vfs_subr.c revision 136992
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_subr.c 136992 2004-10-27 08:05:02Z phk $");
43
44#include "opt_ddb.h"
45#include "opt_mac.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/bio.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/event.h>
53#include <sys/eventhandler.h>
54#include <sys/extattr.h>
55#include <sys/fcntl.h>
56#include <sys/kdb.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/mac.h>
60#include <sys/malloc.h>
61#include <sys/mount.h>
62#include <sys/namei.h>
63#include <sys/reboot.h>
64#include <sys/sleepqueue.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <vm/vm.h>
72#include <vm/vm_object.h>
73#include <vm/vm_extern.h>
74#include <vm/pmap.h>
75#include <vm/vm_map.h>
76#include <vm/vm_page.h>
77#include <vm/vm_kern.h>
78#include <vm/uma.h>
79
80static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
81
82static void	addalias(struct vnode *vp, struct cdev *nvp_rdev);
83static void	delmntque(struct vnode *vp);
84static void	insmntque(struct vnode *vp, struct mount *mp);
85static void	vclean(struct vnode *vp, int flags, struct thread *td);
86static void	vlruvp(struct vnode *vp);
87static int	flushbuflist(struct buf *blist, int flags, struct vnode *vp,
88		    int slpflag, int slptimeo, int *errorp);
89static void	syncer_shutdown(void *arg, int howto);
90static int	vtryrecycle(struct vnode *vp);
91static void	vx_lock(struct vnode *vp);
92static void	vx_unlock(struct vnode *vp);
93static void	vgonechrl(struct vnode *vp, struct thread *td);
94
95
96/*
97 * Number of vnodes in existence.  Increased whenever getnewvnode()
98 * allocates a new vnode, never decreased.
99 */
100static unsigned long	numvnodes;
101
102SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
103
104/*
105 * Conversion tables for conversion from vnode types to inode formats
106 * and back.
107 */
108enum vtype iftovt_tab[16] = {
109	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
110	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
111};
112int vttoif_tab[9] = {
113	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
114	S_IFSOCK, S_IFIFO, S_IFMT,
115};
116
117/*
118 * List of vnodes that are ready for recycling.
119 */
120static TAILQ_HEAD(freelst, vnode) vnode_free_list;
121
122/*
123 * Minimum number of free vnodes.  If there are fewer than this free vnodes,
124 * getnewvnode() will return a newly allocated vnode.
125 */
126static u_long wantfreevnodes = 25;
127SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
128/* Number of vnodes in the free list. */
129static u_long freevnodes;
130SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
131
132/*
133 * Various variables used for debugging the new implementation of
134 * reassignbuf().
135 * XXX these are probably of (very) limited utility now.
136 */
137static int reassignbufcalls;
138SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
139static int nameileafonly;
140SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
141
142/*
143 * Cache for the mount type id assigned to NFS.  This is used for
144 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
145 */
146int	nfs_mount_type = -1;
147
148/* To keep more than one thread at a time from running vfs_getnewfsid */
149static struct mtx mntid_mtx;
150
151/*
152 * Lock for any access to the following:
153 *	vnode_free_list
154 *	numvnodes
155 *	freevnodes
156 */
157static struct mtx vnode_free_list_mtx;
158
159/* Publicly exported FS */
160struct nfs_public nfs_pub;
161
162/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
163static uma_zone_t vnode_zone;
164static uma_zone_t vnodepoll_zone;
165
166/* Set to 1 to print out reclaim of active vnodes */
167int	prtactive;
168
169/*
170 * The workitem queue.
171 *
172 * It is useful to delay writes of file data and filesystem metadata
173 * for tens of seconds so that quickly created and deleted files need
174 * not waste disk bandwidth being created and removed. To realize this,
175 * we append vnodes to a "workitem" queue. When running with a soft
176 * updates implementation, most pending metadata dependencies should
177 * not wait for more than a few seconds. Thus, mounted on block devices
178 * are delayed only about a half the time that file data is delayed.
179 * Similarly, directory updates are more critical, so are only delayed
180 * about a third the time that file data is delayed. Thus, there are
181 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
182 * one each second (driven off the filesystem syncer process). The
183 * syncer_delayno variable indicates the next queue that is to be processed.
184 * Items that need to be processed soon are placed in this queue:
185 *
186 *	syncer_workitem_pending[syncer_delayno]
187 *
188 * A delay of fifteen seconds is done by placing the request fifteen
189 * entries later in the queue:
190 *
191 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
192 *
193 */
194static int syncer_delayno;
195static long syncer_mask;
196LIST_HEAD(synclist, bufobj);
197static struct synclist *syncer_workitem_pending;
198/*
199 * The sync_mtx protects:
200 *	bo->bo_synclist
201 *	sync_vnode_count
202 *	syncer_delayno
203 *	syncer_state
204 *	syncer_workitem_pending
205 *	syncer_worklist_len
206 *	rushjob
207 */
208static struct mtx sync_mtx;
209
210#define SYNCER_MAXDELAY		32
211static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
212static int syncdelay = 30;		/* max time to delay syncing data */
213static int filedelay = 30;		/* time to delay syncing files */
214SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
215static int dirdelay = 29;		/* time to delay syncing directories */
216SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
217static int metadelay = 28;		/* time to delay syncing metadata */
218SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
219static int rushjob;		/* number of slots to run ASAP */
220static int stat_rush_requests;	/* number of times I/O speeded up */
221SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
222
223/*
224 * When shutting down the syncer, run it at four times normal speed.
225 */
226#define SYNCER_SHUTDOWN_SPEEDUP		4
227static int sync_vnode_count;
228static int syncer_worklist_len;
229static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
230    syncer_state;
231
232/*
233 * Number of vnodes we want to exist at any one time.  This is mostly used
234 * to size hash tables in vnode-related code.  It is normally not used in
235 * getnewvnode(), as wantfreevnodes is normally nonzero.)
236 *
237 * XXX desiredvnodes is historical cruft and should not exist.
238 */
239int desiredvnodes;
240SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
241    &desiredvnodes, 0, "Maximum number of vnodes");
242static int minvnodes;
243SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
244    &minvnodes, 0, "Minimum number of vnodes");
245static int vnlru_nowhere;
246SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
247    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
248
249/* Hook for calling soft updates. */
250int (*softdep_process_worklist_hook)(struct mount *);
251
252/*
253 * Initialize the vnode management data structures.
254 */
255#ifndef	MAXVNODES_MAX
256#define	MAXVNODES_MAX	100000
257#endif
258static void
259vntblinit(void *dummy __unused)
260{
261
262	/*
263	 * Desiredvnodes is a function of the physical memory size and
264	 * the kernel's heap size.  Specifically, desiredvnodes scales
265	 * in proportion to the physical memory size until two fifths
266	 * of the kernel's heap size is consumed by vnodes and vm
267	 * objects.
268	 */
269	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
270	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
271	if (desiredvnodes > MAXVNODES_MAX) {
272		if (bootverbose)
273			printf("Reducing kern.maxvnodes %d -> %d\n",
274			    desiredvnodes, MAXVNODES_MAX);
275		desiredvnodes = MAXVNODES_MAX;
276	}
277	minvnodes = desiredvnodes / 4;
278	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
279	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
280	TAILQ_INIT(&vnode_free_list);
281	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
282	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
283	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
284	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
285	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
286	/*
287	 * Initialize the filesystem syncer.
288	 */
289	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
290		&syncer_mask);
291	syncer_maxdelay = syncer_mask + 1;
292	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
293}
294SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
295
296
297/*
298 * Mark a mount point as busy. Used to synchronize access and to delay
299 * unmounting. Interlock is not released on failure.
300 */
301int
302vfs_busy(mp, flags, interlkp, td)
303	struct mount *mp;
304	int flags;
305	struct mtx *interlkp;
306	struct thread *td;
307{
308	int lkflags;
309
310	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
311		if (flags & LK_NOWAIT)
312			return (ENOENT);
313		mp->mnt_kern_flag |= MNTK_MWAIT;
314		/*
315		 * Since all busy locks are shared except the exclusive
316		 * lock granted when unmounting, the only place that a
317		 * wakeup needs to be done is at the release of the
318		 * exclusive lock at the end of dounmount.
319		 */
320		msleep(mp, interlkp, PVFS, "vfs_busy", 0);
321		return (ENOENT);
322	}
323	lkflags = LK_SHARED | LK_NOPAUSE;
324	if (interlkp)
325		lkflags |= LK_INTERLOCK;
326	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
327		panic("vfs_busy: unexpected lock failure");
328	return (0);
329}
330
331/*
332 * Free a busy filesystem.
333 */
334void
335vfs_unbusy(mp, td)
336	struct mount *mp;
337	struct thread *td;
338{
339
340	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
341}
342
343/*
344 * Lookup a mount point by filesystem identifier.
345 */
346struct mount *
347vfs_getvfs(fsid)
348	fsid_t *fsid;
349{
350	register struct mount *mp;
351
352	mtx_lock(&mountlist_mtx);
353	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
354		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
355		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
356			mtx_unlock(&mountlist_mtx);
357			return (mp);
358		}
359	}
360	mtx_unlock(&mountlist_mtx);
361	return ((struct mount *) 0);
362}
363
364/*
365 * Check if a user can access priveledged mount options.
366 */
367int
368vfs_suser(struct mount *mp, struct thread *td)
369{
370	int error;
371
372	if ((mp->mnt_flag & MNT_USER) == 0 ||
373	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
374		if ((error = suser(td)) != 0)
375			return (error);
376	}
377	return (0);
378}
379
380/*
381 * Get a new unique fsid.  Try to make its val[0] unique, since this value
382 * will be used to create fake device numbers for stat().  Also try (but
383 * not so hard) make its val[0] unique mod 2^16, since some emulators only
384 * support 16-bit device numbers.  We end up with unique val[0]'s for the
385 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
386 *
387 * Keep in mind that several mounts may be running in parallel.  Starting
388 * the search one past where the previous search terminated is both a
389 * micro-optimization and a defense against returning the same fsid to
390 * different mounts.
391 */
392void
393vfs_getnewfsid(mp)
394	struct mount *mp;
395{
396	static u_int16_t mntid_base;
397	fsid_t tfsid;
398	int mtype;
399
400	mtx_lock(&mntid_mtx);
401	mtype = mp->mnt_vfc->vfc_typenum;
402	tfsid.val[1] = mtype;
403	mtype = (mtype & 0xFF) << 24;
404	for (;;) {
405		tfsid.val[0] = makedev(255,
406		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
407		mntid_base++;
408		if (vfs_getvfs(&tfsid) == NULL)
409			break;
410	}
411	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
412	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
413	mtx_unlock(&mntid_mtx);
414}
415
416/*
417 * Knob to control the precision of file timestamps:
418 *
419 *   0 = seconds only; nanoseconds zeroed.
420 *   1 = seconds and nanoseconds, accurate within 1/HZ.
421 *   2 = seconds and nanoseconds, truncated to microseconds.
422 * >=3 = seconds and nanoseconds, maximum precision.
423 */
424enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
425
426static int timestamp_precision = TSP_SEC;
427SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
428    &timestamp_precision, 0, "");
429
430/*
431 * Get a current timestamp.
432 */
433void
434vfs_timestamp(tsp)
435	struct timespec *tsp;
436{
437	struct timeval tv;
438
439	switch (timestamp_precision) {
440	case TSP_SEC:
441		tsp->tv_sec = time_second;
442		tsp->tv_nsec = 0;
443		break;
444	case TSP_HZ:
445		getnanotime(tsp);
446		break;
447	case TSP_USEC:
448		microtime(&tv);
449		TIMEVAL_TO_TIMESPEC(&tv, tsp);
450		break;
451	case TSP_NSEC:
452	default:
453		nanotime(tsp);
454		break;
455	}
456}
457
458/*
459 * Set vnode attributes to VNOVAL
460 */
461void
462vattr_null(vap)
463	register struct vattr *vap;
464{
465
466	vap->va_type = VNON;
467	vap->va_size = VNOVAL;
468	vap->va_bytes = VNOVAL;
469	vap->va_mode = VNOVAL;
470	vap->va_nlink = VNOVAL;
471	vap->va_uid = VNOVAL;
472	vap->va_gid = VNOVAL;
473	vap->va_fsid = VNOVAL;
474	vap->va_fileid = VNOVAL;
475	vap->va_blocksize = VNOVAL;
476	vap->va_rdev = VNOVAL;
477	vap->va_atime.tv_sec = VNOVAL;
478	vap->va_atime.tv_nsec = VNOVAL;
479	vap->va_mtime.tv_sec = VNOVAL;
480	vap->va_mtime.tv_nsec = VNOVAL;
481	vap->va_ctime.tv_sec = VNOVAL;
482	vap->va_ctime.tv_nsec = VNOVAL;
483	vap->va_birthtime.tv_sec = VNOVAL;
484	vap->va_birthtime.tv_nsec = VNOVAL;
485	vap->va_flags = VNOVAL;
486	vap->va_gen = VNOVAL;
487	vap->va_vaflags = 0;
488}
489
490/*
491 * This routine is called when we have too many vnodes.  It attempts
492 * to free <count> vnodes and will potentially free vnodes that still
493 * have VM backing store (VM backing store is typically the cause
494 * of a vnode blowout so we want to do this).  Therefore, this operation
495 * is not considered cheap.
496 *
497 * A number of conditions may prevent a vnode from being reclaimed.
498 * the buffer cache may have references on the vnode, a directory
499 * vnode may still have references due to the namei cache representing
500 * underlying files, or the vnode may be in active use.   It is not
501 * desireable to reuse such vnodes.  These conditions may cause the
502 * number of vnodes to reach some minimum value regardless of what
503 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
504 */
505static int
506vlrureclaim(struct mount *mp)
507{
508	struct vnode *vp;
509	int done;
510	int trigger;
511	int usevnodes;
512	int count;
513
514	/*
515	 * Calculate the trigger point, don't allow user
516	 * screwups to blow us up.   This prevents us from
517	 * recycling vnodes with lots of resident pages.  We
518	 * aren't trying to free memory, we are trying to
519	 * free vnodes.
520	 */
521	usevnodes = desiredvnodes;
522	if (usevnodes <= 0)
523		usevnodes = 1;
524	trigger = cnt.v_page_count * 2 / usevnodes;
525
526	done = 0;
527	MNT_ILOCK(mp);
528	count = mp->mnt_nvnodelistsize / 10 + 1;
529	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
530		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
531		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
532
533		if (vp->v_type != VNON &&
534		    vp->v_type != VBAD &&
535		    VI_TRYLOCK(vp)) {
536			if (VMIGHTFREE(vp) &&           /* critical path opt */
537			    (vp->v_object == NULL ||
538			    vp->v_object->resident_page_count < trigger)) {
539				MNT_IUNLOCK(mp);
540				vgonel(vp, curthread);
541				done++;
542				MNT_ILOCK(mp);
543			} else
544				VI_UNLOCK(vp);
545		}
546		--count;
547	}
548	MNT_IUNLOCK(mp);
549	return done;
550}
551
552/*
553 * Attempt to recycle vnodes in a context that is always safe to block.
554 * Calling vlrurecycle() from the bowels of filesystem code has some
555 * interesting deadlock problems.
556 */
557static struct proc *vnlruproc;
558static int vnlruproc_sig;
559
560static void
561vnlru_proc(void)
562{
563	struct mount *mp, *nmp;
564	int done;
565	struct proc *p = vnlruproc;
566	struct thread *td = FIRST_THREAD_IN_PROC(p);
567
568	mtx_lock(&Giant);
569
570	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
571	    SHUTDOWN_PRI_FIRST);
572
573	for (;;) {
574		kthread_suspend_check(p);
575		mtx_lock(&vnode_free_list_mtx);
576		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
577			mtx_unlock(&vnode_free_list_mtx);
578			vnlruproc_sig = 0;
579			wakeup(&vnlruproc_sig);
580			tsleep(vnlruproc, PVFS, "vlruwt", hz);
581			continue;
582		}
583		mtx_unlock(&vnode_free_list_mtx);
584		done = 0;
585		mtx_lock(&mountlist_mtx);
586		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
587			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
588				nmp = TAILQ_NEXT(mp, mnt_list);
589				continue;
590			}
591			done += vlrureclaim(mp);
592			mtx_lock(&mountlist_mtx);
593			nmp = TAILQ_NEXT(mp, mnt_list);
594			vfs_unbusy(mp, td);
595		}
596		mtx_unlock(&mountlist_mtx);
597		if (done == 0) {
598#if 0
599			/* These messages are temporary debugging aids */
600			if (vnlru_nowhere < 5)
601				printf("vnlru process getting nowhere..\n");
602			else if (vnlru_nowhere == 5)
603				printf("vnlru process messages stopped.\n");
604#endif
605			vnlru_nowhere++;
606			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
607		}
608	}
609}
610
611static struct kproc_desc vnlru_kp = {
612	"vnlru",
613	vnlru_proc,
614	&vnlruproc
615};
616SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
617
618
619/*
620 * Routines having to do with the management of the vnode table.
621 */
622
623/*
624 * Check to see if a free vnode can be recycled. If it can,
625 * recycle it and return it with the vnode interlock held.
626 */
627static int
628vtryrecycle(struct vnode *vp)
629{
630	struct thread *td = curthread;
631	vm_object_t object;
632	struct mount *vnmp;
633	int error;
634
635	/* Don't recycle if we can't get the interlock */
636	if (!VI_TRYLOCK(vp))
637		return (EWOULDBLOCK);
638	/*
639	 * This vnode may found and locked via some other list, if so we
640	 * can't recycle it yet.
641	 */
642	if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
643		return (EWOULDBLOCK);
644	/*
645	 * Don't recycle if its filesystem is being suspended.
646	 */
647	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
648		VOP_UNLOCK(vp, 0, td);
649		return (EBUSY);
650	}
651
652	/*
653	 * Don't recycle if we still have cached pages.
654	 */
655	if (VOP_GETVOBJECT(vp, &object) == 0) {
656		VM_OBJECT_LOCK(object);
657		if (object->resident_page_count ||
658		    object->ref_count) {
659			VM_OBJECT_UNLOCK(object);
660			error = EBUSY;
661			goto done;
662		}
663		VM_OBJECT_UNLOCK(object);
664	}
665	if (LIST_FIRST(&vp->v_cache_src)) {
666		/*
667		 * note: nameileafonly sysctl is temporary,
668		 * for debugging only, and will eventually be
669		 * removed.
670		 */
671		if (nameileafonly > 0) {
672			/*
673			 * Do not reuse namei-cached directory
674			 * vnodes that have cached
675			 * subdirectories.
676			 */
677			if (cache_leaf_test(vp) < 0) {
678				error = EISDIR;
679				goto done;
680			}
681		} else if (nameileafonly < 0 ||
682			    vmiodirenable == 0) {
683			/*
684			 * Do not reuse namei-cached directory
685			 * vnodes if nameileafonly is -1 or
686			 * if VMIO backing for directories is
687			 * turned off (otherwise we reuse them
688			 * too quickly).
689			 */
690			error = EBUSY;
691			goto done;
692		}
693	}
694	/*
695	 * If we got this far, we need to acquire the interlock and see if
696	 * anyone picked up this vnode from another list.  If not, we will
697	 * mark it with XLOCK via vgonel() so that anyone who does find it
698	 * will skip over it.
699	 */
700	VI_LOCK(vp);
701	if (VSHOULDBUSY(vp) && (vp->v_iflag & VI_XLOCK) == 0) {
702		VI_UNLOCK(vp);
703		error = EBUSY;
704		goto done;
705	}
706	mtx_lock(&vnode_free_list_mtx);
707	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
708	vp->v_iflag &= ~VI_FREE;
709	mtx_unlock(&vnode_free_list_mtx);
710	vp->v_iflag |= VI_DOOMED;
711	if ((vp->v_type != VBAD) || (vp->v_data != NULL)) {
712		VOP_UNLOCK(vp, 0, td);
713		vgonel(vp, td);
714		VI_LOCK(vp);
715	} else
716		VOP_UNLOCK(vp, 0, td);
717	vn_finished_write(vnmp);
718	return (0);
719done:
720	VOP_UNLOCK(vp, 0, td);
721	vn_finished_write(vnmp);
722	return (error);
723}
724
725/*
726 * Return the next vnode from the free list.
727 */
728int
729getnewvnode(tag, mp, vops, vpp)
730	const char *tag;
731	struct mount *mp;
732	vop_t **vops;
733	struct vnode **vpp;
734{
735	struct vnode *vp = NULL;
736	struct vpollinfo *pollinfo = NULL;
737	struct bufobj *bo;
738
739	mtx_lock(&vnode_free_list_mtx);
740
741	/*
742	 * Try to reuse vnodes if we hit the max.  This situation only
743	 * occurs in certain large-memory (2G+) situations.  We cannot
744	 * attempt to directly reclaim vnodes due to nasty recursion
745	 * problems.
746	 */
747	while (numvnodes - freevnodes > desiredvnodes) {
748		if (vnlruproc_sig == 0) {
749			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
750			wakeup(vnlruproc);
751		}
752		mtx_unlock(&vnode_free_list_mtx);
753		tsleep(&vnlruproc_sig, PVFS, "vlruwk", hz);
754		mtx_lock(&vnode_free_list_mtx);
755	}
756
757	/*
758	 * Attempt to reuse a vnode already on the free list, allocating
759	 * a new vnode if we can't find one or if we have not reached a
760	 * good minimum for good LRU performance.
761	 */
762
763	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
764		int error;
765		int count;
766
767		for (count = 0; count < freevnodes; count++) {
768			vp = TAILQ_FIRST(&vnode_free_list);
769
770			KASSERT(vp->v_usecount == 0 &&
771			    (vp->v_iflag & VI_DOINGINACT) == 0,
772			    ("getnewvnode: free vnode isn't"));
773
774			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
775			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
776			mtx_unlock(&vnode_free_list_mtx);
777			error = vtryrecycle(vp);
778			mtx_lock(&vnode_free_list_mtx);
779			if (error == 0)
780				break;
781			vp = NULL;
782		}
783	}
784	if (vp) {
785		freevnodes--;
786		bo = &vp->v_bufobj;
787		mtx_unlock(&vnode_free_list_mtx);
788
789#ifdef INVARIANTS
790		{
791			if (vp->v_data)
792				printf("cleaned vnode isn't, "
793				       "address %p, inode %p\n",
794				       vp, vp->v_data);
795			if (bo->bo_numoutput)
796				panic("Clean vnode has pending I/O's");
797			if (vp->v_writecount != 0)
798				panic("Non-zero write count");
799		}
800#endif
801		if ((pollinfo = vp->v_pollinfo) != NULL) {
802			/*
803			 * To avoid lock order reversals, the call to
804			 * uma_zfree() must be delayed until the vnode
805			 * interlock is released.
806			 */
807			vp->v_pollinfo = NULL;
808		}
809#ifdef MAC
810		mac_destroy_vnode(vp);
811#endif
812		vp->v_iflag = 0;
813		vp->v_vflag = 0;
814		vp->v_lastw = 0;
815		vp->v_lasta = 0;
816		vp->v_cstart = 0;
817		vp->v_clen = 0;
818		vp->v_socket = 0;
819		lockdestroy(vp->v_vnlock);
820		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
821		KASSERT(bo->bo_clean.bv_cnt == 0, ("cleanbufcnt not 0"));
822		KASSERT(bo->bo_clean.bv_root == NULL, ("cleanblkroot not NULL"));
823		KASSERT(bo->bo_dirty.bv_cnt == 0, ("dirtybufcnt not 0"));
824		KASSERT(bo->bo_dirty.bv_root == NULL, ("dirtyblkroot not NULL"));
825	} else {
826		numvnodes++;
827		mtx_unlock(&vnode_free_list_mtx);
828
829		vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
830		mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
831		VI_LOCK(vp);
832		vp->v_dd = vp;
833		bo = &vp->v_bufobj;
834		bo->bo_private = vp;
835		bo->bo_mtx = &vp->v_interlock;
836		vp->v_vnlock = &vp->v_lock;
837		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
838		cache_purge(vp);		/* Sets up v_id. */
839		LIST_INIT(&vp->v_cache_src);
840		TAILQ_INIT(&vp->v_cache_dst);
841	}
842
843	TAILQ_INIT(&bo->bo_clean.bv_hd);
844	TAILQ_INIT(&bo->bo_dirty.bv_hd);
845	bo->bo_ops = &buf_ops_bio;
846	vp->v_type = VNON;
847	vp->v_tag = tag;
848	vp->v_op = vops;
849	*vpp = vp;
850	vp->v_usecount = 1;
851	vp->v_data = 0;
852	vp->v_cachedid = -1;
853	VI_UNLOCK(vp);
854	if (pollinfo != NULL) {
855		knlist_destroy(&pollinfo->vpi_selinfo.si_note);
856		mtx_destroy(&pollinfo->vpi_lock);
857		uma_zfree(vnodepoll_zone, pollinfo);
858	}
859#ifdef MAC
860	mac_init_vnode(vp);
861	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
862		mac_associate_vnode_singlelabel(mp, vp);
863	else if (mp == NULL)
864		printf("NULL mp in getnewvnode()\n");
865#endif
866	delmntque(vp);
867	if (mp != NULL) {
868		insmntque(vp, mp);
869		bo->bo_bsize = mp->mnt_stat.f_iosize;
870	}
871
872	return (0);
873}
874
875/*
876 * Delete from old mount point vnode list, if on one.
877 */
878static void
879delmntque(struct vnode *vp)
880{
881	struct mount *mp;
882
883	if (vp->v_mount == NULL)
884		return;
885	mp = vp->v_mount;
886	MNT_ILOCK(mp);
887	vp->v_mount = NULL;
888	KASSERT(mp->mnt_nvnodelistsize > 0,
889		("bad mount point vnode list size"));
890	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
891	mp->mnt_nvnodelistsize--;
892	MNT_IUNLOCK(mp);
893}
894
895/*
896 * Insert into list of vnodes for the new mount point, if available.
897 */
898static void
899insmntque(struct vnode *vp, struct mount *mp)
900{
901
902	vp->v_mount = mp;
903	KASSERT(mp != NULL, ("Don't call insmntque(foo, NULL)"));
904	MNT_ILOCK(vp->v_mount);
905	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
906	mp->mnt_nvnodelistsize++;
907	MNT_IUNLOCK(vp->v_mount);
908}
909
910/*
911 * Flush out and invalidate all buffers associated with a vnode.
912 * Called with the underlying object locked.
913 */
914int
915vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
916	struct vnode *vp;
917	int flags;
918	struct ucred *cred;
919	struct thread *td;
920	int slpflag, slptimeo;
921{
922	struct buf *blist;
923	int error;
924	vm_object_t object;
925	struct bufobj *bo;
926
927	GIANT_REQUIRED;
928
929	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
930
931	bo = &vp->v_bufobj;
932	BO_LOCK(bo);
933	if (flags & V_SAVE) {
934		error = bufobj_wwait(bo, slpflag, slptimeo);
935		if (error) {
936			VI_UNLOCK(vp);
937			return (error);
938		}
939		if (bo->bo_dirty.bv_cnt > 0) {
940			VI_UNLOCK(vp);
941			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
942				return (error);
943			/*
944			 * XXX We could save a lock/unlock if this was only
945			 * enabled under INVARIANTS
946			 */
947			VI_LOCK(vp);
948			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
949				panic("vinvalbuf: dirty bufs");
950		}
951	}
952	/*
953	 * If you alter this loop please notice that interlock is dropped and
954	 * reacquired in flushbuflist.  Special care is needed to ensure that
955	 * no race conditions occur from this.
956	 */
957	for (error = 0;;) {
958		blist = TAILQ_FIRST(&vp->v_bufobj.bo_clean.bv_hd);
959		if (blist != NULL &&
960		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
961			if (error)
962				break;
963			continue;
964		}
965		blist = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
966		if (blist != NULL &&
967		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
968			if (error)
969				break;
970			continue;
971		}
972		break;
973	}
974	if (error) {
975		VI_UNLOCK(vp);
976		return (error);
977	}
978
979	/*
980	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
981	 * have write I/O in-progress but if there is a VM object then the
982	 * VM object can also have read-I/O in-progress.
983	 */
984	do {
985		bufobj_wwait(bo, 0, 0);
986		VI_UNLOCK(vp);
987		if (VOP_GETVOBJECT(vp, &object) == 0) {
988			VM_OBJECT_LOCK(object);
989			vm_object_pip_wait(object, "vnvlbx");
990			VM_OBJECT_UNLOCK(object);
991		}
992		VI_LOCK(vp);
993	} while (bo->bo_numoutput > 0);
994	VI_UNLOCK(vp);
995
996	/*
997	 * Destroy the copy in the VM cache, too.
998	 */
999	if (VOP_GETVOBJECT(vp, &object) == 0) {
1000		VM_OBJECT_LOCK(object);
1001		vm_object_page_remove(object, 0, 0,
1002			(flags & V_SAVE) ? TRUE : FALSE);
1003		VM_OBJECT_UNLOCK(object);
1004	}
1005
1006#ifdef INVARIANTS
1007	VI_LOCK(vp);
1008	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1009	    (vp->v_bufobj.bo_dirty.bv_cnt > 0 ||
1010	     vp->v_bufobj.bo_clean.bv_cnt > 0))
1011		panic("vinvalbuf: flush failed");
1012	VI_UNLOCK(vp);
1013#endif
1014	return (0);
1015}
1016
1017/*
1018 * Flush out buffers on the specified list.
1019 *
1020 */
1021static int
1022flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp)
1023	struct buf *blist;
1024	int flags;
1025	struct vnode *vp;
1026	int slpflag, slptimeo;
1027	int *errorp;
1028{
1029	struct buf *bp, *nbp;
1030	int found, error;
1031
1032	ASSERT_VI_LOCKED(vp, "flushbuflist");
1033
1034	for (found = 0, bp = blist; bp; bp = nbp) {
1035		nbp = TAILQ_NEXT(bp, b_bobufs);
1036		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1037		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1038			continue;
1039		}
1040		found += 1;
1041		error = BUF_TIMELOCK(bp,
1042		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, VI_MTX(vp),
1043		    "flushbuf", slpflag, slptimeo);
1044		if (error) {
1045			if (error != ENOLCK)
1046				*errorp = error;
1047			goto done;
1048		}
1049		/*
1050		 * XXX Since there are no node locks for NFS, I
1051		 * believe there is a slight chance that a delayed
1052		 * write will occur while sleeping just above, so
1053		 * check for it.  Note that vfs_bio_awrite expects
1054		 * buffers to reside on a queue, while bwrite and
1055		 * brelse do not.
1056		 */
1057		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1058			(flags & V_SAVE)) {
1059
1060			if (bp->b_vp == vp) {
1061				if (bp->b_flags & B_CLUSTEROK) {
1062					vfs_bio_awrite(bp);
1063				} else {
1064					bremfree(bp);
1065					bp->b_flags |= B_ASYNC;
1066					bwrite(bp);
1067				}
1068			} else {
1069				bremfree(bp);
1070				(void) bwrite(bp);
1071			}
1072			goto done;
1073		}
1074		bremfree(bp);
1075		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1076		bp->b_flags &= ~B_ASYNC;
1077		brelse(bp);
1078		VI_LOCK(vp);
1079	}
1080	return (found);
1081done:
1082	VI_LOCK(vp);
1083	return (found);
1084}
1085
1086/*
1087 * Truncate a file's buffer and pages to a specified length.  This
1088 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1089 * sync activity.
1090 */
1091int
1092vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td, off_t length, int blksize)
1093{
1094	struct buf *bp, *nbp;
1095	int anyfreed;
1096	int trunclbn;
1097	struct bufobj *bo;
1098
1099	/*
1100	 * Round up to the *next* lbn.
1101	 */
1102	trunclbn = (length + blksize - 1) / blksize;
1103
1104	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1105restart:
1106	VI_LOCK(vp);
1107	bo = &vp->v_bufobj;
1108	anyfreed = 1;
1109	for (;anyfreed;) {
1110		anyfreed = 0;
1111		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1112			if (bp->b_lblkno < trunclbn)
1113				continue;
1114			if (BUF_LOCK(bp,
1115			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1116			    VI_MTX(vp)) == ENOLCK)
1117				goto restart;
1118
1119			bremfree(bp);
1120			bp->b_flags |= (B_INVAL | B_RELBUF);
1121			bp->b_flags &= ~B_ASYNC;
1122			brelse(bp);
1123			anyfreed = 1;
1124
1125			if (nbp != NULL &&
1126			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1127			    (nbp->b_vp != vp) ||
1128			    (nbp->b_flags & B_DELWRI))) {
1129				goto restart;
1130			}
1131			VI_LOCK(vp);
1132		}
1133
1134		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1135			if (bp->b_lblkno < trunclbn)
1136				continue;
1137			if (BUF_LOCK(bp,
1138			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1139			    VI_MTX(vp)) == ENOLCK)
1140				goto restart;
1141			bremfree(bp);
1142			bp->b_flags |= (B_INVAL | B_RELBUF);
1143			bp->b_flags &= ~B_ASYNC;
1144			brelse(bp);
1145			anyfreed = 1;
1146			if (nbp != NULL &&
1147			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1148			    (nbp->b_vp != vp) ||
1149			    (nbp->b_flags & B_DELWRI) == 0)) {
1150				goto restart;
1151			}
1152			VI_LOCK(vp);
1153		}
1154	}
1155
1156	if (length > 0) {
1157restartsync:
1158		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1159			if (bp->b_lblkno > 0)
1160				continue;
1161			/*
1162			 * Since we hold the vnode lock this should only
1163			 * fail if we're racing with the buf daemon.
1164			 */
1165			if (BUF_LOCK(bp,
1166			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1167			    VI_MTX(vp)) == ENOLCK) {
1168				goto restart;
1169			}
1170			KASSERT((bp->b_flags & B_DELWRI),
1171			    ("buf(%p) on dirty queue without DELWRI", bp));
1172
1173			bremfree(bp);
1174			bawrite(bp);
1175			VI_LOCK(vp);
1176			goto restartsync;
1177		}
1178	}
1179
1180	bufobj_wwait(bo, 0, 0);
1181	VI_UNLOCK(vp);
1182	vnode_pager_setsize(vp, length);
1183
1184	return (0);
1185}
1186
1187/*
1188 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1189 * 		 a vnode.
1190 *
1191 *	NOTE: We have to deal with the special case of a background bitmap
1192 *	buffer, a situation where two buffers will have the same logical
1193 *	block offset.  We want (1) only the foreground buffer to be accessed
1194 *	in a lookup and (2) must differentiate between the foreground and
1195 *	background buffer in the splay tree algorithm because the splay
1196 *	tree cannot normally handle multiple entities with the same 'index'.
1197 *	We accomplish this by adding differentiating flags to the splay tree's
1198 *	numerical domain.
1199 */
1200static
1201struct buf *
1202buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1203{
1204	struct buf dummy;
1205	struct buf *lefttreemax, *righttreemin, *y;
1206
1207	if (root == NULL)
1208		return (NULL);
1209	lefttreemax = righttreemin = &dummy;
1210	for (;;) {
1211		if (lblkno < root->b_lblkno ||
1212		    (lblkno == root->b_lblkno &&
1213		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1214			if ((y = root->b_left) == NULL)
1215				break;
1216			if (lblkno < y->b_lblkno) {
1217				/* Rotate right. */
1218				root->b_left = y->b_right;
1219				y->b_right = root;
1220				root = y;
1221				if ((y = root->b_left) == NULL)
1222					break;
1223			}
1224			/* Link into the new root's right tree. */
1225			righttreemin->b_left = root;
1226			righttreemin = root;
1227		} else if (lblkno > root->b_lblkno ||
1228		    (lblkno == root->b_lblkno &&
1229		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1230			if ((y = root->b_right) == NULL)
1231				break;
1232			if (lblkno > y->b_lblkno) {
1233				/* Rotate left. */
1234				root->b_right = y->b_left;
1235				y->b_left = root;
1236				root = y;
1237				if ((y = root->b_right) == NULL)
1238					break;
1239			}
1240			/* Link into the new root's left tree. */
1241			lefttreemax->b_right = root;
1242			lefttreemax = root;
1243		} else {
1244			break;
1245		}
1246		root = y;
1247	}
1248	/* Assemble the new root. */
1249	lefttreemax->b_right = root->b_left;
1250	righttreemin->b_left = root->b_right;
1251	root->b_left = dummy.b_right;
1252	root->b_right = dummy.b_left;
1253	return (root);
1254}
1255
1256static void
1257buf_vlist_remove(struct buf *bp)
1258{
1259	struct buf *root;
1260	struct bufv *bv;
1261
1262	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1263	ASSERT_BO_LOCKED(bp->b_bufobj);
1264	if (bp->b_xflags & BX_VNDIRTY)
1265		bv = &bp->b_bufobj->bo_dirty;
1266	else
1267		bv = &bp->b_bufobj->bo_clean;
1268	if (bp != bv->bv_root) {
1269		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1270		KASSERT(root == bp, ("splay lookup failed in remove"));
1271	}
1272	if (bp->b_left == NULL) {
1273		root = bp->b_right;
1274	} else {
1275		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1276		root->b_right = bp->b_right;
1277	}
1278	bv->bv_root = root;
1279	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1280	bv->bv_cnt--;
1281	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1282}
1283
1284/*
1285 * Add the buffer to the sorted clean or dirty block list using a
1286 * splay tree algorithm.
1287 *
1288 * NOTE: xflags is passed as a constant, optimizing this inline function!
1289 */
1290static void
1291buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1292{
1293	struct buf *root;
1294	struct bufv *bv;
1295
1296	ASSERT_BO_LOCKED(bo);
1297	bp->b_xflags |= xflags;
1298	if (xflags & BX_VNDIRTY)
1299		bv = &bo->bo_dirty;
1300	else
1301		bv = &bo->bo_clean;
1302
1303	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1304	if (root == NULL) {
1305		bp->b_left = NULL;
1306		bp->b_right = NULL;
1307		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1308	} else if (bp->b_lblkno < root->b_lblkno ||
1309	    (bp->b_lblkno == root->b_lblkno &&
1310	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1311		bp->b_left = root->b_left;
1312		bp->b_right = root;
1313		root->b_left = NULL;
1314		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1315	} else {
1316		bp->b_right = root->b_right;
1317		bp->b_left = root;
1318		root->b_right = NULL;
1319		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1320	}
1321	bv->bv_cnt++;
1322	bv->bv_root = bp;
1323}
1324
1325/*
1326 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1327 * shadow buffers used in background bitmap writes.
1328 *
1329 * This code isn't quite efficient as it could be because we are maintaining
1330 * two sorted lists and do not know which list the block resides in.
1331 *
1332 * During a "make buildworld" the desired buffer is found at one of
1333 * the roots more than 60% of the time.  Thus, checking both roots
1334 * before performing either splay eliminates unnecessary splays on the
1335 * first tree splayed.
1336 */
1337struct buf *
1338gbincore(struct bufobj *bo, daddr_t lblkno)
1339{
1340	struct buf *bp;
1341
1342	GIANT_REQUIRED;
1343
1344	ASSERT_BO_LOCKED(bo);
1345	if ((bp = bo->bo_clean.bv_root) != NULL &&
1346	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1347		return (bp);
1348	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1349	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1350		return (bp);
1351	if ((bp = bo->bo_clean.bv_root) != NULL) {
1352		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1353		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1354			return (bp);
1355	}
1356	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1357		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1358		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1359			return (bp);
1360	}
1361	return (NULL);
1362}
1363
1364/*
1365 * Associate a buffer with a vnode.
1366 */
1367void
1368bgetvp(struct vnode *vp, struct buf *bp)
1369{
1370
1371	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1372
1373	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1374	    ("bgetvp: bp already attached! %p", bp));
1375
1376	ASSERT_VI_LOCKED(vp, "bgetvp");
1377	vholdl(vp);
1378	bp->b_vp = vp;
1379	bp->b_bufobj = &vp->v_bufobj;
1380	bp->b_dev = vn_todev(vp);
1381	/*
1382	 * Insert onto list for new vnode.
1383	 */
1384	buf_vlist_add(bp, &vp->v_bufobj, BX_VNCLEAN);
1385}
1386
1387/*
1388 * Disassociate a buffer from a vnode.
1389 */
1390void
1391brelvp(struct buf *bp)
1392{
1393	struct bufobj *bo;
1394	struct vnode *vp;
1395
1396	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1397
1398	/*
1399	 * Delete from old vnode list, if on one.
1400	 */
1401	vp = bp->b_vp;		/* XXX */
1402	bo = bp->b_bufobj;
1403	BO_LOCK(bo);
1404	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1405		buf_vlist_remove(bp);
1406	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1407		bo->bo_flag &= ~BO_ONWORKLST;
1408		mtx_lock(&sync_mtx);
1409		LIST_REMOVE(bo, bo_synclist);
1410 		syncer_worklist_len--;
1411		mtx_unlock(&sync_mtx);
1412	}
1413	vdropl(vp);
1414	bp->b_vp = NULL;
1415	bp->b_bufobj = NULL;
1416	BO_UNLOCK(bo);
1417}
1418
1419/*
1420 * Add an item to the syncer work queue.
1421 */
1422static void
1423vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1424{
1425	int slot;
1426
1427	ASSERT_BO_LOCKED(bo);
1428
1429	mtx_lock(&sync_mtx);
1430	if (bo->bo_flag & BO_ONWORKLST)
1431		LIST_REMOVE(bo, bo_synclist);
1432	else {
1433		bo->bo_flag |= BO_ONWORKLST;
1434 		syncer_worklist_len++;
1435	}
1436
1437	if (delay > syncer_maxdelay - 2)
1438		delay = syncer_maxdelay - 2;
1439	slot = (syncer_delayno + delay) & syncer_mask;
1440
1441	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1442	mtx_unlock(&sync_mtx);
1443}
1444
1445static int
1446sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1447{
1448	int error, len;
1449
1450	mtx_lock(&sync_mtx);
1451	len = syncer_worklist_len - sync_vnode_count;
1452	mtx_unlock(&sync_mtx);
1453	error = SYSCTL_OUT(req, &len, sizeof(len));
1454	return (error);
1455}
1456
1457SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1458    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1459
1460struct  proc *updateproc;
1461static void sched_sync(void);
1462static struct kproc_desc up_kp = {
1463	"syncer",
1464	sched_sync,
1465	&updateproc
1466};
1467SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1468
1469/*
1470 * System filesystem synchronizer daemon.
1471 */
1472static void
1473sched_sync(void)
1474{
1475	struct synclist *next;
1476	struct synclist *slp;
1477	struct vnode *vp;
1478	struct bufobj *bo;
1479	struct mount *mp;
1480	long starttime;
1481	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);
1482	static int dummychan;
1483	int last_work_seen;
1484	int net_worklist_len;
1485	int syncer_final_iter;
1486	int first_printf;
1487
1488	mtx_lock(&Giant);
1489	last_work_seen = 0;
1490	syncer_final_iter = 0;
1491	first_printf = 1;
1492	syncer_state = SYNCER_RUNNING;
1493	starttime = time_second;
1494
1495	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1496	    SHUTDOWN_PRI_LAST);
1497
1498	for (;;) {
1499		mtx_lock(&sync_mtx);
1500		if (syncer_state == SYNCER_FINAL_DELAY &&
1501		    syncer_final_iter == 0) {
1502			mtx_unlock(&sync_mtx);
1503			kthread_suspend_check(td->td_proc);
1504			mtx_lock(&sync_mtx);
1505		}
1506		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1507		if (syncer_state != SYNCER_RUNNING &&
1508		    starttime != time_second) {
1509			if (first_printf) {
1510				printf("\nSyncing disks, vnodes remaining...");
1511				first_printf = 0;
1512			}
1513			printf("%d ", net_worklist_len);
1514		}
1515		starttime = time_second;
1516
1517		/*
1518		 * Push files whose dirty time has expired.  Be careful
1519		 * of interrupt race on slp queue.
1520		 *
1521		 * Skip over empty worklist slots when shutting down.
1522		 */
1523		do {
1524			slp = &syncer_workitem_pending[syncer_delayno];
1525			syncer_delayno += 1;
1526			if (syncer_delayno == syncer_maxdelay)
1527				syncer_delayno = 0;
1528			next = &syncer_workitem_pending[syncer_delayno];
1529			/*
1530			 * If the worklist has wrapped since the
1531			 * it was emptied of all but syncer vnodes,
1532			 * switch to the FINAL_DELAY state and run
1533			 * for one more second.
1534			 */
1535			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1536			    net_worklist_len == 0 &&
1537			    last_work_seen == syncer_delayno) {
1538				syncer_state = SYNCER_FINAL_DELAY;
1539				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1540			}
1541		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1542		    syncer_worklist_len > 0);
1543
1544		/*
1545		 * Keep track of the last time there was anything
1546		 * on the worklist other than syncer vnodes.
1547		 * Return to the SHUTTING_DOWN state if any
1548		 * new work appears.
1549		 */
1550		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1551			last_work_seen = syncer_delayno;
1552		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1553			syncer_state = SYNCER_SHUTTING_DOWN;
1554		while ((bo = LIST_FIRST(slp)) != NULL) {
1555			vp = bo->bo_private; 	/* XXX */
1556			if (VOP_ISLOCKED(vp, NULL) != 0 ||
1557			    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1558				LIST_REMOVE(bo, bo_synclist);
1559				LIST_INSERT_HEAD(next, bo, bo_synclist);
1560				continue;
1561			}
1562			if (VI_TRYLOCK(vp) == 0) {
1563				LIST_REMOVE(bo, bo_synclist);
1564				LIST_INSERT_HEAD(next, bo, bo_synclist);
1565				vn_finished_write(mp);
1566				continue;
1567			}
1568			/*
1569			 * We use vhold in case the vnode does not
1570			 * successfully sync.  vhold prevents the vnode from
1571			 * going away when we unlock the sync_mtx so that
1572			 * we can acquire the vnode interlock.
1573			 */
1574			vholdl(vp);
1575			mtx_unlock(&sync_mtx);
1576			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, td);
1577			(void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td);
1578			VOP_UNLOCK(vp, 0, td);
1579			vn_finished_write(mp);
1580			VI_LOCK(vp);
1581			if ((bo->bo_flag & BO_ONWORKLST) != 0) {
1582				/*
1583				 * Put us back on the worklist.  The worklist
1584				 * routine will remove us from our current
1585				 * position and then add us back in at a later
1586				 * position.
1587				 */
1588				vn_syncer_add_to_worklist(bo, syncdelay);
1589			}
1590			vdropl(vp);
1591			VI_UNLOCK(vp);
1592			mtx_lock(&sync_mtx);
1593		}
1594		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1595			syncer_final_iter--;
1596		mtx_unlock(&sync_mtx);
1597
1598		/*
1599		 * Do soft update processing.
1600		 */
1601		if (softdep_process_worklist_hook != NULL)
1602			(*softdep_process_worklist_hook)(NULL);
1603
1604		/*
1605		 * The variable rushjob allows the kernel to speed up the
1606		 * processing of the filesystem syncer process. A rushjob
1607		 * value of N tells the filesystem syncer to process the next
1608		 * N seconds worth of work on its queue ASAP. Currently rushjob
1609		 * is used by the soft update code to speed up the filesystem
1610		 * syncer process when the incore state is getting so far
1611		 * ahead of the disk that the kernel memory pool is being
1612		 * threatened with exhaustion.
1613		 */
1614		mtx_lock(&sync_mtx);
1615		if (rushjob > 0) {
1616			rushjob -= 1;
1617			mtx_unlock(&sync_mtx);
1618			continue;
1619		}
1620		mtx_unlock(&sync_mtx);
1621		/*
1622		 * Just sleep for a short period if time between
1623		 * iterations when shutting down to allow some I/O
1624		 * to happen.
1625		 *
1626		 * If it has taken us less than a second to process the
1627		 * current work, then wait. Otherwise start right over
1628		 * again. We can still lose time if any single round
1629		 * takes more than two seconds, but it does not really
1630		 * matter as we are just trying to generally pace the
1631		 * filesystem activity.
1632		 */
1633		if (syncer_state != SYNCER_RUNNING)
1634			tsleep(&dummychan, PPAUSE, "syncfnl",
1635			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1636		else if (time_second == starttime)
1637			tsleep(&lbolt, PPAUSE, "syncer", 0);
1638	}
1639}
1640
1641/*
1642 * Request the syncer daemon to speed up its work.
1643 * We never push it to speed up more than half of its
1644 * normal turn time, otherwise it could take over the cpu.
1645 */
1646int
1647speedup_syncer()
1648{
1649	struct thread *td;
1650	int ret = 0;
1651
1652	td = FIRST_THREAD_IN_PROC(updateproc);
1653	sleepq_remove(td, &lbolt);
1654	mtx_lock(&sync_mtx);
1655	if (rushjob < syncdelay / 2) {
1656		rushjob += 1;
1657		stat_rush_requests += 1;
1658		ret = 1;
1659	}
1660	mtx_unlock(&sync_mtx);
1661	return (ret);
1662}
1663
1664/*
1665 * Tell the syncer to speed up its work and run though its work
1666 * list several times, then tell it to shut down.
1667 */
1668static void
1669syncer_shutdown(void *arg, int howto)
1670{
1671	struct thread *td;
1672
1673	if (howto & RB_NOSYNC)
1674		return;
1675	td = FIRST_THREAD_IN_PROC(updateproc);
1676	sleepq_remove(td, &lbolt);
1677	mtx_lock(&sync_mtx);
1678	syncer_state = SYNCER_SHUTTING_DOWN;
1679	rushjob = 0;
1680	mtx_unlock(&sync_mtx);
1681	kproc_shutdown(arg, howto);
1682}
1683
1684/*
1685 * Associate a p-buffer with a vnode.
1686 *
1687 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1688 * with the buffer.  i.e. the bp has not been linked into the vnode or
1689 * ref-counted.
1690 */
1691void
1692pbgetvp(vp, bp)
1693	register struct vnode *vp;
1694	register struct buf *bp;
1695{
1696
1697	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1698
1699	bp->b_vp = vp;
1700	bp->b_flags |= B_PAGING;
1701	bp->b_dev = vn_todev(vp);
1702	bp->b_bufobj = &vp->v_bufobj;
1703}
1704
1705/*
1706 * Disassociate a p-buffer from a vnode.
1707 */
1708void
1709pbrelvp(bp)
1710	register struct buf *bp;
1711{
1712
1713	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1714	KASSERT(bp->b_bufobj != NULL, ("pbrelvp: NULL bufobj"));
1715
1716	/* XXX REMOVE ME */
1717	BO_LOCK(bp->b_bufobj);
1718	if (TAILQ_NEXT(bp, b_bobufs) != NULL) {
1719		panic(
1720		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1721		    bp,
1722		    (int)bp->b_flags
1723		);
1724	}
1725	BO_UNLOCK(bp->b_bufobj);
1726	bp->b_vp = NULL;
1727	bp->b_bufobj = NULL;
1728	bp->b_flags &= ~B_PAGING;
1729}
1730
1731/*
1732 * Reassign a buffer from one vnode to another.
1733 * Used to assign file specific control information
1734 * (indirect blocks) to the vnode to which they belong.
1735 */
1736void
1737reassignbuf(struct buf *bp)
1738{
1739	struct vnode *vp;
1740	struct bufobj *bo;
1741	int delay;
1742
1743	vp = bp->b_vp;
1744	bo = bp->b_bufobj;
1745	++reassignbufcalls;
1746
1747	/*
1748	 * B_PAGING flagged buffers cannot be reassigned because their vp
1749	 * is not fully linked in.
1750	 */
1751	if (bp->b_flags & B_PAGING)
1752		panic("cannot reassign paging buffer");
1753
1754	/*
1755	 * Delete from old vnode list, if on one.
1756	 */
1757	VI_LOCK(vp);
1758	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1759		buf_vlist_remove(bp);
1760	/*
1761	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1762	 * of clean buffers.
1763	 */
1764	if (bp->b_flags & B_DELWRI) {
1765		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1766			switch (vp->v_type) {
1767			case VDIR:
1768				delay = dirdelay;
1769				break;
1770			case VCHR:
1771				delay = metadelay;
1772				break;
1773			default:
1774				delay = filedelay;
1775			}
1776			vn_syncer_add_to_worklist(bo, delay);
1777		}
1778		buf_vlist_add(bp, bo, BX_VNDIRTY);
1779	} else {
1780		buf_vlist_add(bp, bo, BX_VNCLEAN);
1781
1782		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1783			mtx_lock(&sync_mtx);
1784			LIST_REMOVE(bo, bo_synclist);
1785 			syncer_worklist_len--;
1786			mtx_unlock(&sync_mtx);
1787			bo->bo_flag &= ~BO_ONWORKLST;
1788		}
1789	}
1790	VI_UNLOCK(vp);
1791}
1792
1793/*
1794 * Create a vnode for a device.
1795 * Used for mounting the root filesystem.
1796 */
1797int
1798bdevvp(dev, vpp)
1799	struct cdev *dev;
1800	struct vnode **vpp;
1801{
1802	register struct vnode *vp;
1803	struct vnode *nvp;
1804	int error;
1805
1806	if (dev == NULL) {
1807		*vpp = NULLVP;
1808		return (ENXIO);
1809	}
1810	if (vfinddev(dev, vpp))
1811		return (0);
1812
1813	error = getnewvnode("none", (struct mount *)0, devfs_specop_p, &nvp);
1814	if (error) {
1815		*vpp = NULLVP;
1816		return (error);
1817	}
1818	vp = nvp;
1819	vp->v_type = VCHR;
1820	vp->v_bufobj.bo_bsize = DEV_BSIZE;
1821	addalias(vp, dev);
1822	*vpp = vp;
1823	return (0);
1824}
1825
1826static void
1827v_incr_usecount(struct vnode *vp, int delta)
1828{
1829
1830	vp->v_usecount += delta;
1831	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1832		dev_lock();
1833		vp->v_rdev->si_usecount += delta;
1834		dev_unlock();
1835	}
1836}
1837
1838/*
1839 * Add vnode to the alias list hung off the struct cdev *.
1840 *
1841 * The reason for this gunk is that multiple vnodes can reference
1842 * the same physical device, so checking vp->v_usecount to see
1843 * how many users there are is inadequate; the v_usecount for
1844 * the vnodes need to be accumulated.  vcount() does that.
1845 */
1846struct vnode *
1847addaliasu(nvp, nvp_rdev)
1848	struct vnode *nvp;
1849	dev_t nvp_rdev;
1850{
1851	struct vnode *ovp;
1852	vop_t **ops;
1853	struct cdev *dev;
1854
1855	if (nvp->v_type == VBLK)
1856		return (nvp);
1857	if (nvp->v_type != VCHR)
1858		panic("addaliasu on non-special vnode");
1859	dev = findcdev(nvp_rdev);
1860	if (dev == NULL)
1861		return (nvp);
1862	/*
1863	 * Check to see if we have a bdevvp vnode with no associated
1864	 * filesystem. If so, we want to associate the filesystem of
1865	 * the new newly instigated vnode with the bdevvp vnode and
1866	 * discard the newly created vnode rather than leaving the
1867	 * bdevvp vnode lying around with no associated filesystem.
1868	 */
1869	if (vfinddev(dev, &ovp) == 0 || ovp->v_data != NULL) {
1870		addalias(nvp, dev);
1871		return (nvp);
1872	}
1873	/*
1874	 * Discard unneeded vnode, but save its node specific data.
1875	 * Note that if there is a lock, it is carried over in the
1876	 * node specific data to the replacement vnode.
1877	 */
1878	vref(ovp);
1879	ovp->v_data = nvp->v_data;
1880	ovp->v_tag = nvp->v_tag;
1881	nvp->v_data = NULL;
1882	lockdestroy(ovp->v_vnlock);
1883	lockinit(ovp->v_vnlock, PVFS, nvp->v_vnlock->lk_wmesg,
1884	    nvp->v_vnlock->lk_timo, nvp->v_vnlock->lk_flags & LK_EXTFLG_MASK);
1885	ops = ovp->v_op;
1886	ovp->v_op = nvp->v_op;
1887	if (VOP_ISLOCKED(nvp, curthread)) {
1888		VOP_UNLOCK(nvp, 0, curthread);
1889		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
1890	}
1891	nvp->v_op = ops;
1892	delmntque(ovp);
1893	insmntque(ovp, nvp->v_mount);
1894	vrele(nvp);
1895	vgone(nvp);
1896	return (ovp);
1897}
1898
1899/* This is a local helper function that do the same as addaliasu, but for a
1900 * struct cdev *instead of an dev_t. */
1901static void
1902addalias(nvp, dev)
1903	struct vnode *nvp;
1904	struct cdev *dev;
1905{
1906
1907	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
1908	VI_LOCK(nvp);
1909	dev_lock();
1910	dev->si_refcount++;
1911	nvp->v_rdev = dev;
1912	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1913	dev->si_usecount += nvp->v_usecount;
1914	dev_unlock();
1915	VI_UNLOCK(nvp);
1916}
1917
1918/*
1919 * Grab a particular vnode from the free list, increment its
1920 * reference count and lock it. The vnode lock bit is set if the
1921 * vnode is being eliminated in vgone. The process is awakened
1922 * when the transition is completed, and an error returned to
1923 * indicate that the vnode is no longer usable (possibly having
1924 * been changed to a new filesystem type).
1925 */
1926int
1927vget(vp, flags, td)
1928	register struct vnode *vp;
1929	int flags;
1930	struct thread *td;
1931{
1932	int error;
1933
1934	/*
1935	 * If the vnode is in the process of being cleaned out for
1936	 * another use, we wait for the cleaning to finish and then
1937	 * return failure. Cleaning is determined by checking that
1938	 * the VI_XLOCK flag is set.
1939	 */
1940	if ((flags & LK_INTERLOCK) == 0)
1941		VI_LOCK(vp);
1942	if (vp->v_iflag & VI_XLOCK && vp->v_vxthread != curthread) {
1943		if ((flags & LK_NOWAIT) == 0) {
1944			vp->v_iflag |= VI_XWANT;
1945			msleep(vp, VI_MTX(vp), PINOD | PDROP, "vget", 0);
1946			return (ENOENT);
1947		}
1948		VI_UNLOCK(vp);
1949		return (EBUSY);
1950	}
1951
1952	v_incr_usecount(vp, 1);
1953
1954	if (VSHOULDBUSY(vp))
1955		vbusy(vp);
1956	if (flags & LK_TYPE_MASK) {
1957		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1958			/*
1959			 * must expand vrele here because we do not want
1960			 * to call VOP_INACTIVE if the reference count
1961			 * drops back to zero since it was never really
1962			 * active. We must remove it from the free list
1963			 * before sleeping so that multiple processes do
1964			 * not try to recycle it.
1965			 */
1966			VI_LOCK(vp);
1967			v_incr_usecount(vp, -1);
1968			if (VSHOULDFREE(vp))
1969				vfree(vp);
1970			else
1971				vlruvp(vp);
1972			VI_UNLOCK(vp);
1973		}
1974		return (error);
1975	}
1976	VI_UNLOCK(vp);
1977	return (0);
1978}
1979
1980/*
1981 * Increase the reference count of a vnode.
1982 */
1983void
1984vref(struct vnode *vp)
1985{
1986
1987	VI_LOCK(vp);
1988	v_incr_usecount(vp, 1);
1989	VI_UNLOCK(vp);
1990}
1991
1992/*
1993 * Return reference count of a vnode.
1994 *
1995 * The results of this call are only guaranteed when some mechanism other
1996 * than the VI lock is used to stop other processes from gaining references
1997 * to the vnode.  This may be the case if the caller holds the only reference.
1998 * This is also useful when stale data is acceptable as race conditions may
1999 * be accounted for by some other means.
2000 */
2001int
2002vrefcnt(struct vnode *vp)
2003{
2004	int usecnt;
2005
2006	VI_LOCK(vp);
2007	usecnt = vp->v_usecount;
2008	VI_UNLOCK(vp);
2009
2010	return (usecnt);
2011}
2012
2013
2014/*
2015 * Vnode put/release.
2016 * If count drops to zero, call inactive routine and return to freelist.
2017 */
2018void
2019vrele(vp)
2020	struct vnode *vp;
2021{
2022	struct thread *td = curthread;	/* XXX */
2023
2024	GIANT_REQUIRED;
2025
2026	KASSERT(vp != NULL, ("vrele: null vp"));
2027
2028	VI_LOCK(vp);
2029
2030	/* Skip this v_writecount check if we're going to panic below. */
2031	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2032	    ("vrele: missed vn_close"));
2033
2034	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2035	    vp->v_usecount == 1)) {
2036		v_incr_usecount(vp, -1);
2037		VI_UNLOCK(vp);
2038
2039		return;
2040	}
2041
2042	if (vp->v_usecount == 1) {
2043		v_incr_usecount(vp, -1);
2044		/*
2045		 * We must call VOP_INACTIVE with the node locked. Mark
2046		 * as VI_DOINGINACT to avoid recursion.
2047		 */
2048		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
2049			VI_LOCK(vp);
2050			vp->v_iflag |= VI_DOINGINACT;
2051			VI_UNLOCK(vp);
2052			VOP_INACTIVE(vp, td);
2053			VI_LOCK(vp);
2054			KASSERT(vp->v_iflag & VI_DOINGINACT,
2055			    ("vrele: lost VI_DOINGINACT"));
2056			vp->v_iflag &= ~VI_DOINGINACT;
2057		} else
2058			VI_LOCK(vp);
2059		if (VSHOULDFREE(vp))
2060			vfree(vp);
2061		else
2062			vlruvp(vp);
2063		VI_UNLOCK(vp);
2064
2065	} else {
2066#ifdef DIAGNOSTIC
2067		vprint("vrele: negative ref count", vp);
2068#endif
2069		VI_UNLOCK(vp);
2070		panic("vrele: negative ref cnt");
2071	}
2072}
2073
2074/*
2075 * Release an already locked vnode.  This give the same effects as
2076 * unlock+vrele(), but takes less time and avoids releasing and
2077 * re-aquiring the lock (as vrele() aquires the lock internally.)
2078 */
2079void
2080vput(vp)
2081	struct vnode *vp;
2082{
2083	struct thread *td = curthread;	/* XXX */
2084
2085	GIANT_REQUIRED;
2086
2087	KASSERT(vp != NULL, ("vput: null vp"));
2088	VI_LOCK(vp);
2089	/* Skip this v_writecount check if we're going to panic below. */
2090	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2091	    ("vput: missed vn_close"));
2092
2093	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2094	    vp->v_usecount == 1)) {
2095		v_incr_usecount(vp, -1);
2096		VOP_UNLOCK(vp, LK_INTERLOCK, td);
2097		return;
2098	}
2099
2100	if (vp->v_usecount == 1) {
2101		v_incr_usecount(vp, -1);
2102		/*
2103		 * We must call VOP_INACTIVE with the node locked, so
2104		 * we just need to release the vnode mutex. Mark as
2105		 * as VI_DOINGINACT to avoid recursion.
2106		 */
2107		vp->v_iflag |= VI_DOINGINACT;
2108		VI_UNLOCK(vp);
2109		VOP_INACTIVE(vp, td);
2110		VI_LOCK(vp);
2111		KASSERT(vp->v_iflag & VI_DOINGINACT,
2112		    ("vput: lost VI_DOINGINACT"));
2113		vp->v_iflag &= ~VI_DOINGINACT;
2114		if (VSHOULDFREE(vp))
2115			vfree(vp);
2116		else
2117			vlruvp(vp);
2118		VI_UNLOCK(vp);
2119
2120	} else {
2121#ifdef DIAGNOSTIC
2122		vprint("vput: negative ref count", vp);
2123#endif
2124		panic("vput: negative ref cnt");
2125	}
2126}
2127
2128/*
2129 * Somebody doesn't want the vnode recycled.
2130 */
2131void
2132vhold(struct vnode *vp)
2133{
2134
2135	VI_LOCK(vp);
2136	vholdl(vp);
2137	VI_UNLOCK(vp);
2138}
2139
2140void
2141vholdl(struct vnode *vp)
2142{
2143
2144	vp->v_holdcnt++;
2145	if (VSHOULDBUSY(vp))
2146		vbusy(vp);
2147}
2148
2149/*
2150 * Note that there is one less who cares about this vnode.  vdrop() is the
2151 * opposite of vhold().
2152 */
2153void
2154vdrop(struct vnode *vp)
2155{
2156
2157	VI_LOCK(vp);
2158	vdropl(vp);
2159	VI_UNLOCK(vp);
2160}
2161
2162void
2163vdropl(vp)
2164	register struct vnode *vp;
2165{
2166
2167	if (vp->v_holdcnt <= 0)
2168		panic("vdrop: holdcnt");
2169	vp->v_holdcnt--;
2170	if (VSHOULDFREE(vp))
2171		vfree(vp);
2172	else
2173		vlruvp(vp);
2174}
2175
2176/*
2177 * Remove any vnodes in the vnode table belonging to mount point mp.
2178 *
2179 * If FORCECLOSE is not specified, there should not be any active ones,
2180 * return error if any are found (nb: this is a user error, not a
2181 * system error). If FORCECLOSE is specified, detach any active vnodes
2182 * that are found.
2183 *
2184 * If WRITECLOSE is set, only flush out regular file vnodes open for
2185 * writing.
2186 *
2187 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2188 *
2189 * `rootrefs' specifies the base reference count for the root vnode
2190 * of this filesystem. The root vnode is considered busy if its
2191 * v_usecount exceeds this value. On a successful return, vflush(, td)
2192 * will call vrele() on the root vnode exactly rootrefs times.
2193 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2194 * be zero.
2195 */
2196#ifdef DIAGNOSTIC
2197static int busyprt = 0;		/* print out busy vnodes */
2198SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2199#endif
2200
2201int
2202vflush(mp, rootrefs, flags, td)
2203	struct mount *mp;
2204	int rootrefs;
2205	int flags;
2206	struct thread *td;
2207{
2208	struct vnode *vp, *nvp, *rootvp = NULL;
2209	struct vattr vattr;
2210	int busy = 0, error;
2211
2212	if (rootrefs > 0) {
2213		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2214		    ("vflush: bad args"));
2215		/*
2216		 * Get the filesystem root vnode. We can vput() it
2217		 * immediately, since with rootrefs > 0, it won't go away.
2218		 */
2219		if ((error = VFS_ROOT(mp, &rootvp, td)) != 0)
2220			return (error);
2221		vput(rootvp);
2222
2223	}
2224	MNT_ILOCK(mp);
2225loop:
2226	MNT_VNODE_FOREACH(vp, mp, nvp) {
2227
2228		VI_LOCK(vp);
2229		MNT_IUNLOCK(mp);
2230		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td);
2231		if (error) {
2232			MNT_ILOCK(mp);
2233			goto loop;
2234		}
2235		/*
2236		 * Skip over a vnodes marked VV_SYSTEM.
2237		 */
2238		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2239			VOP_UNLOCK(vp, 0, td);
2240			MNT_ILOCK(mp);
2241			continue;
2242		}
2243		/*
2244		 * If WRITECLOSE is set, flush out unlinked but still open
2245		 * files (even if open only for reading) and regular file
2246		 * vnodes open for writing.
2247		 */
2248		if (flags & WRITECLOSE) {
2249			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2250			VI_LOCK(vp);
2251
2252			if ((vp->v_type == VNON ||
2253			    (error == 0 && vattr.va_nlink > 0)) &&
2254			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2255				VOP_UNLOCK(vp, LK_INTERLOCK, td);
2256				MNT_ILOCK(mp);
2257				continue;
2258			}
2259		} else
2260			VI_LOCK(vp);
2261
2262		VOP_UNLOCK(vp, 0, td);
2263
2264		/*
2265		 * With v_usecount == 0, all we need to do is clear out the
2266		 * vnode data structures and we are done.
2267		 */
2268		if (vp->v_usecount == 0) {
2269			vgonel(vp, td);
2270			MNT_ILOCK(mp);
2271			continue;
2272		}
2273
2274		/*
2275		 * If FORCECLOSE is set, forcibly close the vnode. For block
2276		 * or character devices, revert to an anonymous device. For
2277		 * all other files, just kill them.
2278		 */
2279		if (flags & FORCECLOSE) {
2280			if (vp->v_type != VCHR)
2281				vgonel(vp, td);
2282			else
2283				vgonechrl(vp, td);
2284			MNT_ILOCK(mp);
2285			continue;
2286		}
2287#ifdef DIAGNOSTIC
2288		if (busyprt)
2289			vprint("vflush: busy vnode", vp);
2290#endif
2291		VI_UNLOCK(vp);
2292		MNT_ILOCK(mp);
2293		busy++;
2294	}
2295	MNT_IUNLOCK(mp);
2296	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2297		/*
2298		 * If just the root vnode is busy, and if its refcount
2299		 * is equal to `rootrefs', then go ahead and kill it.
2300		 */
2301		VI_LOCK(rootvp);
2302		KASSERT(busy > 0, ("vflush: not busy"));
2303		KASSERT(rootvp->v_usecount >= rootrefs,
2304		    ("vflush: usecount %d < rootrefs %d",
2305		     rootvp->v_usecount, rootrefs));
2306		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2307			vgonel(rootvp, td);
2308			busy = 0;
2309		} else
2310			VI_UNLOCK(rootvp);
2311	}
2312	if (busy)
2313		return (EBUSY);
2314	for (; rootrefs > 0; rootrefs--)
2315		vrele(rootvp);
2316	return (0);
2317}
2318
2319/*
2320 * This moves a now (likely recyclable) vnode to the end of the
2321 * mountlist.  XXX However, it is temporarily disabled until we
2322 * can clean up ffs_sync() and friends, which have loop restart
2323 * conditions which this code causes to operate O(N^2).
2324 */
2325static void
2326vlruvp(struct vnode *vp)
2327{
2328#if 0
2329	struct mount *mp;
2330
2331	if ((mp = vp->v_mount) != NULL) {
2332		MNT_ILOCK(mp);
2333		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2334		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2335		MNT_IUNLOCK(mp);
2336	}
2337#endif
2338}
2339
2340static void
2341vx_lock(struct vnode *vp)
2342{
2343
2344	ASSERT_VI_LOCKED(vp, "vx_lock");
2345
2346	/*
2347	 * Prevent the vnode from being recycled or brought into use while we
2348	 * clean it out.
2349	 */
2350	if (vp->v_iflag & VI_XLOCK)
2351		panic("vclean: deadlock");
2352	vp->v_iflag |= VI_XLOCK;
2353	vp->v_vxthread = curthread;
2354}
2355
2356static void
2357vx_unlock(struct vnode *vp)
2358{
2359	ASSERT_VI_LOCKED(vp, "vx_unlock");
2360	vp->v_iflag &= ~VI_XLOCK;
2361	vp->v_vxthread = NULL;
2362	if (vp->v_iflag & VI_XWANT) {
2363		vp->v_iflag &= ~VI_XWANT;
2364		wakeup(vp);
2365	}
2366}
2367
2368/*
2369 * Disassociate the underlying filesystem from a vnode.
2370 */
2371static void
2372vclean(vp, flags, td)
2373	struct vnode *vp;
2374	int flags;
2375	struct thread *td;
2376{
2377	int active;
2378
2379	ASSERT_VI_LOCKED(vp, "vclean");
2380	/*
2381	 * Check to see if the vnode is in use. If so we have to reference it
2382	 * before we clean it out so that its count cannot fall to zero and
2383	 * generate a race against ourselves to recycle it.
2384	 */
2385	if ((active = vp->v_usecount))
2386		v_incr_usecount(vp, 1);
2387
2388	/*
2389	 * Even if the count is zero, the VOP_INACTIVE routine may still
2390	 * have the object locked while it cleans it out. The VOP_LOCK
2391	 * ensures that the VOP_INACTIVE routine is done with its work.
2392	 * For active vnodes, it ensures that no other activity can
2393	 * occur while the underlying object is being cleaned out.
2394	 */
2395	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2396
2397	/*
2398	 * Clean out any buffers associated with the vnode.
2399	 * If the flush fails, just toss the buffers.
2400	 */
2401	if (flags & DOCLOSE) {
2402		struct buf *bp;
2403		bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
2404		if (bp != NULL)
2405			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2406		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2407			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2408	}
2409
2410	VOP_DESTROYVOBJECT(vp);
2411
2412	/*
2413	 * Any other processes trying to obtain this lock must first
2414	 * wait for VXLOCK to clear, then call the new lock operation.
2415	 */
2416	VOP_UNLOCK(vp, 0, td);
2417
2418	/*
2419	 * If purging an active vnode, it must be closed and
2420	 * deactivated before being reclaimed. Note that the
2421	 * VOP_INACTIVE will unlock the vnode.
2422	 */
2423	if (active) {
2424		if (flags & DOCLOSE)
2425			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2426		VI_LOCK(vp);
2427		if ((vp->v_iflag & VI_DOINGINACT) == 0) {
2428			vp->v_iflag |= VI_DOINGINACT;
2429			VI_UNLOCK(vp);
2430			if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2431				panic("vclean: cannot relock.");
2432			VOP_INACTIVE(vp, td);
2433			VI_LOCK(vp);
2434			KASSERT(vp->v_iflag & VI_DOINGINACT,
2435			    ("vclean: lost VI_DOINGINACT"));
2436			vp->v_iflag &= ~VI_DOINGINACT;
2437		}
2438		VI_UNLOCK(vp);
2439	}
2440	/*
2441	 * Reclaim the vnode.
2442	 */
2443	if (VOP_RECLAIM(vp, td))
2444		panic("vclean: cannot reclaim");
2445
2446	if (active) {
2447		/*
2448		 * Inline copy of vrele() since VOP_INACTIVE
2449		 * has already been called.
2450		 */
2451		VI_LOCK(vp);
2452		v_incr_usecount(vp, -1);
2453		if (vp->v_usecount <= 0) {
2454#ifdef INVARIANTS
2455			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2456				vprint("vclean: bad ref count", vp);
2457				panic("vclean: ref cnt");
2458			}
2459#endif
2460			if (VSHOULDFREE(vp))
2461				vfree(vp);
2462		}
2463		VI_UNLOCK(vp);
2464	}
2465	/*
2466	 * Delete from old mount point vnode list.
2467	 */
2468	delmntque(vp);
2469	cache_purge(vp);
2470	VI_LOCK(vp);
2471	if (VSHOULDFREE(vp))
2472		vfree(vp);
2473
2474	/*
2475	 * Done with purge, reset to the standard lock and
2476	 * notify sleepers of the grim news.
2477	 */
2478	vp->v_vnlock = &vp->v_lock;
2479	vp->v_op = dead_vnodeop_p;
2480	if (vp->v_pollinfo != NULL)
2481		vn_pollgone(vp);
2482	vp->v_tag = "none";
2483}
2484
2485/*
2486 * Eliminate all activity associated with the requested vnode
2487 * and with all vnodes aliased to the requested vnode.
2488 */
2489int
2490vop_revoke(ap)
2491	struct vop_revoke_args /* {
2492		struct vnode *a_vp;
2493		int a_flags;
2494	} */ *ap;
2495{
2496	struct vnode *vp, *vq;
2497	struct cdev *dev;
2498
2499	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2500	vp = ap->a_vp;
2501	KASSERT((vp->v_type == VCHR), ("vop_revoke: not VCHR"));
2502
2503	VI_LOCK(vp);
2504	/*
2505	 * If a vgone (or vclean) is already in progress,
2506	 * wait until it is done and return.
2507	 */
2508	if (vp->v_iflag & VI_XLOCK) {
2509		vp->v_iflag |= VI_XWANT;
2510		msleep(vp, VI_MTX(vp), PINOD | PDROP,
2511		    "vop_revokeall", 0);
2512		return (0);
2513	}
2514	VI_UNLOCK(vp);
2515	dev = vp->v_rdev;
2516	for (;;) {
2517		dev_lock();
2518		vq = SLIST_FIRST(&dev->si_hlist);
2519		dev_unlock();
2520		if (vq == NULL)
2521			break;
2522		vgone(vq);
2523	}
2524	return (0);
2525}
2526
2527/*
2528 * Recycle an unused vnode to the front of the free list.
2529 * Release the passed interlock if the vnode will be recycled.
2530 */
2531int
2532vrecycle(vp, inter_lkp, td)
2533	struct vnode *vp;
2534	struct mtx *inter_lkp;
2535	struct thread *td;
2536{
2537
2538	VI_LOCK(vp);
2539	if (vp->v_usecount == 0) {
2540		if (inter_lkp) {
2541			mtx_unlock(inter_lkp);
2542		}
2543		vgonel(vp, td);
2544		return (1);
2545	}
2546	VI_UNLOCK(vp);
2547	return (0);
2548}
2549
2550/*
2551 * Eliminate all activity associated with a vnode
2552 * in preparation for reuse.
2553 */
2554void
2555vgone(vp)
2556	register struct vnode *vp;
2557{
2558	struct thread *td = curthread;	/* XXX */
2559
2560	VI_LOCK(vp);
2561	vgonel(vp, td);
2562}
2563
2564/*
2565 * Disassociate a character device from the its underlying filesystem and
2566 * attach it to spec.  This is for use when the chr device is still active
2567 * and the filesystem is going away.
2568 */
2569static void
2570vgonechrl(struct vnode *vp, struct thread *td)
2571{
2572	ASSERT_VI_LOCKED(vp, "vgonechrl");
2573	vx_lock(vp);
2574	/*
2575	 * This is a custom version of vclean() which does not tearm down
2576	 * the bufs or vm objects held by this vnode.  This allows filesystems
2577	 * to continue using devices which were discovered via another
2578	 * filesystem that has been unmounted.
2579	 */
2580	if (vp->v_usecount != 0) {
2581		v_incr_usecount(vp, 1);
2582		/*
2583		 * Ensure that no other activity can occur while the
2584		 * underlying object is being cleaned out.
2585		 */
2586		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2587		/*
2588		 * Any other processes trying to obtain this lock must first
2589		 * wait for VXLOCK to clear, then call the new lock operation.
2590		 */
2591		VOP_UNLOCK(vp, 0, td);
2592		vp->v_vnlock = &vp->v_lock;
2593		vp->v_tag = "orphanchr";
2594		vp->v_op = devfs_specop_p;
2595		delmntque(vp);
2596		cache_purge(vp);
2597		vrele(vp);
2598		VI_LOCK(vp);
2599	} else
2600		vclean(vp, 0, td);
2601	vp->v_op = devfs_specop_p;
2602	vx_unlock(vp);
2603	VI_UNLOCK(vp);
2604}
2605
2606/*
2607 * vgone, with the vp interlock held.
2608 */
2609void
2610vgonel(vp, td)
2611	struct vnode *vp;
2612	struct thread *td;
2613{
2614	/*
2615	 * If a vgone (or vclean) is already in progress,
2616	 * wait until it is done and return.
2617	 */
2618	ASSERT_VI_LOCKED(vp, "vgonel");
2619	if (vp->v_iflag & VI_XLOCK) {
2620		vp->v_iflag |= VI_XWANT;
2621		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vgone", 0);
2622		return;
2623	}
2624	vx_lock(vp);
2625
2626	/*
2627	 * Clean out the filesystem specific data.
2628	 */
2629	vclean(vp, DOCLOSE, td);
2630	VI_UNLOCK(vp);
2631
2632	/*
2633	 * If special device, remove it from special device alias list
2634	 * if it is on one.
2635	 */
2636	VI_LOCK(vp);
2637	if (vp->v_type == VCHR && vp->v_rdev != NULL)
2638		dev_rel(vp);
2639
2640	/*
2641	 * If it is on the freelist and not already at the head,
2642	 * move it to the head of the list. The test of the
2643	 * VDOOMED flag and the reference count of zero is because
2644	 * it will be removed from the free list by getnewvnode,
2645	 * but will not have its reference count incremented until
2646	 * after calling vgone. If the reference count were
2647	 * incremented first, vgone would (incorrectly) try to
2648	 * close the previous instance of the underlying object.
2649	 */
2650	if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2651		mtx_lock(&vnode_free_list_mtx);
2652		if (vp->v_iflag & VI_FREE) {
2653			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2654		} else {
2655			vp->v_iflag |= VI_FREE;
2656			freevnodes++;
2657		}
2658		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2659		mtx_unlock(&vnode_free_list_mtx);
2660	}
2661
2662	vp->v_type = VBAD;
2663	vx_unlock(vp);
2664	VI_UNLOCK(vp);
2665}
2666
2667/*
2668 * Lookup a vnode by device number.
2669 */
2670int
2671vfinddev(dev, vpp)
2672	struct cdev *dev;
2673	struct vnode **vpp;
2674{
2675	struct vnode *vp;
2676
2677	dev_lock();
2678	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2679		*vpp = vp;
2680		dev_unlock();
2681		return (1);
2682	}
2683	dev_unlock();
2684	return (0);
2685}
2686
2687/*
2688 * Calculate the total number of references to a special device.
2689 */
2690int
2691vcount(vp)
2692	struct vnode *vp;
2693{
2694	int count;
2695
2696	dev_lock();
2697	count = vp->v_rdev->si_usecount;
2698	dev_unlock();
2699	return (count);
2700}
2701
2702/*
2703 * Same as above, but using the struct cdev *as argument
2704 */
2705int
2706count_dev(dev)
2707	struct cdev *dev;
2708{
2709	int count;
2710
2711	dev_lock();
2712	count = dev->si_usecount;
2713	dev_unlock();
2714	return(count);
2715}
2716
2717/*
2718 * Print out a description of a vnode.
2719 */
2720static char *typename[] =
2721{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2722
2723void
2724vprint(label, vp)
2725	char *label;
2726	struct vnode *vp;
2727{
2728	char buf[96];
2729
2730	if (label != NULL)
2731		printf("%s: %p: ", label, (void *)vp);
2732	else
2733		printf("%p: ", (void *)vp);
2734	printf("tag %s, type %s, usecount %d, writecount %d, refcount %d,",
2735	    vp->v_tag, typename[vp->v_type], vp->v_usecount,
2736	    vp->v_writecount, vp->v_holdcnt);
2737	buf[0] = '\0';
2738	if (vp->v_vflag & VV_ROOT)
2739		strcat(buf, "|VV_ROOT");
2740	if (vp->v_vflag & VV_TEXT)
2741		strcat(buf, "|VV_TEXT");
2742	if (vp->v_vflag & VV_SYSTEM)
2743		strcat(buf, "|VV_SYSTEM");
2744	if (vp->v_iflag & VI_XLOCK)
2745		strcat(buf, "|VI_XLOCK");
2746	if (vp->v_iflag & VI_XWANT)
2747		strcat(buf, "|VI_XWANT");
2748	if (vp->v_iflag & VI_DOOMED)
2749		strcat(buf, "|VI_DOOMED");
2750	if (vp->v_iflag & VI_FREE)
2751		strcat(buf, "|VI_FREE");
2752	if (vp->v_vflag & VV_OBJBUF)
2753		strcat(buf, "|VV_OBJBUF");
2754	if (buf[0] != '\0')
2755		printf(" flags (%s),", &buf[1]);
2756	lockmgr_printinfo(vp->v_vnlock);
2757	printf("\n");
2758	if (vp->v_data != NULL)
2759		VOP_PRINT(vp);
2760}
2761
2762#ifdef DDB
2763#include <ddb/ddb.h>
2764/*
2765 * List all of the locked vnodes in the system.
2766 * Called when debugging the kernel.
2767 */
2768DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2769{
2770	struct mount *mp, *nmp;
2771	struct vnode *vp;
2772
2773	/*
2774	 * Note: because this is DDB, we can't obey the locking semantics
2775	 * for these structures, which means we could catch an inconsistent
2776	 * state and dereference a nasty pointer.  Not much to be done
2777	 * about that.
2778	 */
2779	printf("Locked vnodes\n");
2780	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2781		nmp = TAILQ_NEXT(mp, mnt_list);
2782		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2783			if (VOP_ISLOCKED(vp, NULL))
2784				vprint(NULL, vp);
2785		}
2786		nmp = TAILQ_NEXT(mp, mnt_list);
2787	}
2788}
2789#endif
2790
2791/*
2792 * Fill in a struct xvfsconf based on a struct vfsconf.
2793 */
2794static void
2795vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2796{
2797
2798	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2799	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2800	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2801	xvfsp->vfc_flags = vfsp->vfc_flags;
2802	/*
2803	 * These are unused in userland, we keep them
2804	 * to not break binary compatibility.
2805	 */
2806	xvfsp->vfc_vfsops = NULL;
2807	xvfsp->vfc_next = NULL;
2808}
2809
2810/*
2811 * Top level filesystem related information gathering.
2812 */
2813static int
2814sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2815{
2816	struct vfsconf *vfsp;
2817	struct xvfsconf xvfsp;
2818	int error;
2819
2820	error = 0;
2821	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2822		vfsconf2x(vfsp, &xvfsp);
2823		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2824		if (error)
2825			break;
2826	}
2827	return (error);
2828}
2829
2830SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2831    "S,xvfsconf", "List of all configured filesystems");
2832
2833#ifndef BURN_BRIDGES
2834static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2835
2836static int
2837vfs_sysctl(SYSCTL_HANDLER_ARGS)
2838{
2839	int *name = (int *)arg1 - 1;	/* XXX */
2840	u_int namelen = arg2 + 1;	/* XXX */
2841	struct vfsconf *vfsp;
2842	struct xvfsconf xvfsp;
2843
2844	printf("WARNING: userland calling deprecated sysctl, "
2845	    "please rebuild world\n");
2846
2847#if 1 || defined(COMPAT_PRELITE2)
2848	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2849	if (namelen == 1)
2850		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2851#endif
2852
2853	switch (name[1]) {
2854	case VFS_MAXTYPENUM:
2855		if (namelen != 2)
2856			return (ENOTDIR);
2857		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2858	case VFS_CONF:
2859		if (namelen != 3)
2860			return (ENOTDIR);	/* overloaded */
2861		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2862			if (vfsp->vfc_typenum == name[2])
2863				break;
2864		if (vfsp == NULL)
2865			return (EOPNOTSUPP);
2866		vfsconf2x(vfsp, &xvfsp);
2867		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2868	}
2869	return (EOPNOTSUPP);
2870}
2871
2872SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, vfs_sysctl,
2873	"Generic filesystem");
2874
2875#if 1 || defined(COMPAT_PRELITE2)
2876
2877static int
2878sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2879{
2880	int error;
2881	struct vfsconf *vfsp;
2882	struct ovfsconf ovfs;
2883
2884	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2885		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2886		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2887		ovfs.vfc_index = vfsp->vfc_typenum;
2888		ovfs.vfc_refcount = vfsp->vfc_refcount;
2889		ovfs.vfc_flags = vfsp->vfc_flags;
2890		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2891		if (error)
2892			return error;
2893	}
2894	return 0;
2895}
2896
2897#endif /* 1 || COMPAT_PRELITE2 */
2898#endif /* !BURN_BRIDGES */
2899
2900#define KINFO_VNODESLOP		10
2901#ifdef notyet
2902/*
2903 * Dump vnode list (via sysctl).
2904 */
2905/* ARGSUSED */
2906static int
2907sysctl_vnode(SYSCTL_HANDLER_ARGS)
2908{
2909	struct xvnode *xvn;
2910	struct thread *td = req->td;
2911	struct mount *mp;
2912	struct vnode *vp;
2913	int error, len, n;
2914
2915	/*
2916	 * Stale numvnodes access is not fatal here.
2917	 */
2918	req->lock = 0;
2919	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2920	if (!req->oldptr)
2921		/* Make an estimate */
2922		return (SYSCTL_OUT(req, 0, len));
2923
2924	error = sysctl_wire_old_buffer(req, 0);
2925	if (error != 0)
2926		return (error);
2927	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2928	n = 0;
2929	mtx_lock(&mountlist_mtx);
2930	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2931		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
2932			continue;
2933		MNT_ILOCK(mp);
2934		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2935			if (n == len)
2936				break;
2937			vref(vp);
2938			xvn[n].xv_size = sizeof *xvn;
2939			xvn[n].xv_vnode = vp;
2940#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
2941			XV_COPY(usecount);
2942			XV_COPY(writecount);
2943			XV_COPY(holdcnt);
2944			XV_COPY(id);
2945			XV_COPY(mount);
2946			XV_COPY(numoutput);
2947			XV_COPY(type);
2948#undef XV_COPY
2949			xvn[n].xv_flag = vp->v_vflag;
2950
2951			switch (vp->v_type) {
2952			case VREG:
2953			case VDIR:
2954			case VLNK:
2955				xvn[n].xv_dev = vp->v_cachedfs;
2956				xvn[n].xv_ino = vp->v_cachedid;
2957				break;
2958			case VBLK:
2959			case VCHR:
2960				if (vp->v_rdev == NULL) {
2961					vrele(vp);
2962					continue;
2963				}
2964				xvn[n].xv_dev = dev2udev(vp->v_rdev);
2965				break;
2966			case VSOCK:
2967				xvn[n].xv_socket = vp->v_socket;
2968				break;
2969			case VFIFO:
2970				xvn[n].xv_fifo = vp->v_fifoinfo;
2971				break;
2972			case VNON:
2973			case VBAD:
2974			default:
2975				/* shouldn't happen? */
2976				vrele(vp);
2977				continue;
2978			}
2979			vrele(vp);
2980			++n;
2981		}
2982		MNT_IUNLOCK(mp);
2983		mtx_lock(&mountlist_mtx);
2984		vfs_unbusy(mp, td);
2985		if (n == len)
2986			break;
2987	}
2988	mtx_unlock(&mountlist_mtx);
2989
2990	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
2991	free(xvn, M_TEMP);
2992	return (error);
2993}
2994
2995SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2996	0, 0, sysctl_vnode, "S,xvnode", "");
2997#endif
2998
2999/*
3000 * Check to see if a filesystem is mounted on a block device.
3001 */
3002int
3003vfs_mountedon(vp)
3004	struct vnode *vp;
3005{
3006
3007	if (vp->v_rdev->si_mountpoint != NULL)
3008		return (EBUSY);
3009	return (0);
3010}
3011
3012/*
3013 * Unmount all filesystems. The list is traversed in reverse order
3014 * of mounting to avoid dependencies.
3015 */
3016void
3017vfs_unmountall()
3018{
3019	struct mount *mp;
3020	struct thread *td;
3021	int error;
3022
3023	if (curthread != NULL)
3024		td = curthread;
3025	else
3026		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
3027	/*
3028	 * Since this only runs when rebooting, it is not interlocked.
3029	 */
3030	while(!TAILQ_EMPTY(&mountlist)) {
3031		mp = TAILQ_LAST(&mountlist, mntlist);
3032		error = dounmount(mp, MNT_FORCE, td);
3033		if (error) {
3034			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3035			printf("unmount of %s failed (",
3036			    mp->mnt_stat.f_mntonname);
3037			if (error == EBUSY)
3038				printf("BUSY)\n");
3039			else
3040				printf("%d)\n", error);
3041		} else {
3042			/* The unmount has removed mp from the mountlist */
3043		}
3044	}
3045}
3046
3047/*
3048 * perform msync on all vnodes under a mount point
3049 * the mount point must be locked.
3050 */
3051void
3052vfs_msync(struct mount *mp, int flags)
3053{
3054	struct vnode *vp, *nvp;
3055	struct vm_object *obj;
3056	int tries;
3057
3058	GIANT_REQUIRED;
3059
3060	tries = 5;
3061	MNT_ILOCK(mp);
3062loop:
3063	TAILQ_FOREACH_SAFE(vp, &mp->mnt_nvnodelist, v_nmntvnodes, nvp) {
3064		if (vp->v_mount != mp) {
3065			if (--tries > 0)
3066				goto loop;
3067			break;
3068		}
3069
3070		VI_LOCK(vp);
3071		if (vp->v_iflag & VI_XLOCK) {
3072			VI_UNLOCK(vp);
3073			continue;
3074		}
3075
3076		if ((vp->v_iflag & VI_OBJDIRTY) &&
3077		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
3078			MNT_IUNLOCK(mp);
3079			if (!vget(vp,
3080			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3081			    curthread)) {
3082				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3083					vput(vp);
3084					MNT_ILOCK(mp);
3085					continue;
3086				}
3087
3088				if (VOP_GETVOBJECT(vp, &obj) == 0) {
3089					VM_OBJECT_LOCK(obj);
3090					vm_object_page_clean(obj, 0, 0,
3091					    flags == MNT_WAIT ?
3092					    OBJPC_SYNC : OBJPC_NOSYNC);
3093					VM_OBJECT_UNLOCK(obj);
3094				}
3095				vput(vp);
3096			}
3097			MNT_ILOCK(mp);
3098			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
3099				if (--tries > 0)
3100					goto loop;
3101				break;
3102			}
3103		} else
3104			VI_UNLOCK(vp);
3105	}
3106	MNT_IUNLOCK(mp);
3107}
3108
3109/*
3110 * Create the VM object needed for VMIO and mmap support.  This
3111 * is done for all VREG files in the system.  Some filesystems might
3112 * afford the additional metadata buffering capability of the
3113 * VMIO code by making the device node be VMIO mode also.
3114 *
3115 * vp must be locked when vfs_object_create is called.
3116 */
3117int
3118vfs_object_create(struct vnode *vp, struct thread *td, struct ucred *cred)
3119{
3120
3121	GIANT_REQUIRED;
3122	return (VOP_CREATEVOBJECT(vp, cred, td));
3123}
3124
3125/*
3126 * Mark a vnode as free, putting it up for recycling.
3127 */
3128void
3129vfree(struct vnode *vp)
3130{
3131
3132	ASSERT_VI_LOCKED(vp, "vfree");
3133	mtx_lock(&vnode_free_list_mtx);
3134	KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
3135	if (vp->v_iflag & VI_AGE) {
3136		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3137	} else {
3138		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3139	}
3140	freevnodes++;
3141	mtx_unlock(&vnode_free_list_mtx);
3142	vp->v_iflag &= ~VI_AGE;
3143	vp->v_iflag |= VI_FREE;
3144}
3145
3146/*
3147 * Opposite of vfree() - mark a vnode as in use.
3148 */
3149void
3150vbusy(struct vnode *vp)
3151{
3152
3153	ASSERT_VI_LOCKED(vp, "vbusy");
3154	KASSERT((vp->v_iflag & VI_FREE) != 0, ("vnode not free"));
3155
3156	mtx_lock(&vnode_free_list_mtx);
3157	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3158	freevnodes--;
3159	mtx_unlock(&vnode_free_list_mtx);
3160
3161	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3162}
3163
3164/*
3165 * Initalize per-vnode helper structure to hold poll-related state.
3166 */
3167void
3168v_addpollinfo(struct vnode *vp)
3169{
3170	struct vpollinfo *vi;
3171
3172	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3173	if (vp->v_pollinfo != NULL) {
3174		uma_zfree(vnodepoll_zone, vi);
3175		return;
3176	}
3177	vp->v_pollinfo = vi;
3178	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3179	knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note,
3180	    &vp->v_pollinfo->vpi_lock);
3181}
3182
3183/*
3184 * Record a process's interest in events which might happen to
3185 * a vnode.  Because poll uses the historic select-style interface
3186 * internally, this routine serves as both the ``check for any
3187 * pending events'' and the ``record my interest in future events''
3188 * functions.  (These are done together, while the lock is held,
3189 * to avoid race conditions.)
3190 */
3191int
3192vn_pollrecord(vp, td, events)
3193	struct vnode *vp;
3194	struct thread *td;
3195	short events;
3196{
3197
3198	if (vp->v_pollinfo == NULL)
3199		v_addpollinfo(vp);
3200	mtx_lock(&vp->v_pollinfo->vpi_lock);
3201	if (vp->v_pollinfo->vpi_revents & events) {
3202		/*
3203		 * This leaves events we are not interested
3204		 * in available for the other process which
3205		 * which presumably had requested them
3206		 * (otherwise they would never have been
3207		 * recorded).
3208		 */
3209		events &= vp->v_pollinfo->vpi_revents;
3210		vp->v_pollinfo->vpi_revents &= ~events;
3211
3212		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3213		return events;
3214	}
3215	vp->v_pollinfo->vpi_events |= events;
3216	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3217	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3218	return 0;
3219}
3220
3221/*
3222 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3223 * it is possible for us to miss an event due to race conditions, but
3224 * that condition is expected to be rare, so for the moment it is the
3225 * preferred interface.
3226 */
3227void
3228vn_pollevent(vp, events)
3229	struct vnode *vp;
3230	short events;
3231{
3232
3233	if (vp->v_pollinfo == NULL)
3234		v_addpollinfo(vp);
3235	mtx_lock(&vp->v_pollinfo->vpi_lock);
3236	if (vp->v_pollinfo->vpi_events & events) {
3237		/*
3238		 * We clear vpi_events so that we don't
3239		 * call selwakeup() twice if two events are
3240		 * posted before the polling process(es) is
3241		 * awakened.  This also ensures that we take at
3242		 * most one selwakeup() if the polling process
3243		 * is no longer interested.  However, it does
3244		 * mean that only one event can be noticed at
3245		 * a time.  (Perhaps we should only clear those
3246		 * event bits which we note?) XXX
3247		 */
3248		vp->v_pollinfo->vpi_events = 0;	/* &= ~events ??? */
3249		vp->v_pollinfo->vpi_revents |= events;
3250		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3251	}
3252	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3253}
3254
3255/*
3256 * Wake up anyone polling on vp because it is being revoked.
3257 * This depends on dead_poll() returning POLLHUP for correct
3258 * behavior.
3259 */
3260void
3261vn_pollgone(vp)
3262	struct vnode *vp;
3263{
3264
3265	mtx_lock(&vp->v_pollinfo->vpi_lock);
3266	VN_KNOTE_LOCKED(vp, NOTE_REVOKE);
3267	if (vp->v_pollinfo->vpi_events) {
3268		vp->v_pollinfo->vpi_events = 0;
3269		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3270	}
3271	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3272}
3273
3274
3275
3276/*
3277 * Routine to create and manage a filesystem syncer vnode.
3278 */
3279#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3280static int	sync_fsync(struct  vop_fsync_args *);
3281static int	sync_inactive(struct  vop_inactive_args *);
3282static int	sync_reclaim(struct  vop_reclaim_args *);
3283
3284static vop_t **sync_vnodeop_p;
3285static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3286	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
3287	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
3288	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
3289	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
3290	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
3291	{ &vop_lock_desc,	(vop_t *) vop_stdlock },	/* lock */
3292	{ &vop_unlock_desc,	(vop_t *) vop_stdunlock },	/* unlock */
3293	{ &vop_islocked_desc,	(vop_t *) vop_stdislocked },	/* islocked */
3294	{ NULL, NULL }
3295};
3296static struct vnodeopv_desc sync_vnodeop_opv_desc =
3297	{ &sync_vnodeop_p, sync_vnodeop_entries };
3298
3299VNODEOP_SET(sync_vnodeop_opv_desc);
3300
3301/*
3302 * Create a new filesystem syncer vnode for the specified mount point.
3303 */
3304int
3305vfs_allocate_syncvnode(mp)
3306	struct mount *mp;
3307{
3308	struct vnode *vp;
3309	static long start, incr, next;
3310	int error;
3311
3312	/* Allocate a new vnode */
3313	if ((error = getnewvnode("syncer", mp, sync_vnodeop_p, &vp)) != 0) {
3314		mp->mnt_syncer = NULL;
3315		return (error);
3316	}
3317	vp->v_type = VNON;
3318	/*
3319	 * Place the vnode onto the syncer worklist. We attempt to
3320	 * scatter them about on the list so that they will go off
3321	 * at evenly distributed times even if all the filesystems
3322	 * are mounted at once.
3323	 */
3324	next += incr;
3325	if (next == 0 || next > syncer_maxdelay) {
3326		start /= 2;
3327		incr /= 2;
3328		if (start == 0) {
3329			start = syncer_maxdelay / 2;
3330			incr = syncer_maxdelay;
3331		}
3332		next = start;
3333	}
3334	VI_LOCK(vp);
3335	vn_syncer_add_to_worklist(&vp->v_bufobj,
3336	    syncdelay > 0 ? next % syncdelay : 0);
3337	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3338	mtx_lock(&sync_mtx);
3339	sync_vnode_count++;
3340	mtx_unlock(&sync_mtx);
3341	VI_UNLOCK(vp);
3342	mp->mnt_syncer = vp;
3343	return (0);
3344}
3345
3346/*
3347 * Do a lazy sync of the filesystem.
3348 */
3349static int
3350sync_fsync(ap)
3351	struct vop_fsync_args /* {
3352		struct vnode *a_vp;
3353		struct ucred *a_cred;
3354		int a_waitfor;
3355		struct thread *a_td;
3356	} */ *ap;
3357{
3358	struct vnode *syncvp = ap->a_vp;
3359	struct mount *mp = syncvp->v_mount;
3360	struct thread *td = ap->a_td;
3361	int error, asyncflag;
3362	struct bufobj *bo;
3363
3364	/*
3365	 * We only need to do something if this is a lazy evaluation.
3366	 */
3367	if (ap->a_waitfor != MNT_LAZY)
3368		return (0);
3369
3370	/*
3371	 * Move ourselves to the back of the sync list.
3372	 */
3373	bo = &syncvp->v_bufobj;
3374	BO_LOCK(bo);
3375	vn_syncer_add_to_worklist(bo, syncdelay);
3376	BO_UNLOCK(bo);
3377
3378	/*
3379	 * Walk the list of vnodes pushing all that are dirty and
3380	 * not already on the sync list.
3381	 */
3382	mtx_lock(&mountlist_mtx);
3383	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3384		mtx_unlock(&mountlist_mtx);
3385		return (0);
3386	}
3387	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3388		vfs_unbusy(mp, td);
3389		return (0);
3390	}
3391	asyncflag = mp->mnt_flag & MNT_ASYNC;
3392	mp->mnt_flag &= ~MNT_ASYNC;
3393	vfs_msync(mp, MNT_NOWAIT);
3394	error = VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
3395	if (asyncflag)
3396		mp->mnt_flag |= MNT_ASYNC;
3397	vn_finished_write(mp);
3398	vfs_unbusy(mp, td);
3399	return (error);
3400}
3401
3402/*
3403 * The syncer vnode is no referenced.
3404 */
3405static int
3406sync_inactive(ap)
3407	struct vop_inactive_args /* {
3408		struct vnode *a_vp;
3409		struct thread *a_td;
3410	} */ *ap;
3411{
3412
3413	VOP_UNLOCK(ap->a_vp, 0, ap->a_td);
3414	vgone(ap->a_vp);
3415	return (0);
3416}
3417
3418/*
3419 * The syncer vnode is no longer needed and is being decommissioned.
3420 *
3421 * Modifications to the worklist must be protected by sync_mtx.
3422 */
3423static int
3424sync_reclaim(ap)
3425	struct vop_reclaim_args /* {
3426		struct vnode *a_vp;
3427	} */ *ap;
3428{
3429	struct vnode *vp = ap->a_vp;
3430	struct bufobj *bo;
3431
3432	VI_LOCK(vp);
3433	bo = &vp->v_bufobj;
3434	vp->v_mount->mnt_syncer = NULL;
3435	if (bo->bo_flag & BO_ONWORKLST) {
3436		mtx_lock(&sync_mtx);
3437		LIST_REMOVE(bo, bo_synclist);
3438 		syncer_worklist_len--;
3439		sync_vnode_count--;
3440		mtx_unlock(&sync_mtx);
3441		bo->bo_flag &= ~BO_ONWORKLST;
3442	}
3443	VI_UNLOCK(vp);
3444
3445	return (0);
3446}
3447
3448/*
3449 * extract the struct cdev *from a VCHR
3450 */
3451struct cdev *
3452vn_todev(vp)
3453	struct vnode *vp;
3454{
3455
3456	if (vp->v_type != VCHR)
3457		return (NULL);
3458	return (vp->v_rdev);
3459}
3460
3461/*
3462 * Check if vnode represents a disk device
3463 */
3464int
3465vn_isdisk(vp, errp)
3466	struct vnode *vp;
3467	int *errp;
3468{
3469	int error;
3470
3471	error = 0;
3472	dev_lock();
3473	if (vp->v_type != VCHR)
3474		error = ENOTBLK;
3475	else if (vp->v_rdev == NULL)
3476		error = ENXIO;
3477	else if (vp->v_rdev->si_devsw == NULL)
3478		error = ENXIO;
3479	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3480		error = ENOTBLK;
3481	dev_unlock();
3482	if (errp != NULL)
3483		*errp = error;
3484	return (error == 0);
3485}
3486
3487/*
3488 * Free data allocated by namei(); see namei(9) for details.
3489 */
3490void
3491NDFREE(ndp, flags)
3492     struct nameidata *ndp;
3493     const u_int flags;
3494{
3495
3496	if (!(flags & NDF_NO_FREE_PNBUF) &&
3497	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3498		uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3499		ndp->ni_cnd.cn_flags &= ~HASBUF;
3500	}
3501	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3502	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3503	    ndp->ni_dvp != ndp->ni_vp)
3504		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3505	if (!(flags & NDF_NO_DVP_RELE) &&
3506	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3507		vrele(ndp->ni_dvp);
3508		ndp->ni_dvp = NULL;
3509	}
3510	if (!(flags & NDF_NO_VP_UNLOCK) &&
3511	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3512		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3513	if (!(flags & NDF_NO_VP_RELE) &&
3514	    ndp->ni_vp) {
3515		vrele(ndp->ni_vp);
3516		ndp->ni_vp = NULL;
3517	}
3518	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3519	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3520		vrele(ndp->ni_startdir);
3521		ndp->ni_startdir = NULL;
3522	}
3523}
3524
3525/*
3526 * Common filesystem object access control check routine.  Accepts a
3527 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3528 * and optional call-by-reference privused argument allowing vaccess()
3529 * to indicate to the caller whether privilege was used to satisfy the
3530 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3531 */
3532int
3533vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3534	enum vtype type;
3535	mode_t file_mode;
3536	uid_t file_uid;
3537	gid_t file_gid;
3538	mode_t acc_mode;
3539	struct ucred *cred;
3540	int *privused;
3541{
3542	mode_t dac_granted;
3543#ifdef CAPABILITIES
3544	mode_t cap_granted;
3545#endif
3546
3547	/*
3548	 * Look for a normal, non-privileged way to access the file/directory
3549	 * as requested.  If it exists, go with that.
3550	 */
3551
3552	if (privused != NULL)
3553		*privused = 0;
3554
3555	dac_granted = 0;
3556
3557	/* Check the owner. */
3558	if (cred->cr_uid == file_uid) {
3559		dac_granted |= VADMIN;
3560		if (file_mode & S_IXUSR)
3561			dac_granted |= VEXEC;
3562		if (file_mode & S_IRUSR)
3563			dac_granted |= VREAD;
3564		if (file_mode & S_IWUSR)
3565			dac_granted |= (VWRITE | VAPPEND);
3566
3567		if ((acc_mode & dac_granted) == acc_mode)
3568			return (0);
3569
3570		goto privcheck;
3571	}
3572
3573	/* Otherwise, check the groups (first match) */
3574	if (groupmember(file_gid, cred)) {
3575		if (file_mode & S_IXGRP)
3576			dac_granted |= VEXEC;
3577		if (file_mode & S_IRGRP)
3578			dac_granted |= VREAD;
3579		if (file_mode & S_IWGRP)
3580			dac_granted |= (VWRITE | VAPPEND);
3581
3582		if ((acc_mode & dac_granted) == acc_mode)
3583			return (0);
3584
3585		goto privcheck;
3586	}
3587
3588	/* Otherwise, check everyone else. */
3589	if (file_mode & S_IXOTH)
3590		dac_granted |= VEXEC;
3591	if (file_mode & S_IROTH)
3592		dac_granted |= VREAD;
3593	if (file_mode & S_IWOTH)
3594		dac_granted |= (VWRITE | VAPPEND);
3595	if ((acc_mode & dac_granted) == acc_mode)
3596		return (0);
3597
3598privcheck:
3599	if (!suser_cred(cred, SUSER_ALLOWJAIL)) {
3600		/* XXX audit: privilege used */
3601		if (privused != NULL)
3602			*privused = 1;
3603		return (0);
3604	}
3605
3606#ifdef CAPABILITIES
3607	/*
3608	 * Build a capability mask to determine if the set of capabilities
3609	 * satisfies the requirements when combined with the granted mask
3610	 * from above.
3611	 * For each capability, if the capability is required, bitwise
3612	 * or the request type onto the cap_granted mask.
3613	 */
3614	cap_granted = 0;
3615
3616	if (type == VDIR) {
3617		/*
3618		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3619		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3620		 */
3621		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3622		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3623			cap_granted |= VEXEC;
3624	} else {
3625		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3626		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, SUSER_ALLOWJAIL))
3627			cap_granted |= VEXEC;
3628	}
3629
3630	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3631	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3632		cap_granted |= VREAD;
3633
3634	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3635	    !cap_check(cred, NULL, CAP_DAC_WRITE, SUSER_ALLOWJAIL))
3636		cap_granted |= (VWRITE | VAPPEND);
3637
3638	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3639	    !cap_check(cred, NULL, CAP_FOWNER, SUSER_ALLOWJAIL))
3640		cap_granted |= VADMIN;
3641
3642	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3643		/* XXX audit: privilege used */
3644		if (privused != NULL)
3645			*privused = 1;
3646		return (0);
3647	}
3648#endif
3649
3650	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3651}
3652
3653/*
3654 * Credential check based on process requesting service, and per-attribute
3655 * permissions.
3656 */
3657int
3658extattr_check_cred(struct vnode *vp, int attrnamespace,
3659    struct ucred *cred, struct thread *td, int access)
3660{
3661
3662	/*
3663	 * Kernel-invoked always succeeds.
3664	 */
3665	if (cred == NOCRED)
3666		return (0);
3667
3668	/*
3669	 * Do not allow privileged processes in jail to directly
3670	 * manipulate system attributes.
3671	 *
3672	 * XXX What capability should apply here?
3673	 * Probably CAP_SYS_SETFFLAG.
3674	 */
3675	switch (attrnamespace) {
3676	case EXTATTR_NAMESPACE_SYSTEM:
3677		/* Potentially should be: return (EPERM); */
3678		return (suser_cred(cred, 0));
3679	case EXTATTR_NAMESPACE_USER:
3680		return (VOP_ACCESS(vp, access, cred, td));
3681	default:
3682		return (EPERM);
3683	}
3684}
3685
3686#ifdef DEBUG_VFS_LOCKS
3687/*
3688 * This only exists to supress warnings from unlocked specfs accesses.  It is
3689 * no longer ok to have an unlocked VFS.
3690 */
3691#define	IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
3692
3693int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3694SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3695
3696int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3697SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3698
3699int vfs_badlock_print = 1;	/* Print lock violations. */
3700SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3701
3702#ifdef KDB
3703int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3704SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3705#endif
3706
3707static void
3708vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3709{
3710
3711#ifdef KDB
3712	if (vfs_badlock_backtrace)
3713		kdb_backtrace();
3714#endif
3715	if (vfs_badlock_print)
3716		printf("%s: %p %s\n", str, (void *)vp, msg);
3717	if (vfs_badlock_ddb)
3718		kdb_enter("lock violation");
3719}
3720
3721void
3722assert_vi_locked(struct vnode *vp, const char *str)
3723{
3724
3725	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3726		vfs_badlock("interlock is not locked but should be", str, vp);
3727}
3728
3729void
3730assert_vi_unlocked(struct vnode *vp, const char *str)
3731{
3732
3733	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3734		vfs_badlock("interlock is locked but should not be", str, vp);
3735}
3736
3737void
3738assert_vop_locked(struct vnode *vp, const char *str)
3739{
3740
3741	if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
3742		vfs_badlock("is not locked but should be", str, vp);
3743}
3744
3745void
3746assert_vop_unlocked(struct vnode *vp, const char *str)
3747{
3748
3749	if (vp && !IGNORE_LOCK(vp) &&
3750	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
3751		vfs_badlock("is locked but should not be", str, vp);
3752}
3753
3754#if 0
3755void
3756assert_vop_elocked(struct vnode *vp, const char *str)
3757{
3758
3759	if (vp && !IGNORE_LOCK(vp) &&
3760	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
3761		vfs_badlock("is not exclusive locked but should be", str, vp);
3762}
3763
3764void
3765assert_vop_elocked_other(struct vnode *vp, const char *str)
3766{
3767
3768	if (vp && !IGNORE_LOCK(vp) &&
3769	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
3770		vfs_badlock("is not exclusive locked by another thread",
3771		    str, vp);
3772}
3773
3774void
3775assert_vop_slocked(struct vnode *vp, const char *str)
3776{
3777
3778	if (vp && !IGNORE_LOCK(vp) &&
3779	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
3780		vfs_badlock("is not locked shared but should be", str, vp);
3781}
3782#endif /* 0 */
3783
3784void
3785vop_rename_pre(void *ap)
3786{
3787	struct vop_rename_args *a = ap;
3788
3789	if (a->a_tvp)
3790		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3791	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3792	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3793	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3794
3795	/* Check the source (from). */
3796	if (a->a_tdvp != a->a_fdvp)
3797		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3798	if (a->a_tvp != a->a_fvp)
3799		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked");
3800
3801	/* Check the target. */
3802	if (a->a_tvp)
3803		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3804	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3805}
3806
3807void
3808vop_strategy_pre(void *ap)
3809{
3810	struct vop_strategy_args *a;
3811	struct buf *bp;
3812
3813	a = ap;
3814	bp = a->a_bp;
3815
3816	/*
3817	 * Cluster ops lock their component buffers but not the IO container.
3818	 */
3819	if ((bp->b_flags & B_CLUSTER) != 0)
3820		return;
3821
3822	if (BUF_REFCNT(bp) < 1) {
3823		if (vfs_badlock_print)
3824			printf(
3825			    "VOP_STRATEGY: bp is not locked but should be\n");
3826		if (vfs_badlock_ddb)
3827			kdb_enter("lock violation");
3828	}
3829}
3830
3831void
3832vop_lookup_pre(void *ap)
3833{
3834	struct vop_lookup_args *a;
3835	struct vnode *dvp;
3836
3837	a = ap;
3838	dvp = a->a_dvp;
3839	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3840	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3841}
3842
3843void
3844vop_lookup_post(void *ap, int rc)
3845{
3846	struct vop_lookup_args *a;
3847	struct componentname *cnp;
3848	struct vnode *dvp;
3849	struct vnode *vp;
3850	int flags;
3851
3852	a = ap;
3853	dvp = a->a_dvp;
3854	cnp = a->a_cnp;
3855	vp = *(a->a_vpp);
3856	flags = cnp->cn_flags;
3857
3858	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3859
3860	/*
3861	 * If this is the last path component for this lookup and LOCKPARENT
3862	 * is set, OR if there is an error the directory has to be locked.
3863	 */
3864	if ((flags & LOCKPARENT) && (flags & ISLASTCN))
3865		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)");
3866	else if (rc != 0)
3867		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)");
3868	else if (dvp != vp)
3869		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)");
3870	if (flags & PDIRUNLOCK)
3871		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)");
3872}
3873
3874void
3875vop_lock_pre(void *ap)
3876{
3877	struct vop_lock_args *a = ap;
3878
3879	if ((a->a_flags & LK_INTERLOCK) == 0)
3880		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3881	else
3882		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3883}
3884
3885void
3886vop_lock_post(void *ap, int rc)
3887{
3888	struct vop_lock_args *a = ap;
3889
3890	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3891	if (rc == 0)
3892		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3893}
3894
3895void
3896vop_unlock_pre(void *ap)
3897{
3898	struct vop_unlock_args *a = ap;
3899
3900	if (a->a_flags & LK_INTERLOCK)
3901		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3902	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3903}
3904
3905void
3906vop_unlock_post(void *ap, int rc)
3907{
3908	struct vop_unlock_args *a = ap;
3909
3910	if (a->a_flags & LK_INTERLOCK)
3911		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3912}
3913#endif /* DEBUG_VFS_LOCKS */
3914
3915static struct knlist fs_knlist;
3916
3917static void
3918vfs_event_init(void *arg)
3919{
3920	knlist_init(&fs_knlist, NULL);
3921}
3922/* XXX - correct order? */
3923SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3924
3925void
3926vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
3927{
3928
3929	KNOTE_UNLOCKED(&fs_knlist, event);
3930}
3931
3932static int	filt_fsattach(struct knote *kn);
3933static void	filt_fsdetach(struct knote *kn);
3934static int	filt_fsevent(struct knote *kn, long hint);
3935
3936struct filterops fs_filtops =
3937	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
3938
3939static int
3940filt_fsattach(struct knote *kn)
3941{
3942
3943	kn->kn_flags |= EV_CLEAR;
3944	knlist_add(&fs_knlist, kn, 0);
3945	return (0);
3946}
3947
3948static void
3949filt_fsdetach(struct knote *kn)
3950{
3951
3952	knlist_remove(&fs_knlist, kn, 0);
3953}
3954
3955static int
3956filt_fsevent(struct knote *kn, long hint)
3957{
3958
3959	kn->kn_fflags |= hint;
3960	return (kn->kn_fflags != 0);
3961}
3962
3963static int
3964sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
3965{
3966	struct vfsidctl vc;
3967	int error;
3968	struct mount *mp;
3969
3970	error = SYSCTL_IN(req, &vc, sizeof(vc));
3971	if (error)
3972		return (error);
3973	if (vc.vc_vers != VFS_CTL_VERS1)
3974		return (EINVAL);
3975	mp = vfs_getvfs(&vc.vc_fsid);
3976	if (mp == NULL)
3977		return (ENOENT);
3978	/* ensure that a specific sysctl goes to the right filesystem. */
3979	if (strcmp(vc.vc_fstypename, "*") != 0 &&
3980	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
3981		return (EINVAL);
3982	}
3983	VCTLTOREQ(&vc, req);
3984	return (VFS_SYSCTL(mp, vc.vc_op, req));
3985}
3986
3987SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR,
3988        NULL, 0, sysctl_vfs_ctl, "", "Sysctl by fsid");
3989
3990/*
3991 * Function to initialize a va_filerev field sensibly.
3992 * XXX: Wouldn't a random number make a lot more sense ??
3993 */
3994u_quad_t
3995init_va_filerev(void)
3996{
3997	struct bintime bt;
3998
3999	getbinuptime(&bt);
4000	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4001}
4002