vfs_subr.c revision 133826
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35 */
36
37/*
38 * External virtual filesystem routines
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_subr.c 133826 2004-08-16 08:33:37Z obrien $");
43
44#include "opt_ddb.h"
45#include "opt_mac.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/bio.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/event.h>
53#include <sys/eventhandler.h>
54#include <sys/extattr.h>
55#include <sys/fcntl.h>
56#include <sys/kdb.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/mac.h>
60#include <sys/malloc.h>
61#include <sys/mount.h>
62#include <sys/namei.h>
63#include <sys/sleepqueue.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/syslog.h>
67#include <sys/vmmeter.h>
68#include <sys/vnode.h>
69
70#include <vm/vm.h>
71#include <vm/vm_object.h>
72#include <vm/vm_extern.h>
73#include <vm/pmap.h>
74#include <vm/vm_map.h>
75#include <vm/vm_page.h>
76#include <vm/vm_kern.h>
77#include <vm/uma.h>
78
79static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
80
81static void	addalias(struct vnode *vp, struct cdev *nvp_rdev);
82static void	delmntque(struct vnode *vp);
83static void	insmntque(struct vnode *vp, struct mount *mp);
84static void	vclean(struct vnode *vp, int flags, struct thread *td);
85static void	vlruvp(struct vnode *vp);
86static int	flushbuflist(struct buf *blist, int flags, struct vnode *vp,
87		    int slpflag, int slptimeo, int *errorp);
88static void	syncer_shutdown(void *arg, int howto);
89static int	vtryrecycle(struct vnode *vp);
90static void	vx_lock(struct vnode *vp);
91static void	vx_unlock(struct vnode *vp);
92static void	vgonechrl(struct vnode *vp, struct thread *td);
93
94
95/*
96 * Number of vnodes in existence.  Increased whenever getnewvnode()
97 * allocates a new vnode, never decreased.
98 */
99static unsigned long	numvnodes;
100
101SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
102
103/*
104 * Conversion tables for conversion from vnode types to inode formats
105 * and back.
106 */
107enum vtype iftovt_tab[16] = {
108	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
109	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
110};
111int vttoif_tab[9] = {
112	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
113	S_IFSOCK, S_IFIFO, S_IFMT,
114};
115
116/*
117 * List of vnodes that are ready for recycling.
118 */
119static TAILQ_HEAD(freelst, vnode) vnode_free_list;
120
121/*
122 * Minimum number of free vnodes.  If there are fewer than this free vnodes,
123 * getnewvnode() will return a newly allocated vnode.
124 */
125static u_long wantfreevnodes = 25;
126SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
127/* Number of vnodes in the free list. */
128static u_long freevnodes;
129SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
130
131/*
132 * Various variables used for debugging the new implementation of
133 * reassignbuf().
134 * XXX these are probably of (very) limited utility now.
135 */
136static int reassignbufcalls;
137SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
138static int nameileafonly;
139SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
140
141/*
142 * Cache for the mount type id assigned to NFS.  This is used for
143 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
144 */
145int	nfs_mount_type = -1;
146
147/* To keep more than one thread at a time from running vfs_getnewfsid */
148static struct mtx mntid_mtx;
149
150/*
151 * Lock for any access to the following:
152 *	vnode_free_list
153 *	numvnodes
154 *	freevnodes
155 */
156static struct mtx vnode_free_list_mtx;
157
158/*
159 * For any iteration/modification of dev->si_hlist (linked through
160 * v_specnext)
161 */
162static struct mtx spechash_mtx;
163
164/* Publicly exported FS */
165struct nfs_public nfs_pub;
166
167/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
168static uma_zone_t vnode_zone;
169static uma_zone_t vnodepoll_zone;
170
171/* Set to 1 to print out reclaim of active vnodes */
172int	prtactive;
173
174/*
175 * The workitem queue.
176 *
177 * It is useful to delay writes of file data and filesystem metadata
178 * for tens of seconds so that quickly created and deleted files need
179 * not waste disk bandwidth being created and removed. To realize this,
180 * we append vnodes to a "workitem" queue. When running with a soft
181 * updates implementation, most pending metadata dependencies should
182 * not wait for more than a few seconds. Thus, mounted on block devices
183 * are delayed only about a half the time that file data is delayed.
184 * Similarly, directory updates are more critical, so are only delayed
185 * about a third the time that file data is delayed. Thus, there are
186 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
187 * one each second (driven off the filesystem syncer process). The
188 * syncer_delayno variable indicates the next queue that is to be processed.
189 * Items that need to be processed soon are placed in this queue:
190 *
191 *	syncer_workitem_pending[syncer_delayno]
192 *
193 * A delay of fifteen seconds is done by placing the request fifteen
194 * entries later in the queue:
195 *
196 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
197 *
198 */
199static int syncer_delayno;
200static long syncer_mask;
201LIST_HEAD(synclist, vnode);
202static struct synclist *syncer_workitem_pending;
203/*
204 * The sync_mtx protects:
205 *	vp->v_synclist
206 *	sync_vnode_count
207 *	syncer_delayno
208 *	syncer_state
209 *	syncer_workitem_pending
210 *	syncer_worklist_len
211 *	rushjob
212 */
213static struct mtx sync_mtx;
214
215#define SYNCER_MAXDELAY		32
216static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
217static int syncdelay = 30;		/* max time to delay syncing data */
218static int filedelay = 30;		/* time to delay syncing files */
219SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
220static int dirdelay = 29;		/* time to delay syncing directories */
221SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
222static int metadelay = 28;		/* time to delay syncing metadata */
223SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
224static int rushjob;		/* number of slots to run ASAP */
225static int stat_rush_requests;	/* number of times I/O speeded up */
226SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
227
228/*
229 * When shutting down the syncer, run it at four times normal speed.
230 */
231#define SYNCER_SHUTDOWN_SPEEDUP		4
232static int sync_vnode_count;
233static int syncer_worklist_len;
234static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
235    syncer_state;
236
237/*
238 * Number of vnodes we want to exist at any one time.  This is mostly used
239 * to size hash tables in vnode-related code.  It is normally not used in
240 * getnewvnode(), as wantfreevnodes is normally nonzero.)
241 *
242 * XXX desiredvnodes is historical cruft and should not exist.
243 */
244int desiredvnodes;
245SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
246    &desiredvnodes, 0, "Maximum number of vnodes");
247static int minvnodes;
248SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
249    &minvnodes, 0, "Minimum number of vnodes");
250static int vnlru_nowhere;
251SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
252    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
253
254/* Hook for calling soft updates. */
255int (*softdep_process_worklist_hook)(struct mount *);
256
257/*
258 * Initialize the vnode management data structures.
259 */
260#ifndef	MAXVNODES_MAX
261#define	MAXVNODES_MAX	100000
262#endif
263static void
264vntblinit(void *dummy __unused)
265{
266
267	/*
268	 * Desiredvnodes is a function of the physical memory size and
269	 * the kernel's heap size.  Specifically, desiredvnodes scales
270	 * in proportion to the physical memory size until two fifths
271	 * of the kernel's heap size is consumed by vnodes and vm
272	 * objects.
273	 */
274	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
275	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
276	if (desiredvnodes > MAXVNODES_MAX) {
277		if (bootverbose)
278			printf("Reducing kern.maxvnodes %d -> %d\n",
279			    desiredvnodes, MAXVNODES_MAX);
280		desiredvnodes = MAXVNODES_MAX;
281	}
282	minvnodes = desiredvnodes / 4;
283	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
284	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
285	mtx_init(&spechash_mtx, "spechash", NULL, MTX_DEF);
286	TAILQ_INIT(&vnode_free_list);
287	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
288	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
289	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
290	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
291	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
292	/*
293	 * Initialize the filesystem syncer.
294	 */
295	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
296		&syncer_mask);
297	syncer_maxdelay = syncer_mask + 1;
298	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
299}
300SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
301
302
303/*
304 * Mark a mount point as busy. Used to synchronize access and to delay
305 * unmounting. Interlock is not released on failure.
306 */
307int
308vfs_busy(mp, flags, interlkp, td)
309	struct mount *mp;
310	int flags;
311	struct mtx *interlkp;
312	struct thread *td;
313{
314	int lkflags;
315
316	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
317		if (flags & LK_NOWAIT)
318			return (ENOENT);
319		mp->mnt_kern_flag |= MNTK_MWAIT;
320		/*
321		 * Since all busy locks are shared except the exclusive
322		 * lock granted when unmounting, the only place that a
323		 * wakeup needs to be done is at the release of the
324		 * exclusive lock at the end of dounmount.
325		 */
326		msleep(mp, interlkp, PVFS, "vfs_busy", 0);
327		return (ENOENT);
328	}
329	lkflags = LK_SHARED | LK_NOPAUSE;
330	if (interlkp)
331		lkflags |= LK_INTERLOCK;
332	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
333		panic("vfs_busy: unexpected lock failure");
334	return (0);
335}
336
337/*
338 * Free a busy filesystem.
339 */
340void
341vfs_unbusy(mp, td)
342	struct mount *mp;
343	struct thread *td;
344{
345
346	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
347}
348
349/*
350 * Lookup a mount point by filesystem identifier.
351 */
352struct mount *
353vfs_getvfs(fsid)
354	fsid_t *fsid;
355{
356	register struct mount *mp;
357
358	mtx_lock(&mountlist_mtx);
359	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
360		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
361		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
362			mtx_unlock(&mountlist_mtx);
363			return (mp);
364		}
365	}
366	mtx_unlock(&mountlist_mtx);
367	return ((struct mount *) 0);
368}
369
370/*
371 * Check if a user can access priveledged mount options.
372 */
373int
374vfs_suser(struct mount *mp, struct thread *td)
375{
376	int error;
377
378	if ((mp->mnt_flag & MNT_USER) == 0 ||
379	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
380		if ((error = suser(td)) != 0)
381			return (error);
382	}
383	return (0);
384}
385
386/*
387 * Get a new unique fsid.  Try to make its val[0] unique, since this value
388 * will be used to create fake device numbers for stat().  Also try (but
389 * not so hard) make its val[0] unique mod 2^16, since some emulators only
390 * support 16-bit device numbers.  We end up with unique val[0]'s for the
391 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
392 *
393 * Keep in mind that several mounts may be running in parallel.  Starting
394 * the search one past where the previous search terminated is both a
395 * micro-optimization and a defense against returning the same fsid to
396 * different mounts.
397 */
398void
399vfs_getnewfsid(mp)
400	struct mount *mp;
401{
402	static u_int16_t mntid_base;
403	fsid_t tfsid;
404	int mtype;
405
406	mtx_lock(&mntid_mtx);
407	mtype = mp->mnt_vfc->vfc_typenum;
408	tfsid.val[1] = mtype;
409	mtype = (mtype & 0xFF) << 24;
410	for (;;) {
411		tfsid.val[0] = makedev(255,
412		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
413		mntid_base++;
414		if (vfs_getvfs(&tfsid) == NULL)
415			break;
416	}
417	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
418	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
419	mtx_unlock(&mntid_mtx);
420}
421
422/*
423 * Knob to control the precision of file timestamps:
424 *
425 *   0 = seconds only; nanoseconds zeroed.
426 *   1 = seconds and nanoseconds, accurate within 1/HZ.
427 *   2 = seconds and nanoseconds, truncated to microseconds.
428 * >=3 = seconds and nanoseconds, maximum precision.
429 */
430enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
431
432static int timestamp_precision = TSP_SEC;
433SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
434    &timestamp_precision, 0, "");
435
436/*
437 * Get a current timestamp.
438 */
439void
440vfs_timestamp(tsp)
441	struct timespec *tsp;
442{
443	struct timeval tv;
444
445	switch (timestamp_precision) {
446	case TSP_SEC:
447		tsp->tv_sec = time_second;
448		tsp->tv_nsec = 0;
449		break;
450	case TSP_HZ:
451		getnanotime(tsp);
452		break;
453	case TSP_USEC:
454		microtime(&tv);
455		TIMEVAL_TO_TIMESPEC(&tv, tsp);
456		break;
457	case TSP_NSEC:
458	default:
459		nanotime(tsp);
460		break;
461	}
462}
463
464/*
465 * Set vnode attributes to VNOVAL
466 */
467void
468vattr_null(vap)
469	register struct vattr *vap;
470{
471
472	vap->va_type = VNON;
473	vap->va_size = VNOVAL;
474	vap->va_bytes = VNOVAL;
475	vap->va_mode = VNOVAL;
476	vap->va_nlink = VNOVAL;
477	vap->va_uid = VNOVAL;
478	vap->va_gid = VNOVAL;
479	vap->va_fsid = VNOVAL;
480	vap->va_fileid = VNOVAL;
481	vap->va_blocksize = VNOVAL;
482	vap->va_rdev = VNOVAL;
483	vap->va_atime.tv_sec = VNOVAL;
484	vap->va_atime.tv_nsec = VNOVAL;
485	vap->va_mtime.tv_sec = VNOVAL;
486	vap->va_mtime.tv_nsec = VNOVAL;
487	vap->va_ctime.tv_sec = VNOVAL;
488	vap->va_ctime.tv_nsec = VNOVAL;
489	vap->va_birthtime.tv_sec = VNOVAL;
490	vap->va_birthtime.tv_nsec = VNOVAL;
491	vap->va_flags = VNOVAL;
492	vap->va_gen = VNOVAL;
493	vap->va_vaflags = 0;
494}
495
496/*
497 * This routine is called when we have too many vnodes.  It attempts
498 * to free <count> vnodes and will potentially free vnodes that still
499 * have VM backing store (VM backing store is typically the cause
500 * of a vnode blowout so we want to do this).  Therefore, this operation
501 * is not considered cheap.
502 *
503 * A number of conditions may prevent a vnode from being reclaimed.
504 * the buffer cache may have references on the vnode, a directory
505 * vnode may still have references due to the namei cache representing
506 * underlying files, or the vnode may be in active use.   It is not
507 * desireable to reuse such vnodes.  These conditions may cause the
508 * number of vnodes to reach some minimum value regardless of what
509 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
510 */
511static int
512vlrureclaim(struct mount *mp)
513{
514	struct vnode *vp;
515	int done;
516	int trigger;
517	int usevnodes;
518	int count;
519
520	/*
521	 * Calculate the trigger point, don't allow user
522	 * screwups to blow us up.   This prevents us from
523	 * recycling vnodes with lots of resident pages.  We
524	 * aren't trying to free memory, we are trying to
525	 * free vnodes.
526	 */
527	usevnodes = desiredvnodes;
528	if (usevnodes <= 0)
529		usevnodes = 1;
530	trigger = cnt.v_page_count * 2 / usevnodes;
531
532	done = 0;
533	MNT_ILOCK(mp);
534	count = mp->mnt_nvnodelistsize / 10 + 1;
535	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
536		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
537		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
538
539		if (vp->v_type != VNON &&
540		    vp->v_type != VBAD &&
541		    VI_TRYLOCK(vp)) {
542			if (VMIGHTFREE(vp) &&           /* critical path opt */
543			    (vp->v_object == NULL ||
544			    vp->v_object->resident_page_count < trigger)) {
545				MNT_IUNLOCK(mp);
546				vgonel(vp, curthread);
547				done++;
548				MNT_ILOCK(mp);
549			} else
550				VI_UNLOCK(vp);
551		}
552		--count;
553	}
554	MNT_IUNLOCK(mp);
555	return done;
556}
557
558/*
559 * Attempt to recycle vnodes in a context that is always safe to block.
560 * Calling vlrurecycle() from the bowels of filesystem code has some
561 * interesting deadlock problems.
562 */
563static struct proc *vnlruproc;
564static int vnlruproc_sig;
565
566static void
567vnlru_proc(void)
568{
569	struct mount *mp, *nmp;
570	int done;
571	struct proc *p = vnlruproc;
572	struct thread *td = FIRST_THREAD_IN_PROC(p);
573
574	mtx_lock(&Giant);
575
576	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
577	    SHUTDOWN_PRI_FIRST);
578
579	for (;;) {
580		kthread_suspend_check(p);
581		mtx_lock(&vnode_free_list_mtx);
582		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
583			mtx_unlock(&vnode_free_list_mtx);
584			vnlruproc_sig = 0;
585			wakeup(&vnlruproc_sig);
586			tsleep(vnlruproc, PVFS, "vlruwt", hz);
587			continue;
588		}
589		mtx_unlock(&vnode_free_list_mtx);
590		done = 0;
591		mtx_lock(&mountlist_mtx);
592		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
593			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
594				nmp = TAILQ_NEXT(mp, mnt_list);
595				continue;
596			}
597			done += vlrureclaim(mp);
598			mtx_lock(&mountlist_mtx);
599			nmp = TAILQ_NEXT(mp, mnt_list);
600			vfs_unbusy(mp, td);
601		}
602		mtx_unlock(&mountlist_mtx);
603		if (done == 0) {
604#if 0
605			/* These messages are temporary debugging aids */
606			if (vnlru_nowhere < 5)
607				printf("vnlru process getting nowhere..\n");
608			else if (vnlru_nowhere == 5)
609				printf("vnlru process messages stopped.\n");
610#endif
611			vnlru_nowhere++;
612			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
613		}
614	}
615}
616
617static struct kproc_desc vnlru_kp = {
618	"vnlru",
619	vnlru_proc,
620	&vnlruproc
621};
622SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
623
624
625/*
626 * Routines having to do with the management of the vnode table.
627 */
628
629/*
630 * Check to see if a free vnode can be recycled. If it can,
631 * recycle it and return it with the vnode interlock held.
632 */
633static int
634vtryrecycle(struct vnode *vp)
635{
636	struct thread *td = curthread;
637	vm_object_t object;
638	struct mount *vnmp;
639	int error;
640
641	/* Don't recycle if we can't get the interlock */
642	if (!VI_TRYLOCK(vp))
643		return (EWOULDBLOCK);
644	/*
645	 * This vnode may found and locked via some other list, if so we
646	 * can't recycle it yet.
647	 */
648	if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
649		return (EWOULDBLOCK);
650	/*
651	 * Don't recycle if its filesystem is being suspended.
652	 */
653	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
654		VOP_UNLOCK(vp, 0, td);
655		return (EBUSY);
656	}
657
658	/*
659	 * Don't recycle if we still have cached pages.
660	 */
661	if (VOP_GETVOBJECT(vp, &object) == 0) {
662		VM_OBJECT_LOCK(object);
663		if (object->resident_page_count ||
664		    object->ref_count) {
665			VM_OBJECT_UNLOCK(object);
666			error = EBUSY;
667			goto done;
668		}
669		VM_OBJECT_UNLOCK(object);
670	}
671	if (LIST_FIRST(&vp->v_cache_src)) {
672		/*
673		 * note: nameileafonly sysctl is temporary,
674		 * for debugging only, and will eventually be
675		 * removed.
676		 */
677		if (nameileafonly > 0) {
678			/*
679			 * Do not reuse namei-cached directory
680			 * vnodes that have cached
681			 * subdirectories.
682			 */
683			if (cache_leaf_test(vp) < 0) {
684				error = EISDIR;
685				goto done;
686			}
687		} else if (nameileafonly < 0 ||
688			    vmiodirenable == 0) {
689			/*
690			 * Do not reuse namei-cached directory
691			 * vnodes if nameileafonly is -1 or
692			 * if VMIO backing for directories is
693			 * turned off (otherwise we reuse them
694			 * too quickly).
695			 */
696			error = EBUSY;
697			goto done;
698		}
699	}
700	/*
701	 * If we got this far, we need to acquire the interlock and see if
702	 * anyone picked up this vnode from another list.  If not, we will
703	 * mark it with XLOCK via vgonel() so that anyone who does find it
704	 * will skip over it.
705	 */
706	VI_LOCK(vp);
707	if (VSHOULDBUSY(vp) && (vp->v_iflag & VI_XLOCK) == 0) {
708		VI_UNLOCK(vp);
709		error = EBUSY;
710		goto done;
711	}
712	mtx_lock(&vnode_free_list_mtx);
713	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
714	vp->v_iflag &= ~VI_FREE;
715	mtx_unlock(&vnode_free_list_mtx);
716	vp->v_iflag |= VI_DOOMED;
717	if (vp->v_type != VBAD) {
718		VOP_UNLOCK(vp, 0, td);
719		vgonel(vp, td);
720		VI_LOCK(vp);
721	} else
722		VOP_UNLOCK(vp, 0, td);
723	vn_finished_write(vnmp);
724	return (0);
725done:
726	VOP_UNLOCK(vp, 0, td);
727	vn_finished_write(vnmp);
728	return (error);
729}
730
731/*
732 * Return the next vnode from the free list.
733 */
734int
735getnewvnode(tag, mp, vops, vpp)
736	const char *tag;
737	struct mount *mp;
738	vop_t **vops;
739	struct vnode **vpp;
740{
741	struct vnode *vp = NULL;
742	struct vpollinfo *pollinfo = NULL;
743
744	mtx_lock(&vnode_free_list_mtx);
745
746	/*
747	 * Try to reuse vnodes if we hit the max.  This situation only
748	 * occurs in certain large-memory (2G+) situations.  We cannot
749	 * attempt to directly reclaim vnodes due to nasty recursion
750	 * problems.
751	 */
752	while (numvnodes - freevnodes > desiredvnodes) {
753		if (vnlruproc_sig == 0) {
754			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
755			wakeup(vnlruproc);
756		}
757		mtx_unlock(&vnode_free_list_mtx);
758		tsleep(&vnlruproc_sig, PVFS, "vlruwk", hz);
759		mtx_lock(&vnode_free_list_mtx);
760	}
761
762	/*
763	 * Attempt to reuse a vnode already on the free list, allocating
764	 * a new vnode if we can't find one or if we have not reached a
765	 * good minimum for good LRU performance.
766	 */
767
768	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
769		int error;
770		int count;
771
772		for (count = 0; count < freevnodes; count++) {
773			vp = TAILQ_FIRST(&vnode_free_list);
774
775			KASSERT(vp->v_usecount == 0 &&
776			    (vp->v_iflag & VI_DOINGINACT) == 0,
777			    ("getnewvnode: free vnode isn't"));
778
779			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
780			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
781			mtx_unlock(&vnode_free_list_mtx);
782			error = vtryrecycle(vp);
783			mtx_lock(&vnode_free_list_mtx);
784			if (error == 0)
785				break;
786			vp = NULL;
787		}
788	}
789	if (vp) {
790		freevnodes--;
791		mtx_unlock(&vnode_free_list_mtx);
792
793#ifdef INVARIANTS
794		{
795			if (vp->v_data)
796				panic("cleaned vnode isn't");
797			if (vp->v_numoutput)
798				panic("Clean vnode has pending I/O's");
799			if (vp->v_writecount != 0)
800				panic("Non-zero write count");
801		}
802#endif
803		if ((pollinfo = vp->v_pollinfo) != NULL) {
804			/*
805			 * To avoid lock order reversals, the call to
806			 * uma_zfree() must be delayed until the vnode
807			 * interlock is released.
808			 */
809			vp->v_pollinfo = NULL;
810		}
811#ifdef MAC
812		mac_destroy_vnode(vp);
813#endif
814		vp->v_iflag = 0;
815		vp->v_vflag = 0;
816		vp->v_lastw = 0;
817		vp->v_lasta = 0;
818		vp->v_cstart = 0;
819		vp->v_clen = 0;
820		vp->v_socket = 0;
821		lockdestroy(vp->v_vnlock);
822		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
823		KASSERT(vp->v_cleanbufcnt == 0, ("cleanbufcnt not 0"));
824		KASSERT(vp->v_cleanblkroot == NULL, ("cleanblkroot not NULL"));
825		KASSERT(vp->v_dirtybufcnt == 0, ("dirtybufcnt not 0"));
826		KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
827	} else {
828		numvnodes++;
829		mtx_unlock(&vnode_free_list_mtx);
830
831		vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
832		mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
833		VI_LOCK(vp);
834		vp->v_dd = vp;
835		vp->v_vnlock = &vp->v_lock;
836		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
837		cache_purge(vp);		/* Sets up v_id. */
838		LIST_INIT(&vp->v_cache_src);
839		TAILQ_INIT(&vp->v_cache_dst);
840	}
841
842	TAILQ_INIT(&vp->v_cleanblkhd);
843	TAILQ_INIT(&vp->v_dirtyblkhd);
844	vp->v_type = VNON;
845	vp->v_tag = tag;
846	vp->v_op = vops;
847	*vpp = vp;
848	vp->v_usecount = 1;
849	vp->v_data = 0;
850	vp->v_cachedid = -1;
851	VI_UNLOCK(vp);
852	if (pollinfo != NULL) {
853		knlist_destroy(&pollinfo->vpi_selinfo.si_note);
854		mtx_destroy(&pollinfo->vpi_lock);
855		uma_zfree(vnodepoll_zone, pollinfo);
856	}
857#ifdef MAC
858	mac_init_vnode(vp);
859	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
860		mac_associate_vnode_singlelabel(mp, vp);
861#endif
862	delmntque(vp);
863	if (mp != NULL) {
864		insmntque(vp, mp);
865		vp->v_bsize = mp->mnt_stat.f_iosize;
866	}
867
868	return (0);
869}
870
871/*
872 * Delete from old mount point vnode list, if on one.
873 */
874static void
875delmntque(struct vnode *vp)
876{
877	struct mount *mp;
878
879	if (vp->v_mount == NULL)
880		return;
881	mp = vp->v_mount;
882	MNT_ILOCK(mp);
883	vp->v_mount = NULL;
884	KASSERT(mp->mnt_nvnodelistsize > 0,
885		("bad mount point vnode list size"));
886	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
887	mp->mnt_nvnodelistsize--;
888	MNT_IUNLOCK(mp);
889}
890
891/*
892 * Insert into list of vnodes for the new mount point, if available.
893 */
894static void
895insmntque(struct vnode *vp, struct mount *mp)
896{
897
898	vp->v_mount = mp;
899	KASSERT(mp != NULL, ("Don't call insmntque(foo, NULL)"));
900	MNT_ILOCK(vp->v_mount);
901	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
902	mp->mnt_nvnodelistsize++;
903	MNT_IUNLOCK(vp->v_mount);
904}
905
906/*
907 * Update outstanding I/O count and do wakeup if requested.
908 */
909void
910vwakeup(bp)
911	register struct buf *bp;
912{
913	register struct vnode *vp;
914
915	bp->b_flags &= ~B_WRITEINPROG;
916	if ((vp = bp->b_vp)) {
917		VI_LOCK(vp);
918		vp->v_numoutput--;
919		if (vp->v_numoutput < 0)
920			panic("vwakeup: neg numoutput");
921		if ((vp->v_numoutput == 0) && (vp->v_iflag & VI_BWAIT)) {
922			vp->v_iflag &= ~VI_BWAIT;
923			wakeup(&vp->v_numoutput);
924		}
925		VI_UNLOCK(vp);
926	}
927}
928
929/*
930 * Flush out and invalidate all buffers associated with a vnode.
931 * Called with the underlying object locked.
932 */
933int
934vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
935	struct vnode *vp;
936	int flags;
937	struct ucred *cred;
938	struct thread *td;
939	int slpflag, slptimeo;
940{
941	struct buf *blist;
942	int error;
943	vm_object_t object;
944
945	GIANT_REQUIRED;
946
947	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
948
949	VI_LOCK(vp);
950	if (flags & V_SAVE) {
951		while (vp->v_numoutput) {
952			vp->v_iflag |= VI_BWAIT;
953			error = msleep(&vp->v_numoutput, VI_MTX(vp),
954			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
955			if (error) {
956				VI_UNLOCK(vp);
957				return (error);
958			}
959		}
960		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
961			VI_UNLOCK(vp);
962			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
963				return (error);
964			/*
965			 * XXX We could save a lock/unlock if this was only
966			 * enabled under INVARIANTS
967			 */
968			VI_LOCK(vp);
969			if (vp->v_numoutput > 0 ||
970			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
971				panic("vinvalbuf: dirty bufs");
972		}
973	}
974	/*
975	 * If you alter this loop please notice that interlock is dropped and
976	 * reacquired in flushbuflist.  Special care is needed to ensure that
977	 * no race conditions occur from this.
978	 */
979	for (error = 0;;) {
980		if ((blist = TAILQ_FIRST(&vp->v_cleanblkhd)) != 0 &&
981		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
982			if (error)
983				break;
984			continue;
985		}
986		if ((blist = TAILQ_FIRST(&vp->v_dirtyblkhd)) != 0 &&
987		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
988			if (error)
989				break;
990			continue;
991		}
992		break;
993	}
994	if (error) {
995		VI_UNLOCK(vp);
996		return (error);
997	}
998
999	/*
1000	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1001	 * have write I/O in-progress but if there is a VM object then the
1002	 * VM object can also have read-I/O in-progress.
1003	 */
1004	do {
1005		while (vp->v_numoutput > 0) {
1006			vp->v_iflag |= VI_BWAIT;
1007			msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vnvlbv", 0);
1008		}
1009		VI_UNLOCK(vp);
1010		if (VOP_GETVOBJECT(vp, &object) == 0) {
1011			VM_OBJECT_LOCK(object);
1012			vm_object_pip_wait(object, "vnvlbx");
1013			VM_OBJECT_UNLOCK(object);
1014		}
1015		VI_LOCK(vp);
1016	} while (vp->v_numoutput > 0);
1017	VI_UNLOCK(vp);
1018
1019	/*
1020	 * Destroy the copy in the VM cache, too.
1021	 */
1022	if (VOP_GETVOBJECT(vp, &object) == 0) {
1023		VM_OBJECT_LOCK(object);
1024		vm_object_page_remove(object, 0, 0,
1025			(flags & V_SAVE) ? TRUE : FALSE);
1026		VM_OBJECT_UNLOCK(object);
1027	}
1028
1029#ifdef INVARIANTS
1030	VI_LOCK(vp);
1031	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1032	    (!TAILQ_EMPTY(&vp->v_dirtyblkhd) ||
1033	     !TAILQ_EMPTY(&vp->v_cleanblkhd)))
1034		panic("vinvalbuf: flush failed");
1035	VI_UNLOCK(vp);
1036#endif
1037	return (0);
1038}
1039
1040/*
1041 * Flush out buffers on the specified list.
1042 *
1043 */
1044static int
1045flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp)
1046	struct buf *blist;
1047	int flags;
1048	struct vnode *vp;
1049	int slpflag, slptimeo;
1050	int *errorp;
1051{
1052	struct buf *bp, *nbp;
1053	int found, error;
1054
1055	ASSERT_VI_LOCKED(vp, "flushbuflist");
1056
1057	for (found = 0, bp = blist; bp; bp = nbp) {
1058		nbp = TAILQ_NEXT(bp, b_vnbufs);
1059		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1060		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1061			continue;
1062		}
1063		found += 1;
1064		error = BUF_TIMELOCK(bp,
1065		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, VI_MTX(vp),
1066		    "flushbuf", slpflag, slptimeo);
1067		if (error) {
1068			if (error != ENOLCK)
1069				*errorp = error;
1070			goto done;
1071		}
1072		/*
1073		 * XXX Since there are no node locks for NFS, I
1074		 * believe there is a slight chance that a delayed
1075		 * write will occur while sleeping just above, so
1076		 * check for it.  Note that vfs_bio_awrite expects
1077		 * buffers to reside on a queue, while bwrite and
1078		 * brelse do not.
1079		 */
1080		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1081			(flags & V_SAVE)) {
1082
1083			if (bp->b_vp == vp) {
1084				if (bp->b_flags & B_CLUSTEROK) {
1085					vfs_bio_awrite(bp);
1086				} else {
1087					bremfree(bp);
1088					bp->b_flags |= B_ASYNC;
1089					bwrite(bp);
1090				}
1091			} else {
1092				bremfree(bp);
1093				(void) bwrite(bp);
1094			}
1095			goto done;
1096		}
1097		bremfree(bp);
1098		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1099		bp->b_flags &= ~B_ASYNC;
1100		brelse(bp);
1101		VI_LOCK(vp);
1102	}
1103	return (found);
1104done:
1105	VI_LOCK(vp);
1106	return (found);
1107}
1108
1109/*
1110 * Truncate a file's buffer and pages to a specified length.  This
1111 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1112 * sync activity.
1113 */
1114int
1115vtruncbuf(vp, cred, td, length, blksize)
1116	register struct vnode *vp;
1117	struct ucred *cred;
1118	struct thread *td;
1119	off_t length;
1120	int blksize;
1121{
1122	register struct buf *bp;
1123	struct buf *nbp;
1124	int anyfreed;
1125	int trunclbn;
1126
1127	/*
1128	 * Round up to the *next* lbn.
1129	 */
1130	trunclbn = (length + blksize - 1) / blksize;
1131
1132	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1133restart:
1134	VI_LOCK(vp);
1135	anyfreed = 1;
1136	for (;anyfreed;) {
1137		anyfreed = 0;
1138		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1139			nbp = TAILQ_NEXT(bp, b_vnbufs);
1140			if (bp->b_lblkno >= trunclbn) {
1141				if (BUF_LOCK(bp,
1142				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1143				    VI_MTX(vp)) == ENOLCK)
1144					goto restart;
1145
1146				bremfree(bp);
1147				bp->b_flags |= (B_INVAL | B_RELBUF);
1148				bp->b_flags &= ~B_ASYNC;
1149				brelse(bp);
1150				anyfreed = 1;
1151
1152				if (nbp &&
1153				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1154				    (nbp->b_vp != vp) ||
1155				    (nbp->b_flags & B_DELWRI))) {
1156					goto restart;
1157				}
1158				VI_LOCK(vp);
1159			}
1160		}
1161
1162		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1163			nbp = TAILQ_NEXT(bp, b_vnbufs);
1164			if (bp->b_lblkno >= trunclbn) {
1165				if (BUF_LOCK(bp,
1166				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1167				    VI_MTX(vp)) == ENOLCK)
1168					goto restart;
1169				bremfree(bp);
1170				bp->b_flags |= (B_INVAL | B_RELBUF);
1171				bp->b_flags &= ~B_ASYNC;
1172				brelse(bp);
1173				anyfreed = 1;
1174				if (nbp &&
1175				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1176				    (nbp->b_vp != vp) ||
1177				    (nbp->b_flags & B_DELWRI) == 0)) {
1178					goto restart;
1179				}
1180				VI_LOCK(vp);
1181			}
1182		}
1183	}
1184
1185	if (length > 0) {
1186restartsync:
1187		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1188			nbp = TAILQ_NEXT(bp, b_vnbufs);
1189			if (bp->b_lblkno > 0)
1190				continue;
1191			/*
1192			 * Since we hold the vnode lock this should only
1193			 * fail if we're racing with the buf daemon.
1194			 */
1195			if (BUF_LOCK(bp,
1196			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1197			    VI_MTX(vp)) == ENOLCK) {
1198				goto restart;
1199			}
1200			KASSERT((bp->b_flags & B_DELWRI),
1201			    ("buf(%p) on dirty queue without DELWRI", bp));
1202
1203			bremfree(bp);
1204			bawrite(bp);
1205			VI_LOCK(vp);
1206			goto restartsync;
1207		}
1208	}
1209
1210	while (vp->v_numoutput > 0) {
1211		vp->v_iflag |= VI_BWAIT;
1212		msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vbtrunc", 0);
1213	}
1214	VI_UNLOCK(vp);
1215	vnode_pager_setsize(vp, length);
1216
1217	return (0);
1218}
1219
1220/*
1221 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1222 * 		 a vnode.
1223 *
1224 *	NOTE: We have to deal with the special case of a background bitmap
1225 *	buffer, a situation where two buffers will have the same logical
1226 *	block offset.  We want (1) only the foreground buffer to be accessed
1227 *	in a lookup and (2) must differentiate between the foreground and
1228 *	background buffer in the splay tree algorithm because the splay
1229 *	tree cannot normally handle multiple entities with the same 'index'.
1230 *	We accomplish this by adding differentiating flags to the splay tree's
1231 *	numerical domain.
1232 */
1233static
1234struct buf *
1235buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1236{
1237	struct buf dummy;
1238	struct buf *lefttreemax, *righttreemin, *y;
1239
1240	if (root == NULL)
1241		return (NULL);
1242	lefttreemax = righttreemin = &dummy;
1243	for (;;) {
1244		if (lblkno < root->b_lblkno ||
1245		    (lblkno == root->b_lblkno &&
1246		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1247			if ((y = root->b_left) == NULL)
1248				break;
1249			if (lblkno < y->b_lblkno) {
1250				/* Rotate right. */
1251				root->b_left = y->b_right;
1252				y->b_right = root;
1253				root = y;
1254				if ((y = root->b_left) == NULL)
1255					break;
1256			}
1257			/* Link into the new root's right tree. */
1258			righttreemin->b_left = root;
1259			righttreemin = root;
1260		} else if (lblkno > root->b_lblkno ||
1261		    (lblkno == root->b_lblkno &&
1262		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1263			if ((y = root->b_right) == NULL)
1264				break;
1265			if (lblkno > y->b_lblkno) {
1266				/* Rotate left. */
1267				root->b_right = y->b_left;
1268				y->b_left = root;
1269				root = y;
1270				if ((y = root->b_right) == NULL)
1271					break;
1272			}
1273			/* Link into the new root's left tree. */
1274			lefttreemax->b_right = root;
1275			lefttreemax = root;
1276		} else {
1277			break;
1278		}
1279		root = y;
1280	}
1281	/* Assemble the new root. */
1282	lefttreemax->b_right = root->b_left;
1283	righttreemin->b_left = root->b_right;
1284	root->b_left = dummy.b_right;
1285	root->b_right = dummy.b_left;
1286	return (root);
1287}
1288
1289static
1290void
1291buf_vlist_remove(struct buf *bp)
1292{
1293	struct vnode *vp = bp->b_vp;
1294	struct buf *root;
1295
1296	ASSERT_VI_LOCKED(vp, "buf_vlist_remove");
1297	if (bp->b_xflags & BX_VNDIRTY) {
1298		if (bp != vp->v_dirtyblkroot) {
1299			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1300			    vp->v_dirtyblkroot);
1301			KASSERT(root == bp,
1302			    ("splay lookup failed during dirty remove"));
1303		}
1304		if (bp->b_left == NULL) {
1305			root = bp->b_right;
1306		} else {
1307			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1308			    bp->b_left);
1309			root->b_right = bp->b_right;
1310		}
1311		vp->v_dirtyblkroot = root;
1312		TAILQ_REMOVE(&vp->v_dirtyblkhd, bp, b_vnbufs);
1313		vp->v_dirtybufcnt--;
1314	} else {
1315		/* KASSERT(bp->b_xflags & BX_VNCLEAN, ("bp wasn't clean")); */
1316		if (bp != vp->v_cleanblkroot) {
1317			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1318			    vp->v_cleanblkroot);
1319			KASSERT(root == bp,
1320			    ("splay lookup failed during clean remove"));
1321		}
1322		if (bp->b_left == NULL) {
1323			root = bp->b_right;
1324		} else {
1325			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1326			    bp->b_left);
1327			root->b_right = bp->b_right;
1328		}
1329		vp->v_cleanblkroot = root;
1330		TAILQ_REMOVE(&vp->v_cleanblkhd, bp, b_vnbufs);
1331		vp->v_cleanbufcnt--;
1332	}
1333	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1334}
1335
1336/*
1337 * Add the buffer to the sorted clean or dirty block list using a
1338 * splay tree algorithm.
1339 *
1340 * NOTE: xflags is passed as a constant, optimizing this inline function!
1341 */
1342static
1343void
1344buf_vlist_add(struct buf *bp, struct vnode *vp, b_xflags_t xflags)
1345{
1346	struct buf *root;
1347
1348	ASSERT_VI_LOCKED(vp, "buf_vlist_add");
1349	bp->b_xflags |= xflags;
1350	if (xflags & BX_VNDIRTY) {
1351		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1352		if (root == NULL) {
1353			bp->b_left = NULL;
1354			bp->b_right = NULL;
1355			TAILQ_INSERT_TAIL(&vp->v_dirtyblkhd, bp, b_vnbufs);
1356		} else if (bp->b_lblkno < root->b_lblkno ||
1357		    (bp->b_lblkno == root->b_lblkno &&
1358		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1359			bp->b_left = root->b_left;
1360			bp->b_right = root;
1361			root->b_left = NULL;
1362			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1363		} else {
1364			bp->b_right = root->b_right;
1365			bp->b_left = root;
1366			root->b_right = NULL;
1367			TAILQ_INSERT_AFTER(&vp->v_dirtyblkhd,
1368			    root, bp, b_vnbufs);
1369		}
1370		vp->v_dirtybufcnt++;
1371		vp->v_dirtyblkroot = bp;
1372	} else {
1373		/* KASSERT(xflags & BX_VNCLEAN, ("xflags not clean")); */
1374		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1375		if (root == NULL) {
1376			bp->b_left = NULL;
1377			bp->b_right = NULL;
1378			TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1379		} else if (bp->b_lblkno < root->b_lblkno ||
1380		    (bp->b_lblkno == root->b_lblkno &&
1381		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1382			bp->b_left = root->b_left;
1383			bp->b_right = root;
1384			root->b_left = NULL;
1385			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1386		} else {
1387			bp->b_right = root->b_right;
1388			bp->b_left = root;
1389			root->b_right = NULL;
1390			TAILQ_INSERT_AFTER(&vp->v_cleanblkhd,
1391			    root, bp, b_vnbufs);
1392		}
1393		vp->v_cleanbufcnt++;
1394		vp->v_cleanblkroot = bp;
1395	}
1396}
1397
1398/*
1399 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1400 * shadow buffers used in background bitmap writes.
1401 *
1402 * This code isn't quite efficient as it could be because we are maintaining
1403 * two sorted lists and do not know which list the block resides in.
1404 *
1405 * During a "make buildworld" the desired buffer is found at one of
1406 * the roots more than 60% of the time.  Thus, checking both roots
1407 * before performing either splay eliminates unnecessary splays on the
1408 * first tree splayed.
1409 */
1410struct buf *
1411gbincore(struct vnode *vp, daddr_t lblkno)
1412{
1413	struct buf *bp;
1414
1415	GIANT_REQUIRED;
1416
1417	ASSERT_VI_LOCKED(vp, "gbincore");
1418	if ((bp = vp->v_cleanblkroot) != NULL &&
1419	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1420		return (bp);
1421	if ((bp = vp->v_dirtyblkroot) != NULL &&
1422	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1423		return (bp);
1424	if ((bp = vp->v_cleanblkroot) != NULL) {
1425		vp->v_cleanblkroot = bp = buf_splay(lblkno, 0, bp);
1426		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1427			return (bp);
1428	}
1429	if ((bp = vp->v_dirtyblkroot) != NULL) {
1430		vp->v_dirtyblkroot = bp = buf_splay(lblkno, 0, bp);
1431		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1432			return (bp);
1433	}
1434	return (NULL);
1435}
1436
1437/*
1438 * Associate a buffer with a vnode.
1439 */
1440void
1441bgetvp(vp, bp)
1442	register struct vnode *vp;
1443	register struct buf *bp;
1444{
1445
1446	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1447
1448	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1449	    ("bgetvp: bp already attached! %p", bp));
1450
1451	ASSERT_VI_LOCKED(vp, "bgetvp");
1452	vholdl(vp);
1453	bp->b_vp = vp;
1454	bp->b_dev = vn_todev(vp);
1455	/*
1456	 * Insert onto list for new vnode.
1457	 */
1458	buf_vlist_add(bp, vp, BX_VNCLEAN);
1459}
1460
1461/*
1462 * Disassociate a buffer from a vnode.
1463 */
1464void
1465brelvp(bp)
1466	register struct buf *bp;
1467{
1468	struct vnode *vp;
1469
1470	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1471
1472	/*
1473	 * Delete from old vnode list, if on one.
1474	 */
1475	vp = bp->b_vp;
1476	VI_LOCK(vp);
1477	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1478		buf_vlist_remove(bp);
1479	if ((vp->v_iflag & VI_ONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1480		vp->v_iflag &= ~VI_ONWORKLST;
1481		mtx_lock(&sync_mtx);
1482		LIST_REMOVE(vp, v_synclist);
1483 		syncer_worklist_len--;
1484		mtx_unlock(&sync_mtx);
1485	}
1486	vdropl(vp);
1487	bp->b_vp = (struct vnode *) 0;
1488	if (bp->b_object)
1489		bp->b_object = NULL;
1490	VI_UNLOCK(vp);
1491}
1492
1493/*
1494 * Add an item to the syncer work queue.
1495 */
1496static void
1497vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1498{
1499	int slot;
1500
1501	ASSERT_VI_LOCKED(vp, "vn_syncer_add_to_worklist");
1502
1503	mtx_lock(&sync_mtx);
1504	if (vp->v_iflag & VI_ONWORKLST)
1505		LIST_REMOVE(vp, v_synclist);
1506	else {
1507		vp->v_iflag |= VI_ONWORKLST;
1508 		syncer_worklist_len++;
1509	}
1510
1511	if (delay > syncer_maxdelay - 2)
1512		delay = syncer_maxdelay - 2;
1513	slot = (syncer_delayno + delay) & syncer_mask;
1514
1515	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1516	mtx_unlock(&sync_mtx);
1517}
1518
1519static int
1520sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1521{
1522	int error, len;
1523
1524	mtx_lock(&sync_mtx);
1525	len = syncer_worklist_len - sync_vnode_count;
1526	mtx_unlock(&sync_mtx);
1527	error = SYSCTL_OUT(req, &len, sizeof(len));
1528	return (error);
1529}
1530
1531SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1532    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1533
1534struct  proc *updateproc;
1535static void sched_sync(void);
1536static struct kproc_desc up_kp = {
1537	"syncer",
1538	sched_sync,
1539	&updateproc
1540};
1541SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1542
1543/*
1544 * System filesystem synchronizer daemon.
1545 */
1546static void
1547sched_sync(void)
1548{
1549	struct synclist *next;
1550	struct synclist *slp;
1551	struct vnode *vp;
1552	struct mount *mp;
1553	long starttime;
1554	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);
1555	static int dummychan;
1556	int last_work_seen;
1557	int net_worklist_len;
1558	int syncer_final_iter;
1559	int first_printf;
1560
1561	mtx_lock(&Giant);
1562	last_work_seen = 0;
1563	syncer_final_iter = 0;
1564	first_printf = 1;
1565	syncer_state = SYNCER_RUNNING;
1566	starttime = time_second;
1567
1568	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1569	    SHUTDOWN_PRI_LAST);
1570
1571	for (;;) {
1572		mtx_lock(&sync_mtx);
1573		if (syncer_state == SYNCER_FINAL_DELAY &&
1574		    syncer_final_iter == 0) {
1575			mtx_unlock(&sync_mtx);
1576			kthread_suspend_check(td->td_proc);
1577			mtx_lock(&sync_mtx);
1578		}
1579		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1580		if (syncer_state != SYNCER_RUNNING &&
1581		    starttime != time_second) {
1582			if (first_printf) {
1583				printf("\nSyncing disks, vnodes remaining...");
1584				first_printf = 0;
1585			}
1586			printf("%d ", net_worklist_len);
1587		}
1588		starttime = time_second;
1589
1590		/*
1591		 * Push files whose dirty time has expired.  Be careful
1592		 * of interrupt race on slp queue.
1593		 *
1594		 * Skip over empty worklist slots when shutting down.
1595		 */
1596		do {
1597			slp = &syncer_workitem_pending[syncer_delayno];
1598			syncer_delayno += 1;
1599			if (syncer_delayno == syncer_maxdelay)
1600				syncer_delayno = 0;
1601			next = &syncer_workitem_pending[syncer_delayno];
1602			/*
1603			 * If the worklist has wrapped since the
1604			 * it was emptied of all but syncer vnodes,
1605			 * switch to the FINAL_DELAY state and run
1606			 * for one more second.
1607			 */
1608			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1609			    net_worklist_len == 0 &&
1610			    last_work_seen == syncer_delayno) {
1611				syncer_state = SYNCER_FINAL_DELAY;
1612				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1613			}
1614		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1615		    syncer_worklist_len > 0);
1616
1617		/*
1618		 * Keep track of the last time there was anything
1619		 * on the worklist other than syncer vnodes.
1620		 * Return to the SHUTTING_DOWN state if any
1621		 * new work appears.
1622		 */
1623		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1624			last_work_seen = syncer_delayno;
1625		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1626			syncer_state = SYNCER_SHUTTING_DOWN;
1627		while ((vp = LIST_FIRST(slp)) != NULL) {
1628			if (VOP_ISLOCKED(vp, NULL) != 0 ||
1629			    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1630				LIST_REMOVE(vp, v_synclist);
1631				LIST_INSERT_HEAD(next, vp, v_synclist);
1632				continue;
1633			}
1634			if (VI_TRYLOCK(vp) == 0) {
1635				LIST_REMOVE(vp, v_synclist);
1636				LIST_INSERT_HEAD(next, vp, v_synclist);
1637				vn_finished_write(mp);
1638				continue;
1639			}
1640			/*
1641			 * We use vhold in case the vnode does not
1642			 * successfully sync.  vhold prevents the vnode from
1643			 * going away when we unlock the sync_mtx so that
1644			 * we can acquire the vnode interlock.
1645			 */
1646			vholdl(vp);
1647			mtx_unlock(&sync_mtx);
1648			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, td);
1649			(void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td);
1650			VOP_UNLOCK(vp, 0, td);
1651			vn_finished_write(mp);
1652			VI_LOCK(vp);
1653			if ((vp->v_iflag & VI_ONWORKLST) != 0) {
1654				/*
1655				 * Put us back on the worklist.  The worklist
1656				 * routine will remove us from our current
1657				 * position and then add us back in at a later
1658				 * position.
1659				 */
1660				vn_syncer_add_to_worklist(vp, syncdelay);
1661			}
1662			vdropl(vp);
1663			VI_UNLOCK(vp);
1664			mtx_lock(&sync_mtx);
1665		}
1666		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1667			syncer_final_iter--;
1668		mtx_unlock(&sync_mtx);
1669
1670		/*
1671		 * Do soft update processing.
1672		 */
1673		if (softdep_process_worklist_hook != NULL)
1674			(*softdep_process_worklist_hook)(NULL);
1675
1676		/*
1677		 * The variable rushjob allows the kernel to speed up the
1678		 * processing of the filesystem syncer process. A rushjob
1679		 * value of N tells the filesystem syncer to process the next
1680		 * N seconds worth of work on its queue ASAP. Currently rushjob
1681		 * is used by the soft update code to speed up the filesystem
1682		 * syncer process when the incore state is getting so far
1683		 * ahead of the disk that the kernel memory pool is being
1684		 * threatened with exhaustion.
1685		 */
1686		mtx_lock(&sync_mtx);
1687		if (rushjob > 0) {
1688			rushjob -= 1;
1689			mtx_unlock(&sync_mtx);
1690			continue;
1691		}
1692		mtx_unlock(&sync_mtx);
1693		/*
1694		 * Just sleep for a short period if time between
1695		 * iterations when shutting down to allow some I/O
1696		 * to happen.
1697		 *
1698		 * If it has taken us less than a second to process the
1699		 * current work, then wait. Otherwise start right over
1700		 * again. We can still lose time if any single round
1701		 * takes more than two seconds, but it does not really
1702		 * matter as we are just trying to generally pace the
1703		 * filesystem activity.
1704		 */
1705		if (syncer_state != SYNCER_RUNNING)
1706			tsleep(&dummychan, PPAUSE, "syncfnl",
1707			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1708		else if (time_second == starttime)
1709			tsleep(&lbolt, PPAUSE, "syncer", 0);
1710	}
1711}
1712
1713/*
1714 * Request the syncer daemon to speed up its work.
1715 * We never push it to speed up more than half of its
1716 * normal turn time, otherwise it could take over the cpu.
1717 */
1718int
1719speedup_syncer()
1720{
1721	struct thread *td;
1722	int ret = 0;
1723
1724	td = FIRST_THREAD_IN_PROC(updateproc);
1725	sleepq_remove(td, &lbolt);
1726	mtx_lock(&sync_mtx);
1727	if (rushjob < syncdelay / 2) {
1728		rushjob += 1;
1729		stat_rush_requests += 1;
1730		ret = 1;
1731	}
1732	mtx_unlock(&sync_mtx);
1733	return (ret);
1734}
1735
1736/*
1737 * Tell the syncer to speed up its work and run though its work
1738 * list several times, then tell it to shut down.
1739 */
1740static void
1741syncer_shutdown(void *arg, int howto)
1742{
1743	struct thread *td;
1744
1745	td = FIRST_THREAD_IN_PROC(updateproc);
1746	sleepq_remove(td, &lbolt);
1747	mtx_lock(&sync_mtx);
1748	syncer_state = SYNCER_SHUTTING_DOWN;
1749	rushjob = 0;
1750	mtx_unlock(&sync_mtx);
1751	kproc_shutdown(arg, howto);
1752}
1753
1754/*
1755 * Associate a p-buffer with a vnode.
1756 *
1757 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1758 * with the buffer.  i.e. the bp has not been linked into the vnode or
1759 * ref-counted.
1760 */
1761void
1762pbgetvp(vp, bp)
1763	register struct vnode *vp;
1764	register struct buf *bp;
1765{
1766
1767	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1768
1769	bp->b_vp = vp;
1770	bp->b_object = vp->v_object;
1771	bp->b_flags |= B_PAGING;
1772	bp->b_dev = vn_todev(vp);
1773}
1774
1775/*
1776 * Disassociate a p-buffer from a vnode.
1777 */
1778void
1779pbrelvp(bp)
1780	register struct buf *bp;
1781{
1782
1783	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1784
1785	/* XXX REMOVE ME */
1786	VI_LOCK(bp->b_vp);
1787	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1788		panic(
1789		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1790		    bp,
1791		    (int)bp->b_flags
1792		);
1793	}
1794	VI_UNLOCK(bp->b_vp);
1795	bp->b_vp = (struct vnode *) 0;
1796	bp->b_object = NULL;
1797	bp->b_flags &= ~B_PAGING;
1798}
1799
1800/*
1801 * Reassign a buffer from one vnode to another.
1802 * Used to assign file specific control information
1803 * (indirect blocks) to the vnode to which they belong.
1804 */
1805void
1806reassignbuf(struct buf *bp)
1807{
1808	struct vnode *vp;
1809	int delay;
1810
1811	vp = bp->b_vp;
1812	++reassignbufcalls;
1813
1814	/*
1815	 * B_PAGING flagged buffers cannot be reassigned because their vp
1816	 * is not fully linked in.
1817	 */
1818	if (bp->b_flags & B_PAGING)
1819		panic("cannot reassign paging buffer");
1820
1821	/*
1822	 * Delete from old vnode list, if on one.
1823	 */
1824	VI_LOCK(vp);
1825	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1826		buf_vlist_remove(bp);
1827	/*
1828	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1829	 * of clean buffers.
1830	 */
1831	if (bp->b_flags & B_DELWRI) {
1832		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1833			switch (vp->v_type) {
1834			case VDIR:
1835				delay = dirdelay;
1836				break;
1837			case VCHR:
1838				delay = metadelay;
1839				break;
1840			default:
1841				delay = filedelay;
1842			}
1843			vn_syncer_add_to_worklist(vp, delay);
1844		}
1845		buf_vlist_add(bp, vp, BX_VNDIRTY);
1846	} else {
1847		buf_vlist_add(bp, vp, BX_VNCLEAN);
1848
1849		if ((vp->v_iflag & VI_ONWORKLST) &&
1850		    TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1851			mtx_lock(&sync_mtx);
1852			LIST_REMOVE(vp, v_synclist);
1853 			syncer_worklist_len--;
1854			mtx_unlock(&sync_mtx);
1855			vp->v_iflag &= ~VI_ONWORKLST;
1856		}
1857	}
1858	VI_UNLOCK(vp);
1859}
1860
1861/*
1862 * Create a vnode for a device.
1863 * Used for mounting the root filesystem.
1864 */
1865int
1866bdevvp(dev, vpp)
1867	struct cdev *dev;
1868	struct vnode **vpp;
1869{
1870	register struct vnode *vp;
1871	struct vnode *nvp;
1872	int error;
1873
1874	if (dev == NULL) {
1875		*vpp = NULLVP;
1876		return (ENXIO);
1877	}
1878	if (vfinddev(dev, vpp))
1879		return (0);
1880
1881	error = getnewvnode("none", (struct mount *)0, spec_vnodeop_p, &nvp);
1882	if (error) {
1883		*vpp = NULLVP;
1884		return (error);
1885	}
1886	vp = nvp;
1887	vp->v_type = VCHR;
1888	vp->v_bsize = DEV_BSIZE;
1889	addalias(vp, dev);
1890	*vpp = vp;
1891	return (0);
1892}
1893
1894static void
1895v_incr_usecount(struct vnode *vp, int delta)
1896{
1897
1898	vp->v_usecount += delta;
1899	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1900		mtx_lock(&spechash_mtx);
1901		vp->v_rdev->si_usecount += delta;
1902		mtx_unlock(&spechash_mtx);
1903	}
1904}
1905
1906/*
1907 * Add vnode to the alias list hung off the struct cdev *.
1908 *
1909 * The reason for this gunk is that multiple vnodes can reference
1910 * the same physical device, so checking vp->v_usecount to see
1911 * how many users there are is inadequate; the v_usecount for
1912 * the vnodes need to be accumulated.  vcount() does that.
1913 */
1914struct vnode *
1915addaliasu(nvp, nvp_rdev)
1916	struct vnode *nvp;
1917	dev_t nvp_rdev;
1918{
1919	struct vnode *ovp;
1920	vop_t **ops;
1921	struct cdev *dev;
1922
1923	if (nvp->v_type == VBLK)
1924		return (nvp);
1925	if (nvp->v_type != VCHR)
1926		panic("addaliasu on non-special vnode");
1927	dev = findcdev(nvp_rdev);
1928	if (dev == NULL)
1929		return (nvp);
1930	/*
1931	 * Check to see if we have a bdevvp vnode with no associated
1932	 * filesystem. If so, we want to associate the filesystem of
1933	 * the new newly instigated vnode with the bdevvp vnode and
1934	 * discard the newly created vnode rather than leaving the
1935	 * bdevvp vnode lying around with no associated filesystem.
1936	 */
1937	if (vfinddev(dev, &ovp) == 0 || ovp->v_data != NULL) {
1938		addalias(nvp, dev);
1939		return (nvp);
1940	}
1941	/*
1942	 * Discard unneeded vnode, but save its node specific data.
1943	 * Note that if there is a lock, it is carried over in the
1944	 * node specific data to the replacement vnode.
1945	 */
1946	vref(ovp);
1947	ovp->v_data = nvp->v_data;
1948	ovp->v_tag = nvp->v_tag;
1949	nvp->v_data = NULL;
1950	lockdestroy(ovp->v_vnlock);
1951	lockinit(ovp->v_vnlock, PVFS, nvp->v_vnlock->lk_wmesg,
1952	    nvp->v_vnlock->lk_timo, nvp->v_vnlock->lk_flags & LK_EXTFLG_MASK);
1953	ops = ovp->v_op;
1954	ovp->v_op = nvp->v_op;
1955	if (VOP_ISLOCKED(nvp, curthread)) {
1956		VOP_UNLOCK(nvp, 0, curthread);
1957		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
1958	}
1959	nvp->v_op = ops;
1960	delmntque(ovp);
1961	insmntque(ovp, nvp->v_mount);
1962	vrele(nvp);
1963	vgone(nvp);
1964	return (ovp);
1965}
1966
1967/* This is a local helper function that do the same as addaliasu, but for a
1968 * struct cdev *instead of an dev_t. */
1969static void
1970addalias(nvp, dev)
1971	struct vnode *nvp;
1972	struct cdev *dev;
1973{
1974
1975	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
1976	dev_ref(dev);
1977	nvp->v_rdev = dev;
1978	VI_LOCK(nvp);
1979	mtx_lock(&spechash_mtx);
1980	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1981	dev->si_usecount += nvp->v_usecount;
1982	mtx_unlock(&spechash_mtx);
1983	VI_UNLOCK(nvp);
1984}
1985
1986/*
1987 * Grab a particular vnode from the free list, increment its
1988 * reference count and lock it. The vnode lock bit is set if the
1989 * vnode is being eliminated in vgone. The process is awakened
1990 * when the transition is completed, and an error returned to
1991 * indicate that the vnode is no longer usable (possibly having
1992 * been changed to a new filesystem type).
1993 */
1994int
1995vget(vp, flags, td)
1996	register struct vnode *vp;
1997	int flags;
1998	struct thread *td;
1999{
2000	int error;
2001
2002	/*
2003	 * If the vnode is in the process of being cleaned out for
2004	 * another use, we wait for the cleaning to finish and then
2005	 * return failure. Cleaning is determined by checking that
2006	 * the VI_XLOCK flag is set.
2007	 */
2008	if ((flags & LK_INTERLOCK) == 0)
2009		VI_LOCK(vp);
2010	if (vp->v_iflag & VI_XLOCK && vp->v_vxthread != curthread) {
2011		if ((flags & LK_NOWAIT) == 0) {
2012			vp->v_iflag |= VI_XWANT;
2013			msleep(vp, VI_MTX(vp), PINOD | PDROP, "vget", 0);
2014			return (ENOENT);
2015		}
2016		VI_UNLOCK(vp);
2017		return (EBUSY);
2018	}
2019
2020	v_incr_usecount(vp, 1);
2021
2022	if (VSHOULDBUSY(vp))
2023		vbusy(vp);
2024	if (flags & LK_TYPE_MASK) {
2025		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
2026			/*
2027			 * must expand vrele here because we do not want
2028			 * to call VOP_INACTIVE if the reference count
2029			 * drops back to zero since it was never really
2030			 * active. We must remove it from the free list
2031			 * before sleeping so that multiple processes do
2032			 * not try to recycle it.
2033			 */
2034			VI_LOCK(vp);
2035			v_incr_usecount(vp, -1);
2036			if (VSHOULDFREE(vp))
2037				vfree(vp);
2038			else
2039				vlruvp(vp);
2040			VI_UNLOCK(vp);
2041		}
2042		return (error);
2043	}
2044	VI_UNLOCK(vp);
2045	return (0);
2046}
2047
2048/*
2049 * Increase the reference count of a vnode.
2050 */
2051void
2052vref(struct vnode *vp)
2053{
2054
2055	VI_LOCK(vp);
2056	v_incr_usecount(vp, 1);
2057	VI_UNLOCK(vp);
2058}
2059
2060/*
2061 * Return reference count of a vnode.
2062 *
2063 * The results of this call are only guaranteed when some mechanism other
2064 * than the VI lock is used to stop other processes from gaining references
2065 * to the vnode.  This may be the case if the caller holds the only reference.
2066 * This is also useful when stale data is acceptable as race conditions may
2067 * be accounted for by some other means.
2068 */
2069int
2070vrefcnt(struct vnode *vp)
2071{
2072	int usecnt;
2073
2074	VI_LOCK(vp);
2075	usecnt = vp->v_usecount;
2076	VI_UNLOCK(vp);
2077
2078	return (usecnt);
2079}
2080
2081
2082/*
2083 * Vnode put/release.
2084 * If count drops to zero, call inactive routine and return to freelist.
2085 */
2086void
2087vrele(vp)
2088	struct vnode *vp;
2089{
2090	struct thread *td = curthread;	/* XXX */
2091
2092	GIANT_REQUIRED;
2093
2094	KASSERT(vp != NULL, ("vrele: null vp"));
2095
2096	VI_LOCK(vp);
2097
2098	/* Skip this v_writecount check if we're going to panic below. */
2099	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2100	    ("vrele: missed vn_close"));
2101
2102	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2103	    vp->v_usecount == 1)) {
2104		v_incr_usecount(vp, -1);
2105		VI_UNLOCK(vp);
2106
2107		return;
2108	}
2109
2110	if (vp->v_usecount == 1) {
2111		v_incr_usecount(vp, -1);
2112		/*
2113		 * We must call VOP_INACTIVE with the node locked. Mark
2114		 * as VI_DOINGINACT to avoid recursion.
2115		 */
2116		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
2117			VI_LOCK(vp);
2118			vp->v_iflag |= VI_DOINGINACT;
2119			VI_UNLOCK(vp);
2120			VOP_INACTIVE(vp, td);
2121			VI_LOCK(vp);
2122			KASSERT(vp->v_iflag & VI_DOINGINACT,
2123			    ("vrele: lost VI_DOINGINACT"));
2124			vp->v_iflag &= ~VI_DOINGINACT;
2125		} else
2126			VI_LOCK(vp);
2127		if (VSHOULDFREE(vp))
2128			vfree(vp);
2129		else
2130			vlruvp(vp);
2131		VI_UNLOCK(vp);
2132
2133	} else {
2134#ifdef DIAGNOSTIC
2135		vprint("vrele: negative ref count", vp);
2136#endif
2137		VI_UNLOCK(vp);
2138		panic("vrele: negative ref cnt");
2139	}
2140}
2141
2142/*
2143 * Release an already locked vnode.  This give the same effects as
2144 * unlock+vrele(), but takes less time and avoids releasing and
2145 * re-aquiring the lock (as vrele() aquires the lock internally.)
2146 */
2147void
2148vput(vp)
2149	struct vnode *vp;
2150{
2151	struct thread *td = curthread;	/* XXX */
2152
2153	GIANT_REQUIRED;
2154
2155	KASSERT(vp != NULL, ("vput: null vp"));
2156	VI_LOCK(vp);
2157	/* Skip this v_writecount check if we're going to panic below. */
2158	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2159	    ("vput: missed vn_close"));
2160
2161	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2162	    vp->v_usecount == 1)) {
2163		v_incr_usecount(vp, -1);
2164		VOP_UNLOCK(vp, LK_INTERLOCK, td);
2165		return;
2166	}
2167
2168	if (vp->v_usecount == 1) {
2169		v_incr_usecount(vp, -1);
2170		/*
2171		 * We must call VOP_INACTIVE with the node locked, so
2172		 * we just need to release the vnode mutex. Mark as
2173		 * as VI_DOINGINACT to avoid recursion.
2174		 */
2175		vp->v_iflag |= VI_DOINGINACT;
2176		VI_UNLOCK(vp);
2177		VOP_INACTIVE(vp, td);
2178		VI_LOCK(vp);
2179		KASSERT(vp->v_iflag & VI_DOINGINACT,
2180		    ("vput: lost VI_DOINGINACT"));
2181		vp->v_iflag &= ~VI_DOINGINACT;
2182		if (VSHOULDFREE(vp))
2183			vfree(vp);
2184		else
2185			vlruvp(vp);
2186		VI_UNLOCK(vp);
2187
2188	} else {
2189#ifdef DIAGNOSTIC
2190		vprint("vput: negative ref count", vp);
2191#endif
2192		panic("vput: negative ref cnt");
2193	}
2194}
2195
2196/*
2197 * Somebody doesn't want the vnode recycled.
2198 */
2199void
2200vhold(struct vnode *vp)
2201{
2202
2203	VI_LOCK(vp);
2204	vholdl(vp);
2205	VI_UNLOCK(vp);
2206}
2207
2208void
2209vholdl(vp)
2210	register struct vnode *vp;
2211{
2212
2213	vp->v_holdcnt++;
2214	if (VSHOULDBUSY(vp))
2215		vbusy(vp);
2216}
2217
2218/*
2219 * Note that there is one less who cares about this vnode.  vdrop() is the
2220 * opposite of vhold().
2221 */
2222void
2223vdrop(struct vnode *vp)
2224{
2225
2226	VI_LOCK(vp);
2227	vdropl(vp);
2228	VI_UNLOCK(vp);
2229}
2230
2231void
2232vdropl(vp)
2233	register struct vnode *vp;
2234{
2235
2236	if (vp->v_holdcnt <= 0)
2237		panic("vdrop: holdcnt");
2238	vp->v_holdcnt--;
2239	if (VSHOULDFREE(vp))
2240		vfree(vp);
2241	else
2242		vlruvp(vp);
2243}
2244
2245/*
2246 * Remove any vnodes in the vnode table belonging to mount point mp.
2247 *
2248 * If FORCECLOSE is not specified, there should not be any active ones,
2249 * return error if any are found (nb: this is a user error, not a
2250 * system error). If FORCECLOSE is specified, detach any active vnodes
2251 * that are found.
2252 *
2253 * If WRITECLOSE is set, only flush out regular file vnodes open for
2254 * writing.
2255 *
2256 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2257 *
2258 * `rootrefs' specifies the base reference count for the root vnode
2259 * of this filesystem. The root vnode is considered busy if its
2260 * v_usecount exceeds this value. On a successful return, vflush(, td)
2261 * will call vrele() on the root vnode exactly rootrefs times.
2262 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2263 * be zero.
2264 */
2265#ifdef DIAGNOSTIC
2266static int busyprt = 0;		/* print out busy vnodes */
2267SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2268#endif
2269
2270int
2271vflush(mp, rootrefs, flags, td)
2272	struct mount *mp;
2273	int rootrefs;
2274	int flags;
2275	struct thread *td;
2276{
2277	struct vnode *vp, *nvp, *rootvp = NULL;
2278	struct vattr vattr;
2279	int busy = 0, error;
2280
2281	if (rootrefs > 0) {
2282		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2283		    ("vflush: bad args"));
2284		/*
2285		 * Get the filesystem root vnode. We can vput() it
2286		 * immediately, since with rootrefs > 0, it won't go away.
2287		 */
2288		if ((error = VFS_ROOT(mp, &rootvp, td)) != 0)
2289			return (error);
2290		vput(rootvp);
2291
2292	}
2293	MNT_ILOCK(mp);
2294loop:
2295	MNT_VNODE_FOREACH(vp, mp, nvp) {
2296
2297		VI_LOCK(vp);
2298		MNT_IUNLOCK(mp);
2299		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td);
2300		if (error) {
2301			MNT_ILOCK(mp);
2302			goto loop;
2303		}
2304		/*
2305		 * Skip over a vnodes marked VV_SYSTEM.
2306		 */
2307		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2308			VOP_UNLOCK(vp, 0, td);
2309			MNT_ILOCK(mp);
2310			continue;
2311		}
2312		/*
2313		 * If WRITECLOSE is set, flush out unlinked but still open
2314		 * files (even if open only for reading) and regular file
2315		 * vnodes open for writing.
2316		 */
2317		if (flags & WRITECLOSE) {
2318			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2319			VI_LOCK(vp);
2320
2321			if ((vp->v_type == VNON ||
2322			    (error == 0 && vattr.va_nlink > 0)) &&
2323			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2324				VOP_UNLOCK(vp, LK_INTERLOCK, td);
2325				MNT_ILOCK(mp);
2326				continue;
2327			}
2328		} else
2329			VI_LOCK(vp);
2330
2331		VOP_UNLOCK(vp, 0, td);
2332
2333		/*
2334		 * With v_usecount == 0, all we need to do is clear out the
2335		 * vnode data structures and we are done.
2336		 */
2337		if (vp->v_usecount == 0) {
2338			vgonel(vp, td);
2339			MNT_ILOCK(mp);
2340			continue;
2341		}
2342
2343		/*
2344		 * If FORCECLOSE is set, forcibly close the vnode. For block
2345		 * or character devices, revert to an anonymous device. For
2346		 * all other files, just kill them.
2347		 */
2348		if (flags & FORCECLOSE) {
2349			if (vp->v_type != VCHR)
2350				vgonel(vp, td);
2351			else
2352				vgonechrl(vp, td);
2353			MNT_ILOCK(mp);
2354			continue;
2355		}
2356#ifdef DIAGNOSTIC
2357		if (busyprt)
2358			vprint("vflush: busy vnode", vp);
2359#endif
2360		VI_UNLOCK(vp);
2361		MNT_ILOCK(mp);
2362		busy++;
2363	}
2364	MNT_IUNLOCK(mp);
2365	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2366		/*
2367		 * If just the root vnode is busy, and if its refcount
2368		 * is equal to `rootrefs', then go ahead and kill it.
2369		 */
2370		VI_LOCK(rootvp);
2371		KASSERT(busy > 0, ("vflush: not busy"));
2372		KASSERT(rootvp->v_usecount >= rootrefs,
2373		    ("vflush: usecount %d < rootrefs %d",
2374		     rootvp->v_usecount, rootrefs));
2375		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2376			vgonel(rootvp, td);
2377			busy = 0;
2378		} else
2379			VI_UNLOCK(rootvp);
2380	}
2381	if (busy)
2382		return (EBUSY);
2383	for (; rootrefs > 0; rootrefs--)
2384		vrele(rootvp);
2385	return (0);
2386}
2387
2388/*
2389 * This moves a now (likely recyclable) vnode to the end of the
2390 * mountlist.  XXX However, it is temporarily disabled until we
2391 * can clean up ffs_sync() and friends, which have loop restart
2392 * conditions which this code causes to operate O(N^2).
2393 */
2394static void
2395vlruvp(struct vnode *vp)
2396{
2397#if 0
2398	struct mount *mp;
2399
2400	if ((mp = vp->v_mount) != NULL) {
2401		MNT_ILOCK(mp);
2402		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2403		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2404		MNT_IUNLOCK(mp);
2405	}
2406#endif
2407}
2408
2409static void
2410vx_lock(struct vnode *vp)
2411{
2412
2413	ASSERT_VI_LOCKED(vp, "vx_lock");
2414
2415	/*
2416	 * Prevent the vnode from being recycled or brought into use while we
2417	 * clean it out.
2418	 */
2419	if (vp->v_iflag & VI_XLOCK)
2420		panic("vclean: deadlock");
2421	vp->v_iflag |= VI_XLOCK;
2422	vp->v_vxthread = curthread;
2423}
2424
2425static void
2426vx_unlock(struct vnode *vp)
2427{
2428	ASSERT_VI_LOCKED(vp, "vx_unlock");
2429	vp->v_iflag &= ~VI_XLOCK;
2430	vp->v_vxthread = NULL;
2431	if (vp->v_iflag & VI_XWANT) {
2432		vp->v_iflag &= ~VI_XWANT;
2433		wakeup(vp);
2434	}
2435}
2436
2437/*
2438 * Disassociate the underlying filesystem from a vnode.
2439 */
2440static void
2441vclean(vp, flags, td)
2442	struct vnode *vp;
2443	int flags;
2444	struct thread *td;
2445{
2446	int active;
2447
2448	ASSERT_VI_LOCKED(vp, "vclean");
2449	/*
2450	 * Check to see if the vnode is in use. If so we have to reference it
2451	 * before we clean it out so that its count cannot fall to zero and
2452	 * generate a race against ourselves to recycle it.
2453	 */
2454	if ((active = vp->v_usecount))
2455		v_incr_usecount(vp, 1);
2456
2457	/*
2458	 * Even if the count is zero, the VOP_INACTIVE routine may still
2459	 * have the object locked while it cleans it out. The VOP_LOCK
2460	 * ensures that the VOP_INACTIVE routine is done with its work.
2461	 * For active vnodes, it ensures that no other activity can
2462	 * occur while the underlying object is being cleaned out.
2463	 */
2464	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2465
2466	/*
2467	 * Clean out any buffers associated with the vnode.
2468	 * If the flush fails, just toss the buffers.
2469	 */
2470	if (flags & DOCLOSE) {
2471		struct buf *bp;
2472		bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
2473		if (bp != NULL)
2474			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2475		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2476			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2477	}
2478
2479	VOP_DESTROYVOBJECT(vp);
2480
2481	/*
2482	 * Any other processes trying to obtain this lock must first
2483	 * wait for VXLOCK to clear, then call the new lock operation.
2484	 */
2485	VOP_UNLOCK(vp, 0, td);
2486
2487	/*
2488	 * If purging an active vnode, it must be closed and
2489	 * deactivated before being reclaimed. Note that the
2490	 * VOP_INACTIVE will unlock the vnode.
2491	 */
2492	if (active) {
2493		if (flags & DOCLOSE)
2494			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2495		VI_LOCK(vp);
2496		if ((vp->v_iflag & VI_DOINGINACT) == 0) {
2497			vp->v_iflag |= VI_DOINGINACT;
2498			VI_UNLOCK(vp);
2499			if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2500				panic("vclean: cannot relock.");
2501			VOP_INACTIVE(vp, td);
2502			VI_LOCK(vp);
2503			KASSERT(vp->v_iflag & VI_DOINGINACT,
2504			    ("vclean: lost VI_DOINGINACT"));
2505			vp->v_iflag &= ~VI_DOINGINACT;
2506		}
2507		VI_UNLOCK(vp);
2508	}
2509	/*
2510	 * Reclaim the vnode.
2511	 */
2512	if (VOP_RECLAIM(vp, td))
2513		panic("vclean: cannot reclaim");
2514
2515	if (active) {
2516		/*
2517		 * Inline copy of vrele() since VOP_INACTIVE
2518		 * has already been called.
2519		 */
2520		VI_LOCK(vp);
2521		v_incr_usecount(vp, -1);
2522		if (vp->v_usecount <= 0) {
2523#ifdef INVARIANTS
2524			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2525				vprint("vclean: bad ref count", vp);
2526				panic("vclean: ref cnt");
2527			}
2528#endif
2529			if (VSHOULDFREE(vp))
2530				vfree(vp);
2531		}
2532		VI_UNLOCK(vp);
2533	}
2534	/*
2535	 * Delete from old mount point vnode list.
2536	 */
2537	delmntque(vp);
2538	cache_purge(vp);
2539	VI_LOCK(vp);
2540	if (VSHOULDFREE(vp))
2541		vfree(vp);
2542
2543	/*
2544	 * Done with purge, reset to the standard lock and
2545	 * notify sleepers of the grim news.
2546	 */
2547	vp->v_vnlock = &vp->v_lock;
2548	vp->v_op = dead_vnodeop_p;
2549	if (vp->v_pollinfo != NULL)
2550		vn_pollgone(vp);
2551	vp->v_tag = "none";
2552}
2553
2554/*
2555 * Eliminate all activity associated with the requested vnode
2556 * and with all vnodes aliased to the requested vnode.
2557 */
2558int
2559vop_revoke(ap)
2560	struct vop_revoke_args /* {
2561		struct vnode *a_vp;
2562		int a_flags;
2563	} */ *ap;
2564{
2565	struct vnode *vp, *vq;
2566	struct cdev *dev;
2567
2568	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2569	vp = ap->a_vp;
2570	KASSERT((vp->v_type == VCHR), ("vop_revoke: not VCHR"));
2571
2572	VI_LOCK(vp);
2573	/*
2574	 * If a vgone (or vclean) is already in progress,
2575	 * wait until it is done and return.
2576	 */
2577	if (vp->v_iflag & VI_XLOCK) {
2578		vp->v_iflag |= VI_XWANT;
2579		msleep(vp, VI_MTX(vp), PINOD | PDROP,
2580		    "vop_revokeall", 0);
2581		return (0);
2582	}
2583	VI_UNLOCK(vp);
2584	dev = vp->v_rdev;
2585	for (;;) {
2586		mtx_lock(&spechash_mtx);
2587		vq = SLIST_FIRST(&dev->si_hlist);
2588		mtx_unlock(&spechash_mtx);
2589		if (vq == NULL)
2590			break;
2591		vgone(vq);
2592	}
2593	return (0);
2594}
2595
2596/*
2597 * Recycle an unused vnode to the front of the free list.
2598 * Release the passed interlock if the vnode will be recycled.
2599 */
2600int
2601vrecycle(vp, inter_lkp, td)
2602	struct vnode *vp;
2603	struct mtx *inter_lkp;
2604	struct thread *td;
2605{
2606
2607	VI_LOCK(vp);
2608	if (vp->v_usecount == 0) {
2609		if (inter_lkp) {
2610			mtx_unlock(inter_lkp);
2611		}
2612		vgonel(vp, td);
2613		return (1);
2614	}
2615	VI_UNLOCK(vp);
2616	return (0);
2617}
2618
2619/*
2620 * Eliminate all activity associated with a vnode
2621 * in preparation for reuse.
2622 */
2623void
2624vgone(vp)
2625	register struct vnode *vp;
2626{
2627	struct thread *td = curthread;	/* XXX */
2628
2629	VI_LOCK(vp);
2630	vgonel(vp, td);
2631}
2632
2633/*
2634 * Disassociate a character device from the its underlying filesystem and
2635 * attach it to spec.  This is for use when the chr device is still active
2636 * and the filesystem is going away.
2637 */
2638static void
2639vgonechrl(struct vnode *vp, struct thread *td)
2640{
2641	ASSERT_VI_LOCKED(vp, "vgonechrl");
2642	vx_lock(vp);
2643	/*
2644	 * This is a custom version of vclean() which does not tearm down
2645	 * the bufs or vm objects held by this vnode.  This allows filesystems
2646	 * to continue using devices which were discovered via another
2647	 * filesystem that has been unmounted.
2648	 */
2649	if (vp->v_usecount != 0) {
2650		v_incr_usecount(vp, 1);
2651		/*
2652		 * Ensure that no other activity can occur while the
2653		 * underlying object is being cleaned out.
2654		 */
2655		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2656		/*
2657		 * Any other processes trying to obtain this lock must first
2658		 * wait for VXLOCK to clear, then call the new lock operation.
2659		 */
2660		VOP_UNLOCK(vp, 0, td);
2661		vp->v_vnlock = &vp->v_lock;
2662		vp->v_tag = "orphanchr";
2663		vp->v_op = spec_vnodeop_p;
2664		delmntque(vp);
2665		cache_purge(vp);
2666		vrele(vp);
2667		VI_LOCK(vp);
2668	} else
2669		vclean(vp, 0, td);
2670	vp->v_op = spec_vnodeop_p;
2671	vx_unlock(vp);
2672	VI_UNLOCK(vp);
2673}
2674
2675/*
2676 * vgone, with the vp interlock held.
2677 */
2678void
2679vgonel(vp, td)
2680	struct vnode *vp;
2681	struct thread *td;
2682{
2683	/*
2684	 * If a vgone (or vclean) is already in progress,
2685	 * wait until it is done and return.
2686	 */
2687	ASSERT_VI_LOCKED(vp, "vgonel");
2688	if (vp->v_iflag & VI_XLOCK) {
2689		vp->v_iflag |= VI_XWANT;
2690		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vgone", 0);
2691		return;
2692	}
2693	vx_lock(vp);
2694
2695	/*
2696	 * Clean out the filesystem specific data.
2697	 */
2698	vclean(vp, DOCLOSE, td);
2699	VI_UNLOCK(vp);
2700
2701	/*
2702	 * If special device, remove it from special device alias list
2703	 * if it is on one.
2704	 */
2705	VI_LOCK(vp);
2706	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2707		mtx_lock(&spechash_mtx);
2708		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
2709		vp->v_rdev->si_usecount -= vp->v_usecount;
2710		mtx_unlock(&spechash_mtx);
2711		dev_rel(vp->v_rdev);
2712		vp->v_rdev = NULL;
2713	}
2714
2715	/*
2716	 * If it is on the freelist and not already at the head,
2717	 * move it to the head of the list. The test of the
2718	 * VDOOMED flag and the reference count of zero is because
2719	 * it will be removed from the free list by getnewvnode,
2720	 * but will not have its reference count incremented until
2721	 * after calling vgone. If the reference count were
2722	 * incremented first, vgone would (incorrectly) try to
2723	 * close the previous instance of the underlying object.
2724	 */
2725	if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2726		mtx_lock(&vnode_free_list_mtx);
2727		if (vp->v_iflag & VI_FREE) {
2728			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2729		} else {
2730			vp->v_iflag |= VI_FREE;
2731			freevnodes++;
2732		}
2733		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2734		mtx_unlock(&vnode_free_list_mtx);
2735	}
2736
2737	vp->v_type = VBAD;
2738	vx_unlock(vp);
2739	VI_UNLOCK(vp);
2740}
2741
2742/*
2743 * Lookup a vnode by device number.
2744 */
2745int
2746vfinddev(dev, vpp)
2747	struct cdev *dev;
2748	struct vnode **vpp;
2749{
2750	struct vnode *vp;
2751
2752	mtx_lock(&spechash_mtx);
2753	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2754		*vpp = vp;
2755		mtx_unlock(&spechash_mtx);
2756		return (1);
2757	}
2758	mtx_unlock(&spechash_mtx);
2759	return (0);
2760}
2761
2762/*
2763 * Calculate the total number of references to a special device.
2764 */
2765int
2766vcount(vp)
2767	struct vnode *vp;
2768{
2769	int count;
2770
2771	mtx_lock(&spechash_mtx);
2772	count = vp->v_rdev->si_usecount;
2773	mtx_unlock(&spechash_mtx);
2774	return (count);
2775}
2776
2777/*
2778 * Same as above, but using the struct cdev *as argument
2779 */
2780int
2781count_dev(dev)
2782	struct cdev *dev;
2783{
2784	int count;
2785
2786	mtx_lock(&spechash_mtx);
2787	count = dev->si_usecount;
2788	mtx_unlock(&spechash_mtx);
2789	return(count);
2790}
2791
2792/*
2793 * Print out a description of a vnode.
2794 */
2795static char *typename[] =
2796{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2797
2798void
2799vprint(label, vp)
2800	char *label;
2801	struct vnode *vp;
2802{
2803	char buf[96];
2804
2805	if (label != NULL)
2806		printf("%s: %p: ", label, (void *)vp);
2807	else
2808		printf("%p: ", (void *)vp);
2809	printf("tag %s, type %s, usecount %d, writecount %d, refcount %d,",
2810	    vp->v_tag, typename[vp->v_type], vp->v_usecount,
2811	    vp->v_writecount, vp->v_holdcnt);
2812	buf[0] = '\0';
2813	if (vp->v_vflag & VV_ROOT)
2814		strcat(buf, "|VV_ROOT");
2815	if (vp->v_vflag & VV_TEXT)
2816		strcat(buf, "|VV_TEXT");
2817	if (vp->v_vflag & VV_SYSTEM)
2818		strcat(buf, "|VV_SYSTEM");
2819	if (vp->v_iflag & VI_XLOCK)
2820		strcat(buf, "|VI_XLOCK");
2821	if (vp->v_iflag & VI_XWANT)
2822		strcat(buf, "|VI_XWANT");
2823	if (vp->v_iflag & VI_BWAIT)
2824		strcat(buf, "|VI_BWAIT");
2825	if (vp->v_iflag & VI_DOOMED)
2826		strcat(buf, "|VI_DOOMED");
2827	if (vp->v_iflag & VI_FREE)
2828		strcat(buf, "|VI_FREE");
2829	if (vp->v_vflag & VV_OBJBUF)
2830		strcat(buf, "|VV_OBJBUF");
2831	if (buf[0] != '\0')
2832		printf(" flags (%s),", &buf[1]);
2833	lockmgr_printinfo(vp->v_vnlock);
2834	printf("\n");
2835	if (vp->v_data != NULL)
2836		VOP_PRINT(vp);
2837}
2838
2839#ifdef DDB
2840#include <ddb/ddb.h>
2841/*
2842 * List all of the locked vnodes in the system.
2843 * Called when debugging the kernel.
2844 */
2845DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2846{
2847	struct mount *mp, *nmp;
2848	struct vnode *vp;
2849
2850	/*
2851	 * Note: because this is DDB, we can't obey the locking semantics
2852	 * for these structures, which means we could catch an inconsistent
2853	 * state and dereference a nasty pointer.  Not much to be done
2854	 * about that.
2855	 */
2856	printf("Locked vnodes\n");
2857	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2858		nmp = TAILQ_NEXT(mp, mnt_list);
2859		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2860			if (VOP_ISLOCKED(vp, NULL))
2861				vprint(NULL, vp);
2862		}
2863		nmp = TAILQ_NEXT(mp, mnt_list);
2864	}
2865}
2866#endif
2867
2868/*
2869 * Fill in a struct xvfsconf based on a struct vfsconf.
2870 */
2871static void
2872vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2873{
2874
2875	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2876	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2877	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2878	xvfsp->vfc_flags = vfsp->vfc_flags;
2879	/*
2880	 * These are unused in userland, we keep them
2881	 * to not break binary compatibility.
2882	 */
2883	xvfsp->vfc_vfsops = NULL;
2884	xvfsp->vfc_next = NULL;
2885}
2886
2887/*
2888 * Top level filesystem related information gathering.
2889 */
2890static int
2891sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2892{
2893	struct vfsconf *vfsp;
2894	struct xvfsconf xvfsp;
2895	int error;
2896
2897	error = 0;
2898	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2899		vfsconf2x(vfsp, &xvfsp);
2900		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2901		if (error)
2902			break;
2903	}
2904	return (error);
2905}
2906
2907SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2908    "S,xvfsconf", "List of all configured filesystems");
2909
2910#ifndef BURN_BRIDGES
2911static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2912
2913static int
2914vfs_sysctl(SYSCTL_HANDLER_ARGS)
2915{
2916	int *name = (int *)arg1 - 1;	/* XXX */
2917	u_int namelen = arg2 + 1;	/* XXX */
2918	struct vfsconf *vfsp;
2919	struct xvfsconf xvfsp;
2920
2921	printf("WARNING: userland calling deprecated sysctl, "
2922	    "please rebuild world\n");
2923
2924#if 1 || defined(COMPAT_PRELITE2)
2925	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2926	if (namelen == 1)
2927		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2928#endif
2929
2930	switch (name[1]) {
2931	case VFS_MAXTYPENUM:
2932		if (namelen != 2)
2933			return (ENOTDIR);
2934		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2935	case VFS_CONF:
2936		if (namelen != 3)
2937			return (ENOTDIR);	/* overloaded */
2938		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2939			if (vfsp->vfc_typenum == name[2])
2940				break;
2941		if (vfsp == NULL)
2942			return (EOPNOTSUPP);
2943		vfsconf2x(vfsp, &xvfsp);
2944		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2945	}
2946	return (EOPNOTSUPP);
2947}
2948
2949SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, vfs_sysctl,
2950	"Generic filesystem");
2951
2952#if 1 || defined(COMPAT_PRELITE2)
2953
2954static int
2955sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2956{
2957	int error;
2958	struct vfsconf *vfsp;
2959	struct ovfsconf ovfs;
2960
2961	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2962		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2963		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2964		ovfs.vfc_index = vfsp->vfc_typenum;
2965		ovfs.vfc_refcount = vfsp->vfc_refcount;
2966		ovfs.vfc_flags = vfsp->vfc_flags;
2967		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2968		if (error)
2969			return error;
2970	}
2971	return 0;
2972}
2973
2974#endif /* 1 || COMPAT_PRELITE2 */
2975#endif /* !BURN_BRIDGES */
2976
2977#define KINFO_VNODESLOP		10
2978#ifdef notyet
2979/*
2980 * Dump vnode list (via sysctl).
2981 */
2982/* ARGSUSED */
2983static int
2984sysctl_vnode(SYSCTL_HANDLER_ARGS)
2985{
2986	struct xvnode *xvn;
2987	struct thread *td = req->td;
2988	struct mount *mp;
2989	struct vnode *vp;
2990	int error, len, n;
2991
2992	/*
2993	 * Stale numvnodes access is not fatal here.
2994	 */
2995	req->lock = 0;
2996	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2997	if (!req->oldptr)
2998		/* Make an estimate */
2999		return (SYSCTL_OUT(req, 0, len));
3000
3001	error = sysctl_wire_old_buffer(req, 0);
3002	if (error != 0)
3003		return (error);
3004	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3005	n = 0;
3006	mtx_lock(&mountlist_mtx);
3007	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3008		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
3009			continue;
3010		MNT_ILOCK(mp);
3011		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3012			if (n == len)
3013				break;
3014			vref(vp);
3015			xvn[n].xv_size = sizeof *xvn;
3016			xvn[n].xv_vnode = vp;
3017#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3018			XV_COPY(usecount);
3019			XV_COPY(writecount);
3020			XV_COPY(holdcnt);
3021			XV_COPY(id);
3022			XV_COPY(mount);
3023			XV_COPY(numoutput);
3024			XV_COPY(type);
3025#undef XV_COPY
3026			xvn[n].xv_flag = vp->v_vflag;
3027
3028			switch (vp->v_type) {
3029			case VREG:
3030			case VDIR:
3031			case VLNK:
3032				xvn[n].xv_dev = vp->v_cachedfs;
3033				xvn[n].xv_ino = vp->v_cachedid;
3034				break;
3035			case VBLK:
3036			case VCHR:
3037				if (vp->v_rdev == NULL) {
3038					vrele(vp);
3039					continue;
3040				}
3041				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3042				break;
3043			case VSOCK:
3044				xvn[n].xv_socket = vp->v_socket;
3045				break;
3046			case VFIFO:
3047				xvn[n].xv_fifo = vp->v_fifoinfo;
3048				break;
3049			case VNON:
3050			case VBAD:
3051			default:
3052				/* shouldn't happen? */
3053				vrele(vp);
3054				continue;
3055			}
3056			vrele(vp);
3057			++n;
3058		}
3059		MNT_IUNLOCK(mp);
3060		mtx_lock(&mountlist_mtx);
3061		vfs_unbusy(mp, td);
3062		if (n == len)
3063			break;
3064	}
3065	mtx_unlock(&mountlist_mtx);
3066
3067	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3068	free(xvn, M_TEMP);
3069	return (error);
3070}
3071
3072SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3073	0, 0, sysctl_vnode, "S,xvnode", "");
3074#endif
3075
3076/*
3077 * Check to see if a filesystem is mounted on a block device.
3078 */
3079int
3080vfs_mountedon(vp)
3081	struct vnode *vp;
3082{
3083
3084	if (vp->v_rdev->si_mountpoint != NULL)
3085		return (EBUSY);
3086	return (0);
3087}
3088
3089/*
3090 * Unmount all filesystems. The list is traversed in reverse order
3091 * of mounting to avoid dependencies.
3092 */
3093void
3094vfs_unmountall()
3095{
3096	struct mount *mp;
3097	struct thread *td;
3098	int error;
3099
3100	if (curthread != NULL)
3101		td = curthread;
3102	else
3103		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
3104	/*
3105	 * Since this only runs when rebooting, it is not interlocked.
3106	 */
3107	while(!TAILQ_EMPTY(&mountlist)) {
3108		mp = TAILQ_LAST(&mountlist, mntlist);
3109		error = dounmount(mp, MNT_FORCE, td);
3110		if (error) {
3111			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3112			printf("unmount of %s failed (",
3113			    mp->mnt_stat.f_mntonname);
3114			if (error == EBUSY)
3115				printf("BUSY)\n");
3116			else
3117				printf("%d)\n", error);
3118		} else {
3119			/* The unmount has removed mp from the mountlist */
3120		}
3121	}
3122}
3123
3124/*
3125 * perform msync on all vnodes under a mount point
3126 * the mount point must be locked.
3127 */
3128void
3129vfs_msync(struct mount *mp, int flags)
3130{
3131	struct vnode *vp, *nvp;
3132	struct vm_object *obj;
3133	int tries;
3134
3135	GIANT_REQUIRED;
3136
3137	tries = 5;
3138	MNT_ILOCK(mp);
3139loop:
3140	TAILQ_FOREACH_SAFE(vp, &mp->mnt_nvnodelist, v_nmntvnodes, nvp) {
3141		if (vp->v_mount != mp) {
3142			if (--tries > 0)
3143				goto loop;
3144			break;
3145		}
3146
3147		VI_LOCK(vp);
3148		if (vp->v_iflag & VI_XLOCK) {
3149			VI_UNLOCK(vp);
3150			continue;
3151		}
3152
3153		if ((vp->v_iflag & VI_OBJDIRTY) &&
3154		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
3155			MNT_IUNLOCK(mp);
3156			if (!vget(vp,
3157			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3158			    curthread)) {
3159				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3160					vput(vp);
3161					MNT_ILOCK(mp);
3162					continue;
3163				}
3164
3165				if (VOP_GETVOBJECT(vp, &obj) == 0) {
3166					VM_OBJECT_LOCK(obj);
3167					vm_object_page_clean(obj, 0, 0,
3168					    flags == MNT_WAIT ?
3169					    OBJPC_SYNC : OBJPC_NOSYNC);
3170					VM_OBJECT_UNLOCK(obj);
3171				}
3172				vput(vp);
3173			}
3174			MNT_ILOCK(mp);
3175			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
3176				if (--tries > 0)
3177					goto loop;
3178				break;
3179			}
3180		} else
3181			VI_UNLOCK(vp);
3182	}
3183	MNT_IUNLOCK(mp);
3184}
3185
3186/*
3187 * Create the VM object needed for VMIO and mmap support.  This
3188 * is done for all VREG files in the system.  Some filesystems might
3189 * afford the additional metadata buffering capability of the
3190 * VMIO code by making the device node be VMIO mode also.
3191 *
3192 * vp must be locked when vfs_object_create is called.
3193 */
3194int
3195vfs_object_create(vp, td, cred)
3196	struct vnode *vp;
3197	struct thread *td;
3198	struct ucred *cred;
3199{
3200
3201	GIANT_REQUIRED;
3202	return (VOP_CREATEVOBJECT(vp, cred, td));
3203}
3204
3205/*
3206 * Mark a vnode as free, putting it up for recycling.
3207 */
3208void
3209vfree(vp)
3210	struct vnode *vp;
3211{
3212
3213	ASSERT_VI_LOCKED(vp, "vfree");
3214	mtx_lock(&vnode_free_list_mtx);
3215	KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
3216	if (vp->v_iflag & VI_AGE) {
3217		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3218	} else {
3219		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3220	}
3221	freevnodes++;
3222	mtx_unlock(&vnode_free_list_mtx);
3223	vp->v_iflag &= ~VI_AGE;
3224	vp->v_iflag |= VI_FREE;
3225}
3226
3227/*
3228 * Opposite of vfree() - mark a vnode as in use.
3229 */
3230void
3231vbusy(vp)
3232	struct vnode *vp;
3233{
3234
3235	ASSERT_VI_LOCKED(vp, "vbusy");
3236	KASSERT((vp->v_iflag & VI_FREE) != 0, ("vnode not free"));
3237
3238	mtx_lock(&vnode_free_list_mtx);
3239	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3240	freevnodes--;
3241	mtx_unlock(&vnode_free_list_mtx);
3242
3243	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3244}
3245
3246/*
3247 * Initalize per-vnode helper structure to hold poll-related state.
3248 */
3249void
3250v_addpollinfo(struct vnode *vp)
3251{
3252	struct vpollinfo *vi;
3253
3254	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3255	if (vp->v_pollinfo != NULL) {
3256		uma_zfree(vnodepoll_zone, vi);
3257		return;
3258	}
3259	vp->v_pollinfo = vi;
3260	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3261	knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note,
3262	    &vp->v_pollinfo->vpi_lock);
3263}
3264
3265/*
3266 * Record a process's interest in events which might happen to
3267 * a vnode.  Because poll uses the historic select-style interface
3268 * internally, this routine serves as both the ``check for any
3269 * pending events'' and the ``record my interest in future events''
3270 * functions.  (These are done together, while the lock is held,
3271 * to avoid race conditions.)
3272 */
3273int
3274vn_pollrecord(vp, td, events)
3275	struct vnode *vp;
3276	struct thread *td;
3277	short events;
3278{
3279
3280	if (vp->v_pollinfo == NULL)
3281		v_addpollinfo(vp);
3282	mtx_lock(&vp->v_pollinfo->vpi_lock);
3283	if (vp->v_pollinfo->vpi_revents & events) {
3284		/*
3285		 * This leaves events we are not interested
3286		 * in available for the other process which
3287		 * which presumably had requested them
3288		 * (otherwise they would never have been
3289		 * recorded).
3290		 */
3291		events &= vp->v_pollinfo->vpi_revents;
3292		vp->v_pollinfo->vpi_revents &= ~events;
3293
3294		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3295		return events;
3296	}
3297	vp->v_pollinfo->vpi_events |= events;
3298	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3299	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3300	return 0;
3301}
3302
3303/*
3304 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3305 * it is possible for us to miss an event due to race conditions, but
3306 * that condition is expected to be rare, so for the moment it is the
3307 * preferred interface.
3308 */
3309void
3310vn_pollevent(vp, events)
3311	struct vnode *vp;
3312	short events;
3313{
3314
3315	if (vp->v_pollinfo == NULL)
3316		v_addpollinfo(vp);
3317	mtx_lock(&vp->v_pollinfo->vpi_lock);
3318	if (vp->v_pollinfo->vpi_events & events) {
3319		/*
3320		 * We clear vpi_events so that we don't
3321		 * call selwakeup() twice if two events are
3322		 * posted before the polling process(es) is
3323		 * awakened.  This also ensures that we take at
3324		 * most one selwakeup() if the polling process
3325		 * is no longer interested.  However, it does
3326		 * mean that only one event can be noticed at
3327		 * a time.  (Perhaps we should only clear those
3328		 * event bits which we note?) XXX
3329		 */
3330		vp->v_pollinfo->vpi_events = 0;	/* &= ~events ??? */
3331		vp->v_pollinfo->vpi_revents |= events;
3332		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3333	}
3334	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3335}
3336
3337/*
3338 * Wake up anyone polling on vp because it is being revoked.
3339 * This depends on dead_poll() returning POLLHUP for correct
3340 * behavior.
3341 */
3342void
3343vn_pollgone(vp)
3344	struct vnode *vp;
3345{
3346
3347	mtx_lock(&vp->v_pollinfo->vpi_lock);
3348	VN_KNOTE_LOCKED(vp, NOTE_REVOKE);
3349	if (vp->v_pollinfo->vpi_events) {
3350		vp->v_pollinfo->vpi_events = 0;
3351		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3352	}
3353	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3354}
3355
3356
3357
3358/*
3359 * Routine to create and manage a filesystem syncer vnode.
3360 */
3361#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3362static int	sync_fsync(struct  vop_fsync_args *);
3363static int	sync_inactive(struct  vop_inactive_args *);
3364static int	sync_reclaim(struct  vop_reclaim_args *);
3365
3366static vop_t **sync_vnodeop_p;
3367static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3368	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
3369	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
3370	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
3371	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
3372	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
3373	{ &vop_lock_desc,	(vop_t *) vop_stdlock },	/* lock */
3374	{ &vop_unlock_desc,	(vop_t *) vop_stdunlock },	/* unlock */
3375	{ &vop_islocked_desc,	(vop_t *) vop_stdislocked },	/* islocked */
3376	{ NULL, NULL }
3377};
3378static struct vnodeopv_desc sync_vnodeop_opv_desc =
3379	{ &sync_vnodeop_p, sync_vnodeop_entries };
3380
3381VNODEOP_SET(sync_vnodeop_opv_desc);
3382
3383/*
3384 * Create a new filesystem syncer vnode for the specified mount point.
3385 */
3386int
3387vfs_allocate_syncvnode(mp)
3388	struct mount *mp;
3389{
3390	struct vnode *vp;
3391	static long start, incr, next;
3392	int error;
3393
3394	/* Allocate a new vnode */
3395	if ((error = getnewvnode("syncer", mp, sync_vnodeop_p, &vp)) != 0) {
3396		mp->mnt_syncer = NULL;
3397		return (error);
3398	}
3399	vp->v_type = VNON;
3400	/*
3401	 * Place the vnode onto the syncer worklist. We attempt to
3402	 * scatter them about on the list so that they will go off
3403	 * at evenly distributed times even if all the filesystems
3404	 * are mounted at once.
3405	 */
3406	next += incr;
3407	if (next == 0 || next > syncer_maxdelay) {
3408		start /= 2;
3409		incr /= 2;
3410		if (start == 0) {
3411			start = syncer_maxdelay / 2;
3412			incr = syncer_maxdelay;
3413		}
3414		next = start;
3415	}
3416	VI_LOCK(vp);
3417	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3418	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3419	mtx_lock(&sync_mtx);
3420	sync_vnode_count++;
3421	mtx_unlock(&sync_mtx);
3422	VI_UNLOCK(vp);
3423	mp->mnt_syncer = vp;
3424	return (0);
3425}
3426
3427/*
3428 * Do a lazy sync of the filesystem.
3429 */
3430static int
3431sync_fsync(ap)
3432	struct vop_fsync_args /* {
3433		struct vnode *a_vp;
3434		struct ucred *a_cred;
3435		int a_waitfor;
3436		struct thread *a_td;
3437	} */ *ap;
3438{
3439	struct vnode *syncvp = ap->a_vp;
3440	struct mount *mp = syncvp->v_mount;
3441	struct thread *td = ap->a_td;
3442	int error, asyncflag;
3443
3444	/*
3445	 * We only need to do something if this is a lazy evaluation.
3446	 */
3447	if (ap->a_waitfor != MNT_LAZY)
3448		return (0);
3449
3450	/*
3451	 * Move ourselves to the back of the sync list.
3452	 */
3453	VI_LOCK(syncvp);
3454	vn_syncer_add_to_worklist(syncvp, syncdelay);
3455	VI_UNLOCK(syncvp);
3456
3457	/*
3458	 * Walk the list of vnodes pushing all that are dirty and
3459	 * not already on the sync list.
3460	 */
3461	mtx_lock(&mountlist_mtx);
3462	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3463		mtx_unlock(&mountlist_mtx);
3464		return (0);
3465	}
3466	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3467		vfs_unbusy(mp, td);
3468		return (0);
3469	}
3470	asyncflag = mp->mnt_flag & MNT_ASYNC;
3471	mp->mnt_flag &= ~MNT_ASYNC;
3472	vfs_msync(mp, MNT_NOWAIT);
3473	error = VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
3474	if (asyncflag)
3475		mp->mnt_flag |= MNT_ASYNC;
3476	vn_finished_write(mp);
3477	vfs_unbusy(mp, td);
3478	return (error);
3479}
3480
3481/*
3482 * The syncer vnode is no referenced.
3483 */
3484static int
3485sync_inactive(ap)
3486	struct vop_inactive_args /* {
3487		struct vnode *a_vp;
3488		struct thread *a_td;
3489	} */ *ap;
3490{
3491
3492	VOP_UNLOCK(ap->a_vp, 0, ap->a_td);
3493	vgone(ap->a_vp);
3494	return (0);
3495}
3496
3497/*
3498 * The syncer vnode is no longer needed and is being decommissioned.
3499 *
3500 * Modifications to the worklist must be protected by sync_mtx.
3501 */
3502static int
3503sync_reclaim(ap)
3504	struct vop_reclaim_args /* {
3505		struct vnode *a_vp;
3506	} */ *ap;
3507{
3508	struct vnode *vp = ap->a_vp;
3509
3510	VI_LOCK(vp);
3511	vp->v_mount->mnt_syncer = NULL;
3512	if (vp->v_iflag & VI_ONWORKLST) {
3513		mtx_lock(&sync_mtx);
3514		LIST_REMOVE(vp, v_synclist);
3515 		syncer_worklist_len--;
3516		sync_vnode_count--;
3517		mtx_unlock(&sync_mtx);
3518		vp->v_iflag &= ~VI_ONWORKLST;
3519	}
3520	VI_UNLOCK(vp);
3521
3522	return (0);
3523}
3524
3525/*
3526 * extract the struct cdev *from a VCHR
3527 */
3528struct cdev *
3529vn_todev(vp)
3530	struct vnode *vp;
3531{
3532
3533	if (vp->v_type != VCHR)
3534		return (NULL);
3535	return (vp->v_rdev);
3536}
3537
3538/*
3539 * Check if vnode represents a disk device
3540 */
3541int
3542vn_isdisk(vp, errp)
3543	struct vnode *vp;
3544	int *errp;
3545{
3546	int error;
3547
3548	error = 0;
3549	if (vp->v_type != VCHR)
3550		error = ENOTBLK;
3551	else if (vp->v_rdev == NULL)
3552		error = ENXIO;
3553	else if (!(devsw(vp->v_rdev)->d_flags & D_DISK))
3554		error = ENOTBLK;
3555	if (errp != NULL)
3556		*errp = error;
3557	return (error == 0);
3558}
3559
3560/*
3561 * Free data allocated by namei(); see namei(9) for details.
3562 */
3563void
3564NDFREE(ndp, flags)
3565     struct nameidata *ndp;
3566     const u_int flags;
3567{
3568
3569	if (!(flags & NDF_NO_FREE_PNBUF) &&
3570	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3571		uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3572		ndp->ni_cnd.cn_flags &= ~HASBUF;
3573	}
3574	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3575	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3576	    ndp->ni_dvp != ndp->ni_vp)
3577		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3578	if (!(flags & NDF_NO_DVP_RELE) &&
3579	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3580		vrele(ndp->ni_dvp);
3581		ndp->ni_dvp = NULL;
3582	}
3583	if (!(flags & NDF_NO_VP_UNLOCK) &&
3584	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3585		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3586	if (!(flags & NDF_NO_VP_RELE) &&
3587	    ndp->ni_vp) {
3588		vrele(ndp->ni_vp);
3589		ndp->ni_vp = NULL;
3590	}
3591	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3592	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3593		vrele(ndp->ni_startdir);
3594		ndp->ni_startdir = NULL;
3595	}
3596}
3597
3598/*
3599 * Common filesystem object access control check routine.  Accepts a
3600 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3601 * and optional call-by-reference privused argument allowing vaccess()
3602 * to indicate to the caller whether privilege was used to satisfy the
3603 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3604 */
3605int
3606vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3607	enum vtype type;
3608	mode_t file_mode;
3609	uid_t file_uid;
3610	gid_t file_gid;
3611	mode_t acc_mode;
3612	struct ucred *cred;
3613	int *privused;
3614{
3615	mode_t dac_granted;
3616#ifdef CAPABILITIES
3617	mode_t cap_granted;
3618#endif
3619
3620	/*
3621	 * Look for a normal, non-privileged way to access the file/directory
3622	 * as requested.  If it exists, go with that.
3623	 */
3624
3625	if (privused != NULL)
3626		*privused = 0;
3627
3628	dac_granted = 0;
3629
3630	/* Check the owner. */
3631	if (cred->cr_uid == file_uid) {
3632		dac_granted |= VADMIN;
3633		if (file_mode & S_IXUSR)
3634			dac_granted |= VEXEC;
3635		if (file_mode & S_IRUSR)
3636			dac_granted |= VREAD;
3637		if (file_mode & S_IWUSR)
3638			dac_granted |= (VWRITE | VAPPEND);
3639
3640		if ((acc_mode & dac_granted) == acc_mode)
3641			return (0);
3642
3643		goto privcheck;
3644	}
3645
3646	/* Otherwise, check the groups (first match) */
3647	if (groupmember(file_gid, cred)) {
3648		if (file_mode & S_IXGRP)
3649			dac_granted |= VEXEC;
3650		if (file_mode & S_IRGRP)
3651			dac_granted |= VREAD;
3652		if (file_mode & S_IWGRP)
3653			dac_granted |= (VWRITE | VAPPEND);
3654
3655		if ((acc_mode & dac_granted) == acc_mode)
3656			return (0);
3657
3658		goto privcheck;
3659	}
3660
3661	/* Otherwise, check everyone else. */
3662	if (file_mode & S_IXOTH)
3663		dac_granted |= VEXEC;
3664	if (file_mode & S_IROTH)
3665		dac_granted |= VREAD;
3666	if (file_mode & S_IWOTH)
3667		dac_granted |= (VWRITE | VAPPEND);
3668	if ((acc_mode & dac_granted) == acc_mode)
3669		return (0);
3670
3671privcheck:
3672	if (!suser_cred(cred, SUSER_ALLOWJAIL)) {
3673		/* XXX audit: privilege used */
3674		if (privused != NULL)
3675			*privused = 1;
3676		return (0);
3677	}
3678
3679#ifdef CAPABILITIES
3680	/*
3681	 * Build a capability mask to determine if the set of capabilities
3682	 * satisfies the requirements when combined with the granted mask
3683	 * from above.
3684	 * For each capability, if the capability is required, bitwise
3685	 * or the request type onto the cap_granted mask.
3686	 */
3687	cap_granted = 0;
3688
3689	if (type == VDIR) {
3690		/*
3691		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3692		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3693		 */
3694		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3695		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3696			cap_granted |= VEXEC;
3697	} else {
3698		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3699		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, SUSER_ALLOWJAIL))
3700			cap_granted |= VEXEC;
3701	}
3702
3703	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3704	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3705		cap_granted |= VREAD;
3706
3707	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3708	    !cap_check(cred, NULL, CAP_DAC_WRITE, SUSER_ALLOWJAIL))
3709		cap_granted |= (VWRITE | VAPPEND);
3710
3711	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3712	    !cap_check(cred, NULL, CAP_FOWNER, SUSER_ALLOWJAIL))
3713		cap_granted |= VADMIN;
3714
3715	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3716		/* XXX audit: privilege used */
3717		if (privused != NULL)
3718			*privused = 1;
3719		return (0);
3720	}
3721#endif
3722
3723	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3724}
3725
3726/*
3727 * Credential check based on process requesting service, and per-attribute
3728 * permissions.
3729 */
3730int
3731extattr_check_cred(struct vnode *vp, int attrnamespace,
3732    struct ucred *cred, struct thread *td, int access)
3733{
3734
3735	/*
3736	 * Kernel-invoked always succeeds.
3737	 */
3738	if (cred == NOCRED)
3739		return (0);
3740
3741	/*
3742	 * Do not allow privileged processes in jail to directly
3743	 * manipulate system attributes.
3744	 *
3745	 * XXX What capability should apply here?
3746	 * Probably CAP_SYS_SETFFLAG.
3747	 */
3748	switch (attrnamespace) {
3749	case EXTATTR_NAMESPACE_SYSTEM:
3750		/* Potentially should be: return (EPERM); */
3751		return (suser_cred(cred, 0));
3752	case EXTATTR_NAMESPACE_USER:
3753		return (VOP_ACCESS(vp, access, cred, td));
3754	default:
3755		return (EPERM);
3756	}
3757}
3758
3759#ifdef DEBUG_VFS_LOCKS
3760/*
3761 * This only exists to supress warnings from unlocked specfs accesses.  It is
3762 * no longer ok to have an unlocked VFS.
3763 */
3764#define	IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
3765
3766int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3767SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3768
3769int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3770SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3771
3772int vfs_badlock_print = 1;	/* Print lock violations. */
3773SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3774
3775#ifdef KDB
3776int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3777SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3778#endif
3779
3780static void
3781vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3782{
3783
3784#ifdef KDB
3785	if (vfs_badlock_backtrace)
3786		kdb_backtrace();
3787#endif
3788	if (vfs_badlock_print)
3789		printf("%s: %p %s\n", str, (void *)vp, msg);
3790	if (vfs_badlock_ddb)
3791		kdb_enter("lock violation");
3792}
3793
3794void
3795assert_vi_locked(struct vnode *vp, const char *str)
3796{
3797
3798	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3799		vfs_badlock("interlock is not locked but should be", str, vp);
3800}
3801
3802void
3803assert_vi_unlocked(struct vnode *vp, const char *str)
3804{
3805
3806	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3807		vfs_badlock("interlock is locked but should not be", str, vp);
3808}
3809
3810void
3811assert_vop_locked(struct vnode *vp, const char *str)
3812{
3813
3814	if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
3815		vfs_badlock("is not locked but should be", str, vp);
3816}
3817
3818void
3819assert_vop_unlocked(struct vnode *vp, const char *str)
3820{
3821
3822	if (vp && !IGNORE_LOCK(vp) &&
3823	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
3824		vfs_badlock("is locked but should not be", str, vp);
3825}
3826
3827#if 0
3828void
3829assert_vop_elocked(struct vnode *vp, const char *str)
3830{
3831
3832	if (vp && !IGNORE_LOCK(vp) &&
3833	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
3834		vfs_badlock("is not exclusive locked but should be", str, vp);
3835}
3836
3837void
3838assert_vop_elocked_other(struct vnode *vp, const char *str)
3839{
3840
3841	if (vp && !IGNORE_LOCK(vp) &&
3842	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
3843		vfs_badlock("is not exclusive locked by another thread",
3844		    str, vp);
3845}
3846
3847void
3848assert_vop_slocked(struct vnode *vp, const char *str)
3849{
3850
3851	if (vp && !IGNORE_LOCK(vp) &&
3852	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
3853		vfs_badlock("is not locked shared but should be", str, vp);
3854}
3855#endif /* 0 */
3856
3857void
3858vop_rename_pre(void *ap)
3859{
3860	struct vop_rename_args *a = ap;
3861
3862	if (a->a_tvp)
3863		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3864	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3865	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3866	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3867
3868	/* Check the source (from). */
3869	if (a->a_tdvp != a->a_fdvp)
3870		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3871	if (a->a_tvp != a->a_fvp)
3872		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked");
3873
3874	/* Check the target. */
3875	if (a->a_tvp)
3876		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3877	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3878}
3879
3880void
3881vop_strategy_pre(void *ap)
3882{
3883	struct vop_strategy_args *a;
3884	struct buf *bp;
3885
3886	a = ap;
3887	bp = a->a_bp;
3888
3889	/*
3890	 * Cluster ops lock their component buffers but not the IO container.
3891	 */
3892	if ((bp->b_flags & B_CLUSTER) != 0)
3893		return;
3894
3895	if (BUF_REFCNT(bp) < 1) {
3896		if (vfs_badlock_print)
3897			printf(
3898			    "VOP_STRATEGY: bp is not locked but should be\n");
3899		if (vfs_badlock_ddb)
3900			kdb_enter("lock violation");
3901	}
3902}
3903
3904void
3905vop_lookup_pre(void *ap)
3906{
3907	struct vop_lookup_args *a;
3908	struct vnode *dvp;
3909
3910	a = ap;
3911	dvp = a->a_dvp;
3912	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3913	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3914}
3915
3916void
3917vop_lookup_post(void *ap, int rc)
3918{
3919	struct vop_lookup_args *a;
3920	struct componentname *cnp;
3921	struct vnode *dvp;
3922	struct vnode *vp;
3923	int flags;
3924
3925	a = ap;
3926	dvp = a->a_dvp;
3927	cnp = a->a_cnp;
3928	vp = *(a->a_vpp);
3929	flags = cnp->cn_flags;
3930
3931	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3932
3933	/*
3934	 * If this is the last path component for this lookup and LOCKPARENT
3935	 * is set, OR if there is an error the directory has to be locked.
3936	 */
3937	if ((flags & LOCKPARENT) && (flags & ISLASTCN))
3938		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)");
3939	else if (rc != 0)
3940		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)");
3941	else if (dvp != vp)
3942		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)");
3943	if (flags & PDIRUNLOCK)
3944		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)");
3945}
3946
3947void
3948vop_lock_pre(void *ap)
3949{
3950	struct vop_lock_args *a = ap;
3951
3952	if ((a->a_flags & LK_INTERLOCK) == 0)
3953		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3954	else
3955		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3956}
3957
3958void
3959vop_lock_post(void *ap, int rc)
3960{
3961	struct vop_lock_args *a = ap;
3962
3963	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3964	if (rc == 0)
3965		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3966}
3967
3968void
3969vop_unlock_pre(void *ap)
3970{
3971	struct vop_unlock_args *a = ap;
3972
3973	if (a->a_flags & LK_INTERLOCK)
3974		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3975	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3976}
3977
3978void
3979vop_unlock_post(void *ap, int rc)
3980{
3981	struct vop_unlock_args *a = ap;
3982
3983	if (a->a_flags & LK_INTERLOCK)
3984		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3985}
3986#endif /* DEBUG_VFS_LOCKS */
3987
3988static struct knlist fs_knlist;
3989
3990static void
3991vfs_event_init(void *arg)
3992{
3993	knlist_init(&fs_knlist, NULL);
3994}
3995/* XXX - correct order? */
3996SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3997
3998void
3999vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
4000{
4001
4002	KNOTE_UNLOCKED(&fs_knlist, event);
4003}
4004
4005static int	filt_fsattach(struct knote *kn);
4006static void	filt_fsdetach(struct knote *kn);
4007static int	filt_fsevent(struct knote *kn, long hint);
4008
4009struct filterops fs_filtops =
4010	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
4011
4012static int
4013filt_fsattach(struct knote *kn)
4014{
4015
4016	kn->kn_flags |= EV_CLEAR;
4017	knlist_add(&fs_knlist, kn, 0);
4018	return (0);
4019}
4020
4021static void
4022filt_fsdetach(struct knote *kn)
4023{
4024
4025	knlist_remove(&fs_knlist, kn, 0);
4026}
4027
4028static int
4029filt_fsevent(struct knote *kn, long hint)
4030{
4031
4032	kn->kn_fflags |= hint;
4033	return (kn->kn_fflags != 0);
4034}
4035
4036static int
4037sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4038{
4039	struct vfsidctl vc;
4040	int error;
4041	struct mount *mp;
4042
4043	error = SYSCTL_IN(req, &vc, sizeof(vc));
4044	if (error)
4045		return (error);
4046	if (vc.vc_vers != VFS_CTL_VERS1)
4047		return (EINVAL);
4048	mp = vfs_getvfs(&vc.vc_fsid);
4049	if (mp == NULL)
4050		return (ENOENT);
4051	/* ensure that a specific sysctl goes to the right filesystem. */
4052	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4053	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4054		return (EINVAL);
4055	}
4056	VCTLTOREQ(&vc, req);
4057	return (VFS_SYSCTL(mp, vc.vc_op, req));
4058}
4059
4060SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR,
4061        NULL, 0, sysctl_vfs_ctl, "", "Sysctl by fsid");
4062