonly < 0 ||
682			    vmiodirenable == 0) {
683			/*
684			 * Do not reuse namei-cached directory
685			 * vnodes if nameileafonly is -1 or
686			 * if VMIO backing for directories is
687			 * turned off (otherwise we reuse them
688			 * too quickly).
689			 */
690			error = EBUSY;
691			goto done;
692		}
693	}
694	/*
695	 * If we got this far, we need to acquire the interlock and see if
696	 * anyone picked up this vnode from another list.  If not, we will
697	 * mark it with XLOCK via vgonel() so that anyone who does find it
698	 * will skip over it.
699	 */
700	VI_LOCK(vp);
701	if (VSHOULDBUSY(vp) && (vp->v_iflag & VI_XLOCK) == 0) {
702		VI_UNLOCK(vp);
703		error = EBUSY;
704		goto done;
705	}
706	mtx_lock(&vnode_free_list_mtx);
707	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
708	vp->v_iflag &= ~VI_FREE;
709	mtx_unlock(&vnode_free_list_mtx);
710	vp->v_iflag |= VI_DOOMED;
711	if ((vp->v_type != VBAD) || (vp->v_data != NULL)) {
712		VOP_UNLOCK(vp, 0, td);
713		vgonel(vp, td);
714		VI_LOCK(vp);
715	} else
716		VOP_UNLOCK(vp, 0, td);
717	vn_finished_write(vnmp);
718	return (0);
719done:
720	VOP_UNLOCK(vp, 0, td);
721	vn_finished_write(vnmp);
722	return (error);
723}
724
725/*
726 * Return the next vnode from the free list.
727 */
728int
729getnewvnode(tag, mp, vops, vpp)
730	const char *tag;
731	struct mount *mp;
732	vop_t **vops;
733	struct vnode **vpp;
734{
735	struct vnode *vp = NULL;
736	struct vpollinfo *pollinfo = NULL;
737	struct bufobj *bo;
738
739	mtx_lock(&vnode_free_list_mtx);
740
741	/*
742	 * Try to reuse vnodes if we hit the max.  This situation only
743	 * occurs in certain large-memory (2G+) situations.  We cannot
744	 * attempt to directly reclaim vnodes due to nasty recursion
745	 * problems.
746	 */
747	while (numvnodes - freevnodes > desiredvnodes) {
748		if (vnlruproc_sig == 0) {
749			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
750			wakeup(vnlruproc);
751		}
752		mtx_unlock(&vnode_free_list_mtx);
753		tsleep(&vnlruproc_sig, PVFS, "vlruwk", hz);
754		mtx_lock(&vnode_free_list_mtx);
755	}
756
757	/*
758	 * Attempt to reuse a vnode already on the free list, allocating
759	 * a new vnode if we can't find one or if we have not reached a
760	 * good minimum for good LRU performance.
761	 */
762
763	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
764		int error;
765		int count;
766
767		for (count = 0; count < freevnodes; count++) {
768			vp = TAILQ_FIRST(&vnode_free_list);
769
770			KASSERT(vp->v_usecount == 0 &&
771			    (vp->v_iflag & VI_DOINGINACT) == 0,
772			    ("getnewvnode: free vnode isn't"));
773
774			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
775			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
776			mtx_unlock(&vnode_free_list_mtx);
777			error = vtryrecycle(vp);
778			mtx_lock(&vnode_free_list_mtx);
779			if (error == 0)
780				break;
781			vp = NULL;
782		}
783	}
784	if (vp) {
785		freevnodes--;
786		bo = &vp->v_bufobj;
787		mtx_unlock(&vnode_free_list_mtx);
788
789#ifdef INVARIANTS
790		{
791			if (vp->v_data)
792				printf("cleaned vnode isn't, "
793				       "address %p, inode %p\n",
794				       vp, vp->v_data);
795			if (bo->bo_numoutput)
796				panic("Clean vnode has pending I/O's");
797			if (vp->v_writecount != 0)
798				panic("Non-zero write count");
799		}
800#endif
801		if ((pollinfo = vp->v_pollinfo) != NULL) {
802			/*
803			 * To avoid lock order reversals, the call to
804			 * uma_zfree() must be delayed until the vnode
805			 * interlock is released.
806			 */
807			vp->v_pollinfo = NULL;
808		}
809#ifdef MAC
810		mac_destroy_vnode(vp);
811#endif
812		vp->v_iflag = 0;
813		vp->v_vflag = 0;
814		vp->v_lastw = 0;
815		vp->v_lasta = 0;
816		vp->v_cstart = 0;
817		vp->v_clen = 0;
818		vp->v_socket = 0;
819		lockdestroy(vp->v_vnlock);
820		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
821		KASSERT(bo->bo_clean.bv_cnt == 0, ("cleanbufcnt not 0"));
822		KASSERT(bo->bo_clean.bv_root == NULL, ("cleanblkroot not NULL"));
823		KASSERT(bo->bo_dirty.bv_cnt == 0, ("dirtybufcnt not 0"));
824		KASSERT(bo->bo_dirty.bv_root == NULL, ("dirtyblkroot not NULL"));
825	} else {
826		numvnodes++;
827		mtx_unlock(&vnode_free_list_mtx);
828
829		vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
830		mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
831		VI_LOCK(vp);
832		vp->v_dd = vp;
833		bo = &vp->v_bufobj;
834		bo->bo_private = vp;
835		bo->__bo_vnode = vp;
836		bo->bo_mtx = &vp->v_interlock;
837		vp->v_vnlock = &vp->v_lock;
838		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
839		cache_purge(vp);		/* Sets up v_id. */
840		LIST_INIT(&vp->v_cache_src);
841		TAILQ_INIT(&vp->v_cache_dst);
842	}
843
844	TAILQ_INIT(&bo->bo_clean.bv_hd);
845	TAILQ_INIT(&bo->bo_dirty.bv_hd);
846	bo->bo_ops = &buf_ops_bio;
847	vp->v_type = VNON;
848	vp->v_tag = tag;
849	vp->v_op = vops;
850	*vpp = vp;
851	vp->v_usecount = 1;
852	vp->v_data = 0;
853	vp->v_cachedid = -1;
854	VI_UNLOCK(vp);
855	if (pollinfo != NULL) {
856		knlist_destroy(&pollinfo->vpi_selinfo.si_note);
857		mtx_destroy(&pollinfo->vpi_lock);
858		uma_zfree(vnodepoll_zone, pollinfo);
859	}
860#ifdef MAC
861	mac_init_vnode(vp);
862	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
863		mac_associate_vnode_singlelabel(mp, vp);
864	else if (mp == NULL)
865		printf("NULL mp in getnewvnode()\n");
866#endif
867	delmntque(vp);
868	if (mp != NULL) {
869		insmntque(vp, mp);
870		bo->bo_bsize = mp->mnt_stat.f_iosize;
871	}
872
873	return (0);
874}
875
876/*
877 * Delete from old mount point vnode list, if on one.
878 */
879static void
880delmntque(struct vnode *vp)
881{
882	struct mount *mp;
883
884	if (vp->v_mount == NULL)
885		return;
886	mp = vp->v_mount;
887	MNT_ILOCK(mp);
888	vp->v_mount = NULL;
889	KASSERT(mp->mnt_nvnodelistsize > 0,
890		("bad mount point vnode list size"));
891	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
892	mp->mnt_nvnodelistsize--;
893	MNT_IUNLOCK(mp);
894}
895
896/*
897 * Insert into list of vnodes for the new mount point, if available.
898 */
899static void
900insmntque(struct vnode *vp, struct mount *mp)
901{
902
903	vp->v_mount = mp;
904	KASSERT(mp != NULL, ("Don't call insmntque(foo, NULL)"));
905	MNT_ILOCK(vp->v_mount);
906	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
907	mp->mnt_nvnodelistsize++;
908	MNT_IUNLOCK(vp->v_mount);
909}
910
911/*
912 * Flush out and invalidate all buffers associated with a vnode.
913 * Called with the underlying object locked.
914 */
915int
916vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
917	struct vnode *vp;
918	int flags;
919	struct ucred *cred;
920	struct thread *td;
921	int slpflag, slptimeo;
922{
923	struct buf *blist;
924	int error;
925	vm_object_t object;
926	struct bufobj *bo;
927
928	GIANT_REQUIRED;
929
930	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
931
932	bo = &vp->v_bufobj;
933	BO_LOCK(bo);
934	if (flags & V_SAVE) {
935		error = bufobj_wwait(bo, slpflag, slptimeo);
936		if (error) {
937			VI_UNLOCK(vp);
938			return (error);
939		}
940		if (bo->bo_dirty.bv_cnt > 0) {
941			VI_UNLOCK(vp);
942			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
943				return (error);
944			/*
945			 * XXX We could save a lock/unlock if this was only
946			 * enabled under INVARIANTS
947			 */
948			VI_LOCK(vp);
949			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
950				panic("vinvalbuf: dirty bufs");
951		}
952	}
953	/*
954	 * If you alter this loop please notice that interlock is dropped and
955	 * reacquired in flushbuflist.  Special care is needed to ensure that
956	 * no race conditions occur from this.
957	 */
958	for (error = 0;;) {
959		blist = TAILQ_FIRST(&vp->v_bufobj.bo_clean.bv_hd);
960		if (blist != NULL &&
961		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
962			if (error)
963				break;
964			continue;
965		}
966		blist = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
967		if (blist != NULL &&
968		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
969			if (error)
970				break;
971			continue;
972		}
973		break;
974	}
975	if (error) {
976		VI_UNLOCK(vp);
977		return (error);
978	}
979
980	/*
981	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
982	 * have write I/O in-progress but if there is a VM object then the
983	 * VM object can also have read-I/O in-progress.
984	 */
985	do {
986		bufobj_wwait(bo, 0, 0);
987		VI_UNLOCK(vp);
988		if (VOP_GETVOBJECT(vp, &object) == 0) {
989			VM_OBJECT_LOCK(object);
990			vm_object_pip_wait(object, "vnvlbx");
991			VM_OBJECT_UNLOCK(object);
992		}
993		VI_LOCK(vp);
994	} while (bo->bo_numoutput > 0);
995	VI_UNLOCK(vp);
996
997	/*
998	 * Destroy the copy in the VM cache, too.
999	 */
1000	if (VOP_GETVOBJECT(vp, &object) == 0) {
1001		VM_OBJECT_LOCK(object);
1002		vm_object_page_remove(object, 0, 0,
1003			(flags & V_SAVE) ? TRUE : FALSE);
1004		VM_OBJECT_UNLOCK(object);
1005	}
1006
1007#ifdef INVARIANTS
1008	VI_LOCK(vp);
1009	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1010	    (vp->v_bufobj.bo_dirty.bv_cnt > 0 ||
1011	     vp->v_bufobj.bo_clean.bv_cnt > 0))
1012		panic("vinvalbuf: flush failed");
1013	VI_UNLOCK(vp);
1014#endif
1015	return (0);
1016}
1017
1018/*
1019 * Flush out buffers on the specified list.
1020 *
1021 */
1022static int
1023flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp)
1024	struct buf *blist;
1025	int flags;
1026	struct vnode *vp;
1027	int slpflag, slptimeo;
1028	int *errorp;
1029{
1030	struct buf *bp, *nbp;
1031	int found, error;
1032
1033	ASSERT_VI_LOCKED(vp, "flushbuflist");
1034
1035	for (found = 0, bp = blist; bp; bp = nbp) {
1036		nbp = TAILQ_NEXT(bp, b_bobufs);
1037		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1038		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1039			continue;
1040		}
1041		found += 1;
1042		error = BUF_TIMELOCK(bp,
1043		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, VI_MTX(vp),
1044		    "flushbuf", slpflag, slptimeo);
1045		if (error) {
1046			if (error != ENOLCK)
1047				*errorp = error;
1048			goto done;
1049		}
1050		/*
1051		 * XXX Since there are no node locks for NFS, I
1052		 * believe there is a slight chance that a delayed
1053		 * write will occur while sleeping just above, so
1054		 * check for it.  Note that vfs_bio_awrite expects
1055		 * buffers to reside on a queue, while bwrite and
1056		 * brelse do not.
1057		 */
1058		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1059			(flags & V_SAVE)) {
1060
1061			if (bp->b_vp == vp) {
1062				if (bp->b_flags & B_CLUSTEROK) {
1063					vfs_bio_awrite(bp);
1064				} else {
1065					bremfree(bp);
1066					bp->b_flags |= B_ASYNC;
1067					bwrite(bp);
1068				}
1069			} else {
1070				bremfree(bp);
1071				(void) bwrite(bp);
1072			}
1073			goto done;
1074		}
1075		bremfree(bp);
1076		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1077		bp->b_flags &= ~B_ASYNC;
1078		brelse(bp);
1079		VI_LOCK(vp);
1080	}
1081	return (found);
1082done:
1083	VI_LOCK(vp);
1084	return (found);
1085}
1086
1087/*
1088 * Truncate a file's buffer and pages to a specified length.  This
1089 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1090 * sync activity.
1091 */
1092int
1093vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td, off_t length, int blksize)
1094{
1095	struct buf *bp, *nbp;
1096	int anyfreed;
1097	int trunclbn;
1098	struct bufobj *bo;
1099
1100	/*
1101	 * Round up to the *next* lbn.
1102	 */
1103	trunclbn = (length + blksize - 1) / blksize;
1104
1105	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1106restart:
1107	VI_LOCK(vp);
1108	bo = &vp->v_bufobj;
1109	anyfreed = 1;
1110	for (;anyfreed;) {
1111		anyfreed = 0;
1112		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1113			if (bp->b_lblkno < trunclbn)
1114				continue;
1115			if (BUF_LOCK(bp,
1116			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1117			    VI_MTX(vp)) == ENOLCK)
1118				goto restart;
1119
1120			bremfree(bp);
1121			bp->b_flags |= (B_INVAL | B_RELBUF);
1122			bp->b_flags &= ~B_ASYNC;
1123			brelse(bp);
1124			anyfreed = 1;
1125
1126			if (nbp != NULL &&
1127			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1128			    (nbp->b_vp != vp) ||
1129			    (nbp->b_flags & B_DELWRI))) {
1130				goto restart;
1131			}
1132			VI_LOCK(vp);
1133		}
1134
1135		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1136			if (bp->b_lblkno < trunclbn)
1137				continue;
1138			if (BUF_LOCK(bp,
1139			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1140			    VI_MTX(vp)) == ENOLCK)
1141				goto restart;
1142			bremfree(bp);
1143			bp->b_flags |= (B_INVAL | B_RELBUF);
1144			bp->b_flags &= ~B_ASYNC;
1145			brelse(bp);
1146			anyfreed = 1;
1147			if (nbp != NULL &&
1148			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1149			    (nbp->b_vp != vp) ||
1150			    (nbp->b_flags & B_DELWRI) == 0)) {
1151				goto restart;
1152			}
1153			VI_LOCK(vp);
1154		}
1155	}
1156
1157	if (length > 0) {
1158restartsync:
1159		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1160			if (bp->b_lblkno > 0)
1161				continue;
1162			/*
1163			 * Since we hold the vnode lock this should only
1164			 * fail if we're racing with the buf daemon.
1165			 */
1166			if (BUF_LOCK(bp,
1167			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1168			    VI_MTX(vp)) == ENOLCK) {
1169				goto restart;
1170			}
1171			KASSERT((bp->b_flags & B_DELWRI),
1172			    ("buf(%p) on dirty queue without DELWRI", bp));
1173
1174			bremfree(bp);
1175			bawrite(bp);
1176			VI_LOCK(vp);
1177			goto restartsync;
1178		}
1179	}
1180
1181	bufobj_wwait(bo, 0, 0);
1182	VI_UNLOCK(vp);
1183	vnode_pager_setsize(vp, length);
1184
1185	return (0);
1186}
1187
1188/*
1189 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1190 * 		 a vnode.
1191 *
1192 *	NOTE: We have to deal with the special case of a background bitmap
1193 *	buffer, a situation where two buffers will have the same logical
1194 *	block offset.  We want (1) only the foreground buffer to be accessed
1195 *	in a lookup and (2) must differentiate between the foreground and
1196 *	background buffer in the splay tree algorithm because the splay
1197 *	tree cannot normally handle multiple entities with the same 'index'.
1198 *	We accomplish this by adding differentiating flags to the splay tree's
1199 *	numerical domain.
1200 */
1201static
1202struct buf *
1203buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1204{
1205	struct buf dummy;
1206	struct buf *lefttreemax, *righttreemin, *y;
1207
1208	if (root == NULL)
1209		return (NULL);
1210	lefttreemax = righttreemin = &dummy;
1211	for (;;) {
1212		if (lblkno < root->b_lblkno ||
1213		    (lblkno == root->b_lblkno &&
1214		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1215			if ((y = root->b_left) == NULL)
1216				break;
1217			if (lblkno < y->b_lblkno) {
1218				/* Rotate right. */
1219				root->b_left = y->b_right;
1220				y->b_right = root;
1221				root = y;
1222				if ((y = root->b_left) == NULL)
1223					break;
1224			}
1225			/* Link into the new root's right tree. */
1226			righttreemin->b_left = root;
1227			righttreemin = root;
1228		} else if (lblkno > root->b_lblkno ||
1229		    (lblkno == root->b_lblkno &&
1230		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1231			if ((y = root->b_right) == NULL)
1232				break;
1233			if (lblkno > y->b_lblkno) {
1234				/* Rotate left. */
1235				root->b_right = y->b_left;
1236				y->b_left = root;
1237				root = y;
1238				if ((y = root->b_right) == NULL)
1239					break;
1240			}
1241			/* Link into the new root's left tree. */
1242			lefttreemax->b_right = root;
1243			lefttreemax = root;
1244		} else {
1245			break;
1246		}
1247		root = y;
1248	}
1249	/* Assemble the new root. */
1250	lefttreemax->b_right = root->b_left;
1251	righttreemin->b_left = root->b_right;
1252	root->b_left = dummy.b_right;
1253	root->b_right = dummy.b_left;
1254	return (root);
1255}
1256
1257static void
1258buf_vlist_remove(struct buf *bp)
1259{
1260	struct buf *root;
1261	struct bufv *bv;
1262
1263	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1264	ASSERT_BO_LOCKED(bp->b_bufobj);
1265	if (bp->b_xflags & BX_VNDIRTY)
1266		bv = &bp->b_bufobj->bo_dirty;
1267	else
1268		bv = &bp->b_bufobj->bo_clean;
1269	if (bp != bv->bv_root) {
1270		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1271		KASSERT(root == bp, ("splay lookup failed in remove"));
1272	}
1273	if (bp->b_left == NULL) {
1274		root = bp->b_right;
1275	} else {
1276		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1277		root->b_right = bp->b_right;
1278	}
1279	bv->bv_root = root;
1280	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1281	bv->bv_cnt--;
1282	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1283}
1284
1285/*
1286 * Add the buffer to the sorted clean or dirty block list using a
1287 * splay tree algorithm.
1288 *
1289 * NOTE: xflags is passed as a constant, optimizing this inline function!
1290 */
1291static void
1292buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1293{
1294	struct buf *root;
1295	struct bufv *bv;
1296
1297	ASSERT_BO_LOCKED(bo);
1298	bp->b_xflags |= xflags;
1299	if (xflags & BX_VNDIRTY)
1300		bv = &bo->bo_dirty;
1301	else
1302		bv = &bo->bo_clean;
1303
1304	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1305	if (root == NULL) {
1306		bp->b_left = NULL;
1307		bp->b_right = NULL;
1308		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1309	} else if (bp->b_lblkno < root->b_lblkno ||
1310	    (bp->b_lblkno == root->b_lblkno &&
1311	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1312		bp->b_left = root->b_left;
1313		bp->b_right = root;
1314		root->b_left = NULL;
1315		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1316	} else {
1317		bp->b_right = root->b_right;
1318		bp->b_left = root;
1319		root->b_right = NULL;
1320		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1321	}
1322	bv->bv_cnt++;
1323	bv->bv_root = bp;
1324}
1325
1326/*
1327 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1328 * shadow buffers used in background bitmap writes.
1329 *
1330 * This code isn't quite efficient as it could be because we are maintaining
1331 * two sorted lists and do not know which list the block resides in.
1332 *
1333 * During a "make buildworld" the desired buffer is found at one of
1334 * the roots more than 60% of the time.  Thus, checking both roots
1335 * before performing either splay eliminates unnecessary splays on the
1336 * first tree splayed.
1337 */
1338struct buf *
1339gbincore(struct bufobj *bo, daddr_t lblkno)
1340{
1341	struct buf *bp;
1342
1343	GIANT_REQUIRED;
1344
1345	ASSERT_BO_LOCKED(bo);
1346	if ((bp = bo->bo_clean.bv_root) != NULL &&
1347	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1348		return (bp);
1349	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1350	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1351		return (bp);
1352	if ((bp = bo->bo_clean.bv_root) != NULL) {
1353		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1354		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1355			return (bp);
1356	}
1357	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1358		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1359		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1360			return (bp);
1361	}
1362	return (NULL);
1363}
1364
1365/*
1366 * Associate a buffer with a vnode.
1367 */
1368void
1369bgetvp(struct vnode *vp, struct buf *bp)
1370{
1371
1372	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1373
1374	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1375	    ("bgetvp: bp already attached! %p", bp));
1376
1377	ASSERT_VI_LOCKED(vp, "bgetvp");
1378	vholdl(vp);
1379	bp->b_vp = vp;
1380	bp->b_bufobj = &vp->v_bufobj;
1381	bp->b_dev = vn_todev(vp);
1382	/*
1383	 * Insert onto list for new vnode.
1384	 */
1385	buf_vlist_add(bp, &vp->v_bufobj, BX_VNCLEAN);
1386}
1387
1388/*
1389 * Disassociate a buffer from a vnode.
1390 */
1391void
1392brelvp(struct buf *bp)
1393{
1394	struct bufobj *bo;
1395	struct vnode *vp;
1396
1397	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1398
1399	/*
1400	 * Delete from old vnode list, if on one.
1401	 */
1402	vp = bp->b_vp;		/* XXX */
1403	bo = bp->b_bufobj;
1404	BO_LOCK(bo);
1405	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1406		buf_vlist_remove(bp);
1407	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1408		bo->bo_flag &= ~BO_ONWORKLST;
1409		mtx_lock(&sync_mtx);
1410		LIST_REMOVE(bo, bo_synclist);
1411 		syncer_worklist_len--;
1412		mtx_unlock(&sync_mtx);
1413	}
1414	vdropl(vp);
1415	bp->b_vp = NULL;
1416	bp->b_bufobj = NULL;
1417	BO_UNLOCK(bo);
1418}
1419
1420/*
1421 * Add an item to the syncer work queue.
1422 */
1423static void
1424vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1425{
1426	int slot;
1427
1428	ASSERT_BO_LOCKED(bo);
1429
1430	mtx_lock(&sync_mtx);
1431	if (bo->bo_flag & BO_ONWORKLST)
1432		LIST_REMOVE(bo, bo_synclist);
1433	else {
1434		bo->bo_flag |= BO_ONWORKLST;
1435 		syncer_worklist_len++;
1436	}
1437
1438	if (delay > syncer_maxdelay - 2)
1439		delay = syncer_maxdelay - 2;
1440	slot = (syncer_delayno + delay) & syncer_mask;
1441
1442	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1443	mtx_unlock(&sync_mtx);
1444}
1445
1446static int
1447sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1448{
1449	int error, len;
1450
1451	mtx_lock(&sync_mtx);
1452	len = syncer_worklist_len - sync_vnode_count;
1453	mtx_unlock(&sync_mtx);
1454	error = SYSCTL_OUT(req, &len, sizeof(len));
1455	return (error);
1456}
1457
1458SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1459    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1460
1461struct  proc *updateproc;
1462static void sched_sync(void);
1463static struct kproc_desc up_kp = {
1464	"syncer",
1465	sched_sync,
1466	&updateproc
1467};
1468SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1469
1470/*
1471 * System filesystem synchronizer daemon.
1472 */
1473static void
1474sched_sync(void)
1475{
1476	struct synclist *next;
1477	struct synclist *slp;
1478	struct vnode *vp;
1479	struct bufobj *bo;
1480	struct mount *mp;
1481	long starttime;
1482	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);
1483	static int dummychan;
1484	int last_work_seen;
1485	int net_worklist_len;
1486	int syncer_final_iter;
1487	int first_printf;
1488
1489	mtx_lock(&Giant);
1490	last_work_seen = 0;
1491	syncer_final_iter = 0;
1492	first_printf = 1;
1493	syncer_state = SYNCER_RUNNING;
1494	starttime = time_second;
1495
1496	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1497	    SHUTDOWN_PRI_LAST);
1498
1499	for (;;) {
1500		mtx_lock(&sync_mtx);
1501		if (syncer_state == SYNCER_FINAL_DELAY &&
1502		    syncer_final_iter == 0) {
1503			mtx_unlock(&sync_mtx);
1504			kthread_suspend_check(td->td_proc);
1505			mtx_lock(&sync_mtx);
1506		}
1507		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1508		if (syncer_state != SYNCER_RUNNING &&
1509		    starttime != time_second) {
1510			if (first_printf) {
1511				printf("\nSyncing disks, vnodes remaining...");
1512				first_printf = 0;
1513			}
1514			printf("%d ", net_worklist_len);
1515		}
1516		starttime = time_second;
1517
1518		/*
1519		 * Push files whose dirty time has expired.  Be careful
1520		 * of interrupt race on slp queue.
1521		 *
1522		 * Skip over empty worklist slots when shutting down.
1523		 */
1524		do {
1525			slp = &syncer_workitem_pending[syncer_delayno];
1526			syncer_delayno += 1;
1527			if (syncer_delayno == syncer_maxdelay)
1528				syncer_delayno = 0;
1529			next = &syncer_workitem_pending[syncer_delayno];
1530			/*
1531			 * If the worklist has wrapped since the
1532			 * it was emptied of all but syncer vnodes,
1533			 * switch to the FINAL_DELAY state and run
1534			 * for one more second.
1535			 */
1536			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1537			    net_worklist_len == 0 &&
1538			    last_work_seen == syncer_delayno) {
1539				syncer_state = SYNCER_FINAL_DELAY;
1540				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1541			}
1542		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1543		    syncer_worklist_len > 0);
1544
1545		/*
1546		 * Keep track of the last time there was anything
1547		 * on the worklist other than syncer vnodes.
1548		 * Return to the SHUTTING_DOWN state if any
1549		 * new work appears.
1550		 */
1551		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1552			last_work_seen = syncer_delayno;
1553		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1554			syncer_state = SYNCER_SHUTTING_DOWN;
1555		while ((bo = LIST_FIRST(slp)) != NULL) {
1556			vp = bo->__bo_vnode; 	/* XXX */
1557			if (VOP_ISLOCKED(vp, NULL) != 0 ||
1558			    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1559				LIST_REMOVE(bo, bo_synclist);
1560				LIST_INSERT_HEAD(next, bo, bo_synclist);
1561				continue;
1562			}
1563			if (VI_TRYLOCK(vp) == 0) {
1564				LIST_REMOVE(bo, bo_synclist);
1565				LIST_INSERT_HEAD(next, bo, bo_synclist);
1566				vn_finished_write(mp);
1567				continue;
1568			}
1569			/*
1570			 * We use vhold in case the vnode does not
1571			 * successfully sync.  vhold prevents the vnode from
1572			 * going away when we unlock the sync_mtx so that
1573			 * we can acquire the vnode interlock.
1574			 */
1575			vholdl(vp);
1576			mtx_unlock(&sync_mtx);
1577			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, td);
1578			(void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td);
1579			VOP_UNLOCK(vp, 0, td);
1580			vn_finished_write(mp);
1581			VI_LOCK(vp);
1582			if ((bo->bo_flag & BO_ONWORKLST) != 0) {
1583				/*
1584				 * Put us back on the worklist.  The worklist
1585				 * routine will remove us from our current
1586				 * position and then add us back in at a later
1587				 * position.
1588				 */
1589				vn_syncer_add_to_worklist(bo, syncdelay);
1590			}
1591			vdropl(vp);
1592			VI_UNLOCK(vp);
1593			mtx_lock(&sync_mtx);
1594		}
1595		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1596			syncer_final_iter--;
1597		mtx_unlock(&sync_mtx);
1598
1599		/*
1600		 * Do soft update processing.
1601		 */
1602		if (softdep_process_worklist_hook != NULL)
1603			(*softdep_process_worklist_hook)(NULL);
1604
1605		/*
1606		 * The variable rushjob allows the kernel to speed up the
1607		 * processing of the filesystem syncer process. A rushjob
1608		 * value of N tells the filesystem syncer to process the next
1609		 * N seconds worth of work on its queue ASAP. Currently rushjob
1610		 * is used by the soft update code to speed up the filesystem
1611		 * syncer process when the incore state is getting so far
1612		 * ahead of the disk that the kernel memory pool is being
1613		 * threatened with exhaustion.
1614		 */
1615		mtx_lock(&sync_mtx);
1616		if (rushjob > 0) {
1617			rushjob -= 1;
1618			mtx_unlock(&sync_mtx);
1619			continue;
1620		}
1621		mtx_unlock(&sync_mtx);
1622		/*
1623		 * Just sleep for a short period if time between
1624		 * iterations when shutting down to allow some I/O
1625		 * to happen.
1626		 *
1627		 * If it has taken us less than a second to process the
1628		 * current work, then wait. Otherwise start right over
1629		 * again. We can still lose time if any single round
1630		 * takes more than two seconds, but it does not really
1631		 * matter as we are just trying to generally pace the
1632		 * filesystem activity.
1633		 */
1634		if (syncer_state != SYNCER_RUNNING)
1635			tsleep(&dummychan, PPAUSE, "syncfnl",
1636			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1637		else if (time_second == starttime)
1638			tsleep(&lbolt, PPAUSE, "syncer", 0);
1639	}
1640}
1641
1642/*
1643 * Request the syncer daemon to speed up its work.
1644 * We never push it to speed up more than half of its
1645 * normal turn time, otherwise it could take over the cpu.
1646 */
1647int
1648speedup_syncer()
1649{
1650	struct thread *td;
1651	int ret = 0;
1652
1653	td = FIRST_THREAD_IN_PROC(updateproc);
1654	sleepq_remove(td, &lbolt);
1655	mtx_lock(&sync_mtx);
1656	if (rushjob < syncdelay / 2) {
1657		rushjob += 1;
1658		stat_rush_requests += 1;
1659		ret = 1;
1660	}
1661	mtx_unlock(&sync_mtx);
1662	return (ret);
1663}
1664
1665/*
1666 * Tell the syncer to speed up its work and run though its work
1667 * list several times, then tell it to shut down.
1668 */
1669static void
1670syncer_shutdown(void *arg, int howto)
1671{
1672	struct thread *td;
1673
1674	if (howto & RB_NOSYNC)
1675		return;
1676	td = FIRST_THREAD_IN_PROC(updateproc);
1677	sleepq_remove(td, &lbolt);
1678	mtx_lock(&sync_mtx);
1679	syncer_state = SYNCER_SHUTTING_DOWN;
1680	rushjob = 0;
1681	mtx_unlock(&sync_mtx);
1682	kproc_shutdown(arg, howto);
1683}
1684
1685/*
1686 * Associate a p-buffer with a vnode.
1687 *
1688 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1689 * with the buffer.  i.e. the bp has not been linked into the vnode or
1690 * ref-counted.
1691 */
1692void
1693pbgetvp(vp, bp)
1694	register struct vnode *vp;
1695	register struct buf *bp;
1696{
1697
1698	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1699
1700	bp->b_vp = vp;
1701	bp->b_flags |= B_PAGING;
1702	bp->b_dev = vn_todev(vp);
1703	bp->b_bufobj = &vp->v_bufobj;
1704}
1705
1706/*
1707 * Disassociate a p-buffer from a vnode.
1708 */
1709void
1710pbrelvp(bp)
1711	register struct buf *bp;
1712{
1713
1714	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1715	KASSERT(bp->b_bufobj != NULL, ("pbrelvp: NULL bufobj"));
1716
1717	/* XXX REMOVE ME */
1718	BO_LOCK(bp->b_bufobj);
1719	if (TAILQ_NEXT(bp, b_bobufs) != NULL) {
1720		panic(
1721		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1722		    bp,
1723		    (int)bp->b_flags
1724		);
1725	}
1726	BO_UNLOCK(bp->b_bufobj);
1727	bp->b_vp = NULL;
1728	bp->b_bufobj = NULL;
1729	bp->b_flags &= ~B_PAGING;
1730}
1731
1732/*
1733 * Reassign a buffer from one vnode to another.
1734 * Used to assign file specific control information
1735 * (indirect blocks) to the vnode to which they belong.
1736 */
1737void
1738reassignbuf(struct buf *bp)
1739{
1740	struct vnode *vp;
1741	struct bufobj *bo;
1742	int delay;
1743
1744	vp = bp->b_vp;
1745	bo = bp->b_bufobj;
1746	++reassignbufcalls;
1747
1748	/*
1749	 * B_PAGING flagged buffers cannot be reassigned because their vp
1750	 * is not fully linked in.
1751	 */
1752	if (bp->b_flags & B_PAGING)
1753		panic("cannot reassign paging buffer");
1754
1755	/*
1756	 * Delete from old vnode list, if on one.
1757	 */
1758	VI_LOCK(vp);
1759	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1760		buf_vlist_remove(bp);
1761	/*
1762	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1763	 * of clean buffers.
1764	 */
1765	if (bp->b_flags & B_DELWRI) {
1766		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1767			switch (vp->v_type) {
1768			case VDIR:
1769				delay = dirdelay;
1770				break;
1771			case VCHR:
1772				delay = metadelay;
1773				break;
1774			default:
1775				delay = filedelay;
1776			}
1777			vn_syncer_add_to_worklist(bo, delay);
1778		}
1779		buf_vlist_add(bp, bo, BX_VNDIRTY);
1780	} else {
1781		buf_vlist_add(bp, bo, BX_VNCLEAN);
1782
1783		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1784			mtx_lock(&sync_mtx);
1785			LIST_REMOVE(bo, bo_synclist);
1786 			syncer_worklist_len--;
1787			mtx_unlock(&sync_mtx);
1788			bo->bo_flag &= ~BO_ONWORKLST;
1789		}
1790	}
1791	VI_UNLOCK(vp);
1792}
1793
1794/*
1795 * Create a vnode for a device.
1796 * Used for mounting the root filesystem.
1797 */
1798int
1799bdevvp(dev, vpp)
1800	struct cdev *dev;
1801	struct vnode **vpp;
1802{
1803	register struct vnode *vp;
1804	struct vnode *nvp;
1805	int error;
1806
1807	if (dev == NULL) {
1808		*vpp = NULLVP;
1809		return (ENXIO);
1810	}
1811	if (vfinddev(dev, vpp))
1812		return (0);
1813
1814	error = getnewvnode("none", (struct mount *)0, devfs_specop_p, &nvp);
1815	if (error) {
1816		*vpp = NULLVP;
1817		return (error);
1818	}
1819	vp = nvp;
1820	vp->v_type = VCHR;
1821	vp->v_bufobj.bo_bsize = DEV_BSIZE;
1822	addalias(vp, dev);
1823	*vpp = vp;
1824	return (0);
1825}
1826
1827static void
1828v_incr_usecount(struct vnode *vp, int delta)
1829{
1830
1831	vp->v_usecount += delta;
1832	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1833		dev_lock();
1834		vp->v_rdev->si_usecount += delta;
1835		dev_unlock();
1836	}
1837}
1838
1839/*
1840 * Add vnode to the alias list hung off the struct cdev *.
1841 *
1842 * The reason for this gunk is that multiple vnodes can reference
1843 * the same physical device, so checking vp->v_usecount to see
1844 * how many users there are is inadequate; the v_usecount for
1845 * the vnodes need to be accumulated.  vcount() does that.
1846 */
1847struct vnode *
1848addaliasu(nvp, nvp_rdev)
1849	struct vnode *nvp;
1850	dev_t nvp_rdev;
1851{
1852	struct vnode *ovp;
1853	vop_t **ops;
1854	struct cdev *dev;
1855
1856	if (nvp->v_type == VBLK)
1857		return (nvp);
1858	if (nvp->v_type != VCHR)
1859		panic("addaliasu on non-special vnode");
1860	dev = findcdev(nvp_rdev);
1861	if (dev == NULL)
1862		return (nvp);
1863	/*
1864	 * Check to see if we have a bdevvp vnode with no associated
1865	 * filesystem. If so, we want to associate the filesystem of
1866	 * the new newly instigated vnode with the bdevvp vnode and
1867	 * discard the newly created vnode rather than leaving the
1868	 * bdevvp vnode lying around with no associated filesystem.
1869	 */
1870	if (vfinddev(dev, &ovp) == 0 || ovp->v_data != NULL) {
1871		addalias(nvp, dev);
1872		return (nvp);
1873	}
1874	/*
1875	 * Discard unneeded vnode, but save its node specific data.
1876	 * Note that if there is a lock, it is carried over in the
1877	 * node specific data to the replacement vnode.
1878	 */
1879	vref(ovp);
1880	ovp->v_data = nvp->v_data;
1881	ovp->v_tag = nvp->v_tag;
1882	nvp->v_data = NULL;
1883	lockdestroy(ovp->v_vnlock);
1884	lockinit(ovp->v_vnlock, PVFS, nvp->v_vnlock->lk_wmesg,
1885	    nvp->v_vnlock->lk_timo, nvp->v_vnlock->lk_flags & LK_EXTFLG_MASK);
1886	ops = ovp->v_op;
1887	ovp->v_op = nvp->v_op;
1888	if (VOP_ISLOCKED(nvp, curthread)) {
1889		VOP_UNLOCK(nvp, 0, curthread);
1890		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
1891	}
1892	nvp->v_op = ops;
1893	delmntque(ovp);
1894	insmntque(ovp, nvp->v_mount);
1895	vrele(nvp);
1896	vgone(nvp);
1897	return (ovp);
1898}
1899
1900/* This is a local helper function that do the same as addaliasu, but for a
1901 * struct cdev *instead of an dev_t. */
1902static void
1903addalias(nvp, dev)
1904	struct vnode *nvp;
1905	struct cdev *dev;
1906{
1907
1908	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
1909	VI_LOCK(nvp);
1910	dev_lock();
1911	dev->si_refcount++;
1912	nvp->v_rdev = dev;
1913	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1914	dev->si_usecount += nvp->v_usecount;
1915	dev_unlock();
1916	VI_UNLOCK(nvp);
1917}
1918
1919/*
1920 * Grab a particular vnode from the free list, increment its
1921 * reference count and lock it. The vnode lock bit is set if the
1922 * vnode is being eliminated in vgone. The process is awakened
1923 * when the transition is completed, and an error returned to
1924 * indicate that the vnode is no longer usable (possibly having
1925 * been changed to a new filesystem type).
1926 */
1927int
1928vget(vp, flags, td)
1929	register struct vnode *vp;
1930	int flags;
1931	struct thread *td;
1932{
1933	int error;
1934
1935	/*
1936	 * If the vnode is in the process of being cleaned out for
1937	 * another use, we wait for the cleaning to finish and then
1938	 * return failure. Cleaning is determined by checking that
1939	 * the VI_XLOCK flag is set.
1940	 */
1941	if ((flags & LK_INTERLOCK) == 0)
1942		VI_LOCK(vp);
1943	if (vp->v_iflag & VI_XLOCK && vp->v_vxthread != curthread) {
1944		if ((flags & LK_NOWAIT) == 0) {
1945			vp->v_iflag |= VI_XWANT;
1946			msleep(vp, VI_MTX(vp), PINOD | PDROP, "vget", 0);
1947			return (ENOENT);
1948		}
1949		VI_UNLOCK(vp);
1950		return (EBUSY);
1951	}
1952
1953	v_incr_usecount(vp, 1);
1954
1955	if (VSHOULDBUSY(vp))
1956		vbusy(vp);
1957	if (flags & LK_TYPE_MASK) {
1958		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1959			/*
1960			 * must expand vrele here because we do not want
1961			 * to call VOP_INACTIVE if the reference count
1962			 * drops back to zero since it was never really
1963			 * active. We must remove it from the free list
1964			 * before sleeping so that multiple processes do
1965			 * not try to recycle it.
1966			 */
1967			VI_LOCK(vp);
1968			v_incr_usecount(vp, -1);
1969			if (VSHOULDFREE(vp))
1970				vfree(vp);
1971			else
1972				vlruvp(vp);
1973			VI_UNLOCK(vp);
1974		}
1975		return (error);
1976	}
1977	VI_UNLOCK(vp);
1978	return (0);
1979}
1980
1981/*
1982 * Increase the reference count of a vnode.
1983 */
1984void
1985vref(struct vnode *vp)
1986{
1987
1988	VI_LOCK(vp);
1989	v_incr_usecount(vp, 1);
1990	VI_UNLOCK(vp);
1991}
1992
1993/*
1994 * Return reference count of a vnode.
1995 *
1996 * The results of this call are only guaranteed when some mechanism other
1997 * than the VI lock is used to stop other processes from gaining references
1998 * to the vnode.  This may be the case if the caller holds the only reference.
1999 * This is also useful when stale data is acceptable as race conditions may
2000 * be accounted for by some other means.
2001 */
2002int
2003vrefcnt(struct vnode *vp)
2004{
2005	int usecnt;
2006
2007	VI_LOCK(vp);
2008	usecnt = vp->v_usecount;
2009	VI_UNLOCK(vp);
2010
2011	return (usecnt);
2012}
2013
2014
2015/*
2016 * Vnode put/release.
2017 * If count drops to zero, call inactive routine and return to freelist.
2018 */
2019void
2020vrele(vp)
2021	struct vnode *vp;
2022{
2023	struct thread *td = curthread;	/* XXX */
2024
2025	GIANT_REQUIRED;
2026
2027	KASSERT(vp != NULL, ("vrele: null vp"));
2028
2029	VI_LOCK(vp);
2030
2031	/* Skip this v_writecount check if we're going to panic below. */
2032	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2033	    ("vrele: missed vn_close"));
2034
2035	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2036	    vp->v_usecount == 1)) {
2037		v_incr_usecount(vp, -1);
2038		VI_UNLOCK(vp);
2039
2040		return;
2041	}
2042
2043	if (vp->v_usecount == 1) {
2044		v_incr_usecount(vp, -1);
2045		/*
2046		 * We must call VOP_INACTIVE with the node locked. Mark
2047		 * as VI_DOINGINACT to avoid recursion.
2048		 */
2049		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
2050			VI_LOCK(vp);
2051			vp->v_iflag |= VI_DOINGINACT;
2052			VI_UNLOCK(vp);
2053			VOP_INACTIVE(vp, td);
2054			VI_LOCK(vp);
2055			KASSERT(vp->v_iflag & VI_DOINGINACT,
2056			    ("vrele: lost VI_DOINGINACT"));
2057			vp->v_iflag &= ~VI_DOINGINACT;
2058		} else
2059			VI_LOCK(vp);
2060		if (VSHOULDFREE(vp))
2061			vfree(vp);
2062		else
2063			vlruvp(vp);
2064		VI_UNLOCK(vp);
2065
2066	} else {
2067#ifdef DIAGNOSTIC
2068		vprint("vrele: negative ref count", vp);
2069#endif
2070		VI_UNLOCK(vp);
2071		panic("vrele: negative ref cnt");
2072	}
2073}
2074
2075/*
2076 * Release an already locked vnode.  This give the same effects as
2077 * unlock+vrele(), but takes less time and avoids releasing and
2078 * re-aquiring the lock (as vrele() aquires the lock internally.)
2079 */
2080void
2081vput(vp)
2082	struct vnode *vp;
2083{
2084	struct thread *td = curthread;	/* XXX */
2085
2086	GIANT_REQUIRED;
2087
2088	KASSERT(vp != NULL, ("vput: null vp"));
2089	VI_LOCK(vp);
2090	/* Skip this v_writecount check if we're going to panic below. */
2091	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2092	    ("vput: missed vn_close"));
2093
2094	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2095	    vp->v_usecount == 1)) {
2096		v_incr_usecount(vp, -1);
2097		VOP_UNLOCK(vp, LK_INTERLOCK, td);
2098		return;
2099	}
2100
2101	if (vp->v_usecount == 1) {
2102		v_incr_usecount(vp, -1);
2103		/*
2104		 * We must call VOP_INACTIVE with the node locked, so
2105		 * we just need to release the vnode mutex. Mark as
2106		 * as VI_DOINGINACT to avoid recursion.
2107		 */
2108		vp->v_iflag |= VI_DOINGINACT;
2109		VI_UNLOCK(vp);
2110		VOP_INACTIVE(vp, td);
2111		VI_LOCK(vp);
2112		KASSERT(vp->v_iflag & VI_DOINGINACT,
2113		    ("vput: lost VI_DOINGINACT"));
2114		vp->v_iflag &= ~VI_DOINGINACT;
2115		if (VSHOULDFREE(vp))
2116			vfree(vp);
2117		else
2118			vlruvp(vp);
2119		VI_UNLOCK(vp);
2120
2121	} else {
2122#ifdef DIAGNOSTIC
2123		vprint("vput: negative ref count", vp);
2124#endif
2125		panic("vput: negative ref cnt");
2126	}
2127}
2128
2129/*
2130 * Somebody doesn't want the vnode recycled.
2131 */
2132void
2133vhold(struct vnode *vp)
2134{
2135
2136	VI_LOCK(vp);
2137	vholdl(vp);
2138	VI_UNLOCK(vp);
2139}
2140
2141void
2142vholdl(struct vnode *vp)
2143{
2144
2145	vp->v_holdcnt++;
2146	if (VSHOULDBUSY(vp))
2147		vbusy(vp);
2148}
2149
2150/*
2151 * Note that there is one less who cares about this vnode.  vdrop() is the
2152 * opposite of vhold().
2153 */
2154void
2155vdrop(struct vnode *vp)
2156{
2157
2158	VI_LOCK(vp);
2159	vdropl(vp);
2160	VI_UNLOCK(vp);
2161}
2162
2163void
2164vdropl(vp)
2165	register struct vnode *vp;
2166{
2167
2168	if (vp->v_holdcnt <= 0)
2169		panic("vdrop: holdcnt");
2170	vp->v_holdcnt--;
2171	if (VSHOULDFREE(vp))
2172		vfree(vp);
2173	else
2174		vlruvp(vp);
2175}
2176
2177/*
2178 * Remove any vnodes in the vnode table belonging to mount point mp.
2179 *
2180 * If FORCECLOSE is not specified, there should not be any active ones,
2181 * return error if any are found (nb: this is a user error, not a
2182 * system error). If FORCECLOSE is specified, detach any active vnodes
2183 * that are found.
2184 *
2185 * If WRITECLOSE is set, only flush out regular file vnodes open for
2186 * writing.
2187 *
2188 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2189 *
2190 * `rootrefs' specifies the base reference count for the root vnode
2191 * of this filesystem. The root vnode is considered busy if its
2192 * v_usecount exceeds this value. On a successful return, vflush(, td)
2193 * will call vrele() on the root vnode exactly rootrefs times.
2194 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2195 * be zero.
2196 */
2197#ifdef DIAGNOSTIC
2198static int busyprt = 0;		/* print out busy vnodes */
2199SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2200#endif
2201
2202int
2203vflush(mp, rootrefs, flags, td)
2204	struct mount *mp;
2205	int rootrefs;
2206	int flags;
2207	struct thread *td;
2208{
2209	struct vnode *vp, *nvp, *rootvp = NULL;
2210	struct vattr vattr;
2211	int busy = 0, error;
2212
2213	if (rootrefs > 0) {
2214		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2215		    ("vflush: bad args"));
2216		/*
2217		 * Get the filesystem root vnode. We can vput() it
2218		 * immediately, since with rootrefs > 0, it won't go away.
2219		 */
2220		if ((error = VFS_ROOT(mp, &rootvp, td)) != 0)
2221			return (error);
2222		vput(rootvp);
2223
2224	}
2225	MNT_ILOCK(mp);
2226loop:
2227	MNT_VNODE_FOREACH(vp, mp, nvp) {
2228
2229		VI_LOCK(vp);
2230		MNT_IUNLOCK(mp);
2231		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td);
2232		if (error) {
2233			MNT_ILOCK(mp);
2234			goto loop;
2235		}
2236		/*
2237		 * Skip over a vnodes marked VV_SYSTEM.
2238		 */
2239		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2240			VOP_UNLOCK(vp, 0, td);
2241			MNT_ILOCK(mp);
2242			continue;
2243		}
2244		/*
2245		 * If WRITECLOSE is set, flush out unlinked but still open
2246		 * files (even if open only for reading) and regular file
2247		 * vnodes open for writing.
2248		 */
2249		if (flags & WRITECLOSE) {
2250			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2251			VI_LOCK(vp);
2252
2253			if ((vp->v_type == VNON ||
2254			    (error == 0 && vattr.va_nlink > 0)) &&
2255			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2256				VOP_UNLOCK(vp, LK_INTERLOCK, td);
2257				MNT_ILOCK(mp);
2258				continue;
2259			}
2260		} else
2261			VI_LOCK(vp);
2262
2263		VOP_UNLOCK(vp, 0, td);
2264
2265		/*
2266		 * With v_usecount == 0, all we need to do is clear out the
2267		 * vnode data structures and we are done.
2268		 */
2269		if (vp->v_usecount == 0) {
2270			vgonel(vp, td);
2271			MNT_ILOCK(mp);
2272			continue;
2273		}
2274
2275		/*
2276		 * If FORCECLOSE is set, forcibly close the vnode. For block
2277		 * or character devices, revert to an anonymous device. For
2278		 * all other files, just kill them.
2279		 */
2280		if (flags & FORCECLOSE) {
2281			if (vp->v_type != VCHR)
2282				vgonel(vp, td);
2283			else
2284				vgonechrl(vp, td);
2285			MNT_ILOCK(mp);
2286			continue;
2287		}
2288#ifdef DIAGNOSTIC
2289		if (busyprt)
2290			vprint("vflush: busy vnode", vp);
2291#endif
2292		VI_UNLOCK(vp);
2293		MNT_ILOCK(mp);
2294		busy++;
2295	}
2296	MNT_IUNLOCK(mp);
2297	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2298		/*
2299		 * If just the root vnode is busy, and if its refcount
2300		 * is equal to `rootrefs', then go ahead and kill it.
2301		 */
2302		VI_LOCK(rootvp);
2303		KASSERT(busy > 0, ("vflush: not busy"));
2304		KASSERT(rootvp->v_usecount >= rootrefs,
2305		    ("vflush: usecount %d < rootrefs %d",
2306		     rootvp->v_usecount, rootrefs));
2307		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2308			vgonel(rootvp, td);
2309			busy = 0;
2310		} else
2311			VI_UNLOCK(rootvp);
2312	}
2313	if (busy)
2314		return (EBUSY);
2315	for (; rootrefs > 0; rootrefs--)
2316		vrele(rootvp);
2317	return (0);
2318}
2319
2320/*
2321 * This moves a now (likely recyclable) vnode to the end of the
2322 * mountlist.  XXX However, it is temporarily disabled until we
2323 * can clean up ffs_sync() and friends, which have loop restart
2324 * conditions which this code causes to operate O(N^2).
2325 */
2326static void
2327vlruvp(struct vnode *vp)
2328{
2329#if 0
2330	struct mount *mp;
2331
2332	if ((mp = vp->v_mount) != NULL) {
2333		MNT_ILOCK(mp);
2334		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2335		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2336		MNT_IUNLOCK(mp);
2337	}
2338#endif
2339}
2340
2341static void
2342vx_lock(struct vnode *vp)
2343{
2344
2345	ASSERT_VI_LOCKED(vp, "vx_lock");
2346
2347	/*
2348	 * Prevent the vnode from being recycled or brought into use while we
2349	 * clean it out.
2350	 */
2351	if (vp->v_iflag & VI_XLOCK)
2352		panic("vclean: deadlock");
2353	vp->v_iflag |= VI_XLOCK;
2354	vp->v_vxthread = curthread;
2355}
2356
2357static void
2358vx_unlock(struct vnode *vp)
2359{
2360	ASSERT_VI_LOCKED(vp, "vx_unlock");
2361	vp->v_iflag &= ~VI_XLOCK;
2362	vp->v_vxthread = NULL;
2363	if (vp->v_iflag & VI_XWANT) {
2364		vp->v_iflag &= ~VI_XWANT;
2365		wakeup(vp);
2366	}
2367}
2368
2369/*
2370 * Disassociate the underlying filesystem from a vnode.
2371 */
2372static void
2373vclean(vp, flags, td)
2374	struct vnode *vp;
2375	int flags;
2376	struct thread *td;
2377{
2378	int active;
2379
2380	ASSERT_VI_LOCKED(vp, "vclean");
2381	/*
2382	 * Check to see if the vnode is in use. If so we have to reference it
2383	 * before we clean it out so that its count cannot fall to zero and
2384	 * generate a race against ourselves to recycle it.
2385	 */
2386	if ((active = vp->v_usecount))
2387		v_incr_usecount(vp, 1);
2388
2389	/*
2390	 * Even if the count is zero, the VOP_INACTIVE routine may still
2391	 * have the object locked while it cleans it out. The VOP_LOCK
2392	 * ensures that the VOP_INACTIVE routine is done with its work.
2393	 * For active vnodes, it ensures that no other activity can
2394	 * occur while the underlying object is being cleaned out.
2395	 */
2396	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2397
2398	/*
2399	 * Clean out any buffers associated with the vnode.
2400	 * If the flush fails, just toss the buffers.
2401	 */
2402	if (flags & DOCLOSE) {
2403		struct buf *bp;
2404		bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
2405		if (bp != NULL)
2406			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2407		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2408			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2409	}
2410
2411	VOP_DESTROYVOBJECT(vp);
2412
2413	/*
2414	 * Any other processes trying to obtain this lock must first
2415	 * wait for VXLOCK to clear, then call the new lock operation.
2416	 */
2417	VOP_UNLOCK(vp, 0, td);
2418
2419	/*
2420	 * If purging an active vnode, it must be closed and
2421	 * deactivated before being reclaimed. Note that the
2422	 * VOP_INACTIVE will unlock the vnode.
2423	 */
2424	if (active) {
2425		if (flags & DOCLOSE)
2426			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2427		VI_LOCK(vp);
2428		if ((vp->v_iflag & VI_DOINGINACT) == 0) {
2429			vp->v_iflag |= VI_DOINGINACT;
2430			VI_UNLOCK(vp);
2431			if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2432				panic("vclean: cannot relock.");
2433			VOP_INACTIVE(vp, td);
2434			VI_LOCK(vp);
2435			KASSERT(vp->v_iflag & VI_DOINGINACT,
2436			    ("vclean: lost VI_DOINGINACT"));
2437			vp->v_iflag &= ~VI_DOINGINACT;
2438		}
2439		VI_UNLOCK(vp);
2440	}
2441	/*
2442	 * Reclaim the vnode.
2443	 */
2444	if (VOP_RECLAIM(vp, td))
2445		panic("vclean: cannot reclaim");
2446
2447	if (active) {
2448		/*
2449		 * Inline copy of vrele() since VOP_INACTIVE
2450		 * has already been called.
2451		 */
2452		VI_LOCK(vp);
2453		v_incr_usecount(vp, -1);
2454		if (vp->v_usecount <= 0) {
2455#ifdef INVARIANTS
2456			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2457				vprint("vclean: bad ref count", vp);
2458				panic("vclean: ref cnt");
2459			}
2460#endif
2461			if (VSHOULDFREE(vp))
2462				vfree(vp);
2463		}
2464		VI_UNLOCK(vp);
2465	}
2466	/*
2467	 * Delete from old mount point vnode list.
2468	 */
2469	delmntque(vp);
2470	cache_purge(vp);
2471	VI_LOCK(vp);
2472	if (VSHOULDFREE(vp))
2473		vfree(vp);
2474
2475	/*
2476	 * Done with purge, reset to the standard lock and
2477	 * notify sleepers of the grim news.
2478	 */
2479	vp->v_vnlock = &vp->v_lock;
2480	vp->v_op = dead_vnodeop_p;
2481	if (vp->v_pollinfo != NULL)
2482		vn_pollgone(vp);
2483	vp->v_tag = "none";
2484}
2485
2486/*
2487 * Eliminate all activity associated with the requested vnode
2488 * and with all vnodes aliased to the requested vnode.
2489 */
2490int
2491vop_revoke(ap)
2492	struct vop_revoke_args /* {
2493		struct vnode *a_vp;
2494		int a_flags;
2495	} */ *ap;
2496{
2497	struct vnode *vp, *vq;
2498	struct cdev *dev;
2499
2500	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2501	vp = ap->a_vp;
2502	KASSERT((vp->v_type == VCHR), ("vop_revoke: not VCHR"));
2503
2504	VI_LOCK(vp);
2505	/*
2506	 * If a vgone (or vclean) is already in progress,
2507	 * wait until it is done and return.
2508	 */
2509	if (vp->v_iflag & VI_XLOCK) {
2510		vp->v_iflag |= VI_XWANT;
2511		msleep(vp, VI_MTX(vp), PINOD | PDROP,
2512		    "vop_revokeall", 0);
2513		return (0);
2514	}
2515	VI_UNLOCK(vp);
2516	dev = vp->v_rdev;
2517	for (;;) {
2518		dev_lock();
2519		vq = SLIST_FIRST(&dev->si_hlist);
2520		dev_unlock();
2521		if (vq == NULL)
2522			break;
2523		vgone(vq);
2524	}
2525	return (0);
2526}
2527
2528/*
2529 * Recycle an unused vnode to the front of the free list.
2530 * Release the passed interlock if the vnode will be recycled.
2531 */
2532int
2533vrecycle(vp, inter_lkp, td)
2534	struct vnode *vp;
2535	struct mtx *inter_lkp;
2536	struct thread *td;
2537{
2538
2539	VI_LOCK(vp);
2540	if (vp->v_usecount == 0) {
2541		if (inter_lkp) {
2542			mtx_unlock(inter_lkp);
2543		}
2544		vgonel(vp, td);
2545		return (1);
2546	}
2547	VI_UNLOCK(vp);
2548	return (0);
2549}
2550
2551/*
2552 * Eliminate all activity associated with a vnode
2553 * in preparation for reuse.
2554 */
2555void
2556vgone(vp)
2557	register struct vnode *vp;
2558{
2559	struct thread *td = curthread;	/* XXX */
2560
2561	VI_LOCK(vp);
2562	vgonel(vp, td);
2563}
2564
2565/*
2566 * Disassociate a character device from the its underlying filesystem and
2567 * attach it to spec.  This is for use when the chr device is still active
2568 * and the filesystem is going away.
2569 */
2570static void
2571vgonechrl(struct vnode *vp, struct thread *td)
2572{
2573	ASSERT_VI_LOCKED(vp, "vgonechrl");
2574	vx_lock(vp);
2575	/*
2576	 * This is a custom version of vclean() which does not tearm down
2577	 * the bufs or vm objects held by this vnode.  This allows filesystems
2578	 * to continue using devices which were discovered via another
2579	 * filesystem that has been unmounted.
2580	 */
2581	if (vp->v_usecount != 0) {
2582		v_incr_usecount(vp, 1);
2583		/*
2584		 * Ensure that no other activity can occur while the
2585		 * underlying object is being cleaned out.
2586		 */
2587		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2588		/*
2589		 * Any other processes trying to obtain this lock must first
2590		 * wait for VXLOCK to clear, then call the new lock operation.
2591		 */
2592		VOP_UNLOCK(vp, 0, td);
2593		vp->v_vnlock = &vp->v_lock;
2594		vp->v_tag = "orphanchr";
2595		vp->v_op = devfs_specop_p;
2596		delmntque(vp);
2597		cache_purge(vp);
2598		vrele(vp);
2599		VI_LOCK(vp);
2600	} else
2601		vclean(vp, 0, td);
2602	vp->v_op = devfs_specop_p;
2603	vx_unlock(vp);
2604	VI_UNLOCK(vp);
2605}
2606
2607/*
2608 * vgone, with the vp interlock held.
2609 */
2610void
2611vgonel(vp, td)
2612	struct vnode *vp;
2613	struct thread *td;
2614{
2615	/*
2616	 * If a vgone (or vclean) is already in progress,
2617	 * wait until it is done and return.
2618	 */
2619	ASSERT_VI_LOCKED(vp, "vgonel");
2620	if (vp->v_iflag & VI_XLOCK) {
2621		vp->v_iflag |= VI_XWANT;
2622		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vgone", 0);
2623		return;
2624	}
2625	vx_lock(vp);
2626
2627	/*
2628	 * Clean out the filesystem specific data.
2629	 */
2630	vclean(vp, DOCLOSE, td);
2631	VI_UNLOCK(vp);
2632
2633	/*
2634	 * If special device, remove it from special device alias list
2635	 * if it is on one.
2636	 */
2637	VI_LOCK(vp);
2638	if (vp->v_type == VCHR && vp->v_rdev != NULL)
2639		dev_rel(vp);
2640
2641	/*
2642	 * If it is on the freelist and not already at the head,
2643	 * move it to the head of the list. The test of the
2644	 * VDOOMED flag and the reference count of zero is because
2645	 * it will be removed from the free list by getnewvnode,
2646	 * but will not have its reference count incremented until
2647	 * after calling vgone. If the reference count were
2648	 * incremented first, vgone would (incorrectly) try to
2649	 * close the previous instance of the underlying object.
2650	 */
2651	if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2652		mtx_lock(&vnode_free_list_mtx);
2653		if (vp->v_iflag & VI_FREE) {
2654			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2655		} else {
2656			vp->v_iflag |= VI_FREE;
2657			freevnodes++;
2658		}
2659		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2660		mtx_unlock(&vnode_free_list_mtx);
2661	}
2662
2663	vp->v_type = VBAD;
2664	vx_unlock(vp);
2665	VI_UNLOCK(vp);
2666}
2667
2668/*
2669 * Lookup a vnode by device number.
2670 */
2671int
2672vfinddev(dev, vpp)
2673	struct cdev *dev;
2674	struct vnode **vpp;
2675{
2676	struct vnode *vp;
2677
2678	dev_lock();
2679	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2680		*vpp = vp;
2681		dev_unlock();
2682		return (1);
2683	}
2684	dev_unlock();
2685	return (0);
2686}
2687
2688/*
2689 * Calculate the total number of references to a special device.
2690 */
2691int
2692vcount(vp)
2693	struct vnode *vp;
2694{
2695	int count;
2696
2697	dev_lock();
2698	count = vp->v_rdev->si_usecount;
2699	dev_unlock();
2700	return (count);
2701}
2702
2703/*
2704 * Same as above, but using the struct cdev *as argument
2705 */
2706int
2707count_dev(dev)
2708	struct cdev *dev;
2709{
2710	int count;
2711
2712	dev_lock();
2713	count = dev->si_usecount;
2714	dev_unlock();
2715	return(count);
2716}
2717
2718/*
2719 * Print out a description of a vnode.
2720 */
2721static char *typename[] =
2722{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2723
2724void
2725vprint(label, vp)
2726	char *label;
2727	struct vnode *vp;
2728{
2729	char buf[96];
2730
2731	if (label != NULL)
2732		printf("%s: %p: ", label, (void *)vp);
2733	else
2734		printf("%p: ", (void *)vp);
2735	printf("tag %s, type %s, usecount %d, writecount %d, refcount %d,",
2736	    vp->v_tag, typename[vp->v_type], vp->v_usecount,
2737	    vp->v_writecount, vp->v_holdcnt);
2738	buf[0] = '\0';
2739	if (vp->v_vflag & VV_ROOT)
2740		strcat(buf, "|VV_ROOT");
2741	if (vp->v_vflag & VV_TEXT)
2742		strcat(buf, "|VV_TEXT");
2743	if (vp->v_vflag & VV_SYSTEM)
2744		strcat(buf, "|VV_SYSTEM");
2745	if (vp->v_iflag & VI_XLOCK)
2746		strcat(buf, "|VI_XLOCK");
2747	if (vp->v_iflag & VI_XWANT)
2748		strcat(buf, "|VI_XWANT");
2749	if (vp->v_iflag & VI_DOOMED)
2750		strcat(buf, "|VI_DOOMED");
2751	if (vp->v_iflag & VI_FREE)
2752		strcat(buf, "|VI_FREE");
2753	if (vp->v_vflag & VV_OBJBUF)
2754		strcat(buf, "|VV_OBJBUF");
2755	if (buf[0] != '\0')
2756		printf(" flags (%s),", &buf[1]);
2757	lockmgr_printinfo(vp->v_vnlock);
2758	printf("\n");
2759	if (vp->v_data != NULL)
2760		VOP_PRINT(vp);
2761}
2762
2763#ifdef DDB
2764#include <ddb/ddb.h>
2765/*
2766 * List all of the locked vnodes in the system.
2767 * Called when debugging the kernel.
2768 */
2769DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2770{
2771	struct mount *mp, *nmp;
2772	struct vnode *vp;
2773
2774	/*
2775	 * Note: because this is DDB, we can't obey the locking semantics
2776	 * for these structures, which means we could catch an inconsistent
2777	 * state and dereference a nasty pointer.  Not much to be done
2778	 * about that.
2779	 */
2780	printf("Locked vnodes\n");
2781	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2782		nmp = TAILQ_NEXT(mp, mnt_list);
2783		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2784			if (VOP_ISLOCKED(vp, NULL))
2785				vprint(NULL, vp);
2786		}
2787		nmp = TAILQ_NEXT(mp, mnt_list);
2788	}
2789}
2790#endif
2791
2792/*
2793 * Fill in a struct xvfsconf based on a struct vfsconf.
2794 */
2795static void
2796vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2797{
2798
2799	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2800	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2801	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2802	xvfsp->vfc_flags = vfsp->vfc_flags;
2803	/*
2804	 * These are unused in userland, we keep them
2805	 * to not break binary compatibility.
2806	 */
2807	xvfsp->vfc_vfsops = NULL;
2808	xvfsp->vfc_next = NULL;
2809}
2810
2811/*
2812 * Top level filesystem related information gathering.
2813 */
2814static int
2815sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2816{
2817	struct vfsconf *vfsp;
2818	struct xvfsconf xvfsp;
2819	int error;
2820
2821	error = 0;
2822	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2823		vfsconf2x(vfsp, &xvfsp);
2824		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2825		if (error)
2826			break;
2827	}
2828	return (error);
2829}
2830
2831SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2832    "S,xvfsconf", "List of all configured filesystems");
2833
2834#ifndef BURN_BRIDGES
2835static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2836
2837static int
2838vfs_sysctl(SYSCTL_HANDLER_ARGS)
2839{
2840	int *name = (int *)arg1 - 1;	/* XXX */
2841	u_int namelen = arg2 + 1;	/* XXX */
2842	struct vfsconf *vfsp;
2843	struct xvfsconf xvfsp;
2844
2845	printf("WARNING: userland calling deprecated sysctl, "
2846	    "please rebuild world\n");
2847
2848#if 1 || defined(COMPAT_PRELITE2)
2849	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2850	if (namelen == 1)
2851		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2852#endif
2853
2854	switch (name[1]) {
2855	case VFS_MAXTYPENUM:
2856		if (namelen != 2)
2857			return (ENOTDIR);
2858		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2859	case VFS_CONF:
2860		if (namelen != 3)
2861			return (ENOTDIR);	/* overloaded */
2862		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2863			if (vfsp->vfc_typenum == name[2])
2864				break;
2865		if (vfsp == NULL)
2866			return (EOPNOTSUPP);
2867		vfsconf2x(vfsp, &xvfsp);
2868		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2869	}
2870	return (EOPNOTSUPP);
2871}
2872
2873SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, vfs_sysctl,
2874	"Generic filesystem");
2875
2876#if 1 || defined(COMPAT_PRELITE2)
2877
2878static int
2879sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2880{
2881	int error;
2882	struct vfsconf *vfsp;
2883	struct ovfsconf ovfs;
2884
2885	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2886		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2887		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2888		ovfs.vfc_index = vfsp->vfc_typenum;
2889		ovfs.vfc_refcount = vfsp->vfc_refcount;
2890		ovfs.vfc_flags = vfsp->vfc_flags;
2891		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2892		if (error)
2893			return error;
2894	}
2895	return 0;
2896}
2897
2898#endif /* 1 || COMPAT_PRELITE2 */
2899#endif /* !BURN_BRIDGES */
2900
2901#define KINFO_VNODESLOP		10
2902#ifdef notyet
2903/*
2904 * Dump vnode list (via sysctl).
2905 */
2906/* ARGSUSED */
2907static int
2908sysctl_vnode(SYSCTL_HANDLER_ARGS)
2909{
2910	struct xvnode *xvn;
2911	struct thread *td = req->td;
2912	struct mount *mp;
2913	struct vnode *vp;
2914	int error, len, n;
2915
2916	/*
2917	 * Stale numvnodes access is not fatal here.
2918	 */
2919	req->lock = 0;
2920	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2921	if (!req->oldptr)
2922		/* Make an estimate */
2923		return (SYSCTL_OUT(req, 0, len));
2924
2925	error = sysctl_wire_old_buffer(req, 0);
2926	if (error != 0)
2927		return (error);
2928	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2929	n = 0;
2930	mtx_lock(&mountlist_mtx);
2931	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2932		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
2933			continue;
2934		MNT_ILOCK(mp);
2935		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2936			if (n == len)
2937				break;
2938			vref(vp);
2939			xvn[n].xv_size = sizeof *xvn;
2940			xvn[n].xv_vnode = vp;
2941#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
2942			XV_COPY(usecount);
2943			XV_COPY(writecount);
2944			XV_COPY(holdcnt);
2945			XV_COPY(id);
2946			XV_COPY(mount);
2947			XV_COPY(numoutput);
2948			XV_COPY(type);
2949#undef XV_COPY
2950			xvn[n].xv_flag = vp->v_vflag;
2951
2952			switch (vp->v_type) {
2953			case VREG:
2954			case VDIR:
2955			case VLNK:
2956				xvn[n].xv_dev = vp->v_cachedfs;
2957				xvn[n].xv_ino = vp->v_cachedid;
2958				break;
2959			case VBLK:
2960			case VCHR:
2961				if (vp->v_rdev == NULL) {
2962					vrele(vp);
2963					continue;
2964				}
2965				xvn[n].xv_dev = dev2udev(vp->v_rdev);
2966				break;
2967			case VSOCK:
2968				xvn[n].xv_socket = vp->v_socket;
2969				break;
2970			case VFIFO:
2971				xvn[n].xv_fifo = vp->v_fifoinfo;
2972				break;
2973			case VNON:
2974			case VBAD:
2975			default:
2976				/* shouldn't happen? */
2977				vrele(vp);
2978				continue;
2979			}
2980			vrele(vp);
2981			++n;
2982		}
2983		MNT_IUNLOCK(mp);
2984		mtx_lock(&mountlist_mtx);
2985		vfs_unbusy(mp, td);
2986		if (n == len)
2987			break;
2988	}
2989	mtx_unlock(&mountlist_mtx);
2990
2991	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
2992	free(xvn, M_TEMP);
2993	return (error);
2994}
2995
2996SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2997	0, 0, sysctl_vnode, "S,xvnode", "");
2998#endif
2999
3000/*
3001 * Unmount all filesystems. The list is traversed in reverse order
3002 * of mounting to avoid dependencies.
3003 */
3004void
3005vfs_unmountall()
3006{
3007	struct mount *mp;
3008	struct thread *td;
3009	int error;
3010
3011	if (curthread != NULL)
3012		td = curthread;
3013	else
3014		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
3015	/*
3016	 * Since this only runs when rebooting, it is not interlocked.
3017	 */
3018	while(!TAILQ_EMPTY(&mountlist)) {
3019		mp = TAILQ_LAST(&mountlist, mntlist);
3020		error = dounmount(mp, MNT_FORCE, td);
3021		if (error) {
3022			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3023			printf("unmount of %s failed (",
3024			    mp->mnt_stat.f_mntonname);
3025			if (error == EBUSY)
3026				printf("BUSY)\n");
3027			else
3028				printf("%d)\n", error);
3029		} else {
3030			/* The unmount has removed mp from the mountlist */
3031		}
3032	}
3033}
3034
3035/*
3036 * perform msync on all vnodes under a mount point
3037 * the mount point must be locked.
3038 */
3039void
3040vfs_msync(struct mount *mp, int flags)
3041{
3042	struct vnode *vp, *nvp;
3043	struct vm_object *obj;
3044	int tries;
3045
3046	GIANT_REQUIRED;
3047
3048	tries = 5;
3049	MNT_ILOCK(mp);
3050loop:
3051	TAILQ_FOREACH_SAFE(vp, &mp->mnt_nvnodelist, v_nmntvnodes, nvp) {
3052		if (vp->v_mount != mp) {
3053			if (--tries > 0)
3054				goto loop;
3055			break;
3056		}
3057
3058		VI_LOCK(vp);
3059		if (vp->v_iflag & VI_XLOCK) {
3060			VI_UNLOCK(vp);
3061			continue;
3062		}
3063
3064		if ((vp->v_iflag & VI_OBJDIRTY) &&
3065		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
3066			MNT_IUNLOCK(mp);
3067			if (!vget(vp,
3068			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3069			    curthread)) {
3070				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3071					vput(vp);
3072					MNT_ILOCK(mp);
3073					continue;
3074				}
3075
3076				if (VOP_GETVOBJECT(vp, &obj) == 0) {
3077					VM_OBJECT_LOCK(obj);
3078					vm_object_page_clean(obj, 0, 0,
3079					    flags == MNT_WAIT ?
3080					    OBJPC_SYNC : OBJPC_NOSYNC);
3081					VM_OBJECT_UNLOCK(obj);
3082				}
3083				vput(vp);
3084			}
3085			MNT_ILOCK(mp);
3086			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
3087				if (--tries > 0)
3088					goto loop;
3089				break;
3090			}
3091		} else
3092			VI_UNLOCK(vp);
3093	}
3094	MNT_IUNLOCK(mp);
3095}
3096
3097/*
3098 * Create the VM object needed for VMIO and mmap support.  This
3099 * is done for all VREG files in the system.  Some filesystems might
3100 * afford the additional metadata buffering capability of the
3101 * VMIO code by making the device node be VMIO mode also.
3102 *
3103 * vp must be locked when vfs_object_create is called.
3104 */
3105int
3106vfs_object_create(struct vnode *vp, struct thread *td, struct ucred *cred)
3107{
3108
3109	GIANT_REQUIRED;
3110	return (VOP_CREATEVOBJECT(vp, cred, td));
3111}
3112
3113/*
3114 * Mark a vnode as free, putting it up for recycling.
3115 */
3116void
3117vfree(struct vnode *vp)
3118{
3119
3120	ASSERT_VI_LOCKED(vp, "vfree");
3121	mtx_lock(&vnode_free_list_mtx);
3122	KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
3123	if (vp->v_iflag & VI_AGE) {
3124		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3125	} else {
3126		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3127	}
3128	freevnodes++;
3129	mtx_unlock(&vnode_free_list_mtx);
3130	vp->v_iflag &= ~VI_AGE;
3131	vp->v_iflag |= VI_FREE;
3132}
3133
3134/*
3135 * Opposite of vfree() - mark a vnode as in use.
3136 */
3137void
3138vbusy(struct vnode *vp)
3139{
3140
3141	ASSERT_VI_LOCKED(vp, "vbusy");
3142	KASSERT((vp->v_iflag & VI_FREE) != 0, ("vnode not free"));
3143
3144	mtx_lock(&vnode_free_list_mtx);
3145	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3146	freevnodes--;
3147	mtx_unlock(&vnode_free_list_mtx);
3148
3149	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3150}
3151
3152/*
3153 * Initalize per-vnode helper structure to hold poll-related state.
3154 */
3155void
3156v_addpollinfo(struct vnode *vp)
3157{
3158	struct vpollinfo *vi;
3159
3160	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3161	if (vp->v_pollinfo != NULL) {
3162		uma_zfree(vnodepoll_zone, vi);
3163		return;
3164	}
3165	vp->v_pollinfo = vi;
3166	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3167	knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note,
3168	    &vp->v_pollinfo->vpi_lock);
3169}
3170
3171/*
3172 * Record a process's interest in events which might happen to
3173 * a vnode.  Because poll uses the historic select-style interface
3174 * internally, this routine serves as both the ``check for any
3175 * pending events'' and the ``record my interest in future events''
3176 * functions.  (These are done together, while the lock is held,
3177 * to avoid race conditions.)
3178 */
3179int
3180vn_pollrecord(vp, td, events)
3181	struct vnode *vp;
3182	struct thread *td;
3183	short events;
3184{
3185
3186	if (vp->v_pollinfo == NULL)
3187		v_addpollinfo(vp);
3188	mtx_lock(&vp->v_pollinfo->vpi_lock);
3189	if (vp->v_pollinfo->vpi_revents & events) {
3190		/*
3191		 * This leaves events we are not interested
3192		 * in available for the other process which
3193		 * which presumably had requested them
3194		 * (otherwise they would never have been
3195		 * recorded).
3196		 */
3197		events &= vp->v_pollinfo->vpi_revents;
3198		vp->v_pollinfo->vpi_revents &= ~events;
3199
3200		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3201		return events;
3202	}
3203	vp->v_pollinfo->vpi_events |= events;
3204	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3205	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3206	return 0;
3207}
3208
3209/*
3210 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3211 * it is possible for us to miss an event due to race conditions, but
3212 * that condition is expected to be rare, so for the moment it is the
3213 * preferred interface.
3214 */
3215void
3216vn_pollevent(vp, events)
3217	struct vnode *vp;
3218	short events;
3219{
3220
3221	if (vp->v_pollinfo == NULL)
3222		v_addpollinfo(vp);
3223	mtx_lock(&vp->v_pollinfo->vpi_lock);
3224	if (vp->v_pollinfo->vpi_events & events) {
3225		/*
3226		 * We clear vpi_events so that we don't
3227		 * call selwakeup() twice if two events are
3228		 * posted before the polling process(es) is
3229		 * awakened.  This also ensures that we take at
3230		 * most one selwakeup() if the polling process
3231		 * is no longer interested.  However, it does
3232		 * mean that only one event can be noticed at
3233		 * a time.  (Perhaps we should only clear those
3234		 * event bits which we note?) XXX
3235		 */
3236		vp->v_pollinfo->vpi_events = 0;	/* &= ~events ??? */
3237		vp->v_pollinfo->vpi_revents |= events;
3238		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3239	}
3240	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3241}
3242
3243/*
3244 * Wake up anyone polling on vp because it is being revoked.
3245 * This depends on dead_poll() returning POLLHUP for correct
3246 * behavior.
3247 */
3248void
3249vn_pollgone(vp)
3250	struct vnode *vp;
3251{
3252
3253	mtx_lock(&vp->v_pollinfo->vpi_lock);
3254	VN_KNOTE_LOCKED(vp, NOTE_REVOKE);
3255	if (vp->v_pollinfo->vpi_events) {
3256		vp->v_pollinfo->vpi_events = 0;
3257		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3258	}
3259	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3260}
3261
3262
3263
3264/*
3265 * Routine to create and manage a filesystem syncer vnode.
3266 */
3267#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3268static int	sync_fsync(struct  vop_fsync_args *);
3269static int	sync_inactive(struct  vop_inactive_args *);
3270static int	sync_reclaim(struct  vop_reclaim_args *);
3271
3272static vop_t **sync_vnodeop_p;
3273static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3274	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
3275	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
3276	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
3277	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
3278	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
3279	{ &vop_lock_desc,	(vop_t *) vop_stdlock },	/* lock */
3280	{ &vop_unlock_desc,	(vop_t *) vop_stdunlock },	/* unlock */
3281	{ &vop_islocked_desc,	(vop_t *) vop_stdislocked },	/* islocked */
3282	{ NULL, NULL }
3283};
3284static struct vnodeopv_desc sync_vnodeop_opv_desc =
3285	{ &sync_vnodeop_p, sync_vnodeop_entries };
3286
3287VNODEOP_SET(sync_vnodeop_opv_desc);
3288
3289/*
3290 * Create a new filesystem syncer vnode for the specified mount point.
3291 */
3292int
3293vfs_allocate_syncvnode(mp)
3294	struct mount *mp;
3295{
3296	struct vnode *vp;
3297	static long start, incr, next;
3298	int error;
3299
3300	/* Allocate a new vnode */
3301	if ((error = getnewvnode("syncer", mp, sync_vnodeop_p, &vp)) != 0) {
3302		mp->mnt_syncer = NULL;
3303		return (error);
3304	}
3305	vp->v_type = VNON;
3306	/*
3307	 * Place the vnode onto the syncer worklist. We attempt to
3308	 * scatter them about on the list so that they will go off
3309	 * at evenly distributed times even if all the filesystems
3310	 * are mounted at once.
3311	 */
3312	next += incr;
3313	if (next == 0 || next > syncer_maxdelay) {
3314		start /= 2;
3315		incr /= 2;
3316		if (start == 0) {
3317			start = syncer_maxdelay / 2;
3318			incr = syncer_maxdelay;
3319		}
3320		next = start;
3321	}
3322	VI_LOCK(vp);
3323	vn_syncer_add_to_worklist(&vp->v_bufobj,
3324	    syncdelay > 0 ? next % syncdelay : 0);
3325	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3326	mtx_lock(&sync_mtx);
3327	sync_vnode_count++;
3328	mtx_unlock(&sync_mtx);
3329	VI_UNLOCK(vp);
3330	mp->mnt_syncer = vp;
3331	return (0);
3332}
3333
3334/*
3335 * Do a lazy sync of the filesystem.
3336 */
3337static int
3338sync_fsync(ap)
3339	struct vop_fsync_args /* {
3340		struct vnode *a_vp;
3341		struct ucred *a_cred;
3342		int a_waitfor;
3343		struct thread *a_td;
3344	} */ *ap;
3345{
3346	struct vnode *syncvp = ap->a_vp;
3347	struct mount *mp = syncvp->v_mount;
3348	struct thread *td = ap->a_td;
3349	int error, asyncflag;
3350	struct bufobj *bo;
3351
3352	/*
3353	 * We only need to do something if this is a lazy evaluation.
3354	 */
3355	if (ap->a_waitfor != MNT_LAZY)
3356		return (0);
3357
3358	/*
3359	 * Move ourselves to the back of the sync list.
3360	 */
3361	bo = &syncvp->v_bufobj;
3362	BO_LOCK(bo);
3363	vn_syncer_add_to_worklist(bo, syncdelay);
3364	BO_UNLOCK(bo);
3365
3366	/*
3367	 * Walk the list of vnodes pushing all that are dirty and
3368	 * not already on the sync list.
3369	 */
3370	mtx_lock(&mountlist_mtx);
3371	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3372		mtx_unlock(&mountlist_mtx);
3373		return (0);
3374	}
3375	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3376		vfs_unbusy(mp, td);
3377		return (0);
3378	}
3379	asyncflag = mp->mnt_flag & MNT_ASYNC;
3380	mp->mnt_flag &= ~MNT_ASYNC;
3381	vfs_msync(mp, MNT_NOWAIT);
3382	error = VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
3383	if (asyncflag)
3384		mp->mnt_flag |= MNT_ASYNC;
3385	vn_finished_write(mp);
3386	vfs_unbusy(mp, td);
3387	return (error);
3388}
3389
3390/*
3391 * The syncer vnode is no referenced.
3392 */
3393static int
3394sync_inactive(ap)
3395	struct vop_inactive_args /* {
3396		struct vnode *a_vp;
3397		struct thread *a_td;
3398	} */ *ap;
3399{
3400
3401	VOP_UNLOCK(ap->a_vp, 0, ap->a_td);
3402	vgone(ap->a_vp);
3403	return (0);
3404}
3405
3406/*
3407 * The syncer vnode is no longer needed and is being decommissioned.
3408 *
3409 * Modifications to the worklist must be protected by sync_mtx.
3410 */
3411static int
3412sync_reclaim(ap)
3413	struct vop_reclaim_args /* {
3414		struct vnode *a_vp;
3415	} */ *ap;
3416{
3417	struct vnode *vp = ap->a_vp;
3418	struct bufobj *bo;
3419
3420	VI_LOCK(vp);
3421	bo = &vp->v_bufobj;
3422	vp->v_mount->mnt_syncer = NULL;
3423	if (bo->bo_flag & BO_ONWORKLST) {
3424		mtx_lock(&sync_mtx);
3425		LIST_REMOVE(bo, bo_synclist);
3426 		syncer_worklist_len--;
3427		sync_vnode_count--;
3428		mtx_unlock(&sync_mtx);
3429		bo->bo_flag &= ~BO_ONWORKLST;
3430	}
3431	VI_UNLOCK(vp);
3432
3433	return (0);
3434}
3435
3436/*
3437 * extract the struct cdev *from a VCHR
3438 */
3439struct cdev *
3440vn_todev(vp)
3441	struct vnode *vp;
3442{
3443
3444	if (vp->v_type != VCHR)
3445		return (NULL);
3446	return (vp->v_rdev);
3447}
3448
3449/*
3450 * Check if vnode represents a disk device
3451 */
3452int
3453vn_isdisk(vp, errp)
3454	struct vnode *vp;
3455	int *errp;
3456{
3457	int error;
3458
3459	error = 0;
3460	dev_lock();
3461	if (vp->v_type != VCHR)
3462		error = ENOTBLK;
3463	else if (vp->v_rdev == NULL)
3464		error = ENXIO;
3465	else if (vp->v_rdev->si_devsw == NULL)
3466		error = ENXIO;
3467	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3468		error = ENOTBLK;
3469	dev_unlock();
3470	if (errp != NULL)
3471		*errp = error;
3472	return (error == 0);
3473}
3474
3475/*
3476 * Free data allocated by namei(); see namei(9) for details.
3477 */
3478void
3479NDFREE(ndp, flags)
3480     struct nameidata *ndp;
3481     const u_int flags;
3482{
3483
3484	if (!(flags & NDF_NO_FREE_PNBUF) &&
3485	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3486		uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3487		ndp->ni_cnd.cn_flags &= ~HASBUF;
3488	}
3489	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3490	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3491	    ndp->ni_dvp != ndp->ni_vp)
3492		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3493	if (!(flags & NDF_NO_DVP_RELE) &&
3494	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3495		vrele(ndp->ni_dvp);
3496		ndp->ni_dvp = NULL;
3497	}
3498	if (!(flags & NDF_NO_VP_UNLOCK) &&
3499	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3500		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3501	if (!(flags & NDF_NO_VP_RELE) &&
3502	    ndp->ni_vp) {
3503		vrele(ndp->ni_vp);
3504		ndp->ni_vp = NULL;
3505	}
3506	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3507	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3508		vrele(ndp->ni_startdir);
3509		ndp->ni_startdir = NULL;
3510	}
3511}
3512
3513/*
3514 * Common filesystem object access control check routine.  Accepts a
3515 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3516 * and optional call-by-reference privused argument allowing vaccess()
3517 * to indicate to the caller whether privilege was used to satisfy the
3518 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3519 */
3520int
3521vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3522	enum vtype type;
3523	mode_t file_mode;
3524	uid_t file_uid;
3525	gid_t file_gid;
3526	mode_t acc_mode;
3527	struct ucred *cred;
3528	int *privused;
3529{
3530	mode_t dac_granted;
3531#ifdef CAPABILITIES
3532	mode_t cap_granted;
3533#endif
3534
3535	/*
3536	 * Look for a normal, non-privileged way to access the file/directory
3537	 * as requested.  If it exists, go with that.
3538	 */
3539
3540	if (privused != NULL)
3541		*privused = 0;
3542
3543	dac_granted = 0;
3544
3545	/* Check the owner. */
3546	if (cred->cr_uid == file_uid) {
3547		dac_granted |= VADMIN;
3548		if (file_mode & S_IXUSR)
3549			dac_granted |= VEXEC;
3550		if (file_mode & S_IRUSR)
3551			dac_granted |= VREAD;
3552		if (file_mode & S_IWUSR)
3553			dac_granted |= (VWRITE | VAPPEND);
3554
3555		if ((acc_mode & dac_granted) == acc_mode)
3556			return (0);
3557
3558		goto privcheck;
3559	}
3560
3561	/* Otherwise, check the groups (first match) */
3562	if (groupmember(file_gid, cred)) {
3563		if (file_mode & S_IXGRP)
3564			dac_granted |= VEXEC;
3565		if (file_mode & S_IRGRP)
3566			dac_granted |= VREAD;
3567		if (file_mode & S_IWGRP)
3568			dac_granted |= (VWRITE | VAPPEND);
3569
3570		if ((acc_mode & dac_granted) == acc_mode)
3571			return (0);
3572
3573		goto privcheck;
3574	}
3575
3576	/* Otherwise, check everyone else. */
3577	if (file_mode & S_IXOTH)
3578		dac_granted |= VEXEC;
3579	if (file_mode & S_IROTH)
3580		dac_granted |= VREAD;
3581	if (file_mode & S_IWOTH)
3582		dac_granted |= (VWRITE | VAPPEND);
3583	if ((acc_mode & dac_granted) == acc_mode)
3584		return (0);
3585
3586privcheck:
3587	if (!suser_cred(cred, SUSER_ALLOWJAIL)) {
3588		/* XXX audit: privilege used */
3589		if (privused != NULL)
3590			*privused = 1;
3591		return (0);
3592	}
3593
3594#ifdef CAPABILITIES
3595	/*
3596	 * Build a capability mask to determine if the set of capabilities
3597	 * satisfies the requirements when combined with the granted mask
3598	 * from above.
3599	 * For each capability, if the capability is required, bitwise
3600	 * or the request type onto the cap_granted mask.
3601	 */
3602	cap_granted = 0;
3603
3604	if (type == VDIR) {
3605		/*
3606		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3607		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3608		 */
3609		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3610		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3611			cap_granted |= VEXEC;
3612	} else {
3613		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3614		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, SUSER_ALLOWJAIL))
3615			cap_granted |= VEXEC;
3616	}
3617
3618	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3619	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3620		cap_granted |= VREAD;
3621
3622	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3623	    !cap_check(cred, NULL, CAP_DAC_WRITE, SUSER_ALLOWJAIL))
3624		cap_granted |= (VWRITE | VAPPEND);
3625
3626	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3627	    !cap_check(cred, NULL, CAP_FOWNER, SUSER_ALLOWJAIL))
3628		cap_granted |= VADMIN;
3629
3630	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3631		/* XXX audit: privilege used */
3632		if (privused != NULL)
3633			*privused = 1;
3634		return (0);
3635	}
3636#endif
3637
3638	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3639}
3640
3641/*
3642 * Credential check based on process requesting service, and per-attribute
3643 * permissions.
3644 */
3645int
3646extattr_check_cred(struct vnode *vp, int attrnamespace,
3647    struct ucred *cred, struct thread *td, int access)
3648{
3649
3650	/*
3651	 * Kernel-invoked always succeeds.
3652	 */
3653	if (cred == NOCRED)
3654		return (0);
3655
3656	/*
3657	 * Do not allow privileged processes in jail to directly
3658	 * manipulate system attributes.
3659	 *
3660	 * XXX What capability should apply here?
3661	 * Probably CAP_SYS_SETFFLAG.
3662	 */
3663	switch (attrnamespace) {
3664	case EXTATTR_NAMESPACE_SYSTEM:
3665		/* Potentially should be: return (EPERM); */
3666		return (suser_cred(cred, 0));
3667	case EXTATTR_NAMESPACE_USER:
3668		return (VOP_ACCESS(vp, access, cred, td));
3669	default:
3670		return (EPERM);
3671	}
3672}
3673
3674#ifdef DEBUG_VFS_LOCKS
3675/*
3676 * This only exists to supress warnings from unlocked specfs accesses.  It is
3677 * no longer ok to have an unlocked VFS.
3678 */
3679#define	IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
3680
3681int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3682SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3683
3684int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3685SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3686
3687int vfs_badlock_print = 1;	/* Print lock violations. */
3688SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3689
3690#ifdef KDB
3691int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3692SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3693#endif
3694
3695static void
3696vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3697{
3698
3699#ifdef KDB
3700	if (vfs_badlock_backtrace)
3701		kdb_backtrace();
3702#endif
3703	if (vfs_badlock_print)
3704		printf("%s: %p %s\n", str, (void *)vp, msg);
3705	if (vfs_badlock_ddb)
3706		kdb_enter("lock violation");
3707}
3708
3709void
3710assert_vi_locked(struct vnode *vp, const char *str)
3711{
3712
3713	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3714		vfs_badlock("interlock is not locked but should be", str, vp);
3715}
3716
3717void
3718assert_vi_unlocked(struct vnode *vp, const char *str)
3719{
3720
3721	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3722		vfs_badlock("interlock is locked but should not be", str, vp);
3723}
3724
3725void
3726assert_vop_locked(struct vnode *vp, const char *str)
3727{
3728
3729	if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
3730		vfs_badlock("is not locked but should be", str, vp);
3731}
3732
3733void
3734assert_vop_unlocked(struct vnode *vp, const char *str)
3735{
3736
3737	if (vp && !IGNORE_LOCK(vp) &&
3738	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
3739		vfs_badlock("is locked but should not be", str, vp);
3740}
3741
3742#if 0
3743void
3744assert_vop_elocked(struct vnode *vp, const char *str)
3745{
3746
3747	if (vp && !IGNORE_LOCK(vp) &&
3748	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
3749		vfs_badlock("is not exclusive locked but should be", str, vp);
3750}
3751
3752void
3753assert_vop_elocked_other(struct vnode *vp, const char *str)
3754{
3755
3756	if (vp && !IGNORE_LOCK(vp) &&
3757	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
3758		vfs_badlock("is not exclusive locked by another thread",
3759		    str, vp);
3760}
3761
3762void
3763assert_vop_slocked(struct vnode *vp, const char *str)
3764{
3765
3766	if (vp && !IGNORE_LOCK(vp) &&
3767	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
3768		vfs_badlock("is not locked shared but should be", str, vp);
3769}
3770#endif /* 0 */
3771
3772void
3773vop_rename_pre(void *ap)
3774{
3775	struct vop_rename_args *a = ap;
3776
3777	if (a->a_tvp)
3778		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3779	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3780	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3781	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3782
3783	/* Check the source (from). */
3784	if (a->a_tdvp != a->a_fdvp)
3785		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3786	if (a->a_tvp != a->a_fvp)
3787		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked");
3788
3789	/* Check the target. */
3790	if (a->a_tvp)
3791		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3792	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3793}
3794
3795void
3796vop_strategy_pre(void *ap)
3797{
3798	struct vop_strategy_args *a;
3799	struct buf *bp;
3800
3801	a = ap;
3802	bp = a->a_bp;
3803
3804	/*
3805	 * Cluster ops lock their component buffers but not the IO container.
3806	 */
3807	if ((bp->b_flags & B_CLUSTER) != 0)
3808		return;
3809
3810	if (BUF_REFCNT(bp) < 1) {
3811		if (vfs_badlock_print)
3812			printf(
3813			    "VOP_STRATEGY: bp is not locked but should be\n");
3814		if (vfs_badlock_ddb)
3815			kdb_enter("lock violation");
3816	}
3817}
3818
3819void
3820vop_lookup_pre(void *ap)
3821{
3822	struct vop_lookup_args *a;
3823	struct vnode *dvp;
3824
3825	a = ap;
3826	dvp = a->a_dvp;
3827	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3828	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3829}
3830
3831void
3832vop_lookup_post(void *ap, int rc)
3833{
3834	struct vop_lookup_args *a;
3835	struct componentname *cnp;
3836	struct vnode *dvp;
3837	struct vnode *vp;
3838	int flags;
3839
3840	a = ap;
3841	dvp = a->a_dvp;
3842	cnp = a->a_cnp;
3843	vp = *(a->a_vpp);
3844	flags = cnp->cn_flags;
3845
3846	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3847
3848	/*
3849	 * If this is the last path component for this lookup and LOCKPARENT
3850	 * is set, OR if there is an error the directory has to be locked.
3851	 */
3852	if ((flags & LOCKPARENT) && (flags & ISLASTCN))
3853		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)");
3854	else if (rc != 0)
3855		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)");
3856	else if (dvp != vp)
3857		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)");
3858	if (flags & PDIRUNLOCK)
3859		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)");
3860}
3861
3862void
3863vop_lock_pre(void *ap)
3864{
3865	struct vop_lock_args *a = ap;
3866
3867	if ((a->a_flags & LK_INTERLOCK) == 0)
3868		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3869	else
3870		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3871}
3872
3873void
3874vop_lock_post(void *ap, int rc)
3875{
3876	struct vop_lock_args *a = ap;
3877
3878	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3879	if (rc == 0)
3880		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3881}
3882
3883void
3884vop_unlock_pre(void *ap)
3885{
3886	struct vop_unlock_args *a = ap;
3887
3888	if (a->a_flags & LK_INTERLOCK)
3889		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3890	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3891}
3892
3893void
3894vop_unlock_post(void *ap, int rc)
3895{
3896	struct vop_unlock_args *a = ap;
3897
3898	if (a->a_flags & LK_INTERLOCK)
3899		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3900}
3901#endif /* DEBUG_VFS_LOCKS */
3902
3903static struct knlist fs_knlist;
3904
3905static void
3906vfs_event_init(void *arg)
3907{
3908	knlist_init(&fs_knlist, NULL);
3909}
3910/* XXX - correct order? */
3911SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3912
3913void
3914vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
3915{
3916
3917	KNOTE_UNLOCKED(&fs_knlist, event);
3918}
3919
3920static int	filt_fsattach(struct knote *kn);
3921static void	filt_fsdetach(struct knote *kn);
3922static int	filt_fsevent(struct knote *kn, long hint);
3923
3924struct filterops fs_filtops =
3925	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
3926
3927static int
3928filt_fsattach(struct knote *kn)
3929{
3930
3931	kn->kn_flags |= EV_CLEAR;
3932	knlist_add(&fs_knlist, kn, 0);
3933	return (0);
3934}
3935
3936static void
3937filt_fsdetach(struct knote *kn)
3938{
3939
3940	knlist_remove(&fs_knlist, kn, 0);
3941}
3942
3943static int
3944filt_fsevent(struct knote *kn, long hint)
3945{
3946
3947	kn->kn_fflags |= hint;
3948	return (kn->kn_fflags != 0);
3949}
3950
3951static int
3952sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
3953{
3954	struct vfsidctl vc;
3955	int error;
3956	struct mount *mp;
3957
3958	error = SYSCTL_IN(req, &vc, sizeof(vc));
3959	if (error)
3960		return (error);
3961	if (vc.vc_vers != VFS_CTL_VERS1)
3962		return (EINVAL);
3963	mp = vfs_getvfs(&vc.vc_fsid);
3964	if (mp == NULL)
3965		return (ENOENT);
3966	/* ensure that a specific sysctl goes to the right filesystem. */
3967	if (strcmp(vc.vc_fstypename, "*") != 0 &&
3968	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
3969		return (EINVAL);
3970	}
3971	VCTLTOREQ(&vc, req);
3972	return (VFS_SYSCTL(mp, vc.vc_op, req));
3973}
3974
3975SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR,
3976        NULL, 0, sysctl_vfs_ctl, "", "Sysctl by fsid");
3977
3978/*
3979 * Function to initialize a va_filerev field sensibly.
3980 * XXX: Wouldn't a random number make a lot more sense ??
3981 */
3982u_quad_t
3983init_va_filerev(void)
3984{
3985	struct bintime bt;
3986
3987	getbinuptime(&bt);
3988	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
3989}
3990