vfs_subr.c revision 117879
11541Srgrimes/*
21541Srgrimes * Copyright (c) 1989, 1993
31541Srgrimes *	The Regents of the University of California.  All rights reserved.
41541Srgrimes * (c) UNIX System Laboratories, Inc.
51541Srgrimes * All or some portions of this file are derived from material licensed
61541Srgrimes * to the University of California by American Telephone and Telegraph
71541Srgrimes * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81541Srgrimes * the permission of UNIX System Laboratories, Inc.
91541Srgrimes *
101541Srgrimes * Redistribution and use in source and binary forms, with or without
111541Srgrimes * modification, are permitted provided that the following conditions
121541Srgrimes * are met:
131541Srgrimes * 1. Redistributions of source code must retain the above copyright
141541Srgrimes *    notice, this list of conditions and the following disclaimer.
151541Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
161541Srgrimes *    notice, this list of conditions and the following disclaimer in the
171541Srgrimes *    documentation and/or other materials provided with the distribution.
181541Srgrimes * 3. All advertising materials mentioning features or use of this software
191541Srgrimes *    must display the following acknowledgement:
201541Srgrimes *	This product includes software developed by the University of
211541Srgrimes *	California, Berkeley and its contributors.
221541Srgrimes * 4. Neither the name of the University nor the names of its contributors
231541Srgrimes *    may be used to endorse or promote products derived from this software
241541Srgrimes *    without specific prior written permission.
251541Srgrimes *
261541Srgrimes * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
271541Srgrimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
281541Srgrimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
291541Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
301541Srgrimes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
311541Srgrimes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
321541Srgrimes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
331541Srgrimes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3412662Sdg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
351541Srgrimes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
361541Srgrimes * SUCH DAMAGE.
371541Srgrimes *
381541Srgrimes *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
391541Srgrimes */
405455Sdg
4112662Sdg/*
421541Srgrimes * External virtual filesystem routines
431541Srgrimes */
441541Srgrimes
451541Srgrimes#include <sys/cdefs.h>
461541Srgrimes__FBSDID("$FreeBSD: head/sys/kern/vfs_subr.c 117879 2003-07-22 10:36:36Z phk $");
471541Srgrimes
481541Srgrimes#include "opt_ddb.h"
491541Srgrimes#include "opt_mac.h"
501541Srgrimes
511541Srgrimes#include <sys/param.h>
521541Srgrimes#include <sys/systm.h>
531541Srgrimes#include <sys/bio.h>
541541Srgrimes#include <sys/buf.h>
5512642Sbde#include <sys/conf.h>
5612642Sbde#include <sys/eventhandler.h>
5712642Sbde#include <sys/extattr.h>
5812642Sbde#include <sys/fcntl.h>
5912642Sbde#include <sys/kernel.h>
601541Srgrimes#include <sys/kthread.h>
615455Sdg#include <sys/mac.h>
6212642Sbde#include <sys/malloc.h>
631541Srgrimes#include <sys/mount.h>
645455Sdg#include <sys/namei.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <vm/vm.h>
72#include <vm/vm_object.h>
73#include <vm/vm_extern.h>
74#include <vm/pmap.h>
75#include <vm/vm_map.h>
76#include <vm/vm_page.h>
77#include <vm/vm_kern.h>
78#include <vm/uma.h>
79
80static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
81
82static void	addalias(struct vnode *vp, dev_t nvp_rdev);
83static void	insmntque(struct vnode *vp, struct mount *mp);
84static void	vclean(struct vnode *vp, int flags, struct thread *td);
85static void	vlruvp(struct vnode *vp);
86static int	flushbuflist(struct buf *blist, int flags, struct vnode *vp,
87		    int slpflag, int slptimeo, int *errorp);
88static int	vcanrecycle(struct vnode *vp, struct mount **vnmpp);
89
90
91/*
92 * Number of vnodes in existence.  Increased whenever getnewvnode()
93 * allocates a new vnode, never decreased.
94 */
95static unsigned long	numvnodes;
96
97SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
98
99/*
100 * Conversion tables for conversion from vnode types to inode formats
101 * and back.
102 */
103enum vtype iftovt_tab[16] = {
104	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
105	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
106};
107int vttoif_tab[9] = {
108	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
109	S_IFSOCK, S_IFIFO, S_IFMT,
110};
111
112/*
113 * List of vnodes that are ready for recycling.
114 */
115static TAILQ_HEAD(freelst, vnode) vnode_free_list;
116
117/*
118 * Minimum number of free vnodes.  If there are fewer than this free vnodes,
119 * getnewvnode() will return a newly allocated vnode.
120 */
121static u_long wantfreevnodes = 25;
122SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
123/* Number of vnodes in the free list. */
124static u_long freevnodes;
125SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
126
127/*
128 * Various variables used for debugging the new implementation of
129 * reassignbuf().
130 * XXX these are probably of (very) limited utility now.
131 */
132static int reassignbufcalls;
133SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
134static int nameileafonly;
135SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
136
137/*
138 * Cache for the mount type id assigned to NFS.  This is used for
139 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
140 */
141int	nfs_mount_type = -1;
142
143/* To keep more than one thread at a time from running vfs_getnewfsid */
144static struct mtx mntid_mtx;
145
146/*
147 * Lock for any access to the following:
148 *	vnode_free_list
149 *	numvnodes
150 *	freevnodes
151 */
152static struct mtx vnode_free_list_mtx;
153
154/*
155 * For any iteration/modification of dev->si_hlist (linked through
156 * v_specnext)
157 */
158static struct mtx spechash_mtx;
159
160/* Publicly exported FS */
161struct nfs_public nfs_pub;
162
163/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
164static uma_zone_t vnode_zone;
165static uma_zone_t vnodepoll_zone;
166
167/* Set to 1 to print out reclaim of active vnodes */
168int	prtactive;
169
170/*
171 * The workitem queue.
172 *
173 * It is useful to delay writes of file data and filesystem metadata
174 * for tens of seconds so that quickly created and deleted files need
175 * not waste disk bandwidth being created and removed. To realize this,
176 * we append vnodes to a "workitem" queue. When running with a soft
177 * updates implementation, most pending metadata dependencies should
178 * not wait for more than a few seconds. Thus, mounted on block devices
179 * are delayed only about a half the time that file data is delayed.
180 * Similarly, directory updates are more critical, so are only delayed
181 * about a third the time that file data is delayed. Thus, there are
182 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
183 * one each second (driven off the filesystem syncer process). The
184 * syncer_delayno variable indicates the next queue that is to be processed.
185 * Items that need to be processed soon are placed in this queue:
186 *
187 *	syncer_workitem_pending[syncer_delayno]
188 *
189 * A delay of fifteen seconds is done by placing the request fifteen
190 * entries later in the queue:
191 *
192 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
193 *
194 */
195static int syncer_delayno;
196static long syncer_mask;
197LIST_HEAD(synclist, vnode);
198static struct synclist *syncer_workitem_pending;
199/*
200 * The sync_mtx protects:
201 *	vp->v_synclist
202 *	syncer_delayno
203 *	syncer_workitem_pending
204 *	rushjob
205 */
206static struct mtx sync_mtx;
207
208#define SYNCER_MAXDELAY		32
209static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
210static int syncdelay = 30;		/* max time to delay syncing data */
211static int filedelay = 30;		/* time to delay syncing files */
212SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
213static int dirdelay = 29;		/* time to delay syncing directories */
214SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
215static int metadelay = 28;		/* time to delay syncing metadata */
216SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
217static int rushjob;		/* number of slots to run ASAP */
218static int stat_rush_requests;	/* number of times I/O speeded up */
219SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
220
221/*
222 * Number of vnodes we want to exist at any one time.  This is mostly used
223 * to size hash tables in vnode-related code.  It is normally not used in
224 * getnewvnode(), as wantfreevnodes is normally nonzero.)
225 *
226 * XXX desiredvnodes is historical cruft and should not exist.
227 */
228int desiredvnodes;
229SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
230    &desiredvnodes, 0, "Maximum number of vnodes");
231static int minvnodes;
232SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
233    &minvnodes, 0, "Minimum number of vnodes");
234static int vnlru_nowhere;
235SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
236    "Number of times the vnlru process ran without success");
237
238/* Hook for calling soft updates */
239int (*softdep_process_worklist_hook)(struct mount *);
240
241/*
242 * This only exists to supress warnings from unlocked specfs accesses.  It is
243 * no longer ok to have an unlocked VFS.
244 */
245#define IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
246
247/* Print lock violations */
248int vfs_badlock_print = 1;
249
250/* Panic on violation */
251int vfs_badlock_panic = 1;
252
253/* Check for interlock across VOPs */
254int vfs_badlock_mutex = 1;
255
256static void
257vfs_badlock(char *msg, char *str, struct vnode *vp)
258{
259	if (vfs_badlock_print)
260		printf("%s: %p %s\n", str, vp, msg);
261	if (vfs_badlock_panic)
262		Debugger("Lock violation.\n");
263}
264
265void
266assert_vi_unlocked(struct vnode *vp, char *str)
267{
268	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
269		vfs_badlock("interlock is locked but should not be", str, vp);
270}
271
272void
273assert_vi_locked(struct vnode *vp, char *str)
274{
275	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
276		vfs_badlock("interlock is not locked but should be", str, vp);
277}
278
279void
280assert_vop_locked(struct vnode *vp, char *str)
281{
282	if (vp && !IGNORE_LOCK(vp) && !VOP_ISLOCKED(vp, NULL))
283		vfs_badlock("is not locked but should be", str, vp);
284}
285
286void
287assert_vop_unlocked(struct vnode *vp, char *str)
288{
289	if (vp && !IGNORE_LOCK(vp) &&
290	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
291		vfs_badlock("is locked but should not be", str, vp);
292}
293
294void
295assert_vop_elocked(struct vnode *vp, char *str)
296{
297	if (vp && !IGNORE_LOCK(vp) &&
298	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
299		vfs_badlock("is not exclusive locked but should be", str, vp);
300}
301
302void
303assert_vop_elocked_other(struct vnode *vp, char *str)
304{
305	if (vp && !IGNORE_LOCK(vp) &&
306	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
307		vfs_badlock("is not exclusive locked by another thread",
308		    str, vp);
309}
310
311void
312assert_vop_slocked(struct vnode *vp, char *str)
313{
314	if (vp && !IGNORE_LOCK(vp) &&
315	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
316		vfs_badlock("is not locked shared but should be", str, vp);
317}
318
319void
320vop_rename_pre(void *ap)
321{
322	struct vop_rename_args *a = ap;
323
324	if (a->a_tvp)
325		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
326	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
327	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
328	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
329
330	/* Check the source (from) */
331	if (a->a_tdvp != a->a_fdvp)
332		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked.\n");
333	if (a->a_tvp != a->a_fvp)
334		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked.\n");
335
336	/* Check the target */
337	if (a->a_tvp)
338		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked.\n");
339
340	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked.\n");
341}
342
343void
344vop_strategy_pre(void *ap)
345{
346	struct vop_strategy_args *a = ap;
347	struct buf *bp;
348
349	bp = a->a_bp;
350
351	/*
352	 * Cluster ops lock their component buffers but not the IO container.
353	 */
354	if ((bp->b_flags & B_CLUSTER) != 0)
355		return;
356
357	if (BUF_REFCNT(bp) < 1) {
358		if (vfs_badlock_print)
359			printf("VOP_STRATEGY: bp is not locked but should be.\n");
360		if (vfs_badlock_panic)
361			Debugger("Lock violation.\n");
362	}
363}
364
365void
366vop_lookup_pre(void *ap)
367{
368	struct vop_lookup_args *a = ap;
369	struct vnode *dvp;
370
371	dvp = a->a_dvp;
372
373	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
374	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
375}
376
377void
378vop_lookup_post(void *ap, int rc)
379{
380	struct vop_lookup_args *a = ap;
381	struct componentname *cnp;
382	struct vnode *dvp;
383	struct vnode *vp;
384	int flags;
385
386	dvp = a->a_dvp;
387	cnp = a->a_cnp;
388	vp = *(a->a_vpp);
389	flags = cnp->cn_flags;
390
391
392	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
393	/*
394	 * If this is the last path component for this lookup and LOCPARENT
395	 * is set, OR if there is an error the directory has to be locked.
396	 */
397	if ((flags & LOCKPARENT) && (flags & ISLASTCN))
398		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)");
399	else if (rc != 0)
400		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)");
401	else if (dvp != vp)
402		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)");
403
404	if (flags & PDIRUNLOCK)
405		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)");
406}
407
408void
409vop_unlock_pre(void *ap)
410{
411	struct vop_unlock_args *a = ap;
412
413	if (a->a_flags & LK_INTERLOCK)
414		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
415
416	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
417}
418
419void
420vop_unlock_post(void *ap, int rc)
421{
422	struct vop_unlock_args *a = ap;
423
424	if (a->a_flags & LK_INTERLOCK)
425		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
426}
427
428void
429vop_lock_pre(void *ap)
430{
431	struct vop_lock_args *a = ap;
432
433	if ((a->a_flags & LK_INTERLOCK) == 0)
434		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
435	else
436		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
437}
438
439void
440vop_lock_post(void *ap, int rc)
441{
442	struct vop_lock_args *a;
443
444	a = ap;
445
446	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
447	if (rc == 0)
448		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
449}
450
451void
452v_addpollinfo(struct vnode *vp)
453{
454	vp->v_pollinfo = uma_zalloc(vnodepoll_zone, M_WAITOK);
455	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
456}
457
458/*
459 * Initialize the vnode management data structures.
460 */
461static void
462vntblinit(void *dummy __unused)
463{
464
465	/*
466	 * Desiredvnodes is a function of the physical memory size and
467	 * the kernel's heap size.  Specifically, desiredvnodes scales
468	 * in proportion to the physical memory size until two fifths
469	 * of the kernel's heap size is consumed by vnodes and vm
470	 * objects.
471	 */
472	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
473	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
474	minvnodes = desiredvnodes / 4;
475	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
476	mtx_init(&mntvnode_mtx, "mntvnode", NULL, MTX_DEF);
477	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
478	mtx_init(&spechash_mtx, "spechash", NULL, MTX_DEF);
479	TAILQ_INIT(&vnode_free_list);
480	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
481	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
482	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
483	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
484	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
485	/*
486	 * Initialize the filesystem syncer.
487	 */
488	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
489		&syncer_mask);
490	syncer_maxdelay = syncer_mask + 1;
491	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
492}
493SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
494
495
496/*
497 * Mark a mount point as busy. Used to synchronize access and to delay
498 * unmounting. Interlock is not released on failure.
499 */
500int
501vfs_busy(mp, flags, interlkp, td)
502	struct mount *mp;
503	int flags;
504	struct mtx *interlkp;
505	struct thread *td;
506{
507	int lkflags;
508
509	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
510		if (flags & LK_NOWAIT)
511			return (ENOENT);
512		mp->mnt_kern_flag |= MNTK_MWAIT;
513		/*
514		 * Since all busy locks are shared except the exclusive
515		 * lock granted when unmounting, the only place that a
516		 * wakeup needs to be done is at the release of the
517		 * exclusive lock at the end of dounmount.
518		 */
519		msleep(mp, interlkp, PVFS, "vfs_busy", 0);
520		return (ENOENT);
521	}
522	lkflags = LK_SHARED | LK_NOPAUSE;
523	if (interlkp)
524		lkflags |= LK_INTERLOCK;
525	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
526		panic("vfs_busy: unexpected lock failure");
527	return (0);
528}
529
530/*
531 * Free a busy filesystem.
532 */
533void
534vfs_unbusy(mp, td)
535	struct mount *mp;
536	struct thread *td;
537{
538
539	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
540}
541
542/*
543 * Lookup a mount point by filesystem identifier.
544 */
545struct mount *
546vfs_getvfs(fsid)
547	fsid_t *fsid;
548{
549	register struct mount *mp;
550
551	mtx_lock(&mountlist_mtx);
552	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
553		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
554		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
555			mtx_unlock(&mountlist_mtx);
556			return (mp);
557		}
558	}
559	mtx_unlock(&mountlist_mtx);
560	return ((struct mount *) 0);
561}
562
563/*
564 * Get a new unique fsid.  Try to make its val[0] unique, since this value
565 * will be used to create fake device numbers for stat().  Also try (but
566 * not so hard) make its val[0] unique mod 2^16, since some emulators only
567 * support 16-bit device numbers.  We end up with unique val[0]'s for the
568 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
569 *
570 * Keep in mind that several mounts may be running in parallel.  Starting
571 * the search one past where the previous search terminated is both a
572 * micro-optimization and a defense against returning the same fsid to
573 * different mounts.
574 */
575void
576vfs_getnewfsid(mp)
577	struct mount *mp;
578{
579	static u_int16_t mntid_base;
580	fsid_t tfsid;
581	int mtype;
582
583	mtx_lock(&mntid_mtx);
584	mtype = mp->mnt_vfc->vfc_typenum;
585	tfsid.val[1] = mtype;
586	mtype = (mtype & 0xFF) << 24;
587	for (;;) {
588		tfsid.val[0] = makeudev(255,
589		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
590		mntid_base++;
591		if (vfs_getvfs(&tfsid) == NULL)
592			break;
593	}
594	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
595	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
596	mtx_unlock(&mntid_mtx);
597}
598
599/*
600 * Knob to control the precision of file timestamps:
601 *
602 *   0 = seconds only; nanoseconds zeroed.
603 *   1 = seconds and nanoseconds, accurate within 1/HZ.
604 *   2 = seconds and nanoseconds, truncated to microseconds.
605 * >=3 = seconds and nanoseconds, maximum precision.
606 */
607enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
608
609static int timestamp_precision = TSP_SEC;
610SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
611    &timestamp_precision, 0, "");
612
613/*
614 * Get a current timestamp.
615 */
616void
617vfs_timestamp(tsp)
618	struct timespec *tsp;
619{
620	struct timeval tv;
621
622	switch (timestamp_precision) {
623	case TSP_SEC:
624		tsp->tv_sec = time_second;
625		tsp->tv_nsec = 0;
626		break;
627	case TSP_HZ:
628		getnanotime(tsp);
629		break;
630	case TSP_USEC:
631		microtime(&tv);
632		TIMEVAL_TO_TIMESPEC(&tv, tsp);
633		break;
634	case TSP_NSEC:
635	default:
636		nanotime(tsp);
637		break;
638	}
639}
640
641/*
642 * Set vnode attributes to VNOVAL
643 */
644void
645vattr_null(vap)
646	register struct vattr *vap;
647{
648
649	vap->va_type = VNON;
650	vap->va_size = VNOVAL;
651	vap->va_bytes = VNOVAL;
652	vap->va_mode = VNOVAL;
653	vap->va_nlink = VNOVAL;
654	vap->va_uid = VNOVAL;
655	vap->va_gid = VNOVAL;
656	vap->va_fsid = VNOVAL;
657	vap->va_fileid = VNOVAL;
658	vap->va_blocksize = VNOVAL;
659	vap->va_rdev = VNOVAL;
660	vap->va_atime.tv_sec = VNOVAL;
661	vap->va_atime.tv_nsec = VNOVAL;
662	vap->va_mtime.tv_sec = VNOVAL;
663	vap->va_mtime.tv_nsec = VNOVAL;
664	vap->va_ctime.tv_sec = VNOVAL;
665	vap->va_ctime.tv_nsec = VNOVAL;
666	vap->va_birthtime.tv_sec = VNOVAL;
667	vap->va_birthtime.tv_nsec = VNOVAL;
668	vap->va_flags = VNOVAL;
669	vap->va_gen = VNOVAL;
670	vap->va_vaflags = 0;
671}
672
673/*
674 * This routine is called when we have too many vnodes.  It attempts
675 * to free <count> vnodes and will potentially free vnodes that still
676 * have VM backing store (VM backing store is typically the cause
677 * of a vnode blowout so we want to do this).  Therefore, this operation
678 * is not considered cheap.
679 *
680 * A number of conditions may prevent a vnode from being reclaimed.
681 * the buffer cache may have references on the vnode, a directory
682 * vnode may still have references due to the namei cache representing
683 * underlying files, or the vnode may be in active use.   It is not
684 * desireable to reuse such vnodes.  These conditions may cause the
685 * number of vnodes to reach some minimum value regardless of what
686 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
687 */
688static int
689vlrureclaim(struct mount *mp)
690{
691	struct vnode *vp;
692	int done;
693	int trigger;
694	int usevnodes;
695	int count;
696
697	/*
698	 * Calculate the trigger point, don't allow user
699	 * screwups to blow us up.   This prevents us from
700	 * recycling vnodes with lots of resident pages.  We
701	 * aren't trying to free memory, we are trying to
702	 * free vnodes.
703	 */
704	usevnodes = desiredvnodes;
705	if (usevnodes <= 0)
706		usevnodes = 1;
707	trigger = cnt.v_page_count * 2 / usevnodes;
708
709	done = 0;
710	mtx_lock(&mntvnode_mtx);
711	count = mp->mnt_nvnodelistsize / 10 + 1;
712	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
713		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
714		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
715
716		if (vp->v_type != VNON &&
717		    vp->v_type != VBAD &&
718		    VI_TRYLOCK(vp)) {
719			if (VMIGHTFREE(vp) &&           /* critical path opt */
720			    (vp->v_object == NULL ||
721			    vp->v_object->resident_page_count < trigger)) {
722				mtx_unlock(&mntvnode_mtx);
723				vgonel(vp, curthread);
724				done++;
725				mtx_lock(&mntvnode_mtx);
726			} else
727				VI_UNLOCK(vp);
728		}
729		--count;
730	}
731	mtx_unlock(&mntvnode_mtx);
732	return done;
733}
734
735/*
736 * Attempt to recycle vnodes in a context that is always safe to block.
737 * Calling vlrurecycle() from the bowels of filesystem code has some
738 * interesting deadlock problems.
739 */
740static struct proc *vnlruproc;
741static int vnlruproc_sig;
742
743static void
744vnlru_proc(void)
745{
746	struct mount *mp, *nmp;
747	int s;
748	int done;
749	struct proc *p = vnlruproc;
750	struct thread *td = FIRST_THREAD_IN_PROC(p);	/* XXXKSE */
751
752	mtx_lock(&Giant);
753
754	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
755	    SHUTDOWN_PRI_FIRST);
756
757	s = splbio();
758	for (;;) {
759		kthread_suspend_check(p);
760		mtx_lock(&vnode_free_list_mtx);
761		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
762			mtx_unlock(&vnode_free_list_mtx);
763			vnlruproc_sig = 0;
764			wakeup(&vnlruproc_sig);
765			tsleep(vnlruproc, PVFS, "vlruwt", hz);
766			continue;
767		}
768		mtx_unlock(&vnode_free_list_mtx);
769		done = 0;
770		mtx_lock(&mountlist_mtx);
771		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
772			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
773				nmp = TAILQ_NEXT(mp, mnt_list);
774				continue;
775			}
776			done += vlrureclaim(mp);
777			mtx_lock(&mountlist_mtx);
778			nmp = TAILQ_NEXT(mp, mnt_list);
779			vfs_unbusy(mp, td);
780		}
781		mtx_unlock(&mountlist_mtx);
782		if (done == 0) {
783#if 0
784			/* These messages are temporary debugging aids */
785			if (vnlru_nowhere < 5)
786				printf("vnlru process getting nowhere..\n");
787			else if (vnlru_nowhere == 5)
788				printf("vnlru process messages stopped.\n");
789#endif
790			vnlru_nowhere++;
791			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
792		}
793	}
794	splx(s);
795}
796
797static struct kproc_desc vnlru_kp = {
798	"vnlru",
799	vnlru_proc,
800	&vnlruproc
801};
802SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
803
804
805/*
806 * Routines having to do with the management of the vnode table.
807 */
808
809/*
810 * Check to see if a free vnode can be recycled. If it can,
811 * return it locked with the vn lock, but not interlock. Also
812 * get the vn_start_write lock. Otherwise indicate the error.
813 */
814static int
815vcanrecycle(struct vnode *vp, struct mount **vnmpp)
816{
817	struct thread *td = curthread;
818	vm_object_t object;
819	int error;
820
821	/* Don't recycle if we can't get the interlock */
822	if (!VI_TRYLOCK(vp))
823		return (EWOULDBLOCK);
824
825	/* We should be able to immediately acquire this */
826	/* XXX This looks like it should panic if it fails */
827	if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td) != 0) {
828		if (VOP_ISLOCKED(vp, td))
829			panic("vcanrecycle: locked vnode");
830		return (EWOULDBLOCK);
831	}
832
833	/*
834	 * Don't recycle if its filesystem is being suspended.
835	 */
836	if (vn_start_write(vp, vnmpp, V_NOWAIT) != 0) {
837		error = EBUSY;
838		goto done;
839	}
840
841	/*
842	 * Don't recycle if we still have cached pages.
843	 */
844	if (VOP_GETVOBJECT(vp, &object) == 0) {
845		VM_OBJECT_LOCK(object);
846		if (object->resident_page_count ||
847		    object->ref_count) {
848			VM_OBJECT_UNLOCK(object);
849			error = EBUSY;
850			goto done;
851		}
852		VM_OBJECT_UNLOCK(object);
853	}
854	if (LIST_FIRST(&vp->v_cache_src)) {
855		/*
856		 * note: nameileafonly sysctl is temporary,
857		 * for debugging only, and will eventually be
858		 * removed.
859		 */
860		if (nameileafonly > 0) {
861			/*
862			 * Do not reuse namei-cached directory
863			 * vnodes that have cached
864			 * subdirectories.
865			 */
866			if (cache_leaf_test(vp) < 0) {
867				error = EISDIR;
868				goto done;
869			}
870		} else if (nameileafonly < 0 ||
871			    vmiodirenable == 0) {
872			/*
873			 * Do not reuse namei-cached directory
874			 * vnodes if nameileafonly is -1 or
875			 * if VMIO backing for directories is
876			 * turned off (otherwise we reuse them
877			 * too quickly).
878			 */
879			error = EBUSY;
880			goto done;
881		}
882	}
883	return (0);
884done:
885	VOP_UNLOCK(vp, 0, td);
886	return (error);
887}
888
889/*
890 * Return the next vnode from the free list.
891 */
892int
893getnewvnode(tag, mp, vops, vpp)
894	const char *tag;
895	struct mount *mp;
896	vop_t **vops;
897	struct vnode **vpp;
898{
899	struct thread *td = curthread;	/* XXX */
900	struct vnode *vp = NULL;
901	struct vpollinfo *pollinfo = NULL;
902	struct mount *vnmp;
903
904	mtx_lock(&vnode_free_list_mtx);
905
906	/*
907	 * Try to reuse vnodes if we hit the max.  This situation only
908	 * occurs in certain large-memory (2G+) situations.  We cannot
909	 * attempt to directly reclaim vnodes due to nasty recursion
910	 * problems.
911	 */
912	while (numvnodes - freevnodes > desiredvnodes) {
913		if (vnlruproc_sig == 0) {
914			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
915			wakeup(vnlruproc);
916		}
917		mtx_unlock(&vnode_free_list_mtx);
918		tsleep(&vnlruproc_sig, PVFS, "vlruwk", hz);
919		mtx_lock(&vnode_free_list_mtx);
920	}
921
922	/*
923	 * Attempt to reuse a vnode already on the free list, allocating
924	 * a new vnode if we can't find one or if we have not reached a
925	 * good minimum for good LRU performance.
926	 */
927
928	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
929		int error;
930		int count;
931
932		for (count = 0; count < freevnodes; count++) {
933			vp = TAILQ_FIRST(&vnode_free_list);
934
935			KASSERT(vp->v_usecount == 0 &&
936			    (vp->v_iflag & VI_DOINGINACT) == 0,
937			    ("getnewvnode: free vnode isn't"));
938
939			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
940			/*
941			 * We have to drop the free list mtx to avoid lock
942			 * order reversals with interlock.
943			 */
944			mtx_unlock(&vnode_free_list_mtx);
945			error = vcanrecycle(vp, &vnmp);
946			mtx_lock(&vnode_free_list_mtx);
947			if (error == 0)
948				break;
949			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
950			vp = NULL;
951		}
952	}
953	if (vp) {
954		freevnodes--;
955		mtx_unlock(&vnode_free_list_mtx);
956
957		cache_purge(vp);
958		VI_LOCK(vp);
959		vp->v_iflag |= VI_DOOMED;
960		vp->v_iflag &= ~VI_FREE;
961		if (vp->v_type != VBAD) {
962			VOP_UNLOCK(vp, 0, td);
963			vgonel(vp, td);
964			VI_LOCK(vp);
965		} else {
966			VOP_UNLOCK(vp, 0, td);
967		}
968		vn_finished_write(vnmp);
969
970#ifdef INVARIANTS
971		{
972			if (vp->v_data)
973				panic("cleaned vnode isn't");
974			if (vp->v_numoutput)
975				panic("Clean vnode has pending I/O's");
976			if (vp->v_writecount != 0)
977				panic("Non-zero write count");
978		}
979#endif
980		if ((pollinfo = vp->v_pollinfo) != NULL) {
981			/*
982			 * To avoid lock order reversals, the call to
983			 * uma_zfree() must be delayed until the vnode
984			 * interlock is released.
985			 */
986			vp->v_pollinfo = NULL;
987		}
988#ifdef MAC
989		mac_destroy_vnode(vp);
990#endif
991		vp->v_iflag = 0;
992		vp->v_vflag = 0;
993		vp->v_lastw = 0;
994		vp->v_lasta = 0;
995		vp->v_cstart = 0;
996		vp->v_clen = 0;
997		vp->v_socket = 0;
998		lockdestroy(vp->v_vnlock);
999		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
1000		KASSERT(vp->v_cleanbufcnt == 0, ("cleanbufcnt not 0"));
1001		KASSERT(vp->v_cleanblkroot == NULL, ("cleanblkroot not NULL"));
1002		KASSERT(vp->v_dirtybufcnt == 0, ("dirtybufcnt not 0"));
1003		KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
1004	} else {
1005		numvnodes++;
1006		mtx_unlock(&vnode_free_list_mtx);
1007
1008		vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
1009		mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
1010		VI_LOCK(vp);
1011		vp->v_dd = vp;
1012		vp->v_vnlock = &vp->v_lock;
1013		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
1014		cache_purge(vp);
1015		LIST_INIT(&vp->v_cache_src);
1016		TAILQ_INIT(&vp->v_cache_dst);
1017	}
1018
1019	TAILQ_INIT(&vp->v_cleanblkhd);
1020	TAILQ_INIT(&vp->v_dirtyblkhd);
1021	vp->v_type = VNON;
1022	vp->v_tag = tag;
1023	vp->v_op = vops;
1024	*vpp = vp;
1025	vp->v_usecount = 1;
1026	vp->v_data = 0;
1027	vp->v_cachedid = -1;
1028	VI_UNLOCK(vp);
1029	if (pollinfo != NULL) {
1030		mtx_destroy(&pollinfo->vpi_lock);
1031		uma_zfree(vnodepoll_zone, pollinfo);
1032	}
1033#ifdef MAC
1034	mac_init_vnode(vp);
1035	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1036		mac_associate_vnode_singlelabel(mp, vp);
1037#endif
1038	insmntque(vp, mp);
1039
1040	return (0);
1041}
1042
1043/*
1044 * Move a vnode from one mount queue to another.
1045 */
1046static void
1047insmntque(vp, mp)
1048	register struct vnode *vp;
1049	register struct mount *mp;
1050{
1051
1052	mtx_lock(&mntvnode_mtx);
1053	/*
1054	 * Delete from old mount point vnode list, if on one.
1055	 */
1056	if (vp->v_mount != NULL) {
1057		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
1058			("bad mount point vnode list size"));
1059		TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
1060		vp->v_mount->mnt_nvnodelistsize--;
1061	}
1062	/*
1063	 * Insert into list of vnodes for the new mount point, if available.
1064	 */
1065	if ((vp->v_mount = mp) == NULL) {
1066		mtx_unlock(&mntvnode_mtx);
1067		return;
1068	}
1069	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1070	mp->mnt_nvnodelistsize++;
1071	mtx_unlock(&mntvnode_mtx);
1072}
1073
1074/*
1075 * Update outstanding I/O count and do wakeup if requested.
1076 */
1077void
1078vwakeup(bp)
1079	register struct buf *bp;
1080{
1081	register struct vnode *vp;
1082
1083	bp->b_flags &= ~B_WRITEINPROG;
1084	if ((vp = bp->b_vp)) {
1085		VI_LOCK(vp);
1086		vp->v_numoutput--;
1087		if (vp->v_numoutput < 0)
1088			panic("vwakeup: neg numoutput");
1089		if ((vp->v_numoutput == 0) && (vp->v_iflag & VI_BWAIT)) {
1090			vp->v_iflag &= ~VI_BWAIT;
1091			wakeup(&vp->v_numoutput);
1092		}
1093		VI_UNLOCK(vp);
1094	}
1095}
1096
1097/*
1098 * Flush out and invalidate all buffers associated with a vnode.
1099 * Called with the underlying object locked.
1100 */
1101int
1102vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
1103	struct vnode *vp;
1104	int flags;
1105	struct ucred *cred;
1106	struct thread *td;
1107	int slpflag, slptimeo;
1108{
1109	struct buf *blist;
1110	int s, error;
1111	vm_object_t object;
1112
1113	GIANT_REQUIRED;
1114
1115	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1116
1117	VI_LOCK(vp);
1118	if (flags & V_SAVE) {
1119		s = splbio();
1120		while (vp->v_numoutput) {
1121			vp->v_iflag |= VI_BWAIT;
1122			error = msleep(&vp->v_numoutput, VI_MTX(vp),
1123			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
1124			if (error) {
1125				VI_UNLOCK(vp);
1126				splx(s);
1127				return (error);
1128			}
1129		}
1130		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1131			splx(s);
1132			VI_UNLOCK(vp);
1133			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
1134				return (error);
1135			/*
1136			 * XXX We could save a lock/unlock if this was only
1137			 * enabled under INVARIANTS
1138			 */
1139			VI_LOCK(vp);
1140			s = splbio();
1141			if (vp->v_numoutput > 0 ||
1142			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
1143				panic("vinvalbuf: dirty bufs");
1144		}
1145		splx(s);
1146	}
1147	s = splbio();
1148	/*
1149	 * If you alter this loop please notice that interlock is dropped and
1150	 * reacquired in flushbuflist.  Special care is needed to ensure that
1151	 * no race conditions occur from this.
1152	 */
1153	for (error = 0;;) {
1154		if ((blist = TAILQ_FIRST(&vp->v_cleanblkhd)) != 0 &&
1155		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
1156			if (error)
1157				break;
1158			continue;
1159		}
1160		if ((blist = TAILQ_FIRST(&vp->v_dirtyblkhd)) != 0 &&
1161		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
1162			if (error)
1163				break;
1164			continue;
1165		}
1166		break;
1167	}
1168	if (error) {
1169		splx(s);
1170		VI_UNLOCK(vp);
1171		return (error);
1172	}
1173
1174	/*
1175	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1176	 * have write I/O in-progress but if there is a VM object then the
1177	 * VM object can also have read-I/O in-progress.
1178	 */
1179	do {
1180		while (vp->v_numoutput > 0) {
1181			vp->v_iflag |= VI_BWAIT;
1182			msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vnvlbv", 0);
1183		}
1184		VI_UNLOCK(vp);
1185		if (VOP_GETVOBJECT(vp, &object) == 0) {
1186			VM_OBJECT_LOCK(object);
1187			vm_object_pip_wait(object, "vnvlbx");
1188			VM_OBJECT_UNLOCK(object);
1189		}
1190		VI_LOCK(vp);
1191	} while (vp->v_numoutput > 0);
1192	VI_UNLOCK(vp);
1193
1194	splx(s);
1195
1196	/*
1197	 * Destroy the copy in the VM cache, too.
1198	 */
1199	if (VOP_GETVOBJECT(vp, &object) == 0) {
1200		VM_OBJECT_LOCK(object);
1201		vm_object_page_remove(object, 0, 0,
1202			(flags & V_SAVE) ? TRUE : FALSE);
1203		VM_OBJECT_UNLOCK(object);
1204	}
1205
1206#ifdef INVARIANTS
1207	VI_LOCK(vp);
1208	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1209	    (!TAILQ_EMPTY(&vp->v_dirtyblkhd) ||
1210	     !TAILQ_EMPTY(&vp->v_cleanblkhd)))
1211		panic("vinvalbuf: flush failed");
1212	VI_UNLOCK(vp);
1213#endif
1214	return (0);
1215}
1216
1217/*
1218 * Flush out buffers on the specified list.
1219 *
1220 */
1221static int
1222flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp)
1223	struct buf *blist;
1224	int flags;
1225	struct vnode *vp;
1226	int slpflag, slptimeo;
1227	int *errorp;
1228{
1229	struct buf *bp, *nbp;
1230	int found, error;
1231
1232	ASSERT_VI_LOCKED(vp, "flushbuflist");
1233
1234	for (found = 0, bp = blist; bp; bp = nbp) {
1235		nbp = TAILQ_NEXT(bp, b_vnbufs);
1236		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1237		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1238			continue;
1239		}
1240		found += 1;
1241		error = BUF_TIMELOCK(bp,
1242		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, VI_MTX(vp),
1243		    "flushbuf", slpflag, slptimeo);
1244		if (error) {
1245			if (error != ENOLCK)
1246				*errorp = error;
1247			goto done;
1248		}
1249		/*
1250		 * XXX Since there are no node locks for NFS, I
1251		 * believe there is a slight chance that a delayed
1252		 * write will occur while sleeping just above, so
1253		 * check for it.  Note that vfs_bio_awrite expects
1254		 * buffers to reside on a queue, while BUF_WRITE and
1255		 * brelse do not.
1256		 */
1257		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1258			(flags & V_SAVE)) {
1259
1260			if (bp->b_vp == vp) {
1261				if (bp->b_flags & B_CLUSTEROK) {
1262					vfs_bio_awrite(bp);
1263				} else {
1264					bremfree(bp);
1265					bp->b_flags |= B_ASYNC;
1266					BUF_WRITE(bp);
1267				}
1268			} else {
1269				bremfree(bp);
1270				(void) BUF_WRITE(bp);
1271			}
1272			goto done;
1273		}
1274		bremfree(bp);
1275		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1276		bp->b_flags &= ~B_ASYNC;
1277		brelse(bp);
1278		VI_LOCK(vp);
1279	}
1280	return (found);
1281done:
1282	VI_LOCK(vp);
1283	return (found);
1284}
1285
1286/*
1287 * Truncate a file's buffer and pages to a specified length.  This
1288 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1289 * sync activity.
1290 */
1291int
1292vtruncbuf(vp, cred, td, length, blksize)
1293	register struct vnode *vp;
1294	struct ucred *cred;
1295	struct thread *td;
1296	off_t length;
1297	int blksize;
1298{
1299	register struct buf *bp;
1300	struct buf *nbp;
1301	int s, anyfreed;
1302	int trunclbn;
1303
1304	/*
1305	 * Round up to the *next* lbn.
1306	 */
1307	trunclbn = (length + blksize - 1) / blksize;
1308
1309	s = splbio();
1310	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1311restart:
1312	VI_LOCK(vp);
1313	anyfreed = 1;
1314	for (;anyfreed;) {
1315		anyfreed = 0;
1316		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1317			nbp = TAILQ_NEXT(bp, b_vnbufs);
1318			if (bp->b_lblkno >= trunclbn) {
1319				if (BUF_LOCK(bp,
1320				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1321				    VI_MTX(vp)) == ENOLCK)
1322					goto restart;
1323
1324				bremfree(bp);
1325				bp->b_flags |= (B_INVAL | B_RELBUF);
1326				bp->b_flags &= ~B_ASYNC;
1327				brelse(bp);
1328				anyfreed = 1;
1329
1330				if (nbp &&
1331				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1332				    (nbp->b_vp != vp) ||
1333				    (nbp->b_flags & B_DELWRI))) {
1334					goto restart;
1335				}
1336				VI_LOCK(vp);
1337			}
1338		}
1339
1340		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1341			nbp = TAILQ_NEXT(bp, b_vnbufs);
1342			if (bp->b_lblkno >= trunclbn) {
1343				if (BUF_LOCK(bp,
1344				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1345				    VI_MTX(vp)) == ENOLCK)
1346					goto restart;
1347				bremfree(bp);
1348				bp->b_flags |= (B_INVAL | B_RELBUF);
1349				bp->b_flags &= ~B_ASYNC;
1350				brelse(bp);
1351				anyfreed = 1;
1352				if (nbp &&
1353				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1354				    (nbp->b_vp != vp) ||
1355				    (nbp->b_flags & B_DELWRI) == 0)) {
1356					goto restart;
1357				}
1358				VI_LOCK(vp);
1359			}
1360		}
1361	}
1362
1363	if (length > 0) {
1364restartsync:
1365		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1366			nbp = TAILQ_NEXT(bp, b_vnbufs);
1367			if (bp->b_lblkno > 0)
1368				continue;
1369			/*
1370			 * Since we hold the vnode lock this should only
1371			 * fail if we're racing with the buf daemon.
1372			 */
1373			if (BUF_LOCK(bp,
1374			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1375			    VI_MTX(vp)) == ENOLCK) {
1376				goto restart;
1377			}
1378			KASSERT((bp->b_flags & B_DELWRI),
1379			    ("buf(%p) on dirty queue without DELWRI.", bp));
1380
1381			bremfree(bp);
1382			bawrite(bp);
1383			VI_LOCK(vp);
1384			goto restartsync;
1385		}
1386	}
1387
1388	while (vp->v_numoutput > 0) {
1389		vp->v_iflag |= VI_BWAIT;
1390		msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vbtrunc", 0);
1391	}
1392	VI_UNLOCK(vp);
1393	splx(s);
1394
1395	vnode_pager_setsize(vp, length);
1396
1397	return (0);
1398}
1399
1400/*
1401 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1402 * 		 a vnode.
1403 *
1404 *	NOTE: We have to deal with the special case of a background bitmap
1405 *	buffer, a situation where two buffers will have the same logical
1406 *	block offset.  We want (1) only the foreground buffer to be accessed
1407 *	in a lookup and (2) must differentiate between the foreground and
1408 *	background buffer in the splay tree algorithm because the splay
1409 *	tree cannot normally handle multiple entities with the same 'index'.
1410 *	We accomplish this by adding differentiating flags to the splay tree's
1411 *	numerical domain.
1412 */
1413static
1414struct buf *
1415buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1416{
1417	struct buf dummy;
1418	struct buf *lefttreemax, *righttreemin, *y;
1419
1420	if (root == NULL)
1421		return (NULL);
1422	lefttreemax = righttreemin = &dummy;
1423	for (;;) {
1424		if (lblkno < root->b_lblkno ||
1425		    (lblkno == root->b_lblkno &&
1426		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1427			if ((y = root->b_left) == NULL)
1428				break;
1429			if (lblkno < y->b_lblkno) {
1430				/* Rotate right. */
1431				root->b_left = y->b_right;
1432				y->b_right = root;
1433				root = y;
1434				if ((y = root->b_left) == NULL)
1435					break;
1436			}
1437			/* Link into the new root's right tree. */
1438			righttreemin->b_left = root;
1439			righttreemin = root;
1440		} else if (lblkno > root->b_lblkno ||
1441		    (lblkno == root->b_lblkno &&
1442		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1443			if ((y = root->b_right) == NULL)
1444				break;
1445			if (lblkno > y->b_lblkno) {
1446				/* Rotate left. */
1447				root->b_right = y->b_left;
1448				y->b_left = root;
1449				root = y;
1450				if ((y = root->b_right) == NULL)
1451					break;
1452			}
1453			/* Link into the new root's left tree. */
1454			lefttreemax->b_right = root;
1455			lefttreemax = root;
1456		} else {
1457			break;
1458		}
1459		root = y;
1460	}
1461	/* Assemble the new root. */
1462	lefttreemax->b_right = root->b_left;
1463	righttreemin->b_left = root->b_right;
1464	root->b_left = dummy.b_right;
1465	root->b_right = dummy.b_left;
1466	return (root);
1467}
1468
1469static
1470void
1471buf_vlist_remove(struct buf *bp)
1472{
1473	struct vnode *vp = bp->b_vp;
1474	struct buf *root;
1475
1476	ASSERT_VI_LOCKED(vp, "buf_vlist_remove");
1477	if (bp->b_xflags & BX_VNDIRTY) {
1478		if (bp != vp->v_dirtyblkroot) {
1479			root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1480			KASSERT(root == bp, ("splay lookup failed during dirty remove"));
1481		}
1482		if (bp->b_left == NULL) {
1483			root = bp->b_right;
1484		} else {
1485			root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1486			root->b_right = bp->b_right;
1487		}
1488		vp->v_dirtyblkroot = root;
1489		TAILQ_REMOVE(&vp->v_dirtyblkhd, bp, b_vnbufs);
1490		vp->v_dirtybufcnt--;
1491	} else {
1492		/* KASSERT(bp->b_xflags & BX_VNCLEAN, ("bp wasn't clean")); */
1493		if (bp != vp->v_cleanblkroot) {
1494			root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1495			KASSERT(root == bp, ("splay lookup failed during clean remove"));
1496		}
1497		if (bp->b_left == NULL) {
1498			root = bp->b_right;
1499		} else {
1500			root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1501			root->b_right = bp->b_right;
1502		}
1503		vp->v_cleanblkroot = root;
1504		TAILQ_REMOVE(&vp->v_cleanblkhd, bp, b_vnbufs);
1505		vp->v_cleanbufcnt--;
1506	}
1507	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1508}
1509
1510/*
1511 * Add the buffer to the sorted clean or dirty block list using a
1512 * splay tree algorithm.
1513 *
1514 * NOTE: xflags is passed as a constant, optimizing this inline function!
1515 */
1516static
1517void
1518buf_vlist_add(struct buf *bp, struct vnode *vp, b_xflags_t xflags)
1519{
1520	struct buf *root;
1521
1522	ASSERT_VI_LOCKED(vp, "buf_vlist_add");
1523	bp->b_xflags |= xflags;
1524	if (xflags & BX_VNDIRTY) {
1525		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1526		if (root == NULL) {
1527			bp->b_left = NULL;
1528			bp->b_right = NULL;
1529			TAILQ_INSERT_TAIL(&vp->v_dirtyblkhd, bp, b_vnbufs);
1530		} else if (bp->b_lblkno < root->b_lblkno ||
1531		    (bp->b_lblkno == root->b_lblkno &&
1532		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1533			bp->b_left = root->b_left;
1534			bp->b_right = root;
1535			root->b_left = NULL;
1536			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1537		} else {
1538			bp->b_right = root->b_right;
1539			bp->b_left = root;
1540			root->b_right = NULL;
1541			TAILQ_INSERT_AFTER(&vp->v_dirtyblkhd,
1542			    root, bp, b_vnbufs);
1543		}
1544		vp->v_dirtybufcnt++;
1545		vp->v_dirtyblkroot = bp;
1546	} else {
1547		/* KASSERT(xflags & BX_VNCLEAN, ("xflags not clean")); */
1548		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1549		if (root == NULL) {
1550			bp->b_left = NULL;
1551			bp->b_right = NULL;
1552			TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1553		} else if (bp->b_lblkno < root->b_lblkno ||
1554		    (bp->b_lblkno == root->b_lblkno &&
1555		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1556			bp->b_left = root->b_left;
1557			bp->b_right = root;
1558			root->b_left = NULL;
1559			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1560		} else {
1561			bp->b_right = root->b_right;
1562			bp->b_left = root;
1563			root->b_right = NULL;
1564			TAILQ_INSERT_AFTER(&vp->v_cleanblkhd,
1565			    root, bp, b_vnbufs);
1566		}
1567		vp->v_cleanbufcnt++;
1568		vp->v_cleanblkroot = bp;
1569	}
1570}
1571
1572/*
1573 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1574 * shadow buffers used in background bitmap writes.
1575 *
1576 * This code isn't quite efficient as it could be because we are maintaining
1577 * two sorted lists and do not know which list the block resides in.
1578 *
1579 * During a "make buildworld" the desired buffer is found at one of
1580 * the roots more than 60% of the time.  Thus, checking both roots
1581 * before performing either splay eliminates unnecessary splays on the
1582 * first tree splayed.
1583 */
1584struct buf *
1585gbincore(struct vnode *vp, daddr_t lblkno)
1586{
1587	struct buf *bp;
1588
1589	GIANT_REQUIRED;
1590
1591	ASSERT_VI_LOCKED(vp, "gbincore");
1592	if ((bp = vp->v_cleanblkroot) != NULL &&
1593	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1594		return (bp);
1595	if ((bp = vp->v_dirtyblkroot) != NULL &&
1596	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1597		return (bp);
1598	if ((bp = vp->v_cleanblkroot) != NULL) {
1599		vp->v_cleanblkroot = bp = buf_splay(lblkno, 0, bp);
1600		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1601			return (bp);
1602	}
1603	if ((bp = vp->v_dirtyblkroot) != NULL) {
1604		vp->v_dirtyblkroot = bp = buf_splay(lblkno, 0, bp);
1605		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1606			return (bp);
1607	}
1608	return (NULL);
1609}
1610
1611/*
1612 * Associate a buffer with a vnode.
1613 */
1614void
1615bgetvp(vp, bp)
1616	register struct vnode *vp;
1617	register struct buf *bp;
1618{
1619	int s;
1620
1621	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1622
1623	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1624	    ("bgetvp: bp already attached! %p", bp));
1625
1626	ASSERT_VI_LOCKED(vp, "bgetvp");
1627	vholdl(vp);
1628	bp->b_vp = vp;
1629	bp->b_dev = vn_todev(vp);
1630	/*
1631	 * Insert onto list for new vnode.
1632	 */
1633	s = splbio();
1634	buf_vlist_add(bp, vp, BX_VNCLEAN);
1635	splx(s);
1636}
1637
1638/*
1639 * Disassociate a buffer from a vnode.
1640 */
1641void
1642brelvp(bp)
1643	register struct buf *bp;
1644{
1645	struct vnode *vp;
1646	int s;
1647
1648	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1649
1650	/*
1651	 * Delete from old vnode list, if on one.
1652	 */
1653	vp = bp->b_vp;
1654	s = splbio();
1655	VI_LOCK(vp);
1656	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1657		buf_vlist_remove(bp);
1658	if ((vp->v_iflag & VI_ONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1659		vp->v_iflag &= ~VI_ONWORKLST;
1660		mtx_lock(&sync_mtx);
1661		LIST_REMOVE(vp, v_synclist);
1662		mtx_unlock(&sync_mtx);
1663	}
1664	vdropl(vp);
1665	VI_UNLOCK(vp);
1666	bp->b_vp = (struct vnode *) 0;
1667	if (bp->b_object)
1668		bp->b_object = NULL;
1669	splx(s);
1670}
1671
1672/*
1673 * Add an item to the syncer work queue.
1674 */
1675static void
1676vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1677{
1678	int s, slot;
1679
1680	s = splbio();
1681	ASSERT_VI_LOCKED(vp, "vn_syncer_add_to_worklist");
1682
1683	mtx_lock(&sync_mtx);
1684	if (vp->v_iflag & VI_ONWORKLST)
1685		LIST_REMOVE(vp, v_synclist);
1686	else
1687		vp->v_iflag |= VI_ONWORKLST;
1688
1689	if (delay > syncer_maxdelay - 2)
1690		delay = syncer_maxdelay - 2;
1691	slot = (syncer_delayno + delay) & syncer_mask;
1692
1693	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1694	mtx_unlock(&sync_mtx);
1695
1696	splx(s);
1697}
1698
1699struct  proc *updateproc;
1700static void sched_sync(void);
1701static struct kproc_desc up_kp = {
1702	"syncer",
1703	sched_sync,
1704	&updateproc
1705};
1706SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1707
1708/*
1709 * System filesystem synchronizer daemon.
1710 */
1711static void
1712sched_sync(void)
1713{
1714	struct synclist *slp;
1715	struct vnode *vp;
1716	struct mount *mp;
1717	long starttime;
1718	int s;
1719	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);  /* XXXKSE */
1720
1721	mtx_lock(&Giant);
1722
1723	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, td->td_proc,
1724	    SHUTDOWN_PRI_LAST);
1725
1726	for (;;) {
1727		kthread_suspend_check(td->td_proc);
1728
1729		starttime = time_second;
1730
1731		/*
1732		 * Push files whose dirty time has expired.  Be careful
1733		 * of interrupt race on slp queue.
1734		 */
1735		s = splbio();
1736		mtx_lock(&sync_mtx);
1737		slp = &syncer_workitem_pending[syncer_delayno];
1738		syncer_delayno += 1;
1739		if (syncer_delayno == syncer_maxdelay)
1740			syncer_delayno = 0;
1741		splx(s);
1742
1743		while ((vp = LIST_FIRST(slp)) != NULL) {
1744			mtx_unlock(&sync_mtx);
1745			if (VOP_ISLOCKED(vp, NULL) == 0 &&
1746			    vn_start_write(vp, &mp, V_NOWAIT) == 0) {
1747				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1748				(void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td);
1749				VOP_UNLOCK(vp, 0, td);
1750				vn_finished_write(mp);
1751			}
1752			s = splbio();
1753			mtx_lock(&sync_mtx);
1754			if (LIST_FIRST(slp) == vp) {
1755				mtx_unlock(&sync_mtx);
1756				/*
1757				 * Note: VFS vnodes can remain on the
1758				 * worklist too with no dirty blocks, but
1759				 * since sync_fsync() moves it to a different
1760				 * slot we are safe.
1761				 */
1762				VI_LOCK(vp);
1763				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1764				    !vn_isdisk(vp, NULL)) {
1765					panic("sched_sync: fsync failed "
1766					      "vp %p tag %s", vp, vp->v_tag);
1767				}
1768				/*
1769				 * Put us back on the worklist.  The worklist
1770				 * routine will remove us from our current
1771				 * position and then add us back in at a later
1772				 * position.
1773				 */
1774				vn_syncer_add_to_worklist(vp, syncdelay);
1775				VI_UNLOCK(vp);
1776				mtx_lock(&sync_mtx);
1777			}
1778			splx(s);
1779		}
1780		mtx_unlock(&sync_mtx);
1781
1782		/*
1783		 * Do soft update processing.
1784		 */
1785		if (softdep_process_worklist_hook != NULL)
1786			(*softdep_process_worklist_hook)(NULL);
1787
1788		/*
1789		 * The variable rushjob allows the kernel to speed up the
1790		 * processing of the filesystem syncer process. A rushjob
1791		 * value of N tells the filesystem syncer to process the next
1792		 * N seconds worth of work on its queue ASAP. Currently rushjob
1793		 * is used by the soft update code to speed up the filesystem
1794		 * syncer process when the incore state is getting so far
1795		 * ahead of the disk that the kernel memory pool is being
1796		 * threatened with exhaustion.
1797		 */
1798		mtx_lock(&sync_mtx);
1799		if (rushjob > 0) {
1800			rushjob -= 1;
1801			mtx_unlock(&sync_mtx);
1802			continue;
1803		}
1804		mtx_unlock(&sync_mtx);
1805		/*
1806		 * If it has taken us less than a second to process the
1807		 * current work, then wait. Otherwise start right over
1808		 * again. We can still lose time if any single round
1809		 * takes more than two seconds, but it does not really
1810		 * matter as we are just trying to generally pace the
1811		 * filesystem activity.
1812		 */
1813		if (time_second == starttime)
1814			tsleep(&lbolt, PPAUSE, "syncer", 0);
1815	}
1816}
1817
1818/*
1819 * Request the syncer daemon to speed up its work.
1820 * We never push it to speed up more than half of its
1821 * normal turn time, otherwise it could take over the cpu.
1822 * XXXKSE  only one update?
1823 */
1824int
1825speedup_syncer()
1826{
1827	struct thread *td;
1828	int ret = 0;
1829
1830	td = FIRST_THREAD_IN_PROC(updateproc);
1831	mtx_lock_spin(&sched_lock);
1832	if (td->td_wchan == &lbolt) {
1833		unsleep(td);
1834		TD_CLR_SLEEPING(td);
1835		setrunnable(td);
1836	}
1837	mtx_unlock_spin(&sched_lock);
1838	mtx_lock(&sync_mtx);
1839	if (rushjob < syncdelay / 2) {
1840		rushjob += 1;
1841		stat_rush_requests += 1;
1842		ret = 1;
1843	}
1844	mtx_unlock(&sync_mtx);
1845	return (ret);
1846}
1847
1848/*
1849 * Associate a p-buffer with a vnode.
1850 *
1851 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1852 * with the buffer.  i.e. the bp has not been linked into the vnode or
1853 * ref-counted.
1854 */
1855void
1856pbgetvp(vp, bp)
1857	register struct vnode *vp;
1858	register struct buf *bp;
1859{
1860
1861	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1862
1863	bp->b_vp = vp;
1864	bp->b_flags |= B_PAGING;
1865	bp->b_dev = vn_todev(vp);
1866}
1867
1868/*
1869 * Disassociate a p-buffer from a vnode.
1870 */
1871void
1872pbrelvp(bp)
1873	register struct buf *bp;
1874{
1875
1876	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1877
1878	/* XXX REMOVE ME */
1879	VI_LOCK(bp->b_vp);
1880	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1881		panic(
1882		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1883		    bp,
1884		    (int)bp->b_flags
1885		);
1886	}
1887	VI_UNLOCK(bp->b_vp);
1888	bp->b_vp = (struct vnode *) 0;
1889	bp->b_flags &= ~B_PAGING;
1890}
1891
1892/*
1893 * Reassign a buffer from one vnode to another.
1894 * Used to assign file specific control information
1895 * (indirect blocks) to the vnode to which they belong.
1896 */
1897void
1898reassignbuf(bp, newvp)
1899	register struct buf *bp;
1900	register struct vnode *newvp;
1901{
1902	int delay;
1903	int s;
1904
1905	if (newvp == NULL) {
1906		printf("reassignbuf: NULL");
1907		return;
1908	}
1909	++reassignbufcalls;
1910
1911	/*
1912	 * B_PAGING flagged buffers cannot be reassigned because their vp
1913	 * is not fully linked in.
1914	 */
1915	if (bp->b_flags & B_PAGING)
1916		panic("cannot reassign paging buffer");
1917
1918	s = splbio();
1919	/*
1920	 * Delete from old vnode list, if on one.
1921	 */
1922	VI_LOCK(bp->b_vp);
1923	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1924		buf_vlist_remove(bp);
1925		if (bp->b_vp != newvp) {
1926			vdropl(bp->b_vp);
1927			bp->b_vp = NULL;	/* for clarification */
1928		}
1929	}
1930	VI_UNLOCK(bp->b_vp);
1931	/*
1932	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1933	 * of clean buffers.
1934	 */
1935	VI_LOCK(newvp);
1936	if (bp->b_flags & B_DELWRI) {
1937		if ((newvp->v_iflag & VI_ONWORKLST) == 0) {
1938			switch (newvp->v_type) {
1939			case VDIR:
1940				delay = dirdelay;
1941				break;
1942			case VCHR:
1943				if (newvp->v_rdev->si_mountpoint != NULL) {
1944					delay = metadelay;
1945					break;
1946				}
1947				/* FALLTHROUGH */
1948			default:
1949				delay = filedelay;
1950			}
1951			vn_syncer_add_to_worklist(newvp, delay);
1952		}
1953		buf_vlist_add(bp, newvp, BX_VNDIRTY);
1954	} else {
1955		buf_vlist_add(bp, newvp, BX_VNCLEAN);
1956
1957		if ((newvp->v_iflag & VI_ONWORKLST) &&
1958		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1959			mtx_lock(&sync_mtx);
1960			LIST_REMOVE(newvp, v_synclist);
1961			mtx_unlock(&sync_mtx);
1962			newvp->v_iflag &= ~VI_ONWORKLST;
1963		}
1964	}
1965	if (bp->b_vp != newvp) {
1966		bp->b_vp = newvp;
1967		vholdl(bp->b_vp);
1968	}
1969	VI_UNLOCK(newvp);
1970	splx(s);
1971}
1972
1973/*
1974 * Create a vnode for a device.
1975 * Used for mounting the root filesystem.
1976 */
1977int
1978bdevvp(dev, vpp)
1979	dev_t dev;
1980	struct vnode **vpp;
1981{
1982	register struct vnode *vp;
1983	struct vnode *nvp;
1984	int error;
1985
1986	if (dev == NODEV) {
1987		*vpp = NULLVP;
1988		return (ENXIO);
1989	}
1990	if (vfinddev(dev, VCHR, vpp))
1991		return (0);
1992	error = getnewvnode("none", (struct mount *)0, spec_vnodeop_p, &nvp);
1993	if (error) {
1994		*vpp = NULLVP;
1995		return (error);
1996	}
1997	vp = nvp;
1998	vp->v_type = VCHR;
1999	addalias(vp, dev);
2000	*vpp = vp;
2001	return (0);
2002}
2003
2004static void
2005v_incr_usecount(struct vnode *vp, int delta)
2006{
2007	vp->v_usecount += delta;
2008	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2009		mtx_lock(&spechash_mtx);
2010		vp->v_rdev->si_usecount += delta;
2011		mtx_unlock(&spechash_mtx);
2012	}
2013}
2014
2015/*
2016 * Add vnode to the alias list hung off the dev_t.
2017 *
2018 * The reason for this gunk is that multiple vnodes can reference
2019 * the same physical device, so checking vp->v_usecount to see
2020 * how many users there are is inadequate; the v_usecount for
2021 * the vnodes need to be accumulated.  vcount() does that.
2022 */
2023struct vnode *
2024addaliasu(nvp, nvp_rdev)
2025	struct vnode *nvp;
2026	udev_t nvp_rdev;
2027{
2028	struct vnode *ovp;
2029	vop_t **ops;
2030	dev_t dev;
2031
2032	if (nvp->v_type == VBLK)
2033		return (nvp);
2034	if (nvp->v_type != VCHR)
2035		panic("addaliasu on non-special vnode");
2036	dev = udev2dev(nvp_rdev, 0);
2037	/*
2038	 * Check to see if we have a bdevvp vnode with no associated
2039	 * filesystem. If so, we want to associate the filesystem of
2040	 * the new newly instigated vnode with the bdevvp vnode and
2041	 * discard the newly created vnode rather than leaving the
2042	 * bdevvp vnode lying around with no associated filesystem.
2043	 */
2044	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
2045		addalias(nvp, dev);
2046		return (nvp);
2047	}
2048	/*
2049	 * Discard unneeded vnode, but save its node specific data.
2050	 * Note that if there is a lock, it is carried over in the
2051	 * node specific data to the replacement vnode.
2052	 */
2053	vref(ovp);
2054	ovp->v_data = nvp->v_data;
2055	ovp->v_tag = nvp->v_tag;
2056	nvp->v_data = NULL;
2057	lockdestroy(ovp->v_vnlock);
2058	lockinit(ovp->v_vnlock, PVFS, nvp->v_vnlock->lk_wmesg,
2059	    nvp->v_vnlock->lk_timo, nvp->v_vnlock->lk_flags & LK_EXTFLG_MASK);
2060	ops = ovp->v_op;
2061	ovp->v_op = nvp->v_op;
2062	if (VOP_ISLOCKED(nvp, curthread)) {
2063		VOP_UNLOCK(nvp, 0, curthread);
2064		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
2065	}
2066	nvp->v_op = ops;
2067	insmntque(ovp, nvp->v_mount);
2068	vrele(nvp);
2069	vgone(nvp);
2070	return (ovp);
2071}
2072
2073/* This is a local helper function that do the same as addaliasu, but for a
2074 * dev_t instead of an udev_t. */
2075static void
2076addalias(nvp, dev)
2077	struct vnode *nvp;
2078	dev_t dev;
2079{
2080
2081	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
2082	nvp->v_rdev = dev;
2083	VI_LOCK(nvp);
2084	mtx_lock(&spechash_mtx);
2085	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
2086	dev->si_usecount += nvp->v_usecount;
2087	mtx_unlock(&spechash_mtx);
2088	VI_UNLOCK(nvp);
2089}
2090
2091/*
2092 * Grab a particular vnode from the free list, increment its
2093 * reference count and lock it. The vnode lock bit is set if the
2094 * vnode is being eliminated in vgone. The process is awakened
2095 * when the transition is completed, and an error returned to
2096 * indicate that the vnode is no longer usable (possibly having
2097 * been changed to a new filesystem type).
2098 */
2099int
2100vget(vp, flags, td)
2101	register struct vnode *vp;
2102	int flags;
2103	struct thread *td;
2104{
2105	int error;
2106
2107	/*
2108	 * If the vnode is in the process of being cleaned out for
2109	 * another use, we wait for the cleaning to finish and then
2110	 * return failure. Cleaning is determined by checking that
2111	 * the VI_XLOCK flag is set.
2112	 */
2113	if ((flags & LK_INTERLOCK) == 0)
2114		VI_LOCK(vp);
2115	if (vp->v_iflag & VI_XLOCK && vp->v_vxproc != curthread) {
2116		vp->v_iflag |= VI_XWANT;
2117		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vget", 0);
2118		return (ENOENT);
2119	}
2120
2121	v_incr_usecount(vp, 1);
2122
2123	if (VSHOULDBUSY(vp))
2124		vbusy(vp);
2125	if (flags & LK_TYPE_MASK) {
2126		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
2127			/*
2128			 * must expand vrele here because we do not want
2129			 * to call VOP_INACTIVE if the reference count
2130			 * drops back to zero since it was never really
2131			 * active. We must remove it from the free list
2132			 * before sleeping so that multiple processes do
2133			 * not try to recycle it.
2134			 */
2135			VI_LOCK(vp);
2136			v_incr_usecount(vp, -1);
2137			if (VSHOULDFREE(vp))
2138				vfree(vp);
2139			else
2140				vlruvp(vp);
2141			VI_UNLOCK(vp);
2142		}
2143		return (error);
2144	}
2145	VI_UNLOCK(vp);
2146	return (0);
2147}
2148
2149/*
2150 * Increase the reference count of a vnode.
2151 */
2152void
2153vref(struct vnode *vp)
2154{
2155	VI_LOCK(vp);
2156	v_incr_usecount(vp, 1);
2157	VI_UNLOCK(vp);
2158}
2159
2160/*
2161 * Return reference count of a vnode.
2162 *
2163 * The results of this call are only guaranteed when some mechanism other
2164 * than the VI lock is used to stop other processes from gaining references
2165 * to the vnode.  This may be the case if the caller holds the only reference.
2166 * This is also useful when stale data is acceptable as race conditions may
2167 * be accounted for by some other means.
2168 */
2169int
2170vrefcnt(struct vnode *vp)
2171{
2172	int usecnt;
2173
2174	VI_LOCK(vp);
2175	usecnt = vp->v_usecount;
2176	VI_UNLOCK(vp);
2177
2178	return (usecnt);
2179}
2180
2181
2182/*
2183 * Vnode put/release.
2184 * If count drops to zero, call inactive routine and return to freelist.
2185 */
2186void
2187vrele(vp)
2188	struct vnode *vp;
2189{
2190	struct thread *td = curthread;	/* XXX */
2191
2192	KASSERT(vp != NULL, ("vrele: null vp"));
2193
2194	VI_LOCK(vp);
2195
2196	/* Skip this v_writecount check if we're going to panic below. */
2197	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2198	    ("vrele: missed vn_close"));
2199
2200	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2201	    vp->v_usecount == 1)) {
2202		v_incr_usecount(vp, -1);
2203		VI_UNLOCK(vp);
2204
2205		return;
2206	}
2207
2208	if (vp->v_usecount == 1) {
2209		v_incr_usecount(vp, -1);
2210		/*
2211		 * We must call VOP_INACTIVE with the node locked. Mark
2212		 * as VI_DOINGINACT to avoid recursion.
2213		 */
2214		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
2215			VI_LOCK(vp);
2216			vp->v_iflag |= VI_DOINGINACT;
2217			VI_UNLOCK(vp);
2218			VOP_INACTIVE(vp, td);
2219			VI_LOCK(vp);
2220			KASSERT(vp->v_iflag & VI_DOINGINACT,
2221			    ("vrele: lost VI_DOINGINACT"));
2222			vp->v_iflag &= ~VI_DOINGINACT;
2223			VI_UNLOCK(vp);
2224		}
2225		VI_LOCK(vp);
2226		if (VSHOULDFREE(vp))
2227			vfree(vp);
2228		else
2229			vlruvp(vp);
2230		VI_UNLOCK(vp);
2231
2232	} else {
2233#ifdef DIAGNOSTIC
2234		vprint("vrele: negative ref count", vp);
2235#endif
2236		VI_UNLOCK(vp);
2237		panic("vrele: negative ref cnt");
2238	}
2239}
2240
2241/*
2242 * Release an already locked vnode.  This give the same effects as
2243 * unlock+vrele(), but takes less time and avoids releasing and
2244 * re-aquiring the lock (as vrele() aquires the lock internally.)
2245 */
2246void
2247vput(vp)
2248	struct vnode *vp;
2249{
2250	struct thread *td = curthread;	/* XXX */
2251
2252	GIANT_REQUIRED;
2253
2254	KASSERT(vp != NULL, ("vput: null vp"));
2255	VI_LOCK(vp);
2256	/* Skip this v_writecount check if we're going to panic below. */
2257	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2258	    ("vput: missed vn_close"));
2259
2260	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2261	    vp->v_usecount == 1)) {
2262		v_incr_usecount(vp, -1);
2263		VOP_UNLOCK(vp, LK_INTERLOCK, td);
2264		return;
2265	}
2266
2267	if (vp->v_usecount == 1) {
2268		v_incr_usecount(vp, -1);
2269		/*
2270		 * We must call VOP_INACTIVE with the node locked, so
2271		 * we just need to release the vnode mutex. Mark as
2272		 * as VI_DOINGINACT to avoid recursion.
2273		 */
2274		vp->v_iflag |= VI_DOINGINACT;
2275		VI_UNLOCK(vp);
2276		VOP_INACTIVE(vp, td);
2277		VI_LOCK(vp);
2278		KASSERT(vp->v_iflag & VI_DOINGINACT,
2279		    ("vput: lost VI_DOINGINACT"));
2280		vp->v_iflag &= ~VI_DOINGINACT;
2281		if (VSHOULDFREE(vp))
2282			vfree(vp);
2283		else
2284			vlruvp(vp);
2285		VI_UNLOCK(vp);
2286
2287	} else {
2288#ifdef DIAGNOSTIC
2289		vprint("vput: negative ref count", vp);
2290#endif
2291		panic("vput: negative ref cnt");
2292	}
2293}
2294
2295/*
2296 * Somebody doesn't want the vnode recycled.
2297 */
2298void
2299vhold(struct vnode *vp)
2300{
2301	VI_LOCK(vp);
2302	vholdl(vp);
2303	VI_UNLOCK(vp);
2304}
2305
2306void
2307vholdl(vp)
2308	register struct vnode *vp;
2309{
2310	int s;
2311
2312	s = splbio();
2313	vp->v_holdcnt++;
2314	if (VSHOULDBUSY(vp))
2315		vbusy(vp);
2316	splx(s);
2317}
2318
2319/*
2320 * Note that there is one less who cares about this vnode.  vdrop() is the
2321 * opposite of vhold().
2322 */
2323void
2324vdrop(struct vnode *vp)
2325{
2326	VI_LOCK(vp);
2327	vdropl(vp);
2328	VI_UNLOCK(vp);
2329}
2330
2331void
2332vdropl(vp)
2333	register struct vnode *vp;
2334{
2335	int s;
2336
2337	s = splbio();
2338	if (vp->v_holdcnt <= 0)
2339		panic("vdrop: holdcnt");
2340	vp->v_holdcnt--;
2341	if (VSHOULDFREE(vp))
2342		vfree(vp);
2343	else
2344		vlruvp(vp);
2345	splx(s);
2346}
2347
2348/*
2349 * Remove any vnodes in the vnode table belonging to mount point mp.
2350 *
2351 * If FORCECLOSE is not specified, there should not be any active ones,
2352 * return error if any are found (nb: this is a user error, not a
2353 * system error). If FORCECLOSE is specified, detach any active vnodes
2354 * that are found.
2355 *
2356 * If WRITECLOSE is set, only flush out regular file vnodes open for
2357 * writing.
2358 *
2359 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2360 *
2361 * `rootrefs' specifies the base reference count for the root vnode
2362 * of this filesystem. The root vnode is considered busy if its
2363 * v_usecount exceeds this value. On a successful return, vflush()
2364 * will call vrele() on the root vnode exactly rootrefs times.
2365 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2366 * be zero.
2367 */
2368#ifdef DIAGNOSTIC
2369static int busyprt = 0;		/* print out busy vnodes */
2370SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2371#endif
2372
2373int
2374vflush(mp, rootrefs, flags)
2375	struct mount *mp;
2376	int rootrefs;
2377	int flags;
2378{
2379	struct thread *td = curthread;	/* XXX */
2380	struct vnode *vp, *nvp, *rootvp = NULL;
2381	struct vattr vattr;
2382	int busy = 0, error;
2383
2384	if (rootrefs > 0) {
2385		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2386		    ("vflush: bad args"));
2387		/*
2388		 * Get the filesystem root vnode. We can vput() it
2389		 * immediately, since with rootrefs > 0, it won't go away.
2390		 */
2391		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
2392			return (error);
2393		vput(rootvp);
2394
2395	}
2396	mtx_lock(&mntvnode_mtx);
2397loop:
2398	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
2399		/*
2400		 * Make sure this vnode wasn't reclaimed in getnewvnode().
2401		 * Start over if it has (it won't be on the list anymore).
2402		 */
2403		if (vp->v_mount != mp)
2404			goto loop;
2405		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2406
2407		VI_LOCK(vp);
2408		mtx_unlock(&mntvnode_mtx);
2409		vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY, td);
2410		/*
2411		 * This vnode could have been reclaimed while we were
2412		 * waiting for the lock since we are not holding a
2413		 * reference.
2414		 * Start over if the vnode was reclaimed.
2415		 */
2416		if (vp->v_mount != mp) {
2417			VOP_UNLOCK(vp, 0, td);
2418			mtx_lock(&mntvnode_mtx);
2419			goto loop;
2420		}
2421		/*
2422		 * Skip over a vnodes marked VV_SYSTEM.
2423		 */
2424		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2425			VOP_UNLOCK(vp, 0, td);
2426			mtx_lock(&mntvnode_mtx);
2427			continue;
2428		}
2429		/*
2430		 * If WRITECLOSE is set, flush out unlinked but still open
2431		 * files (even if open only for reading) and regular file
2432		 * vnodes open for writing.
2433		 */
2434		if (flags & WRITECLOSE) {
2435			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2436			VI_LOCK(vp);
2437
2438			if ((vp->v_type == VNON ||
2439			    (error == 0 && vattr.va_nlink > 0)) &&
2440			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2441				VOP_UNLOCK(vp, LK_INTERLOCK, td);
2442				mtx_lock(&mntvnode_mtx);
2443				continue;
2444			}
2445		} else
2446			VI_LOCK(vp);
2447
2448		VOP_UNLOCK(vp, 0, td);
2449
2450		/*
2451		 * With v_usecount == 0, all we need to do is clear out the
2452		 * vnode data structures and we are done.
2453		 */
2454		if (vp->v_usecount == 0) {
2455			vgonel(vp, td);
2456			mtx_lock(&mntvnode_mtx);
2457			continue;
2458		}
2459
2460		/*
2461		 * If FORCECLOSE is set, forcibly close the vnode. For block
2462		 * or character devices, revert to an anonymous device. For
2463		 * all other files, just kill them.
2464		 */
2465		if (flags & FORCECLOSE) {
2466			if (vp->v_type != VCHR) {
2467				vgonel(vp, td);
2468			} else {
2469				vclean(vp, 0, td);
2470				VI_UNLOCK(vp);
2471				vp->v_op = spec_vnodeop_p;
2472				insmntque(vp, (struct mount *) 0);
2473			}
2474			mtx_lock(&mntvnode_mtx);
2475			continue;
2476		}
2477#ifdef DIAGNOSTIC
2478		if (busyprt)
2479			vprint("vflush: busy vnode", vp);
2480#endif
2481		VI_UNLOCK(vp);
2482		mtx_lock(&mntvnode_mtx);
2483		busy++;
2484	}
2485	mtx_unlock(&mntvnode_mtx);
2486	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2487		/*
2488		 * If just the root vnode is busy, and if its refcount
2489		 * is equal to `rootrefs', then go ahead and kill it.
2490		 */
2491		VI_LOCK(rootvp);
2492		KASSERT(busy > 0, ("vflush: not busy"));
2493		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
2494		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2495			vgonel(rootvp, td);
2496			busy = 0;
2497		} else
2498			VI_UNLOCK(rootvp);
2499	}
2500	if (busy)
2501		return (EBUSY);
2502	for (; rootrefs > 0; rootrefs--)
2503		vrele(rootvp);
2504	return (0);
2505}
2506
2507/*
2508 * This moves a now (likely recyclable) vnode to the end of the
2509 * mountlist.  XXX However, it is temporarily disabled until we
2510 * can clean up ffs_sync() and friends, which have loop restart
2511 * conditions which this code causes to operate O(N^2).
2512 */
2513static void
2514vlruvp(struct vnode *vp)
2515{
2516#if 0
2517	struct mount *mp;
2518
2519	if ((mp = vp->v_mount) != NULL) {
2520		mtx_lock(&mntvnode_mtx);
2521		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2522		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2523		mtx_unlock(&mntvnode_mtx);
2524	}
2525#endif
2526}
2527
2528/*
2529 * Disassociate the underlying filesystem from a vnode.
2530 */
2531static void
2532vclean(vp, flags, td)
2533	struct vnode *vp;
2534	int flags;
2535	struct thread *td;
2536{
2537	int active;
2538
2539	ASSERT_VI_LOCKED(vp, "vclean");
2540	/*
2541	 * Check to see if the vnode is in use. If so we have to reference it
2542	 * before we clean it out so that its count cannot fall to zero and
2543	 * generate a race against ourselves to recycle it.
2544	 */
2545	if ((active = vp->v_usecount))
2546		v_incr_usecount(vp, 1);
2547
2548	/*
2549	 * Prevent the vnode from being recycled or brought into use while we
2550	 * clean it out.
2551	 */
2552	if (vp->v_iflag & VI_XLOCK)
2553		panic("vclean: deadlock");
2554	vp->v_iflag |= VI_XLOCK;
2555	vp->v_vxproc = curthread;
2556	/*
2557	 * Even if the count is zero, the VOP_INACTIVE routine may still
2558	 * have the object locked while it cleans it out. The VOP_LOCK
2559	 * ensures that the VOP_INACTIVE routine is done with its work.
2560	 * For active vnodes, it ensures that no other activity can
2561	 * occur while the underlying object is being cleaned out.
2562	 */
2563	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2564
2565	/*
2566	 * Clean out any buffers associated with the vnode.
2567	 * If the flush fails, just toss the buffers.
2568	 */
2569	if (flags & DOCLOSE) {
2570		struct buf *bp;
2571		VI_LOCK(vp);
2572		bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
2573		VI_UNLOCK(vp);
2574		if (bp != NULL)
2575			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2576		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2577			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2578	}
2579
2580	VOP_DESTROYVOBJECT(vp);
2581
2582	/*
2583	 * Any other processes trying to obtain this lock must first
2584	 * wait for VXLOCK to clear, then call the new lock operation.
2585	 */
2586	VOP_UNLOCK(vp, 0, td);
2587
2588	/*
2589	 * If purging an active vnode, it must be closed and
2590	 * deactivated before being reclaimed. Note that the
2591	 * VOP_INACTIVE will unlock the vnode.
2592	 */
2593	if (active) {
2594		if (flags & DOCLOSE)
2595			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2596		VI_LOCK(vp);
2597		if ((vp->v_iflag & VI_DOINGINACT) == 0) {
2598			vp->v_iflag |= VI_DOINGINACT;
2599			VI_UNLOCK(vp);
2600			if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2601				panic("vclean: cannot relock.");
2602			VOP_INACTIVE(vp, td);
2603			VI_LOCK(vp);
2604			KASSERT(vp->v_iflag & VI_DOINGINACT,
2605			    ("vclean: lost VI_DOINGINACT"));
2606			vp->v_iflag &= ~VI_DOINGINACT;
2607		}
2608		VI_UNLOCK(vp);
2609	}
2610
2611	/*
2612	 * Reclaim the vnode.
2613	 */
2614	if (VOP_RECLAIM(vp, td))
2615		panic("vclean: cannot reclaim");
2616
2617	if (active) {
2618		/*
2619		 * Inline copy of vrele() since VOP_INACTIVE
2620		 * has already been called.
2621		 */
2622		VI_LOCK(vp);
2623		v_incr_usecount(vp, -1);
2624		if (vp->v_usecount <= 0) {
2625#ifdef DIAGNOSTIC
2626			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2627				vprint("vclean: bad ref count", vp);
2628				panic("vclean: ref cnt");
2629			}
2630#endif
2631			vfree(vp);
2632		}
2633		VI_UNLOCK(vp);
2634	}
2635
2636	cache_purge(vp);
2637	VI_LOCK(vp);
2638	if (VSHOULDFREE(vp))
2639		vfree(vp);
2640
2641	/*
2642	 * Done with purge, reset to the standard lock and
2643	 * notify sleepers of the grim news.
2644	 */
2645	vp->v_vnlock = &vp->v_lock;
2646	vp->v_op = dead_vnodeop_p;
2647	if (vp->v_pollinfo != NULL)
2648		vn_pollgone(vp);
2649	vp->v_tag = "none";
2650	vp->v_iflag &= ~VI_XLOCK;
2651	vp->v_vxproc = NULL;
2652	if (vp->v_iflag & VI_XWANT) {
2653		vp->v_iflag &= ~VI_XWANT;
2654		wakeup(vp);
2655	}
2656}
2657
2658/*
2659 * Eliminate all activity associated with the requested vnode
2660 * and with all vnodes aliased to the requested vnode.
2661 */
2662int
2663vop_revoke(ap)
2664	struct vop_revoke_args /* {
2665		struct vnode *a_vp;
2666		int a_flags;
2667	} */ *ap;
2668{
2669	struct vnode *vp, *vq;
2670	dev_t dev;
2671
2672	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2673	vp = ap->a_vp;
2674	KASSERT((vp->v_type == VCHR), ("vop_revoke: not VCHR"));
2675
2676	VI_LOCK(vp);
2677	/*
2678	 * If a vgone (or vclean) is already in progress,
2679	 * wait until it is done and return.
2680	 */
2681	if (vp->v_iflag & VI_XLOCK) {
2682		vp->v_iflag |= VI_XWANT;
2683		msleep(vp, VI_MTX(vp), PINOD | PDROP,
2684		    "vop_revokeall", 0);
2685		return (0);
2686	}
2687	VI_UNLOCK(vp);
2688	dev = vp->v_rdev;
2689	for (;;) {
2690		mtx_lock(&spechash_mtx);
2691		vq = SLIST_FIRST(&dev->si_hlist);
2692		mtx_unlock(&spechash_mtx);
2693		if (!vq)
2694			break;
2695		vgone(vq);
2696	}
2697	return (0);
2698}
2699
2700/*
2701 * Recycle an unused vnode to the front of the free list.
2702 * Release the passed interlock if the vnode will be recycled.
2703 */
2704int
2705vrecycle(vp, inter_lkp, td)
2706	struct vnode *vp;
2707	struct mtx *inter_lkp;
2708	struct thread *td;
2709{
2710
2711	VI_LOCK(vp);
2712	if (vp->v_usecount == 0) {
2713		if (inter_lkp) {
2714			mtx_unlock(inter_lkp);
2715		}
2716		vgonel(vp, td);
2717		return (1);
2718	}
2719	VI_UNLOCK(vp);
2720	return (0);
2721}
2722
2723/*
2724 * Eliminate all activity associated with a vnode
2725 * in preparation for reuse.
2726 */
2727void
2728vgone(vp)
2729	register struct vnode *vp;
2730{
2731	struct thread *td = curthread;	/* XXX */
2732
2733	VI_LOCK(vp);
2734	vgonel(vp, td);
2735}
2736
2737/*
2738 * vgone, with the vp interlock held.
2739 */
2740void
2741vgonel(vp, td)
2742	struct vnode *vp;
2743	struct thread *td;
2744{
2745	int s;
2746
2747	/*
2748	 * If a vgone (or vclean) is already in progress,
2749	 * wait until it is done and return.
2750	 */
2751	ASSERT_VI_LOCKED(vp, "vgonel");
2752	if (vp->v_iflag & VI_XLOCK) {
2753		vp->v_iflag |= VI_XWANT;
2754		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vgone", 0);
2755		return;
2756	}
2757
2758	/*
2759	 * Clean out the filesystem specific data.
2760	 */
2761	vclean(vp, DOCLOSE, td);
2762	VI_UNLOCK(vp);
2763
2764	/*
2765	 * Delete from old mount point vnode list, if on one.
2766	 */
2767	if (vp->v_mount != NULL)
2768		insmntque(vp, (struct mount *)0);
2769	/*
2770	 * If special device, remove it from special device alias list
2771	 * if it is on one.
2772	 */
2773	if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) {
2774		VI_LOCK(vp);
2775		mtx_lock(&spechash_mtx);
2776		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
2777		vp->v_rdev->si_usecount -= vp->v_usecount;
2778		mtx_unlock(&spechash_mtx);
2779		VI_UNLOCK(vp);
2780		vp->v_rdev = NULL;
2781	}
2782
2783	/*
2784	 * If it is on the freelist and not already at the head,
2785	 * move it to the head of the list. The test of the
2786	 * VDOOMED flag and the reference count of zero is because
2787	 * it will be removed from the free list by getnewvnode,
2788	 * but will not have its reference count incremented until
2789	 * after calling vgone. If the reference count were
2790	 * incremented first, vgone would (incorrectly) try to
2791	 * close the previous instance of the underlying object.
2792	 */
2793	VI_LOCK(vp);
2794	if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2795		s = splbio();
2796		mtx_lock(&vnode_free_list_mtx);
2797		if (vp->v_iflag & VI_FREE) {
2798			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2799		} else {
2800			vp->v_iflag |= VI_FREE;
2801			freevnodes++;
2802		}
2803		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2804		mtx_unlock(&vnode_free_list_mtx);
2805		splx(s);
2806	}
2807
2808	vp->v_type = VBAD;
2809	VI_UNLOCK(vp);
2810}
2811
2812/*
2813 * Lookup a vnode by device number.
2814 */
2815int
2816vfinddev(dev, type, vpp)
2817	dev_t dev;
2818	enum vtype type;
2819	struct vnode **vpp;
2820{
2821	struct vnode *vp;
2822
2823	mtx_lock(&spechash_mtx);
2824	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2825		if (type == vp->v_type) {
2826			*vpp = vp;
2827			mtx_unlock(&spechash_mtx);
2828			return (1);
2829		}
2830	}
2831	mtx_unlock(&spechash_mtx);
2832	return (0);
2833}
2834
2835/*
2836 * Calculate the total number of references to a special device.
2837 */
2838int
2839vcount(vp)
2840	struct vnode *vp;
2841{
2842	int count;
2843
2844	mtx_lock(&spechash_mtx);
2845	count = vp->v_rdev->si_usecount;
2846	mtx_unlock(&spechash_mtx);
2847	return (count);
2848}
2849
2850/*
2851 * Same as above, but using the dev_t as argument
2852 */
2853int
2854count_dev(dev)
2855	dev_t dev;
2856{
2857	struct vnode *vp;
2858
2859	vp = SLIST_FIRST(&dev->si_hlist);
2860	if (vp == NULL)
2861		return (0);
2862	return(vcount(vp));
2863}
2864
2865/*
2866 * Print out a description of a vnode.
2867 */
2868static char *typename[] =
2869{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2870
2871void
2872vprint(label, vp)
2873	char *label;
2874	struct vnode *vp;
2875{
2876	char buf[96];
2877
2878	if (label != NULL)
2879		printf("%s: %p: ", label, (void *)vp);
2880	else
2881		printf("%p: ", (void *)vp);
2882	printf("tag %s, type %s, usecount %d, writecount %d, refcount %d,",
2883	    vp->v_tag, typename[vp->v_type], vp->v_usecount,
2884	    vp->v_writecount, vp->v_holdcnt);
2885	buf[0] = '\0';
2886	if (vp->v_vflag & VV_ROOT)
2887		strcat(buf, "|VV_ROOT");
2888	if (vp->v_vflag & VV_TEXT)
2889		strcat(buf, "|VV_TEXT");
2890	if (vp->v_vflag & VV_SYSTEM)
2891		strcat(buf, "|VV_SYSTEM");
2892	if (vp->v_iflag & VI_XLOCK)
2893		strcat(buf, "|VI_XLOCK");
2894	if (vp->v_iflag & VI_XWANT)
2895		strcat(buf, "|VI_XWANT");
2896	if (vp->v_iflag & VI_BWAIT)
2897		strcat(buf, "|VI_BWAIT");
2898	if (vp->v_iflag & VI_DOOMED)
2899		strcat(buf, "|VI_DOOMED");
2900	if (vp->v_iflag & VI_FREE)
2901		strcat(buf, "|VI_FREE");
2902	if (vp->v_vflag & VV_OBJBUF)
2903		strcat(buf, "|VV_OBJBUF");
2904	if (buf[0] != '\0')
2905		printf(" flags (%s),", &buf[1]);
2906	lockmgr_printinfo(vp->v_vnlock);
2907	printf("\n");
2908	if (vp->v_data != NULL)
2909		VOP_PRINT(vp);
2910}
2911
2912#ifdef DDB
2913#include <ddb/ddb.h>
2914/*
2915 * List all of the locked vnodes in the system.
2916 * Called when debugging the kernel.
2917 */
2918DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2919{
2920	struct mount *mp, *nmp;
2921	struct vnode *vp;
2922
2923	/*
2924	 * Note: because this is DDB, we can't obey the locking semantics
2925	 * for these structures, which means we could catch an inconsistent
2926	 * state and dereference a nasty pointer.  Not much to be done
2927	 * about that.
2928	 */
2929	printf("Locked vnodes\n");
2930	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2931		nmp = TAILQ_NEXT(mp, mnt_list);
2932		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2933			if (VOP_ISLOCKED(vp, NULL))
2934				vprint(NULL, vp);
2935		}
2936		nmp = TAILQ_NEXT(mp, mnt_list);
2937	}
2938}
2939#endif
2940
2941/*
2942 * Fill in a struct xvfsconf based on a struct vfsconf.
2943 */
2944static void
2945vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2946{
2947
2948	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2949	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2950	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2951	xvfsp->vfc_flags = vfsp->vfc_flags;
2952	/*
2953	 * These are unused in userland, we keep them
2954	 * to not break binary compatibility.
2955	 */
2956	xvfsp->vfc_vfsops = NULL;
2957	xvfsp->vfc_next = NULL;
2958}
2959
2960static int
2961sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2962{
2963	struct vfsconf *vfsp;
2964	struct xvfsconf *xvfsp;
2965	int cnt, error, i;
2966
2967	cnt = 0;
2968	for (vfsp = vfsconf; vfsp != NULL; vfsp = vfsp->vfc_next)
2969		cnt++;
2970	xvfsp = malloc(sizeof(struct xvfsconf) * cnt, M_TEMP, M_WAITOK);
2971	/*
2972	 * Handle the race that we will have here when struct vfsconf
2973	 * will be locked down by using both cnt and checking vfc_next
2974	 * against NULL to determine the end of the loop.  The race will
2975	 * happen because we will have to unlock before calling malloc().
2976	 * We are protected by Giant for now.
2977	 */
2978	i = 0;
2979	for (vfsp = vfsconf; vfsp != NULL && i < cnt; vfsp = vfsp->vfc_next) {
2980		vfsconf2x(vfsp, xvfsp + i);
2981		i++;
2982	}
2983	error = SYSCTL_OUT(req, xvfsp, sizeof(struct xvfsconf) * i);
2984	free(xvfsp, M_TEMP);
2985	return (error);
2986}
2987
2988SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2989    "S,xvfsconf", "List of all configured filesystems");
2990
2991/*
2992 * Top level filesystem related information gathering.
2993 */
2994static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2995
2996static int
2997vfs_sysctl(SYSCTL_HANDLER_ARGS)
2998{
2999	int *name = (int *)arg1 - 1;	/* XXX */
3000	u_int namelen = arg2 + 1;	/* XXX */
3001	struct vfsconf *vfsp;
3002	struct xvfsconf xvfsp;
3003
3004	printf("WARNING: userland calling deprecated sysctl, "
3005	    "please rebuild world\n");
3006
3007#if 1 || defined(COMPAT_PRELITE2)
3008	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3009	if (namelen == 1)
3010		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3011#endif
3012
3013	switch (name[1]) {
3014	case VFS_MAXTYPENUM:
3015		if (namelen != 2)
3016			return (ENOTDIR);
3017		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3018	case VFS_CONF:
3019		if (namelen != 3)
3020			return (ENOTDIR);	/* overloaded */
3021		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
3022			if (vfsp->vfc_typenum == name[2])
3023				break;
3024		if (vfsp == NULL)
3025			return (EOPNOTSUPP);
3026		vfsconf2x(vfsp, &xvfsp);
3027		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3028	}
3029	return (EOPNOTSUPP);
3030}
3031
3032SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, vfs_sysctl,
3033	"Generic filesystem");
3034
3035#if 1 || defined(COMPAT_PRELITE2)
3036
3037static int
3038sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3039{
3040	int error;
3041	struct vfsconf *vfsp;
3042	struct ovfsconf ovfs;
3043
3044	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
3045		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3046		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3047		ovfs.vfc_index = vfsp->vfc_typenum;
3048		ovfs.vfc_refcount = vfsp->vfc_refcount;
3049		ovfs.vfc_flags = vfsp->vfc_flags;
3050		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3051		if (error)
3052			return error;
3053	}
3054	return 0;
3055}
3056
3057#endif /* 1 || COMPAT_PRELITE2 */
3058
3059#define KINFO_VNODESLOP		10
3060#ifdef notyet
3061/*
3062 * Dump vnode list (via sysctl).
3063 */
3064/* ARGSUSED */
3065static int
3066sysctl_vnode(SYSCTL_HANDLER_ARGS)
3067{
3068	struct xvnode *xvn;
3069	struct thread *td = req->td;
3070	struct mount *mp;
3071	struct vnode *vp;
3072	int error, len, n;
3073
3074	/*
3075	 * Stale numvnodes access is not fatal here.
3076	 */
3077	req->lock = 0;
3078	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3079	if (!req->oldptr)
3080		/* Make an estimate */
3081		return (SYSCTL_OUT(req, 0, len));
3082
3083	sysctl_wire_old_buffer(req, 0);
3084	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3085	n = 0;
3086	mtx_lock(&mountlist_mtx);
3087	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3088		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
3089			continue;
3090		mtx_lock(&mntvnode_mtx);
3091		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3092			if (n == len)
3093				break;
3094			vref(vp);
3095			xvn[n].xv_size = sizeof *xvn;
3096			xvn[n].xv_vnode = vp;
3097#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3098			XV_COPY(usecount);
3099			XV_COPY(writecount);
3100			XV_COPY(holdcnt);
3101			XV_COPY(id);
3102			XV_COPY(mount);
3103			XV_COPY(numoutput);
3104			XV_COPY(type);
3105#undef XV_COPY
3106			xvn[n].xv_flag = vp->v_vflag;
3107
3108			switch (vp->v_type) {
3109			case VREG:
3110			case VDIR:
3111			case VLNK:
3112				xvn[n].xv_dev = vp->v_cachedfs;
3113				xvn[n].xv_ino = vp->v_cachedid;
3114				break;
3115			case VBLK:
3116			case VCHR:
3117				if (vp->v_rdev == NULL) {
3118					vrele(vp);
3119					continue;
3120				}
3121				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3122				break;
3123			case VSOCK:
3124				xvn[n].xv_socket = vp->v_socket;
3125				break;
3126			case VFIFO:
3127				xvn[n].xv_fifo = vp->v_fifoinfo;
3128				break;
3129			case VNON:
3130			case VBAD:
3131			default:
3132				/* shouldn't happen? */
3133				vrele(vp);
3134				continue;
3135			}
3136			vrele(vp);
3137			++n;
3138		}
3139		mtx_unlock(&mntvnode_mtx);
3140		mtx_lock(&mountlist_mtx);
3141		vfs_unbusy(mp, td);
3142		if (n == len)
3143			break;
3144	}
3145	mtx_unlock(&mountlist_mtx);
3146
3147	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3148	free(xvn, M_TEMP);
3149	return (error);
3150}
3151
3152SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3153	0, 0, sysctl_vnode, "S,xvnode", "");
3154#endif
3155
3156/*
3157 * Check to see if a filesystem is mounted on a block device.
3158 */
3159int
3160vfs_mountedon(vp)
3161	struct vnode *vp;
3162{
3163
3164	if (vp->v_rdev->si_mountpoint != NULL)
3165		return (EBUSY);
3166	return (0);
3167}
3168
3169/*
3170 * Unmount all filesystems. The list is traversed in reverse order
3171 * of mounting to avoid dependencies.
3172 */
3173void
3174vfs_unmountall()
3175{
3176	struct mount *mp;
3177	struct thread *td;
3178	int error;
3179
3180	if (curthread != NULL)
3181		td = curthread;
3182	else
3183		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
3184	/*
3185	 * Since this only runs when rebooting, it is not interlocked.
3186	 */
3187	while(!TAILQ_EMPTY(&mountlist)) {
3188		mp = TAILQ_LAST(&mountlist, mntlist);
3189		error = dounmount(mp, MNT_FORCE, td);
3190		if (error) {
3191			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3192			printf("unmount of %s failed (",
3193			    mp->mnt_stat.f_mntonname);
3194			if (error == EBUSY)
3195				printf("BUSY)\n");
3196			else
3197				printf("%d)\n", error);
3198		} else {
3199			/* The unmount has removed mp from the mountlist */
3200		}
3201	}
3202}
3203
3204/*
3205 * perform msync on all vnodes under a mount point
3206 * the mount point must be locked.
3207 */
3208void
3209vfs_msync(struct mount *mp, int flags)
3210{
3211	struct vnode *vp, *nvp;
3212	struct vm_object *obj;
3213	int tries;
3214
3215	GIANT_REQUIRED;
3216
3217	tries = 5;
3218	mtx_lock(&mntvnode_mtx);
3219loop:
3220	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
3221		if (vp->v_mount != mp) {
3222			if (--tries > 0)
3223				goto loop;
3224			break;
3225		}
3226		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
3227
3228		VI_LOCK(vp);
3229		if (vp->v_iflag & VI_XLOCK) {	/* XXX: what if MNT_WAIT? */
3230			VI_UNLOCK(vp);
3231			continue;
3232		}
3233
3234		if ((vp->v_iflag & VI_OBJDIRTY) &&
3235		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
3236			mtx_unlock(&mntvnode_mtx);
3237			if (!vget(vp,
3238			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3239			    curthread)) {
3240				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3241					vput(vp);
3242					mtx_lock(&mntvnode_mtx);
3243					continue;
3244				}
3245
3246				if (VOP_GETVOBJECT(vp, &obj) == 0) {
3247					VM_OBJECT_LOCK(obj);
3248					vm_object_page_clean(obj, 0, 0,
3249					    flags == MNT_WAIT ?
3250					    OBJPC_SYNC : OBJPC_NOSYNC);
3251					VM_OBJECT_UNLOCK(obj);
3252				}
3253				vput(vp);
3254			}
3255			mtx_lock(&mntvnode_mtx);
3256			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
3257				if (--tries > 0)
3258					goto loop;
3259				break;
3260			}
3261		} else
3262			VI_UNLOCK(vp);
3263	}
3264	mtx_unlock(&mntvnode_mtx);
3265}
3266
3267/*
3268 * Create the VM object needed for VMIO and mmap support.  This
3269 * is done for all VREG files in the system.  Some filesystems might
3270 * afford the additional metadata buffering capability of the
3271 * VMIO code by making the device node be VMIO mode also.
3272 *
3273 * vp must be locked when vfs_object_create is called.
3274 */
3275int
3276vfs_object_create(vp, td, cred)
3277	struct vnode *vp;
3278	struct thread *td;
3279	struct ucred *cred;
3280{
3281	GIANT_REQUIRED;
3282	return (VOP_CREATEVOBJECT(vp, cred, td));
3283}
3284
3285/*
3286 * Mark a vnode as free, putting it up for recycling.
3287 */
3288void
3289vfree(vp)
3290	struct vnode *vp;
3291{
3292	int s;
3293
3294	ASSERT_VI_LOCKED(vp, "vfree");
3295	s = splbio();
3296	mtx_lock(&vnode_free_list_mtx);
3297	KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
3298	if (vp->v_iflag & VI_AGE) {
3299		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3300	} else {
3301		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3302	}
3303	freevnodes++;
3304	mtx_unlock(&vnode_free_list_mtx);
3305	vp->v_iflag &= ~VI_AGE;
3306	vp->v_iflag |= VI_FREE;
3307	splx(s);
3308}
3309
3310/*
3311 * Opposite of vfree() - mark a vnode as in use.
3312 */
3313void
3314vbusy(vp)
3315	struct vnode *vp;
3316{
3317	int s;
3318
3319	s = splbio();
3320	ASSERT_VI_LOCKED(vp, "vbusy");
3321	KASSERT((vp->v_iflag & VI_FREE) != 0, ("vnode not free"));
3322
3323	mtx_lock(&vnode_free_list_mtx);
3324	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3325	freevnodes--;
3326	mtx_unlock(&vnode_free_list_mtx);
3327
3328	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3329	splx(s);
3330}
3331
3332/*
3333 * Record a process's interest in events which might happen to
3334 * a vnode.  Because poll uses the historic select-style interface
3335 * internally, this routine serves as both the ``check for any
3336 * pending events'' and the ``record my interest in future events''
3337 * functions.  (These are done together, while the lock is held,
3338 * to avoid race conditions.)
3339 */
3340int
3341vn_pollrecord(vp, td, events)
3342	struct vnode *vp;
3343	struct thread *td;
3344	short events;
3345{
3346
3347	if (vp->v_pollinfo == NULL)
3348		v_addpollinfo(vp);
3349	mtx_lock(&vp->v_pollinfo->vpi_lock);
3350	if (vp->v_pollinfo->vpi_revents & events) {
3351		/*
3352		 * This leaves events we are not interested
3353		 * in available for the other process which
3354		 * which presumably had requested them
3355		 * (otherwise they would never have been
3356		 * recorded).
3357		 */
3358		events &= vp->v_pollinfo->vpi_revents;
3359		vp->v_pollinfo->vpi_revents &= ~events;
3360
3361		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3362		return events;
3363	}
3364	vp->v_pollinfo->vpi_events |= events;
3365	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3366	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3367	return 0;
3368}
3369
3370/*
3371 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3372 * it is possible for us to miss an event due to race conditions, but
3373 * that condition is expected to be rare, so for the moment it is the
3374 * preferred interface.
3375 */
3376void
3377vn_pollevent(vp, events)
3378	struct vnode *vp;
3379	short events;
3380{
3381
3382	if (vp->v_pollinfo == NULL)
3383		v_addpollinfo(vp);
3384	mtx_lock(&vp->v_pollinfo->vpi_lock);
3385	if (vp->v_pollinfo->vpi_events & events) {
3386		/*
3387		 * We clear vpi_events so that we don't
3388		 * call selwakeup() twice if two events are
3389		 * posted before the polling process(es) is
3390		 * awakened.  This also ensures that we take at
3391		 * most one selwakeup() if the polling process
3392		 * is no longer interested.  However, it does
3393		 * mean that only one event can be noticed at
3394		 * a time.  (Perhaps we should only clear those
3395		 * event bits which we note?) XXX
3396		 */
3397		vp->v_pollinfo->vpi_events = 0;	/* &= ~events ??? */
3398		vp->v_pollinfo->vpi_revents |= events;
3399		selwakeup(&vp->v_pollinfo->vpi_selinfo);
3400	}
3401	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3402}
3403
3404/*
3405 * Wake up anyone polling on vp because it is being revoked.
3406 * This depends on dead_poll() returning POLLHUP for correct
3407 * behavior.
3408 */
3409void
3410vn_pollgone(vp)
3411	struct vnode *vp;
3412{
3413
3414	mtx_lock(&vp->v_pollinfo->vpi_lock);
3415	VN_KNOTE(vp, NOTE_REVOKE);
3416	if (vp->v_pollinfo->vpi_events) {
3417		vp->v_pollinfo->vpi_events = 0;
3418		selwakeup(&vp->v_pollinfo->vpi_selinfo);
3419	}
3420	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3421}
3422
3423
3424
3425/*
3426 * Routine to create and manage a filesystem syncer vnode.
3427 */
3428#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3429static int	sync_fsync(struct  vop_fsync_args *);
3430static int	sync_inactive(struct  vop_inactive_args *);
3431static int	sync_reclaim(struct  vop_reclaim_args *);
3432
3433static vop_t **sync_vnodeop_p;
3434static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3435	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
3436	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
3437	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
3438	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
3439	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
3440	{ &vop_lock_desc,	(vop_t *) vop_stdlock },	/* lock */
3441	{ &vop_unlock_desc,	(vop_t *) vop_stdunlock },	/* unlock */
3442	{ &vop_islocked_desc,	(vop_t *) vop_stdislocked },	/* islocked */
3443	{ NULL, NULL }
3444};
3445static struct vnodeopv_desc sync_vnodeop_opv_desc =
3446	{ &sync_vnodeop_p, sync_vnodeop_entries };
3447
3448VNODEOP_SET(sync_vnodeop_opv_desc);
3449
3450/*
3451 * Create a new filesystem syncer vnode for the specified mount point.
3452 */
3453int
3454vfs_allocate_syncvnode(mp)
3455	struct mount *mp;
3456{
3457	struct vnode *vp;
3458	static long start, incr, next;
3459	int error;
3460
3461	/* Allocate a new vnode */
3462	if ((error = getnewvnode("syncer", mp, sync_vnodeop_p, &vp)) != 0) {
3463		mp->mnt_syncer = NULL;
3464		return (error);
3465	}
3466	vp->v_type = VNON;
3467	/*
3468	 * Place the vnode onto the syncer worklist. We attempt to
3469	 * scatter them about on the list so that they will go off
3470	 * at evenly distributed times even if all the filesystems
3471	 * are mounted at once.
3472	 */
3473	next += incr;
3474	if (next == 0 || next > syncer_maxdelay) {
3475		start /= 2;
3476		incr /= 2;
3477		if (start == 0) {
3478			start = syncer_maxdelay / 2;
3479			incr = syncer_maxdelay;
3480		}
3481		next = start;
3482	}
3483	VI_LOCK(vp);
3484	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3485	VI_UNLOCK(vp);
3486	mp->mnt_syncer = vp;
3487	return (0);
3488}
3489
3490/*
3491 * Do a lazy sync of the filesystem.
3492 */
3493static int
3494sync_fsync(ap)
3495	struct vop_fsync_args /* {
3496		struct vnode *a_vp;
3497		struct ucred *a_cred;
3498		int a_waitfor;
3499		struct thread *a_td;
3500	} */ *ap;
3501{
3502	struct vnode *syncvp = ap->a_vp;
3503	struct mount *mp = syncvp->v_mount;
3504	struct thread *td = ap->a_td;
3505	int error, asyncflag;
3506
3507	/*
3508	 * We only need to do something if this is a lazy evaluation.
3509	 */
3510	if (ap->a_waitfor != MNT_LAZY)
3511		return (0);
3512
3513	/*
3514	 * Move ourselves to the back of the sync list.
3515	 */
3516	VI_LOCK(syncvp);
3517	vn_syncer_add_to_worklist(syncvp, syncdelay);
3518	VI_UNLOCK(syncvp);
3519
3520	/*
3521	 * Walk the list of vnodes pushing all that are dirty and
3522	 * not already on the sync list.
3523	 */
3524	mtx_lock(&mountlist_mtx);
3525	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3526		mtx_unlock(&mountlist_mtx);
3527		return (0);
3528	}
3529	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3530		vfs_unbusy(mp, td);
3531		return (0);
3532	}
3533	asyncflag = mp->mnt_flag & MNT_ASYNC;
3534	mp->mnt_flag &= ~MNT_ASYNC;
3535	vfs_msync(mp, MNT_NOWAIT);
3536	error = VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
3537	if (asyncflag)
3538		mp->mnt_flag |= MNT_ASYNC;
3539	vn_finished_write(mp);
3540	vfs_unbusy(mp, td);
3541	return (error);
3542}
3543
3544/*
3545 * The syncer vnode is no referenced.
3546 */
3547static int
3548sync_inactive(ap)
3549	struct vop_inactive_args /* {
3550		struct vnode *a_vp;
3551		struct thread *a_td;
3552	} */ *ap;
3553{
3554
3555	VOP_UNLOCK(ap->a_vp, 0, ap->a_td);
3556	vgone(ap->a_vp);
3557	return (0);
3558}
3559
3560/*
3561 * The syncer vnode is no longer needed and is being decommissioned.
3562 *
3563 * Modifications to the worklist must be protected at splbio().
3564 */
3565static int
3566sync_reclaim(ap)
3567	struct vop_reclaim_args /* {
3568		struct vnode *a_vp;
3569	} */ *ap;
3570{
3571	struct vnode *vp = ap->a_vp;
3572	int s;
3573
3574	s = splbio();
3575	vp->v_mount->mnt_syncer = NULL;
3576	VI_LOCK(vp);
3577	if (vp->v_iflag & VI_ONWORKLST) {
3578		mtx_lock(&sync_mtx);
3579		LIST_REMOVE(vp, v_synclist);
3580		mtx_unlock(&sync_mtx);
3581		vp->v_iflag &= ~VI_ONWORKLST;
3582	}
3583	VI_UNLOCK(vp);
3584	splx(s);
3585
3586	return (0);
3587}
3588
3589/*
3590 * extract the dev_t from a VCHR
3591 */
3592dev_t
3593vn_todev(vp)
3594	struct vnode *vp;
3595{
3596	if (vp->v_type != VCHR)
3597		return (NODEV);
3598	return (vp->v_rdev);
3599}
3600
3601/*
3602 * Check if vnode represents a disk device
3603 */
3604int
3605vn_isdisk(vp, errp)
3606	struct vnode *vp;
3607	int *errp;
3608{
3609	struct cdevsw *cdevsw;
3610
3611	if (vp->v_type != VCHR) {
3612		if (errp != NULL)
3613			*errp = ENOTBLK;
3614		return (0);
3615	}
3616	if (vp->v_rdev == NULL) {
3617		if (errp != NULL)
3618			*errp = ENXIO;
3619		return (0);
3620	}
3621	cdevsw = devsw(vp->v_rdev);
3622	if (cdevsw == NULL) {
3623		if (errp != NULL)
3624			*errp = ENXIO;
3625		return (0);
3626	}
3627	if (!(cdevsw->d_flags & D_DISK)) {
3628		if (errp != NULL)
3629			*errp = ENOTBLK;
3630		return (0);
3631	}
3632	if (errp != NULL)
3633		*errp = 0;
3634	return (1);
3635}
3636
3637/*
3638 * Free data allocated by namei(); see namei(9) for details.
3639 */
3640void
3641NDFREE(ndp, flags)
3642     struct nameidata *ndp;
3643     const uint flags;
3644{
3645	if (!(flags & NDF_NO_FREE_PNBUF) &&
3646	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3647		uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3648		ndp->ni_cnd.cn_flags &= ~HASBUF;
3649	}
3650	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3651	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3652	    ndp->ni_dvp != ndp->ni_vp)
3653		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3654	if (!(flags & NDF_NO_DVP_RELE) &&
3655	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3656		vrele(ndp->ni_dvp);
3657		ndp->ni_dvp = NULL;
3658	}
3659	if (!(flags & NDF_NO_VP_UNLOCK) &&
3660	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3661		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3662	if (!(flags & NDF_NO_VP_RELE) &&
3663	    ndp->ni_vp) {
3664		vrele(ndp->ni_vp);
3665		ndp->ni_vp = NULL;
3666	}
3667	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3668	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3669		vrele(ndp->ni_startdir);
3670		ndp->ni_startdir = NULL;
3671	}
3672}
3673
3674/*
3675 * Common filesystem object access control check routine.  Accepts a
3676 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3677 * and optional call-by-reference privused argument allowing vaccess()
3678 * to indicate to the caller whether privilege was used to satisfy the
3679 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3680 */
3681int
3682vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3683	enum vtype type;
3684	mode_t file_mode;
3685	uid_t file_uid;
3686	gid_t file_gid;
3687	mode_t acc_mode;
3688	struct ucred *cred;
3689	int *privused;
3690{
3691	mode_t dac_granted;
3692#ifdef CAPABILITIES
3693	mode_t cap_granted;
3694#endif
3695
3696	/*
3697	 * Look for a normal, non-privileged way to access the file/directory
3698	 * as requested.  If it exists, go with that.
3699	 */
3700
3701	if (privused != NULL)
3702		*privused = 0;
3703
3704	dac_granted = 0;
3705
3706	/* Check the owner. */
3707	if (cred->cr_uid == file_uid) {
3708		dac_granted |= VADMIN;
3709		if (file_mode & S_IXUSR)
3710			dac_granted |= VEXEC;
3711		if (file_mode & S_IRUSR)
3712			dac_granted |= VREAD;
3713		if (file_mode & S_IWUSR)
3714			dac_granted |= (VWRITE | VAPPEND);
3715
3716		if ((acc_mode & dac_granted) == acc_mode)
3717			return (0);
3718
3719		goto privcheck;
3720	}
3721
3722	/* Otherwise, check the groups (first match) */
3723	if (groupmember(file_gid, cred)) {
3724		if (file_mode & S_IXGRP)
3725			dac_granted |= VEXEC;
3726		if (file_mode & S_IRGRP)
3727			dac_granted |= VREAD;
3728		if (file_mode & S_IWGRP)
3729			dac_granted |= (VWRITE | VAPPEND);
3730
3731		if ((acc_mode & dac_granted) == acc_mode)
3732			return (0);
3733
3734		goto privcheck;
3735	}
3736
3737	/* Otherwise, check everyone else. */
3738	if (file_mode & S_IXOTH)
3739		dac_granted |= VEXEC;
3740	if (file_mode & S_IROTH)
3741		dac_granted |= VREAD;
3742	if (file_mode & S_IWOTH)
3743		dac_granted |= (VWRITE | VAPPEND);
3744	if ((acc_mode & dac_granted) == acc_mode)
3745		return (0);
3746
3747privcheck:
3748	if (!suser_cred(cred, PRISON_ROOT)) {
3749		/* XXX audit: privilege used */
3750		if (privused != NULL)
3751			*privused = 1;
3752		return (0);
3753	}
3754
3755#ifdef CAPABILITIES
3756	/*
3757	 * Build a capability mask to determine if the set of capabilities
3758	 * satisfies the requirements when combined with the granted mask
3759	 * from above.
3760	 * For each capability, if the capability is required, bitwise
3761	 * or the request type onto the cap_granted mask.
3762	 */
3763	cap_granted = 0;
3764
3765	if (type == VDIR) {
3766		/*
3767		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3768		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3769		 */
3770		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3771		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3772			cap_granted |= VEXEC;
3773	} else {
3774		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3775		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT))
3776			cap_granted |= VEXEC;
3777	}
3778
3779	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3780	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3781		cap_granted |= VREAD;
3782
3783	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3784	    !cap_check(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT))
3785		cap_granted |= (VWRITE | VAPPEND);
3786
3787	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3788	    !cap_check(cred, NULL, CAP_FOWNER, PRISON_ROOT))
3789		cap_granted |= VADMIN;
3790
3791	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3792		/* XXX audit: privilege used */
3793		if (privused != NULL)
3794			*privused = 1;
3795		return (0);
3796	}
3797#endif
3798
3799	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3800}
3801
3802/*
3803 * Credential check based on process requesting service, and per-attribute
3804 * permissions.
3805 */
3806int
3807extattr_check_cred(struct vnode *vp, int attrnamespace,
3808    struct ucred *cred, struct thread *td, int access)
3809{
3810
3811	/*
3812	 * Kernel-invoked always succeeds.
3813	 */
3814	if (cred == NOCRED)
3815		return (0);
3816
3817	/*
3818	 * Do not allow privileged processes in jail to directly
3819	 * manipulate system attributes.
3820	 *
3821	 * XXX What capability should apply here?
3822	 * Probably CAP_SYS_SETFFLAG.
3823	 */
3824	switch (attrnamespace) {
3825	case EXTATTR_NAMESPACE_SYSTEM:
3826		/* Potentially should be: return (EPERM); */
3827		return (suser_cred(cred, 0));
3828	case EXTATTR_NAMESPACE_USER:
3829		return (VOP_ACCESS(vp, access, cred, td));
3830	default:
3831		return (EPERM);
3832	}
3833}
3834