vfs_subr.c revision 115536
183364Sdfr/*
283364Sdfr * Copyright (c) 1989, 1993
383364Sdfr *	The Regents of the University of California.  All rights reserved.
483364Sdfr * (c) UNIX System Laboratories, Inc.
583364Sdfr * All or some portions of this file are derived from material licensed
683364Sdfr * to the University of California by American Telephone and Telegraph
783364Sdfr * Co. or Unix System Laboratories, Inc. and are reproduced herein with
883364Sdfr * the permission of UNIX System Laboratories, Inc.
983364Sdfr *
1083364Sdfr * Redistribution and use in source and binary forms, with or without
1183364Sdfr * modification, are permitted provided that the following conditions
1283364Sdfr * are met:
1383364Sdfr * 1. Redistributions of source code must retain the above copyright
1483364Sdfr *    notice, this list of conditions and the following disclaimer.
1583364Sdfr * 2. Redistributions in binary form must reproduce the above copyright
1683364Sdfr *    notice, this list of conditions and the following disclaimer in the
1783364Sdfr *    documentation and/or other materials provided with the distribution.
1883364Sdfr * 3. All advertising materials mentioning features or use of this software
1983364Sdfr *    must display the following acknowledgement:
2083364Sdfr *	This product includes software developed by the University of
2183364Sdfr *	California, Berkeley and its contributors.
2283364Sdfr * 4. Neither the name of the University nor the names of its contributors
2383364Sdfr *    may be used to endorse or promote products derived from this software
2483364Sdfr *    without specific prior written permission.
2583364Sdfr *
2683364Sdfr * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27119880Sobrien * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28119880Sobrien * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29119880Sobrien * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3083364Sdfr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3183364Sdfr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3283364Sdfr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3383364Sdfr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3483364Sdfr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3583364Sdfr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36164010Smarcel * SUCH DAMAGE.
3783364Sdfr *
3883364Sdfr *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
3983364Sdfr * $FreeBSD: head/sys/kern/vfs_subr.c 115536 2003-05-31 20:09:01Z phk $
4083364Sdfr */
4183364Sdfr
4283364Sdfr/*
4383364Sdfr * External virtual filesystem routines
4483364Sdfr */
4583364Sdfr#include "opt_ddb.h"
4683364Sdfr#include "opt_mac.h"
4783364Sdfr
4883364Sdfr#include <sys/param.h>
4983364Sdfr#include <sys/systm.h>
5083364Sdfr#include <sys/bio.h>
5183364Sdfr#include <sys/buf.h>
5283364Sdfr#include <sys/conf.h>
5383364Sdfr#include <sys/eventhandler.h>
5483364Sdfr#include <sys/extattr.h>
5583364Sdfr#include <sys/fcntl.h>
5683364Sdfr#include <sys/kernel.h>
5783364Sdfr#include <sys/kthread.h>
5883364Sdfr#include <sys/mac.h>
5983364Sdfr#include <sys/malloc.h>
6083364Sdfr#include <sys/mount.h>
6183364Sdfr#include <sys/namei.h>
6283364Sdfr#include <sys/stat.h>
6383364Sdfr#include <sys/sysctl.h>
6483364Sdfr#include <sys/syslog.h>
6583364Sdfr#include <sys/vmmeter.h>
6683364Sdfr#include <sys/vnode.h>
6783364Sdfr
6883364Sdfr#include <vm/vm.h>
6983364Sdfr#include <vm/vm_object.h>
7083364Sdfr#include <vm/vm_extern.h>
7183364Sdfr#include <vm/pmap.h>
7283364Sdfr#include <vm/vm_map.h>
7383364Sdfr#include <vm/vm_page.h>
7483364Sdfr#include <vm/vm_kern.h>
7583364Sdfr#include <vm/uma.h>
7683364Sdfr
7783364Sdfrstatic MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
7883364Sdfr
7983364Sdfrstatic void	addalias(struct vnode *vp, dev_t nvp_rdev);
8083364Sdfrstatic void	insmntque(struct vnode *vp, struct mount *mp);
8183364Sdfrstatic void	vclean(struct vnode *vp, int flags, struct thread *td);
8283364Sdfrstatic void	vlruvp(struct vnode *vp);
8383364Sdfrstatic int	flushbuflist(struct buf *blist, int flags, struct vnode *vp,
8483364Sdfr		    int slpflag, int slptimeo, int *errorp);
8583364Sdfrstatic int	vcanrecycle(struct vnode *vp, struct mount **vnmpp);
8683364Sdfr
8783364Sdfr
8883364Sdfr/*
8983364Sdfr * Number of vnodes in existence.  Increased whenever getnewvnode()
9083364Sdfr * allocates a new vnode, never decreased.
9183364Sdfr */
9283364Sdfrstatic unsigned long	numvnodes;
9383364Sdfr
9483364SdfrSYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
9583364Sdfr
9683364Sdfr/*
9783364Sdfr * Conversion tables for conversion from vnode types to inode formats
9883364Sdfr * and back.
9983364Sdfr */
10083364Sdfrenum vtype iftovt_tab[16] = {
10183364Sdfr	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
10283364Sdfr	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
10383364Sdfr};
10483364Sdfrint vttoif_tab[9] = {
10583364Sdfr	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
10683364Sdfr	S_IFSOCK, S_IFIFO, S_IFMT,
10783364Sdfr};
10883364Sdfr
10983364Sdfr/*
11083364Sdfr * List of vnodes that are ready for recycling.
11183364Sdfr */
11283364Sdfrstatic TAILQ_HEAD(freelst, vnode) vnode_free_list;
11383364Sdfr
11483364Sdfr/*
11583364Sdfr * Minimum number of free vnodes.  If there are fewer than this free vnodes,
11683364Sdfr * getnewvnode() will return a newly allocated vnode.
11783364Sdfr */
11883364Sdfrstatic u_long wantfreevnodes = 25;
11983364SdfrSYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
12083364Sdfr/* Number of vnodes in the free list. */
12183364Sdfrstatic u_long freevnodes;
12283364SdfrSYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
12383364Sdfr
12483364Sdfr/*
12583364Sdfr * Various variables used for debugging the new implementation of
12683364Sdfr * reassignbuf().
12783364Sdfr * XXX these are probably of (very) limited utility now.
12883364Sdfr */
12983364Sdfrstatic int reassignbufcalls;
13083364SdfrSYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
13183364Sdfrstatic int nameileafonly;
13283364SdfrSYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
13383364Sdfr
13483364Sdfr/*
13583364Sdfr * Cache for the mount type id assigned to NFS.  This is used for
13683364Sdfr * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
13783364Sdfr */
13883364Sdfrint	nfs_mount_type = -1;
13983364Sdfr
14083364Sdfr/* To keep more than one thread at a time from running vfs_getnewfsid */
14183364Sdfrstatic struct mtx mntid_mtx;
14283364Sdfr
14383364Sdfr/*
14483364Sdfr * Lock for any access to the following:
14583364Sdfr *	vnode_free_list
14683364Sdfr *	numvnodes
14783364Sdfr *	freevnodes
14883364Sdfr */
14983364Sdfrstatic struct mtx vnode_free_list_mtx;
15083364Sdfr
15183364Sdfr/*
15283364Sdfr * For any iteration/modification of dev->si_hlist (linked through
15383364Sdfr * v_specnext)
15483364Sdfr */
15583364Sdfrstatic struct mtx spechash_mtx;
15683364Sdfr
15783364Sdfr/* Publicly exported FS */
15883364Sdfrstruct nfs_public nfs_pub;
15983364Sdfr
16083364Sdfr/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
16183364Sdfrstatic uma_zone_t vnode_zone;
16283364Sdfrstatic uma_zone_t vnodepoll_zone;
16383364Sdfr
16483364Sdfr/* Set to 1 to print out reclaim of active vnodes */
16583364Sdfrint	prtactive;
16683364Sdfr
16783364Sdfr/*
16883364Sdfr * The workitem queue.
16983364Sdfr *
17083364Sdfr * It is useful to delay writes of file data and filesystem metadata
17183364Sdfr * for tens of seconds so that quickly created and deleted files need
17283364Sdfr * not waste disk bandwidth being created and removed. To realize this,
17383364Sdfr * we append vnodes to a "workitem" queue. When running with a soft
17483364Sdfr * updates implementation, most pending metadata dependencies should
17583364Sdfr * not wait for more than a few seconds. Thus, mounted on block devices
17683364Sdfr * are delayed only about a half the time that file data is delayed.
17783364Sdfr * Similarly, directory updates are more critical, so are only delayed
17883364Sdfr * about a third the time that file data is delayed. Thus, there are
17983364Sdfr * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
18083364Sdfr * one each second (driven off the filesystem syncer process). The
18183364Sdfr * syncer_delayno variable indicates the next queue that is to be processed.
18283364Sdfr * Items that need to be processed soon are placed in this queue:
18383364Sdfr *
18483364Sdfr *	syncer_workitem_pending[syncer_delayno]
18583364Sdfr *
18683364Sdfr * A delay of fifteen seconds is done by placing the request fifteen
18783364Sdfr * entries later in the queue:
18883364Sdfr *
18983364Sdfr *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
19083364Sdfr *
19183364Sdfr */
19283364Sdfrstatic int syncer_delayno;
19383364Sdfrstatic long syncer_mask;
19483364SdfrLIST_HEAD(synclist, vnode);
195static struct synclist *syncer_workitem_pending;
196/*
197 * The sync_mtx protects:
198 *	vp->v_synclist
199 *	syncer_delayno
200 *	syncer_workitem_pending
201 *	rushjob
202 */
203static struct mtx sync_mtx;
204
205#define SYNCER_MAXDELAY		32
206static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
207static int syncdelay = 30;		/* max time to delay syncing data */
208static int filedelay = 30;		/* time to delay syncing files */
209SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
210static int dirdelay = 29;		/* time to delay syncing directories */
211SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
212static int metadelay = 28;		/* time to delay syncing metadata */
213SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
214static int rushjob;		/* number of slots to run ASAP */
215static int stat_rush_requests;	/* number of times I/O speeded up */
216SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
217
218/*
219 * Number of vnodes we want to exist at any one time.  This is mostly used
220 * to size hash tables in vnode-related code.  It is normally not used in
221 * getnewvnode(), as wantfreevnodes is normally nonzero.)
222 *
223 * XXX desiredvnodes is historical cruft and should not exist.
224 */
225int desiredvnodes;
226SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
227    &desiredvnodes, 0, "Maximum number of vnodes");
228static int minvnodes;
229SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
230    &minvnodes, 0, "Minimum number of vnodes");
231static int vnlru_nowhere;
232SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
233    "Number of times the vnlru process ran without success");
234
235/* Hook for calling soft updates */
236int (*softdep_process_worklist_hook)(struct mount *);
237
238/*
239 * This only exists to supress warnings from unlocked specfs accesses.  It is
240 * no longer ok to have an unlocked VFS.
241 */
242#define IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
243
244/* Print lock violations */
245int vfs_badlock_print = 1;
246
247/* Panic on violation */
248int vfs_badlock_panic = 1;
249
250/* Check for interlock across VOPs */
251int vfs_badlock_mutex = 1;
252
253static void
254vfs_badlock(char *msg, char *str, struct vnode *vp)
255{
256	if (vfs_badlock_print)
257		printf("%s: %p %s\n", str, vp, msg);
258	if (vfs_badlock_panic)
259		Debugger("Lock violation.\n");
260}
261
262void
263assert_vi_unlocked(struct vnode *vp, char *str)
264{
265	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
266		vfs_badlock("interlock is locked but should not be", str, vp);
267}
268
269void
270assert_vi_locked(struct vnode *vp, char *str)
271{
272	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
273		vfs_badlock("interlock is not locked but should be", str, vp);
274}
275
276void
277assert_vop_locked(struct vnode *vp, char *str)
278{
279	if (vp && !IGNORE_LOCK(vp) && !VOP_ISLOCKED(vp, NULL))
280		vfs_badlock("is not locked but should be", str, vp);
281}
282
283void
284assert_vop_unlocked(struct vnode *vp, char *str)
285{
286	if (vp && !IGNORE_LOCK(vp) &&
287	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
288		vfs_badlock("is locked but should not be", str, vp);
289}
290
291void
292assert_vop_elocked(struct vnode *vp, char *str)
293{
294	if (vp && !IGNORE_LOCK(vp) &&
295	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
296		vfs_badlock("is not exclusive locked but should be", str, vp);
297}
298
299void
300assert_vop_elocked_other(struct vnode *vp, char *str)
301{
302	if (vp && !IGNORE_LOCK(vp) &&
303	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
304		vfs_badlock("is not exclusive locked by another thread",
305		    str, vp);
306}
307
308void
309assert_vop_slocked(struct vnode *vp, char *str)
310{
311	if (vp && !IGNORE_LOCK(vp) &&
312	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
313		vfs_badlock("is not locked shared but should be", str, vp);
314}
315
316void
317vop_rename_pre(void *ap)
318{
319	struct vop_rename_args *a = ap;
320
321	if (a->a_tvp)
322		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
323	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
324	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
325	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
326
327	/* Check the source (from) */
328	if (a->a_tdvp != a->a_fdvp)
329		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked.\n");
330	if (a->a_tvp != a->a_fvp)
331		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked.\n");
332
333	/* Check the target */
334	if (a->a_tvp)
335		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked.\n");
336
337	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked.\n");
338}
339
340void
341vop_strategy_pre(void *ap)
342{
343	struct vop_strategy_args *a = ap;
344	struct buf *bp;
345
346	bp = a->a_bp;
347
348	/*
349	 * Cluster ops lock their component buffers but not the IO container.
350	 */
351	if ((bp->b_flags & B_CLUSTER) != 0)
352		return;
353
354	if (BUF_REFCNT(bp) < 1) {
355		if (vfs_badlock_print)
356			printf("VOP_STRATEGY: bp is not locked but should be.\n");
357		if (vfs_badlock_panic)
358			Debugger("Lock violation.\n");
359	}
360}
361
362void
363vop_lookup_pre(void *ap)
364{
365	struct vop_lookup_args *a = ap;
366	struct vnode *dvp;
367
368	dvp = a->a_dvp;
369
370	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
371	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
372}
373
374void
375vop_lookup_post(void *ap, int rc)
376{
377	struct vop_lookup_args *a = ap;
378	struct componentname *cnp;
379	struct vnode *dvp;
380	struct vnode *vp;
381	int flags;
382
383	dvp = a->a_dvp;
384	cnp = a->a_cnp;
385	vp = *(a->a_vpp);
386	flags = cnp->cn_flags;
387
388
389	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
390	/*
391	 * If this is the last path component for this lookup and LOCPARENT
392	 * is set, OR if there is an error the directory has to be locked.
393	 */
394	if ((flags & LOCKPARENT) && (flags & ISLASTCN))
395		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)");
396	else if (rc != 0)
397		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)");
398	else if (dvp != vp)
399		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)");
400
401	if (flags & PDIRUNLOCK)
402		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)");
403}
404
405void
406vop_unlock_pre(void *ap)
407{
408	struct vop_unlock_args *a = ap;
409
410	if (a->a_flags & LK_INTERLOCK)
411		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
412
413	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
414}
415
416void
417vop_unlock_post(void *ap, int rc)
418{
419	struct vop_unlock_args *a = ap;
420
421	if (a->a_flags & LK_INTERLOCK)
422		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
423}
424
425void
426vop_lock_pre(void *ap)
427{
428	struct vop_lock_args *a = ap;
429
430	if ((a->a_flags & LK_INTERLOCK) == 0)
431		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
432	else
433		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
434}
435
436void
437vop_lock_post(void *ap, int rc)
438{
439	struct vop_lock_args *a;
440
441	a = ap;
442
443	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
444	if (rc == 0)
445		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
446}
447
448void
449v_addpollinfo(struct vnode *vp)
450{
451	vp->v_pollinfo = uma_zalloc(vnodepoll_zone, M_WAITOK);
452	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
453}
454
455/*
456 * Initialize the vnode management data structures.
457 */
458static void
459vntblinit(void *dummy __unused)
460{
461
462	/*
463	 * Desiredvnodes is a function of the physical memory size and
464	 * the kernel's heap size.  Specifically, desiredvnodes scales
465	 * in proportion to the physical memory size until two fifths
466	 * of the kernel's heap size is consumed by vnodes and vm
467	 * objects.
468	 */
469	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
470	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
471	minvnodes = desiredvnodes / 4;
472	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
473	mtx_init(&mntvnode_mtx, "mntvnode", NULL, MTX_DEF);
474	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
475	mtx_init(&spechash_mtx, "spechash", NULL, MTX_DEF);
476	TAILQ_INIT(&vnode_free_list);
477	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
478	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
479	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
480	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
481	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
482	/*
483	 * Initialize the filesystem syncer.
484	 */
485	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
486		&syncer_mask);
487	syncer_maxdelay = syncer_mask + 1;
488	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
489}
490SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
491
492
493/*
494 * Mark a mount point as busy. Used to synchronize access and to delay
495 * unmounting. Interlock is not released on failure.
496 */
497int
498vfs_busy(mp, flags, interlkp, td)
499	struct mount *mp;
500	int flags;
501	struct mtx *interlkp;
502	struct thread *td;
503{
504	int lkflags;
505
506	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
507		if (flags & LK_NOWAIT)
508			return (ENOENT);
509		mp->mnt_kern_flag |= MNTK_MWAIT;
510		/*
511		 * Since all busy locks are shared except the exclusive
512		 * lock granted when unmounting, the only place that a
513		 * wakeup needs to be done is at the release of the
514		 * exclusive lock at the end of dounmount.
515		 */
516		msleep(mp, interlkp, PVFS, "vfs_busy", 0);
517		return (ENOENT);
518	}
519	lkflags = LK_SHARED | LK_NOPAUSE;
520	if (interlkp)
521		lkflags |= LK_INTERLOCK;
522	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
523		panic("vfs_busy: unexpected lock failure");
524	return (0);
525}
526
527/*
528 * Free a busy filesystem.
529 */
530void
531vfs_unbusy(mp, td)
532	struct mount *mp;
533	struct thread *td;
534{
535
536	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
537}
538
539/*
540 * Lookup a mount point by filesystem identifier.
541 */
542struct mount *
543vfs_getvfs(fsid)
544	fsid_t *fsid;
545{
546	register struct mount *mp;
547
548	mtx_lock(&mountlist_mtx);
549	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
550		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
551		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
552			mtx_unlock(&mountlist_mtx);
553			return (mp);
554		}
555	}
556	mtx_unlock(&mountlist_mtx);
557	return ((struct mount *) 0);
558}
559
560/*
561 * Get a new unique fsid.  Try to make its val[0] unique, since this value
562 * will be used to create fake device numbers for stat().  Also try (but
563 * not so hard) make its val[0] unique mod 2^16, since some emulators only
564 * support 16-bit device numbers.  We end up with unique val[0]'s for the
565 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
566 *
567 * Keep in mind that several mounts may be running in parallel.  Starting
568 * the search one past where the previous search terminated is both a
569 * micro-optimization and a defense against returning the same fsid to
570 * different mounts.
571 */
572void
573vfs_getnewfsid(mp)
574	struct mount *mp;
575{
576	static u_int16_t mntid_base;
577	fsid_t tfsid;
578	int mtype;
579
580	mtx_lock(&mntid_mtx);
581	mtype = mp->mnt_vfc->vfc_typenum;
582	tfsid.val[1] = mtype;
583	mtype = (mtype & 0xFF) << 24;
584	for (;;) {
585		tfsid.val[0] = makeudev(255,
586		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
587		mntid_base++;
588		if (vfs_getvfs(&tfsid) == NULL)
589			break;
590	}
591	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
592	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
593	mtx_unlock(&mntid_mtx);
594}
595
596/*
597 * Knob to control the precision of file timestamps:
598 *
599 *   0 = seconds only; nanoseconds zeroed.
600 *   1 = seconds and nanoseconds, accurate within 1/HZ.
601 *   2 = seconds and nanoseconds, truncated to microseconds.
602 * >=3 = seconds and nanoseconds, maximum precision.
603 */
604enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
605
606static int timestamp_precision = TSP_SEC;
607SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
608    &timestamp_precision, 0, "");
609
610/*
611 * Get a current timestamp.
612 */
613void
614vfs_timestamp(tsp)
615	struct timespec *tsp;
616{
617	struct timeval tv;
618
619	switch (timestamp_precision) {
620	case TSP_SEC:
621		tsp->tv_sec = time_second;
622		tsp->tv_nsec = 0;
623		break;
624	case TSP_HZ:
625		getnanotime(tsp);
626		break;
627	case TSP_USEC:
628		microtime(&tv);
629		TIMEVAL_TO_TIMESPEC(&tv, tsp);
630		break;
631	case TSP_NSEC:
632	default:
633		nanotime(tsp);
634		break;
635	}
636}
637
638/*
639 * Set vnode attributes to VNOVAL
640 */
641void
642vattr_null(vap)
643	register struct vattr *vap;
644{
645
646	vap->va_type = VNON;
647	vap->va_size = VNOVAL;
648	vap->va_bytes = VNOVAL;
649	vap->va_mode = VNOVAL;
650	vap->va_nlink = VNOVAL;
651	vap->va_uid = VNOVAL;
652	vap->va_gid = VNOVAL;
653	vap->va_fsid = VNOVAL;
654	vap->va_fileid = VNOVAL;
655	vap->va_blocksize = VNOVAL;
656	vap->va_rdev = VNOVAL;
657	vap->va_atime.tv_sec = VNOVAL;
658	vap->va_atime.tv_nsec = VNOVAL;
659	vap->va_mtime.tv_sec = VNOVAL;
660	vap->va_mtime.tv_nsec = VNOVAL;
661	vap->va_ctime.tv_sec = VNOVAL;
662	vap->va_ctime.tv_nsec = VNOVAL;
663	vap->va_birthtime.tv_sec = VNOVAL;
664	vap->va_birthtime.tv_nsec = VNOVAL;
665	vap->va_flags = VNOVAL;
666	vap->va_gen = VNOVAL;
667	vap->va_vaflags = 0;
668}
669
670/*
671 * This routine is called when we have too many vnodes.  It attempts
672 * to free <count> vnodes and will potentially free vnodes that still
673 * have VM backing store (VM backing store is typically the cause
674 * of a vnode blowout so we want to do this).  Therefore, this operation
675 * is not considered cheap.
676 *
677 * A number of conditions may prevent a vnode from being reclaimed.
678 * the buffer cache may have references on the vnode, a directory
679 * vnode may still have references due to the namei cache representing
680 * underlying files, or the vnode may be in active use.   It is not
681 * desireable to reuse such vnodes.  These conditions may cause the
682 * number of vnodes to reach some minimum value regardless of what
683 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
684 */
685static int
686vlrureclaim(struct mount *mp)
687{
688	struct vnode *vp;
689	int done;
690	int trigger;
691	int usevnodes;
692	int count;
693
694	/*
695	 * Calculate the trigger point, don't allow user
696	 * screwups to blow us up.   This prevents us from
697	 * recycling vnodes with lots of resident pages.  We
698	 * aren't trying to free memory, we are trying to
699	 * free vnodes.
700	 */
701	usevnodes = desiredvnodes;
702	if (usevnodes <= 0)
703		usevnodes = 1;
704	trigger = cnt.v_page_count * 2 / usevnodes;
705
706	done = 0;
707	mtx_lock(&mntvnode_mtx);
708	count = mp->mnt_nvnodelistsize / 10 + 1;
709	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
710		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
711		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
712
713		if (vp->v_type != VNON &&
714		    vp->v_type != VBAD &&
715		    VI_TRYLOCK(vp)) {
716			if (VMIGHTFREE(vp) &&           /* critical path opt */
717			    (vp->v_object == NULL ||
718			    vp->v_object->resident_page_count < trigger)) {
719				mtx_unlock(&mntvnode_mtx);
720				vgonel(vp, curthread);
721				done++;
722				mtx_lock(&mntvnode_mtx);
723			} else
724				VI_UNLOCK(vp);
725		}
726		--count;
727	}
728	mtx_unlock(&mntvnode_mtx);
729	return done;
730}
731
732/*
733 * Attempt to recycle vnodes in a context that is always safe to block.
734 * Calling vlrurecycle() from the bowels of filesystem code has some
735 * interesting deadlock problems.
736 */
737static struct proc *vnlruproc;
738static int vnlruproc_sig;
739
740static void
741vnlru_proc(void)
742{
743	struct mount *mp, *nmp;
744	int s;
745	int done;
746	struct proc *p = vnlruproc;
747	struct thread *td = FIRST_THREAD_IN_PROC(p);	/* XXXKSE */
748
749	mtx_lock(&Giant);
750
751	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
752	    SHUTDOWN_PRI_FIRST);
753
754	s = splbio();
755	for (;;) {
756		kthread_suspend_check(p);
757		mtx_lock(&vnode_free_list_mtx);
758		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
759			mtx_unlock(&vnode_free_list_mtx);
760			vnlruproc_sig = 0;
761			wakeup(&vnlruproc_sig);
762			tsleep(vnlruproc, PVFS, "vlruwt", hz);
763			continue;
764		}
765		mtx_unlock(&vnode_free_list_mtx);
766		done = 0;
767		mtx_lock(&mountlist_mtx);
768		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
769			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
770				nmp = TAILQ_NEXT(mp, mnt_list);
771				continue;
772			}
773			done += vlrureclaim(mp);
774			mtx_lock(&mountlist_mtx);
775			nmp = TAILQ_NEXT(mp, mnt_list);
776			vfs_unbusy(mp, td);
777		}
778		mtx_unlock(&mountlist_mtx);
779		if (done == 0) {
780#if 0
781			/* These messages are temporary debugging aids */
782			if (vnlru_nowhere < 5)
783				printf("vnlru process getting nowhere..\n");
784			else if (vnlru_nowhere == 5)
785				printf("vnlru process messages stopped.\n");
786#endif
787			vnlru_nowhere++;
788			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
789		}
790	}
791	splx(s);
792}
793
794static struct kproc_desc vnlru_kp = {
795	"vnlru",
796	vnlru_proc,
797	&vnlruproc
798};
799SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
800
801
802/*
803 * Routines having to do with the management of the vnode table.
804 */
805
806/*
807 * Check to see if a free vnode can be recycled. If it can,
808 * return it locked with the vn lock, but not interlock. Also
809 * get the vn_start_write lock. Otherwise indicate the error.
810 */
811static int
812vcanrecycle(struct vnode *vp, struct mount **vnmpp)
813{
814	struct thread *td = curthread;
815	vm_object_t object;
816	int error;
817
818	/* Don't recycle if we can't get the interlock */
819	if (!VI_TRYLOCK(vp))
820		return (EWOULDBLOCK);
821
822	/* We should be able to immediately acquire this */
823	/* XXX This looks like it should panic if it fails */
824	if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td) != 0) {
825		if (VOP_ISLOCKED(vp, td))
826			panic("vcanrecycle: locked vnode");
827		return (EWOULDBLOCK);
828	}
829
830	/*
831	 * Don't recycle if its filesystem is being suspended.
832	 */
833	if (vn_start_write(vp, vnmpp, V_NOWAIT) != 0) {
834		error = EBUSY;
835		goto done;
836	}
837
838	/*
839	 * Don't recycle if we still have cached pages.
840	 */
841	if (VOP_GETVOBJECT(vp, &object) == 0) {
842		VM_OBJECT_LOCK(object);
843		if (object->resident_page_count ||
844		    object->ref_count) {
845			VM_OBJECT_UNLOCK(object);
846			error = EBUSY;
847			goto done;
848		}
849		VM_OBJECT_UNLOCK(object);
850	}
851	if (LIST_FIRST(&vp->v_cache_src)) {
852		/*
853		 * note: nameileafonly sysctl is temporary,
854		 * for debugging only, and will eventually be
855		 * removed.
856		 */
857		if (nameileafonly > 0) {
858			/*
859			 * Do not reuse namei-cached directory
860			 * vnodes that have cached
861			 * subdirectories.
862			 */
863			if (cache_leaf_test(vp) < 0) {
864				error = EISDIR;
865				goto done;
866			}
867		} else if (nameileafonly < 0 ||
868			    vmiodirenable == 0) {
869			/*
870			 * Do not reuse namei-cached directory
871			 * vnodes if nameileafonly is -1 or
872			 * if VMIO backing for directories is
873			 * turned off (otherwise we reuse them
874			 * too quickly).
875			 */
876			error = EBUSY;
877			goto done;
878		}
879	}
880	return (0);
881done:
882	VOP_UNLOCK(vp, 0, td);
883	return (error);
884}
885
886/*
887 * Return the next vnode from the free list.
888 */
889int
890getnewvnode(tag, mp, vops, vpp)
891	const char *tag;
892	struct mount *mp;
893	vop_t **vops;
894	struct vnode **vpp;
895{
896	struct thread *td = curthread;	/* XXX */
897	struct vnode *vp = NULL;
898	struct vpollinfo *pollinfo = NULL;
899	struct mount *vnmp;
900
901	mtx_lock(&vnode_free_list_mtx);
902
903	/*
904	 * Try to reuse vnodes if we hit the max.  This situation only
905	 * occurs in certain large-memory (2G+) situations.  We cannot
906	 * attempt to directly reclaim vnodes due to nasty recursion
907	 * problems.
908	 */
909	while (numvnodes - freevnodes > desiredvnodes) {
910		if (vnlruproc_sig == 0) {
911			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
912			wakeup(vnlruproc);
913		}
914		mtx_unlock(&vnode_free_list_mtx);
915		tsleep(&vnlruproc_sig, PVFS, "vlruwk", hz);
916		mtx_lock(&vnode_free_list_mtx);
917	}
918
919	/*
920	 * Attempt to reuse a vnode already on the free list, allocating
921	 * a new vnode if we can't find one or if we have not reached a
922	 * good minimum for good LRU performance.
923	 */
924
925	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
926		int error;
927		int count;
928
929		for (count = 0; count < freevnodes; count++) {
930			vp = TAILQ_FIRST(&vnode_free_list);
931
932			KASSERT(vp->v_usecount == 0 &&
933			    (vp->v_iflag & VI_DOINGINACT) == 0,
934			    ("getnewvnode: free vnode isn't"));
935
936			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
937			/*
938			 * We have to drop the free list mtx to avoid lock
939			 * order reversals with interlock.
940			 */
941			mtx_unlock(&vnode_free_list_mtx);
942			error = vcanrecycle(vp, &vnmp);
943			mtx_lock(&vnode_free_list_mtx);
944			if (error == 0)
945				break;
946			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
947			vp = NULL;
948		}
949	}
950	if (vp) {
951		freevnodes--;
952		mtx_unlock(&vnode_free_list_mtx);
953
954		cache_purge(vp);
955		VI_LOCK(vp);
956		vp->v_iflag |= VI_DOOMED;
957		vp->v_iflag &= ~VI_FREE;
958		if (vp->v_type != VBAD) {
959			VOP_UNLOCK(vp, 0, td);
960			vgonel(vp, td);
961			VI_LOCK(vp);
962		} else {
963			VOP_UNLOCK(vp, 0, td);
964		}
965		vn_finished_write(vnmp);
966
967#ifdef INVARIANTS
968		{
969			if (vp->v_data)
970				panic("cleaned vnode isn't");
971			if (vp->v_numoutput)
972				panic("Clean vnode has pending I/O's");
973			if (vp->v_writecount != 0)
974				panic("Non-zero write count");
975		}
976#endif
977		if ((pollinfo = vp->v_pollinfo) != NULL) {
978			/*
979			 * To avoid lock order reversals, the call to
980			 * uma_zfree() must be delayed until the vnode
981			 * interlock is released.
982			 */
983			vp->v_pollinfo = NULL;
984		}
985#ifdef MAC
986		mac_destroy_vnode(vp);
987#endif
988		vp->v_iflag = 0;
989		vp->v_vflag = 0;
990		vp->v_lastw = 0;
991		vp->v_lasta = 0;
992		vp->v_cstart = 0;
993		vp->v_clen = 0;
994		vp->v_socket = 0;
995		lockdestroy(vp->v_vnlock);
996		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
997		KASSERT(vp->v_cleanbufcnt == 0, ("cleanbufcnt not 0"));
998		KASSERT(vp->v_cleanblkroot == NULL, ("cleanblkroot not NULL"));
999		KASSERT(vp->v_dirtybufcnt == 0, ("dirtybufcnt not 0"));
1000		KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
1001	} else {
1002		numvnodes++;
1003		mtx_unlock(&vnode_free_list_mtx);
1004
1005		vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
1006		mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
1007		VI_LOCK(vp);
1008		vp->v_dd = vp;
1009		vp->v_vnlock = &vp->v_lock;
1010		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
1011		cache_purge(vp);
1012		LIST_INIT(&vp->v_cache_src);
1013		TAILQ_INIT(&vp->v_cache_dst);
1014	}
1015
1016	TAILQ_INIT(&vp->v_cleanblkhd);
1017	TAILQ_INIT(&vp->v_dirtyblkhd);
1018	vp->v_type = VNON;
1019	vp->v_tag = tag;
1020	vp->v_op = vops;
1021	*vpp = vp;
1022	vp->v_usecount = 1;
1023	vp->v_data = 0;
1024	vp->v_cachedid = -1;
1025	VI_UNLOCK(vp);
1026	if (pollinfo != NULL) {
1027		mtx_destroy(&pollinfo->vpi_lock);
1028		uma_zfree(vnodepoll_zone, pollinfo);
1029	}
1030#ifdef MAC
1031	mac_init_vnode(vp);
1032	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1033		mac_associate_vnode_singlelabel(mp, vp);
1034#endif
1035	insmntque(vp, mp);
1036
1037	return (0);
1038}
1039
1040/*
1041 * Move a vnode from one mount queue to another.
1042 */
1043static void
1044insmntque(vp, mp)
1045	register struct vnode *vp;
1046	register struct mount *mp;
1047{
1048
1049	mtx_lock(&mntvnode_mtx);
1050	/*
1051	 * Delete from old mount point vnode list, if on one.
1052	 */
1053	if (vp->v_mount != NULL) {
1054		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
1055			("bad mount point vnode list size"));
1056		TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
1057		vp->v_mount->mnt_nvnodelistsize--;
1058	}
1059	/*
1060	 * Insert into list of vnodes for the new mount point, if available.
1061	 */
1062	if ((vp->v_mount = mp) == NULL) {
1063		mtx_unlock(&mntvnode_mtx);
1064		return;
1065	}
1066	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1067	mp->mnt_nvnodelistsize++;
1068	mtx_unlock(&mntvnode_mtx);
1069}
1070
1071/*
1072 * Update outstanding I/O count and do wakeup if requested.
1073 */
1074void
1075vwakeup(bp)
1076	register struct buf *bp;
1077{
1078	register struct vnode *vp;
1079
1080	bp->b_flags &= ~B_WRITEINPROG;
1081	if ((vp = bp->b_vp)) {
1082		VI_LOCK(vp);
1083		vp->v_numoutput--;
1084		if (vp->v_numoutput < 0)
1085			panic("vwakeup: neg numoutput");
1086		if ((vp->v_numoutput == 0) && (vp->v_iflag & VI_BWAIT)) {
1087			vp->v_iflag &= ~VI_BWAIT;
1088			wakeup(&vp->v_numoutput);
1089		}
1090		VI_UNLOCK(vp);
1091	}
1092}
1093
1094/*
1095 * Flush out and invalidate all buffers associated with a vnode.
1096 * Called with the underlying object locked.
1097 */
1098int
1099vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
1100	struct vnode *vp;
1101	int flags;
1102	struct ucred *cred;
1103	struct thread *td;
1104	int slpflag, slptimeo;
1105{
1106	struct buf *blist;
1107	int s, error;
1108	vm_object_t object;
1109
1110	GIANT_REQUIRED;
1111
1112	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1113
1114	VI_LOCK(vp);
1115	if (flags & V_SAVE) {
1116		s = splbio();
1117		while (vp->v_numoutput) {
1118			vp->v_iflag |= VI_BWAIT;
1119			error = msleep(&vp->v_numoutput, VI_MTX(vp),
1120			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
1121			if (error) {
1122				VI_UNLOCK(vp);
1123				splx(s);
1124				return (error);
1125			}
1126		}
1127		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1128			splx(s);
1129			VI_UNLOCK(vp);
1130			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
1131				return (error);
1132			/*
1133			 * XXX We could save a lock/unlock if this was only
1134			 * enabled under INVARIANTS
1135			 */
1136			VI_LOCK(vp);
1137			s = splbio();
1138			if (vp->v_numoutput > 0 ||
1139			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
1140				panic("vinvalbuf: dirty bufs");
1141		}
1142		splx(s);
1143	}
1144	s = splbio();
1145	/*
1146	 * If you alter this loop please notice that interlock is dropped and
1147	 * reacquired in flushbuflist.  Special care is needed to ensure that
1148	 * no race conditions occur from this.
1149	 */
1150	for (error = 0;;) {
1151		if ((blist = TAILQ_FIRST(&vp->v_cleanblkhd)) != 0 &&
1152		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
1153			if (error)
1154				break;
1155			continue;
1156		}
1157		if ((blist = TAILQ_FIRST(&vp->v_dirtyblkhd)) != 0 &&
1158		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
1159			if (error)
1160				break;
1161			continue;
1162		}
1163		break;
1164	}
1165	if (error) {
1166		splx(s);
1167		VI_UNLOCK(vp);
1168		return (error);
1169	}
1170
1171	/*
1172	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1173	 * have write I/O in-progress but if there is a VM object then the
1174	 * VM object can also have read-I/O in-progress.
1175	 */
1176	do {
1177		while (vp->v_numoutput > 0) {
1178			vp->v_iflag |= VI_BWAIT;
1179			msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vnvlbv", 0);
1180		}
1181		VI_UNLOCK(vp);
1182		if (VOP_GETVOBJECT(vp, &object) == 0) {
1183			VM_OBJECT_LOCK(object);
1184			vm_object_pip_wait(object, "vnvlbx");
1185			VM_OBJECT_UNLOCK(object);
1186		}
1187		VI_LOCK(vp);
1188	} while (vp->v_numoutput > 0);
1189	VI_UNLOCK(vp);
1190
1191	splx(s);
1192
1193	/*
1194	 * Destroy the copy in the VM cache, too.
1195	 */
1196	if (VOP_GETVOBJECT(vp, &object) == 0) {
1197		VM_OBJECT_LOCK(object);
1198		vm_object_page_remove(object, 0, 0,
1199			(flags & V_SAVE) ? TRUE : FALSE);
1200		VM_OBJECT_UNLOCK(object);
1201	}
1202
1203#ifdef INVARIANTS
1204	VI_LOCK(vp);
1205	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1206	    (!TAILQ_EMPTY(&vp->v_dirtyblkhd) ||
1207	     !TAILQ_EMPTY(&vp->v_cleanblkhd)))
1208		panic("vinvalbuf: flush failed");
1209	VI_UNLOCK(vp);
1210#endif
1211	return (0);
1212}
1213
1214/*
1215 * Flush out buffers on the specified list.
1216 *
1217 */
1218static int
1219flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp)
1220	struct buf *blist;
1221	int flags;
1222	struct vnode *vp;
1223	int slpflag, slptimeo;
1224	int *errorp;
1225{
1226	struct buf *bp, *nbp;
1227	int found, error;
1228
1229	ASSERT_VI_LOCKED(vp, "flushbuflist");
1230
1231	for (found = 0, bp = blist; bp; bp = nbp) {
1232		nbp = TAILQ_NEXT(bp, b_vnbufs);
1233		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1234		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1235			continue;
1236		}
1237		found += 1;
1238		error = BUF_TIMELOCK(bp,
1239		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, VI_MTX(vp),
1240		    "flushbuf", slpflag, slptimeo);
1241		if (error) {
1242			if (error != ENOLCK)
1243				*errorp = error;
1244			goto done;
1245		}
1246		/*
1247		 * XXX Since there are no node locks for NFS, I
1248		 * believe there is a slight chance that a delayed
1249		 * write will occur while sleeping just above, so
1250		 * check for it.  Note that vfs_bio_awrite expects
1251		 * buffers to reside on a queue, while BUF_WRITE and
1252		 * brelse do not.
1253		 */
1254		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1255			(flags & V_SAVE)) {
1256
1257			if (bp->b_vp == vp) {
1258				if (bp->b_flags & B_CLUSTEROK) {
1259					vfs_bio_awrite(bp);
1260				} else {
1261					bremfree(bp);
1262					bp->b_flags |= B_ASYNC;
1263					BUF_WRITE(bp);
1264				}
1265			} else {
1266				bremfree(bp);
1267				(void) BUF_WRITE(bp);
1268			}
1269			goto done;
1270		}
1271		bremfree(bp);
1272		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1273		bp->b_flags &= ~B_ASYNC;
1274		brelse(bp);
1275		VI_LOCK(vp);
1276	}
1277	return (found);
1278done:
1279	VI_LOCK(vp);
1280	return (found);
1281}
1282
1283/*
1284 * Truncate a file's buffer and pages to a specified length.  This
1285 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1286 * sync activity.
1287 */
1288int
1289vtruncbuf(vp, cred, td, length, blksize)
1290	register struct vnode *vp;
1291	struct ucred *cred;
1292	struct thread *td;
1293	off_t length;
1294	int blksize;
1295{
1296	register struct buf *bp;
1297	struct buf *nbp;
1298	int s, anyfreed;
1299	int trunclbn;
1300
1301	/*
1302	 * Round up to the *next* lbn.
1303	 */
1304	trunclbn = (length + blksize - 1) / blksize;
1305
1306	s = splbio();
1307	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1308restart:
1309	VI_LOCK(vp);
1310	anyfreed = 1;
1311	for (;anyfreed;) {
1312		anyfreed = 0;
1313		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1314			nbp = TAILQ_NEXT(bp, b_vnbufs);
1315			if (bp->b_lblkno >= trunclbn) {
1316				if (BUF_LOCK(bp,
1317				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1318				    VI_MTX(vp)) == ENOLCK)
1319					goto restart;
1320
1321				bremfree(bp);
1322				bp->b_flags |= (B_INVAL | B_RELBUF);
1323				bp->b_flags &= ~B_ASYNC;
1324				brelse(bp);
1325				anyfreed = 1;
1326
1327				if (nbp &&
1328				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1329				    (nbp->b_vp != vp) ||
1330				    (nbp->b_flags & B_DELWRI))) {
1331					goto restart;
1332				}
1333				VI_LOCK(vp);
1334			}
1335		}
1336
1337		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1338			nbp = TAILQ_NEXT(bp, b_vnbufs);
1339			if (bp->b_lblkno >= trunclbn) {
1340				if (BUF_LOCK(bp,
1341				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1342				    VI_MTX(vp)) == ENOLCK)
1343					goto restart;
1344				bremfree(bp);
1345				bp->b_flags |= (B_INVAL | B_RELBUF);
1346				bp->b_flags &= ~B_ASYNC;
1347				brelse(bp);
1348				anyfreed = 1;
1349				if (nbp &&
1350				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1351				    (nbp->b_vp != vp) ||
1352				    (nbp->b_flags & B_DELWRI) == 0)) {
1353					goto restart;
1354				}
1355				VI_LOCK(vp);
1356			}
1357		}
1358	}
1359
1360	if (length > 0) {
1361restartsync:
1362		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1363			nbp = TAILQ_NEXT(bp, b_vnbufs);
1364			if (bp->b_lblkno > 0)
1365				continue;
1366			/*
1367			 * Since we hold the vnode lock this should only
1368			 * fail if we're racing with the buf daemon.
1369			 */
1370			if (BUF_LOCK(bp,
1371			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1372			    VI_MTX(vp)) == ENOLCK) {
1373				goto restart;
1374			}
1375			KASSERT((bp->b_flags & B_DELWRI),
1376			    ("buf(%p) on dirty queue without DELWRI.", bp));
1377
1378			bremfree(bp);
1379			bawrite(bp);
1380			VI_LOCK(vp);
1381			goto restartsync;
1382		}
1383	}
1384
1385	while (vp->v_numoutput > 0) {
1386		vp->v_iflag |= VI_BWAIT;
1387		msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vbtrunc", 0);
1388	}
1389	VI_UNLOCK(vp);
1390	splx(s);
1391
1392	vnode_pager_setsize(vp, length);
1393
1394	return (0);
1395}
1396
1397/*
1398 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1399 * 		 a vnode.
1400 *
1401 *	NOTE: We have to deal with the special case of a background bitmap
1402 *	buffer, a situation where two buffers will have the same logical
1403 *	block offset.  We want (1) only the foreground buffer to be accessed
1404 *	in a lookup and (2) must differentiate between the foreground and
1405 *	background buffer in the splay tree algorithm because the splay
1406 *	tree cannot normally handle multiple entities with the same 'index'.
1407 *	We accomplish this by adding differentiating flags to the splay tree's
1408 *	numerical domain.
1409 */
1410static
1411struct buf *
1412buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1413{
1414	struct buf dummy;
1415	struct buf *lefttreemax, *righttreemin, *y;
1416
1417	if (root == NULL)
1418		return (NULL);
1419	lefttreemax = righttreemin = &dummy;
1420	for (;;) {
1421		if (lblkno < root->b_lblkno ||
1422		    (lblkno == root->b_lblkno &&
1423		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1424			if ((y = root->b_left) == NULL)
1425				break;
1426			if (lblkno < y->b_lblkno) {
1427				/* Rotate right. */
1428				root->b_left = y->b_right;
1429				y->b_right = root;
1430				root = y;
1431				if ((y = root->b_left) == NULL)
1432					break;
1433			}
1434			/* Link into the new root's right tree. */
1435			righttreemin->b_left = root;
1436			righttreemin = root;
1437		} else if (lblkno > root->b_lblkno ||
1438		    (lblkno == root->b_lblkno &&
1439		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1440			if ((y = root->b_right) == NULL)
1441				break;
1442			if (lblkno > y->b_lblkno) {
1443				/* Rotate left. */
1444				root->b_right = y->b_left;
1445				y->b_left = root;
1446				root = y;
1447				if ((y = root->b_right) == NULL)
1448					break;
1449			}
1450			/* Link into the new root's left tree. */
1451			lefttreemax->b_right = root;
1452			lefttreemax = root;
1453		} else {
1454			break;
1455		}
1456		root = y;
1457	}
1458	/* Assemble the new root. */
1459	lefttreemax->b_right = root->b_left;
1460	righttreemin->b_left = root->b_right;
1461	root->b_left = dummy.b_right;
1462	root->b_right = dummy.b_left;
1463	return (root);
1464}
1465
1466static
1467void
1468buf_vlist_remove(struct buf *bp)
1469{
1470	struct vnode *vp = bp->b_vp;
1471	struct buf *root;
1472
1473	ASSERT_VI_LOCKED(vp, "buf_vlist_remove");
1474	if (bp->b_xflags & BX_VNDIRTY) {
1475		if (bp != vp->v_dirtyblkroot) {
1476			root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1477			KASSERT(root == bp, ("splay lookup failed during dirty remove"));
1478		}
1479		if (bp->b_left == NULL) {
1480			root = bp->b_right;
1481		} else {
1482			root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1483			root->b_right = bp->b_right;
1484		}
1485		vp->v_dirtyblkroot = root;
1486		TAILQ_REMOVE(&vp->v_dirtyblkhd, bp, b_vnbufs);
1487		vp->v_dirtybufcnt--;
1488	} else {
1489		/* KASSERT(bp->b_xflags & BX_VNCLEAN, ("bp wasn't clean")); */
1490		if (bp != vp->v_cleanblkroot) {
1491			root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1492			KASSERT(root == bp, ("splay lookup failed during clean remove"));
1493		}
1494		if (bp->b_left == NULL) {
1495			root = bp->b_right;
1496		} else {
1497			root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1498			root->b_right = bp->b_right;
1499		}
1500		vp->v_cleanblkroot = root;
1501		TAILQ_REMOVE(&vp->v_cleanblkhd, bp, b_vnbufs);
1502		vp->v_cleanbufcnt--;
1503	}
1504	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1505}
1506
1507/*
1508 * Add the buffer to the sorted clean or dirty block list using a
1509 * splay tree algorithm.
1510 *
1511 * NOTE: xflags is passed as a constant, optimizing this inline function!
1512 */
1513static
1514void
1515buf_vlist_add(struct buf *bp, struct vnode *vp, b_xflags_t xflags)
1516{
1517	struct buf *root;
1518
1519	ASSERT_VI_LOCKED(vp, "buf_vlist_add");
1520	bp->b_xflags |= xflags;
1521	if (xflags & BX_VNDIRTY) {
1522		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1523		if (root == NULL) {
1524			bp->b_left = NULL;
1525			bp->b_right = NULL;
1526			TAILQ_INSERT_TAIL(&vp->v_dirtyblkhd, bp, b_vnbufs);
1527		} else if (bp->b_lblkno < root->b_lblkno ||
1528		    (bp->b_lblkno == root->b_lblkno &&
1529		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1530			bp->b_left = root->b_left;
1531			bp->b_right = root;
1532			root->b_left = NULL;
1533			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1534		} else {
1535			bp->b_right = root->b_right;
1536			bp->b_left = root;
1537			root->b_right = NULL;
1538			TAILQ_INSERT_AFTER(&vp->v_dirtyblkhd,
1539			    root, bp, b_vnbufs);
1540		}
1541		vp->v_dirtybufcnt++;
1542		vp->v_dirtyblkroot = bp;
1543	} else {
1544		/* KASSERT(xflags & BX_VNCLEAN, ("xflags not clean")); */
1545		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1546		if (root == NULL) {
1547			bp->b_left = NULL;
1548			bp->b_right = NULL;
1549			TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1550		} else if (bp->b_lblkno < root->b_lblkno ||
1551		    (bp->b_lblkno == root->b_lblkno &&
1552		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1553			bp->b_left = root->b_left;
1554			bp->b_right = root;
1555			root->b_left = NULL;
1556			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1557		} else {
1558			bp->b_right = root->b_right;
1559			bp->b_left = root;
1560			root->b_right = NULL;
1561			TAILQ_INSERT_AFTER(&vp->v_cleanblkhd,
1562			    root, bp, b_vnbufs);
1563		}
1564		vp->v_cleanbufcnt++;
1565		vp->v_cleanblkroot = bp;
1566	}
1567}
1568
1569/*
1570 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1571 * shadow buffers used in background bitmap writes.
1572 *
1573 * This code isn't quite efficient as it could be because we are maintaining
1574 * two sorted lists and do not know which list the block resides in.
1575 *
1576 * During a "make buildworld" the desired buffer is found at one of
1577 * the roots more than 60% of the time.  Thus, checking both roots
1578 * before performing either splay eliminates unnecessary splays on the
1579 * first tree splayed.
1580 */
1581struct buf *
1582gbincore(struct vnode *vp, daddr_t lblkno)
1583{
1584	struct buf *bp;
1585
1586	GIANT_REQUIRED;
1587
1588	ASSERT_VI_LOCKED(vp, "gbincore");
1589	if ((bp = vp->v_cleanblkroot) != NULL &&
1590	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1591		return (bp);
1592	if ((bp = vp->v_dirtyblkroot) != NULL &&
1593	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1594		return (bp);
1595	if ((bp = vp->v_cleanblkroot) != NULL) {
1596		vp->v_cleanblkroot = bp = buf_splay(lblkno, 0, bp);
1597		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1598			return (bp);
1599	}
1600	if ((bp = vp->v_dirtyblkroot) != NULL) {
1601		vp->v_dirtyblkroot = bp = buf_splay(lblkno, 0, bp);
1602		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1603			return (bp);
1604	}
1605	return (NULL);
1606}
1607
1608/*
1609 * Associate a buffer with a vnode.
1610 */
1611void
1612bgetvp(vp, bp)
1613	register struct vnode *vp;
1614	register struct buf *bp;
1615{
1616	int s;
1617
1618	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1619
1620	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1621	    ("bgetvp: bp already attached! %p", bp));
1622
1623	ASSERT_VI_LOCKED(vp, "bgetvp");
1624	vholdl(vp);
1625	bp->b_vp = vp;
1626	bp->b_dev = vn_todev(vp);
1627	/*
1628	 * Insert onto list for new vnode.
1629	 */
1630	s = splbio();
1631	buf_vlist_add(bp, vp, BX_VNCLEAN);
1632	splx(s);
1633}
1634
1635/*
1636 * Disassociate a buffer from a vnode.
1637 */
1638void
1639brelvp(bp)
1640	register struct buf *bp;
1641{
1642	struct vnode *vp;
1643	int s;
1644
1645	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1646
1647	/*
1648	 * Delete from old vnode list, if on one.
1649	 */
1650	vp = bp->b_vp;
1651	s = splbio();
1652	VI_LOCK(vp);
1653	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1654		buf_vlist_remove(bp);
1655	if ((vp->v_iflag & VI_ONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1656		vp->v_iflag &= ~VI_ONWORKLST;
1657		mtx_lock(&sync_mtx);
1658		LIST_REMOVE(vp, v_synclist);
1659		mtx_unlock(&sync_mtx);
1660	}
1661	vdropl(vp);
1662	VI_UNLOCK(vp);
1663	bp->b_vp = (struct vnode *) 0;
1664	if (bp->b_object)
1665		bp->b_object = NULL;
1666	splx(s);
1667}
1668
1669/*
1670 * Add an item to the syncer work queue.
1671 */
1672static void
1673vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1674{
1675	int s, slot;
1676
1677	s = splbio();
1678	ASSERT_VI_LOCKED(vp, "vn_syncer_add_to_worklist");
1679
1680	mtx_lock(&sync_mtx);
1681	if (vp->v_iflag & VI_ONWORKLST)
1682		LIST_REMOVE(vp, v_synclist);
1683	else
1684		vp->v_iflag |= VI_ONWORKLST;
1685
1686	if (delay > syncer_maxdelay - 2)
1687		delay = syncer_maxdelay - 2;
1688	slot = (syncer_delayno + delay) & syncer_mask;
1689
1690	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1691	mtx_unlock(&sync_mtx);
1692
1693	splx(s);
1694}
1695
1696struct  proc *updateproc;
1697static void sched_sync(void);
1698static struct kproc_desc up_kp = {
1699	"syncer",
1700	sched_sync,
1701	&updateproc
1702};
1703SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1704
1705/*
1706 * System filesystem synchronizer daemon.
1707 */
1708static void
1709sched_sync(void)
1710{
1711	struct synclist *slp;
1712	struct vnode *vp;
1713	struct mount *mp;
1714	long starttime;
1715	int s;
1716	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);  /* XXXKSE */
1717
1718	mtx_lock(&Giant);
1719
1720	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, td->td_proc,
1721	    SHUTDOWN_PRI_LAST);
1722
1723	for (;;) {
1724		kthread_suspend_check(td->td_proc);
1725
1726		starttime = time_second;
1727
1728		/*
1729		 * Push files whose dirty time has expired.  Be careful
1730		 * of interrupt race on slp queue.
1731		 */
1732		s = splbio();
1733		mtx_lock(&sync_mtx);
1734		slp = &syncer_workitem_pending[syncer_delayno];
1735		syncer_delayno += 1;
1736		if (syncer_delayno == syncer_maxdelay)
1737			syncer_delayno = 0;
1738		splx(s);
1739
1740		while ((vp = LIST_FIRST(slp)) != NULL) {
1741			mtx_unlock(&sync_mtx);
1742			if (VOP_ISLOCKED(vp, NULL) == 0 &&
1743			    vn_start_write(vp, &mp, V_NOWAIT) == 0) {
1744				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1745				(void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td);
1746				VOP_UNLOCK(vp, 0, td);
1747				vn_finished_write(mp);
1748			}
1749			s = splbio();
1750			mtx_lock(&sync_mtx);
1751			if (LIST_FIRST(slp) == vp) {
1752				mtx_unlock(&sync_mtx);
1753				/*
1754				 * Note: VFS vnodes can remain on the
1755				 * worklist too with no dirty blocks, but
1756				 * since sync_fsync() moves it to a different
1757				 * slot we are safe.
1758				 */
1759				VI_LOCK(vp);
1760				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1761				    !vn_isdisk(vp, NULL)) {
1762					panic("sched_sync: fsync failed "
1763					      "vp %p tag %s", vp, vp->v_tag);
1764				}
1765				/*
1766				 * Put us back on the worklist.  The worklist
1767				 * routine will remove us from our current
1768				 * position and then add us back in at a later
1769				 * position.
1770				 */
1771				vn_syncer_add_to_worklist(vp, syncdelay);
1772				VI_UNLOCK(vp);
1773				mtx_lock(&sync_mtx);
1774			}
1775			splx(s);
1776		}
1777		mtx_unlock(&sync_mtx);
1778
1779		/*
1780		 * Do soft update processing.
1781		 */
1782		if (softdep_process_worklist_hook != NULL)
1783			(*softdep_process_worklist_hook)(NULL);
1784
1785		/*
1786		 * The variable rushjob allows the kernel to speed up the
1787		 * processing of the filesystem syncer process. A rushjob
1788		 * value of N tells the filesystem syncer to process the next
1789		 * N seconds worth of work on its queue ASAP. Currently rushjob
1790		 * is used by the soft update code to speed up the filesystem
1791		 * syncer process when the incore state is getting so far
1792		 * ahead of the disk that the kernel memory pool is being
1793		 * threatened with exhaustion.
1794		 */
1795		mtx_lock(&sync_mtx);
1796		if (rushjob > 0) {
1797			rushjob -= 1;
1798			mtx_unlock(&sync_mtx);
1799			continue;
1800		}
1801		mtx_unlock(&sync_mtx);
1802		/*
1803		 * If it has taken us less than a second to process the
1804		 * current work, then wait. Otherwise start right over
1805		 * again. We can still lose time if any single round
1806		 * takes more than two seconds, but it does not really
1807		 * matter as we are just trying to generally pace the
1808		 * filesystem activity.
1809		 */
1810		if (time_second == starttime)
1811			tsleep(&lbolt, PPAUSE, "syncer", 0);
1812	}
1813}
1814
1815/*
1816 * Request the syncer daemon to speed up its work.
1817 * We never push it to speed up more than half of its
1818 * normal turn time, otherwise it could take over the cpu.
1819 * XXXKSE  only one update?
1820 */
1821int
1822speedup_syncer()
1823{
1824	struct thread *td;
1825	int ret = 0;
1826
1827	td = FIRST_THREAD_IN_PROC(updateproc);
1828	mtx_lock_spin(&sched_lock);
1829	if (td->td_wchan == &lbolt) {
1830		unsleep(td);
1831		TD_CLR_SLEEPING(td);
1832		setrunnable(td);
1833	}
1834	mtx_unlock_spin(&sched_lock);
1835	mtx_lock(&sync_mtx);
1836	if (rushjob < syncdelay / 2) {
1837		rushjob += 1;
1838		stat_rush_requests += 1;
1839		ret = 1;
1840	}
1841	mtx_unlock(&sync_mtx);
1842	return (ret);
1843}
1844
1845/*
1846 * Associate a p-buffer with a vnode.
1847 *
1848 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1849 * with the buffer.  i.e. the bp has not been linked into the vnode or
1850 * ref-counted.
1851 */
1852void
1853pbgetvp(vp, bp)
1854	register struct vnode *vp;
1855	register struct buf *bp;
1856{
1857
1858	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1859
1860	bp->b_vp = vp;
1861	bp->b_flags |= B_PAGING;
1862	bp->b_dev = vn_todev(vp);
1863}
1864
1865/*
1866 * Disassociate a p-buffer from a vnode.
1867 */
1868void
1869pbrelvp(bp)
1870	register struct buf *bp;
1871{
1872
1873	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1874
1875	/* XXX REMOVE ME */
1876	VI_LOCK(bp->b_vp);
1877	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1878		panic(
1879		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1880		    bp,
1881		    (int)bp->b_flags
1882		);
1883	}
1884	VI_UNLOCK(bp->b_vp);
1885	bp->b_vp = (struct vnode *) 0;
1886	bp->b_flags &= ~B_PAGING;
1887}
1888
1889/*
1890 * Reassign a buffer from one vnode to another.
1891 * Used to assign file specific control information
1892 * (indirect blocks) to the vnode to which they belong.
1893 */
1894void
1895reassignbuf(bp, newvp)
1896	register struct buf *bp;
1897	register struct vnode *newvp;
1898{
1899	int delay;
1900	int s;
1901
1902	if (newvp == NULL) {
1903		printf("reassignbuf: NULL");
1904		return;
1905	}
1906	++reassignbufcalls;
1907
1908	/*
1909	 * B_PAGING flagged buffers cannot be reassigned because their vp
1910	 * is not fully linked in.
1911	 */
1912	if (bp->b_flags & B_PAGING)
1913		panic("cannot reassign paging buffer");
1914
1915	s = splbio();
1916	/*
1917	 * Delete from old vnode list, if on one.
1918	 */
1919	VI_LOCK(bp->b_vp);
1920	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1921		buf_vlist_remove(bp);
1922		if (bp->b_vp != newvp) {
1923			vdropl(bp->b_vp);
1924			bp->b_vp = NULL;	/* for clarification */
1925		}
1926	}
1927	VI_UNLOCK(bp->b_vp);
1928	/*
1929	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1930	 * of clean buffers.
1931	 */
1932	VI_LOCK(newvp);
1933	if (bp->b_flags & B_DELWRI) {
1934		if ((newvp->v_iflag & VI_ONWORKLST) == 0) {
1935			switch (newvp->v_type) {
1936			case VDIR:
1937				delay = dirdelay;
1938				break;
1939			case VCHR:
1940				if (newvp->v_rdev->si_mountpoint != NULL) {
1941					delay = metadelay;
1942					break;
1943				}
1944				/* FALLTHROUGH */
1945			default:
1946				delay = filedelay;
1947			}
1948			vn_syncer_add_to_worklist(newvp, delay);
1949		}
1950		buf_vlist_add(bp, newvp, BX_VNDIRTY);
1951	} else {
1952		buf_vlist_add(bp, newvp, BX_VNCLEAN);
1953
1954		if ((newvp->v_iflag & VI_ONWORKLST) &&
1955		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1956			mtx_lock(&sync_mtx);
1957			LIST_REMOVE(newvp, v_synclist);
1958			mtx_unlock(&sync_mtx);
1959			newvp->v_iflag &= ~VI_ONWORKLST;
1960		}
1961	}
1962	if (bp->b_vp != newvp) {
1963		bp->b_vp = newvp;
1964		vholdl(bp->b_vp);
1965	}
1966	VI_UNLOCK(newvp);
1967	splx(s);
1968}
1969
1970/*
1971 * Create a vnode for a device.
1972 * Used for mounting the root filesystem.
1973 */
1974int
1975bdevvp(dev, vpp)
1976	dev_t dev;
1977	struct vnode **vpp;
1978{
1979	register struct vnode *vp;
1980	struct vnode *nvp;
1981	int error;
1982
1983	if (dev == NODEV) {
1984		*vpp = NULLVP;
1985		return (ENXIO);
1986	}
1987	if (vfinddev(dev, VCHR, vpp))
1988		return (0);
1989	error = getnewvnode("none", (struct mount *)0, spec_vnodeop_p, &nvp);
1990	if (error) {
1991		*vpp = NULLVP;
1992		return (error);
1993	}
1994	vp = nvp;
1995	vp->v_type = VCHR;
1996	addalias(vp, dev);
1997	*vpp = vp;
1998	return (0);
1999}
2000
2001static void
2002v_incr_usecount(struct vnode *vp, int delta)
2003{
2004	vp->v_usecount += delta;
2005	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2006		mtx_lock(&spechash_mtx);
2007		vp->v_rdev->si_usecount += delta;
2008		mtx_unlock(&spechash_mtx);
2009	}
2010}
2011
2012/*
2013 * Add vnode to the alias list hung off the dev_t.
2014 *
2015 * The reason for this gunk is that multiple vnodes can reference
2016 * the same physical device, so checking vp->v_usecount to see
2017 * how many users there are is inadequate; the v_usecount for
2018 * the vnodes need to be accumulated.  vcount() does that.
2019 */
2020struct vnode *
2021addaliasu(nvp, nvp_rdev)
2022	struct vnode *nvp;
2023	udev_t nvp_rdev;
2024{
2025	struct vnode *ovp;
2026	vop_t **ops;
2027	dev_t dev;
2028
2029	if (nvp->v_type == VBLK)
2030		return (nvp);
2031	if (nvp->v_type != VCHR)
2032		panic("addaliasu on non-special vnode");
2033	dev = udev2dev(nvp_rdev, 0);
2034	/*
2035	 * Check to see if we have a bdevvp vnode with no associated
2036	 * filesystem. If so, we want to associate the filesystem of
2037	 * the new newly instigated vnode with the bdevvp vnode and
2038	 * discard the newly created vnode rather than leaving the
2039	 * bdevvp vnode lying around with no associated filesystem.
2040	 */
2041	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
2042		addalias(nvp, dev);
2043		return (nvp);
2044	}
2045	/*
2046	 * Discard unneeded vnode, but save its node specific data.
2047	 * Note that if there is a lock, it is carried over in the
2048	 * node specific data to the replacement vnode.
2049	 */
2050	vref(ovp);
2051	ovp->v_data = nvp->v_data;
2052	ovp->v_tag = nvp->v_tag;
2053	nvp->v_data = NULL;
2054	lockdestroy(ovp->v_vnlock);
2055	lockinit(ovp->v_vnlock, PVFS, nvp->v_vnlock->lk_wmesg,
2056	    nvp->v_vnlock->lk_timo, nvp->v_vnlock->lk_flags & LK_EXTFLG_MASK);
2057	ops = ovp->v_op;
2058	ovp->v_op = nvp->v_op;
2059	if (VOP_ISLOCKED(nvp, curthread)) {
2060		VOP_UNLOCK(nvp, 0, curthread);
2061		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
2062	}
2063	nvp->v_op = ops;
2064	insmntque(ovp, nvp->v_mount);
2065	vrele(nvp);
2066	vgone(nvp);
2067	return (ovp);
2068}
2069
2070/* This is a local helper function that do the same as addaliasu, but for a
2071 * dev_t instead of an udev_t. */
2072static void
2073addalias(nvp, dev)
2074	struct vnode *nvp;
2075	dev_t dev;
2076{
2077
2078	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
2079	nvp->v_rdev = dev;
2080	VI_LOCK(nvp);
2081	mtx_lock(&spechash_mtx);
2082	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
2083	dev->si_usecount += nvp->v_usecount;
2084	mtx_unlock(&spechash_mtx);
2085	VI_UNLOCK(nvp);
2086}
2087
2088/*
2089 * Grab a particular vnode from the free list, increment its
2090 * reference count and lock it. The vnode lock bit is set if the
2091 * vnode is being eliminated in vgone. The process is awakened
2092 * when the transition is completed, and an error returned to
2093 * indicate that the vnode is no longer usable (possibly having
2094 * been changed to a new filesystem type).
2095 */
2096int
2097vget(vp, flags, td)
2098	register struct vnode *vp;
2099	int flags;
2100	struct thread *td;
2101{
2102	int error;
2103
2104	/*
2105	 * If the vnode is in the process of being cleaned out for
2106	 * another use, we wait for the cleaning to finish and then
2107	 * return failure. Cleaning is determined by checking that
2108	 * the VI_XLOCK flag is set.
2109	 */
2110	if ((flags & LK_INTERLOCK) == 0)
2111		VI_LOCK(vp);
2112	if (vp->v_iflag & VI_XLOCK && vp->v_vxproc != curthread) {
2113		vp->v_iflag |= VI_XWANT;
2114		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vget", 0);
2115		return (ENOENT);
2116	}
2117
2118	v_incr_usecount(vp, 1);
2119
2120	if (VSHOULDBUSY(vp))
2121		vbusy(vp);
2122	if (flags & LK_TYPE_MASK) {
2123		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
2124			/*
2125			 * must expand vrele here because we do not want
2126			 * to call VOP_INACTIVE if the reference count
2127			 * drops back to zero since it was never really
2128			 * active. We must remove it from the free list
2129			 * before sleeping so that multiple processes do
2130			 * not try to recycle it.
2131			 */
2132			VI_LOCK(vp);
2133			v_incr_usecount(vp, -1);
2134			if (VSHOULDFREE(vp))
2135				vfree(vp);
2136			else
2137				vlruvp(vp);
2138			VI_UNLOCK(vp);
2139		}
2140		return (error);
2141	}
2142	VI_UNLOCK(vp);
2143	return (0);
2144}
2145
2146/*
2147 * Increase the reference count of a vnode.
2148 */
2149void
2150vref(struct vnode *vp)
2151{
2152	VI_LOCK(vp);
2153	v_incr_usecount(vp, 1);
2154	VI_UNLOCK(vp);
2155}
2156
2157/*
2158 * Return reference count of a vnode.
2159 *
2160 * The results of this call are only guaranteed when some mechanism other
2161 * than the VI lock is used to stop other processes from gaining references
2162 * to the vnode.  This may be the case if the caller holds the only reference.
2163 * This is also useful when stale data is acceptable as race conditions may
2164 * be accounted for by some other means.
2165 */
2166int
2167vrefcnt(struct vnode *vp)
2168{
2169	int usecnt;
2170
2171	VI_LOCK(vp);
2172	usecnt = vp->v_usecount;
2173	VI_UNLOCK(vp);
2174
2175	return (usecnt);
2176}
2177
2178
2179/*
2180 * Vnode put/release.
2181 * If count drops to zero, call inactive routine and return to freelist.
2182 */
2183void
2184vrele(vp)
2185	struct vnode *vp;
2186{
2187	struct thread *td = curthread;	/* XXX */
2188
2189	KASSERT(vp != NULL, ("vrele: null vp"));
2190
2191	VI_LOCK(vp);
2192
2193	/* Skip this v_writecount check if we're going to panic below. */
2194	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2195	    ("vrele: missed vn_close"));
2196
2197	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2198	    vp->v_usecount == 1)) {
2199		v_incr_usecount(vp, -1);
2200		VI_UNLOCK(vp);
2201
2202		return;
2203	}
2204
2205	if (vp->v_usecount == 1) {
2206		v_incr_usecount(vp, -1);
2207		/*
2208		 * We must call VOP_INACTIVE with the node locked. Mark
2209		 * as VI_DOINGINACT to avoid recursion.
2210		 */
2211		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
2212			VI_LOCK(vp);
2213			vp->v_iflag |= VI_DOINGINACT;
2214			VI_UNLOCK(vp);
2215			VOP_INACTIVE(vp, td);
2216			VI_LOCK(vp);
2217			KASSERT(vp->v_iflag & VI_DOINGINACT,
2218			    ("vrele: lost VI_DOINGINACT"));
2219			vp->v_iflag &= ~VI_DOINGINACT;
2220			VI_UNLOCK(vp);
2221		}
2222		VI_LOCK(vp);
2223		if (VSHOULDFREE(vp))
2224			vfree(vp);
2225		else
2226			vlruvp(vp);
2227		VI_UNLOCK(vp);
2228
2229	} else {
2230#ifdef DIAGNOSTIC
2231		vprint("vrele: negative ref count", vp);
2232#endif
2233		VI_UNLOCK(vp);
2234		panic("vrele: negative ref cnt");
2235	}
2236}
2237
2238/*
2239 * Release an already locked vnode.  This give the same effects as
2240 * unlock+vrele(), but takes less time and avoids releasing and
2241 * re-aquiring the lock (as vrele() aquires the lock internally.)
2242 */
2243void
2244vput(vp)
2245	struct vnode *vp;
2246{
2247	struct thread *td = curthread;	/* XXX */
2248
2249	GIANT_REQUIRED;
2250
2251	KASSERT(vp != NULL, ("vput: null vp"));
2252	VI_LOCK(vp);
2253	/* Skip this v_writecount check if we're going to panic below. */
2254	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2255	    ("vput: missed vn_close"));
2256
2257	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2258	    vp->v_usecount == 1)) {
2259		v_incr_usecount(vp, -1);
2260		VOP_UNLOCK(vp, LK_INTERLOCK, td);
2261		return;
2262	}
2263
2264	if (vp->v_usecount == 1) {
2265		v_incr_usecount(vp, -1);
2266		/*
2267		 * We must call VOP_INACTIVE with the node locked, so
2268		 * we just need to release the vnode mutex. Mark as
2269		 * as VI_DOINGINACT to avoid recursion.
2270		 */
2271		vp->v_iflag |= VI_DOINGINACT;
2272		VI_UNLOCK(vp);
2273		VOP_INACTIVE(vp, td);
2274		VI_LOCK(vp);
2275		KASSERT(vp->v_iflag & VI_DOINGINACT,
2276		    ("vput: lost VI_DOINGINACT"));
2277		vp->v_iflag &= ~VI_DOINGINACT;
2278		if (VSHOULDFREE(vp))
2279			vfree(vp);
2280		else
2281			vlruvp(vp);
2282		VI_UNLOCK(vp);
2283
2284	} else {
2285#ifdef DIAGNOSTIC
2286		vprint("vput: negative ref count", vp);
2287#endif
2288		panic("vput: negative ref cnt");
2289	}
2290}
2291
2292/*
2293 * Somebody doesn't want the vnode recycled.
2294 */
2295void
2296vhold(struct vnode *vp)
2297{
2298	VI_LOCK(vp);
2299	vholdl(vp);
2300	VI_UNLOCK(vp);
2301}
2302
2303void
2304vholdl(vp)
2305	register struct vnode *vp;
2306{
2307	int s;
2308
2309	s = splbio();
2310	vp->v_holdcnt++;
2311	if (VSHOULDBUSY(vp))
2312		vbusy(vp);
2313	splx(s);
2314}
2315
2316/*
2317 * Note that there is one less who cares about this vnode.  vdrop() is the
2318 * opposite of vhold().
2319 */
2320void
2321vdrop(struct vnode *vp)
2322{
2323	VI_LOCK(vp);
2324	vdropl(vp);
2325	VI_UNLOCK(vp);
2326}
2327
2328void
2329vdropl(vp)
2330	register struct vnode *vp;
2331{
2332	int s;
2333
2334	s = splbio();
2335	if (vp->v_holdcnt <= 0)
2336		panic("vdrop: holdcnt");
2337	vp->v_holdcnt--;
2338	if (VSHOULDFREE(vp))
2339		vfree(vp);
2340	else
2341		vlruvp(vp);
2342	splx(s);
2343}
2344
2345/*
2346 * Remove any vnodes in the vnode table belonging to mount point mp.
2347 *
2348 * If FORCECLOSE is not specified, there should not be any active ones,
2349 * return error if any are found (nb: this is a user error, not a
2350 * system error). If FORCECLOSE is specified, detach any active vnodes
2351 * that are found.
2352 *
2353 * If WRITECLOSE is set, only flush out regular file vnodes open for
2354 * writing.
2355 *
2356 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2357 *
2358 * `rootrefs' specifies the base reference count for the root vnode
2359 * of this filesystem. The root vnode is considered busy if its
2360 * v_usecount exceeds this value. On a successful return, vflush()
2361 * will call vrele() on the root vnode exactly rootrefs times.
2362 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2363 * be zero.
2364 */
2365#ifdef DIAGNOSTIC
2366static int busyprt = 0;		/* print out busy vnodes */
2367SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2368#endif
2369
2370int
2371vflush(mp, rootrefs, flags)
2372	struct mount *mp;
2373	int rootrefs;
2374	int flags;
2375{
2376	struct thread *td = curthread;	/* XXX */
2377	struct vnode *vp, *nvp, *rootvp = NULL;
2378	struct vattr vattr;
2379	int busy = 0, error;
2380
2381	if (rootrefs > 0) {
2382		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2383		    ("vflush: bad args"));
2384		/*
2385		 * Get the filesystem root vnode. We can vput() it
2386		 * immediately, since with rootrefs > 0, it won't go away.
2387		 */
2388		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
2389			return (error);
2390		vput(rootvp);
2391
2392	}
2393	mtx_lock(&mntvnode_mtx);
2394loop:
2395	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
2396		/*
2397		 * Make sure this vnode wasn't reclaimed in getnewvnode().
2398		 * Start over if it has (it won't be on the list anymore).
2399		 */
2400		if (vp->v_mount != mp)
2401			goto loop;
2402		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2403
2404		VI_LOCK(vp);
2405		mtx_unlock(&mntvnode_mtx);
2406		vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY, td);
2407		/*
2408		 * This vnode could have been reclaimed while we were
2409		 * waiting for the lock since we are not holding a
2410		 * reference.
2411		 * Start over if the vnode was reclaimed.
2412		 */
2413		if (vp->v_mount != mp) {
2414			VOP_UNLOCK(vp, 0, td);
2415			mtx_lock(&mntvnode_mtx);
2416			goto loop;
2417		}
2418		/*
2419		 * Skip over a vnodes marked VV_SYSTEM.
2420		 */
2421		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2422			VOP_UNLOCK(vp, 0, td);
2423			mtx_lock(&mntvnode_mtx);
2424			continue;
2425		}
2426		/*
2427		 * If WRITECLOSE is set, flush out unlinked but still open
2428		 * files (even if open only for reading) and regular file
2429		 * vnodes open for writing.
2430		 */
2431		if (flags & WRITECLOSE) {
2432			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2433			VI_LOCK(vp);
2434
2435			if ((vp->v_type == VNON ||
2436			    (error == 0 && vattr.va_nlink > 0)) &&
2437			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2438				VOP_UNLOCK(vp, LK_INTERLOCK, td);
2439				mtx_lock(&mntvnode_mtx);
2440				continue;
2441			}
2442		} else
2443			VI_LOCK(vp);
2444
2445		VOP_UNLOCK(vp, 0, td);
2446
2447		/*
2448		 * With v_usecount == 0, all we need to do is clear out the
2449		 * vnode data structures and we are done.
2450		 */
2451		if (vp->v_usecount == 0) {
2452			vgonel(vp, td);
2453			mtx_lock(&mntvnode_mtx);
2454			continue;
2455		}
2456
2457		/*
2458		 * If FORCECLOSE is set, forcibly close the vnode. For block
2459		 * or character devices, revert to an anonymous device. For
2460		 * all other files, just kill them.
2461		 */
2462		if (flags & FORCECLOSE) {
2463			if (vp->v_type != VCHR) {
2464				vgonel(vp, td);
2465			} else {
2466				vclean(vp, 0, td);
2467				VI_UNLOCK(vp);
2468				vp->v_op = spec_vnodeop_p;
2469				insmntque(vp, (struct mount *) 0);
2470			}
2471			mtx_lock(&mntvnode_mtx);
2472			continue;
2473		}
2474#ifdef DIAGNOSTIC
2475		if (busyprt)
2476			vprint("vflush: busy vnode", vp);
2477#endif
2478		VI_UNLOCK(vp);
2479		mtx_lock(&mntvnode_mtx);
2480		busy++;
2481	}
2482	mtx_unlock(&mntvnode_mtx);
2483	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2484		/*
2485		 * If just the root vnode is busy, and if its refcount
2486		 * is equal to `rootrefs', then go ahead and kill it.
2487		 */
2488		VI_LOCK(rootvp);
2489		KASSERT(busy > 0, ("vflush: not busy"));
2490		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
2491		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2492			vgonel(rootvp, td);
2493			busy = 0;
2494		} else
2495			VI_UNLOCK(rootvp);
2496	}
2497	if (busy)
2498		return (EBUSY);
2499	for (; rootrefs > 0; rootrefs--)
2500		vrele(rootvp);
2501	return (0);
2502}
2503
2504/*
2505 * This moves a now (likely recyclable) vnode to the end of the
2506 * mountlist.  XXX However, it is temporarily disabled until we
2507 * can clean up ffs_sync() and friends, which have loop restart
2508 * conditions which this code causes to operate O(N^2).
2509 */
2510static void
2511vlruvp(struct vnode *vp)
2512{
2513#if 0
2514	struct mount *mp;
2515
2516	if ((mp = vp->v_mount) != NULL) {
2517		mtx_lock(&mntvnode_mtx);
2518		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2519		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2520		mtx_unlock(&mntvnode_mtx);
2521	}
2522#endif
2523}
2524
2525/*
2526 * Disassociate the underlying filesystem from a vnode.
2527 */
2528static void
2529vclean(vp, flags, td)
2530	struct vnode *vp;
2531	int flags;
2532	struct thread *td;
2533{
2534	int active;
2535
2536	ASSERT_VI_LOCKED(vp, "vclean");
2537	/*
2538	 * Check to see if the vnode is in use. If so we have to reference it
2539	 * before we clean it out so that its count cannot fall to zero and
2540	 * generate a race against ourselves to recycle it.
2541	 */
2542	if ((active = vp->v_usecount))
2543		v_incr_usecount(vp, 1);
2544
2545	/*
2546	 * Prevent the vnode from being recycled or brought into use while we
2547	 * clean it out.
2548	 */
2549	if (vp->v_iflag & VI_XLOCK)
2550		panic("vclean: deadlock");
2551	vp->v_iflag |= VI_XLOCK;
2552	vp->v_vxproc = curthread;
2553	/*
2554	 * Even if the count is zero, the VOP_INACTIVE routine may still
2555	 * have the object locked while it cleans it out. The VOP_LOCK
2556	 * ensures that the VOP_INACTIVE routine is done with its work.
2557	 * For active vnodes, it ensures that no other activity can
2558	 * occur while the underlying object is being cleaned out.
2559	 */
2560	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2561
2562	/*
2563	 * Clean out any buffers associated with the vnode.
2564	 * If the flush fails, just toss the buffers.
2565	 */
2566	if (flags & DOCLOSE) {
2567		struct buf *bp;
2568		VI_LOCK(vp);
2569		bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
2570		VI_UNLOCK(vp);
2571		if (bp != NULL)
2572			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2573		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2574			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2575	}
2576
2577	VOP_DESTROYVOBJECT(vp);
2578
2579	/*
2580	 * Any other processes trying to obtain this lock must first
2581	 * wait for VXLOCK to clear, then call the new lock operation.
2582	 */
2583	VOP_UNLOCK(vp, 0, td);
2584
2585	/*
2586	 * If purging an active vnode, it must be closed and
2587	 * deactivated before being reclaimed. Note that the
2588	 * VOP_INACTIVE will unlock the vnode.
2589	 */
2590	if (active) {
2591		if (flags & DOCLOSE)
2592			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2593		VI_LOCK(vp);
2594		if ((vp->v_iflag & VI_DOINGINACT) == 0) {
2595			vp->v_iflag |= VI_DOINGINACT;
2596			VI_UNLOCK(vp);
2597			if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2598				panic("vclean: cannot relock.");
2599			VOP_INACTIVE(vp, td);
2600			VI_LOCK(vp);
2601			KASSERT(vp->v_iflag & VI_DOINGINACT,
2602			    ("vclean: lost VI_DOINGINACT"));
2603			vp->v_iflag &= ~VI_DOINGINACT;
2604		}
2605		VI_UNLOCK(vp);
2606	}
2607
2608	/*
2609	 * Reclaim the vnode.
2610	 */
2611	if (VOP_RECLAIM(vp, td))
2612		panic("vclean: cannot reclaim");
2613
2614	if (active) {
2615		/*
2616		 * Inline copy of vrele() since VOP_INACTIVE
2617		 * has already been called.
2618		 */
2619		VI_LOCK(vp);
2620		v_incr_usecount(vp, -1);
2621		if (vp->v_usecount <= 0) {
2622#ifdef DIAGNOSTIC
2623			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2624				vprint("vclean: bad ref count", vp);
2625				panic("vclean: ref cnt");
2626			}
2627#endif
2628			vfree(vp);
2629		}
2630		VI_UNLOCK(vp);
2631	}
2632
2633	cache_purge(vp);
2634	VI_LOCK(vp);
2635	if (VSHOULDFREE(vp))
2636		vfree(vp);
2637
2638	/*
2639	 * Done with purge, reset to the standard lock and
2640	 * notify sleepers of the grim news.
2641	 */
2642	vp->v_vnlock = &vp->v_lock;
2643	vp->v_op = dead_vnodeop_p;
2644	if (vp->v_pollinfo != NULL)
2645		vn_pollgone(vp);
2646	vp->v_tag = "none";
2647	vp->v_iflag &= ~VI_XLOCK;
2648	vp->v_vxproc = NULL;
2649	if (vp->v_iflag & VI_XWANT) {
2650		vp->v_iflag &= ~VI_XWANT;
2651		wakeup(vp);
2652	}
2653}
2654
2655/*
2656 * Eliminate all activity associated with the requested vnode
2657 * and with all vnodes aliased to the requested vnode.
2658 */
2659int
2660vop_revoke(ap)
2661	struct vop_revoke_args /* {
2662		struct vnode *a_vp;
2663		int a_flags;
2664	} */ *ap;
2665{
2666	struct vnode *vp, *vq;
2667	dev_t dev;
2668
2669	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2670	vp = ap->a_vp;
2671	KASSERT((vp->v_type == VCHR), ("vop_revoke: not VCHR"));
2672
2673	VI_LOCK(vp);
2674	/*
2675	 * If a vgone (or vclean) is already in progress,
2676	 * wait until it is done and return.
2677	 */
2678	if (vp->v_iflag & VI_XLOCK) {
2679		vp->v_iflag |= VI_XWANT;
2680		msleep(vp, VI_MTX(vp), PINOD | PDROP,
2681		    "vop_revokeall", 0);
2682		return (0);
2683	}
2684	VI_UNLOCK(vp);
2685	dev = vp->v_rdev;
2686	for (;;) {
2687		mtx_lock(&spechash_mtx);
2688		vq = SLIST_FIRST(&dev->si_hlist);
2689		mtx_unlock(&spechash_mtx);
2690		if (!vq)
2691			break;
2692		vgone(vq);
2693	}
2694	return (0);
2695}
2696
2697/*
2698 * Recycle an unused vnode to the front of the free list.
2699 * Release the passed interlock if the vnode will be recycled.
2700 */
2701int
2702vrecycle(vp, inter_lkp, td)
2703	struct vnode *vp;
2704	struct mtx *inter_lkp;
2705	struct thread *td;
2706{
2707
2708	VI_LOCK(vp);
2709	if (vp->v_usecount == 0) {
2710		if (inter_lkp) {
2711			mtx_unlock(inter_lkp);
2712		}
2713		vgonel(vp, td);
2714		return (1);
2715	}
2716	VI_UNLOCK(vp);
2717	return (0);
2718}
2719
2720/*
2721 * Eliminate all activity associated with a vnode
2722 * in preparation for reuse.
2723 */
2724void
2725vgone(vp)
2726	register struct vnode *vp;
2727{
2728	struct thread *td = curthread;	/* XXX */
2729
2730	VI_LOCK(vp);
2731	vgonel(vp, td);
2732}
2733
2734/*
2735 * vgone, with the vp interlock held.
2736 */
2737void
2738vgonel(vp, td)
2739	struct vnode *vp;
2740	struct thread *td;
2741{
2742	int s;
2743
2744	/*
2745	 * If a vgone (or vclean) is already in progress,
2746	 * wait until it is done and return.
2747	 */
2748	ASSERT_VI_LOCKED(vp, "vgonel");
2749	if (vp->v_iflag & VI_XLOCK) {
2750		vp->v_iflag |= VI_XWANT;
2751		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vgone", 0);
2752		return;
2753	}
2754
2755	/*
2756	 * Clean out the filesystem specific data.
2757	 */
2758	vclean(vp, DOCLOSE, td);
2759	VI_UNLOCK(vp);
2760
2761	/*
2762	 * Delete from old mount point vnode list, if on one.
2763	 */
2764	if (vp->v_mount != NULL)
2765		insmntque(vp, (struct mount *)0);
2766	/*
2767	 * If special device, remove it from special device alias list
2768	 * if it is on one.
2769	 */
2770	if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) {
2771		VI_LOCK(vp);
2772		mtx_lock(&spechash_mtx);
2773		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
2774		vp->v_rdev->si_usecount -= vp->v_usecount;
2775		mtx_unlock(&spechash_mtx);
2776		VI_UNLOCK(vp);
2777		vp->v_rdev = NULL;
2778	}
2779
2780	/*
2781	 * If it is on the freelist and not already at the head,
2782	 * move it to the head of the list. The test of the
2783	 * VDOOMED flag and the reference count of zero is because
2784	 * it will be removed from the free list by getnewvnode,
2785	 * but will not have its reference count incremented until
2786	 * after calling vgone. If the reference count were
2787	 * incremented first, vgone would (incorrectly) try to
2788	 * close the previous instance of the underlying object.
2789	 */
2790	VI_LOCK(vp);
2791	if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2792		s = splbio();
2793		mtx_lock(&vnode_free_list_mtx);
2794		if (vp->v_iflag & VI_FREE) {
2795			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2796		} else {
2797			vp->v_iflag |= VI_FREE;
2798			freevnodes++;
2799		}
2800		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2801		mtx_unlock(&vnode_free_list_mtx);
2802		splx(s);
2803	}
2804
2805	vp->v_type = VBAD;
2806	VI_UNLOCK(vp);
2807}
2808
2809/*
2810 * Lookup a vnode by device number.
2811 */
2812int
2813vfinddev(dev, type, vpp)
2814	dev_t dev;
2815	enum vtype type;
2816	struct vnode **vpp;
2817{
2818	struct vnode *vp;
2819
2820	mtx_lock(&spechash_mtx);
2821	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2822		if (type == vp->v_type) {
2823			*vpp = vp;
2824			mtx_unlock(&spechash_mtx);
2825			return (1);
2826		}
2827	}
2828	mtx_unlock(&spechash_mtx);
2829	return (0);
2830}
2831
2832/*
2833 * Calculate the total number of references to a special device.
2834 */
2835int
2836vcount(vp)
2837	struct vnode *vp;
2838{
2839	int count;
2840
2841	mtx_lock(&spechash_mtx);
2842	count = vp->v_rdev->si_usecount;
2843	mtx_unlock(&spechash_mtx);
2844	return (count);
2845}
2846
2847/*
2848 * Same as above, but using the dev_t as argument
2849 */
2850int
2851count_dev(dev)
2852	dev_t dev;
2853{
2854	struct vnode *vp;
2855
2856	vp = SLIST_FIRST(&dev->si_hlist);
2857	if (vp == NULL)
2858		return (0);
2859	return(vcount(vp));
2860}
2861
2862/*
2863 * Print out a description of a vnode.
2864 */
2865static char *typename[] =
2866{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2867
2868void
2869vprint(label, vp)
2870	char *label;
2871	struct vnode *vp;
2872{
2873	char buf[96];
2874
2875	if (label != NULL)
2876		printf("%s: %p: ", label, (void *)vp);
2877	else
2878		printf("%p: ", (void *)vp);
2879	printf("tag %s, type %s, usecount %d, writecount %d, refcount %d,",
2880	    vp->v_tag, typename[vp->v_type], vp->v_usecount,
2881	    vp->v_writecount, vp->v_holdcnt);
2882	buf[0] = '\0';
2883	if (vp->v_vflag & VV_ROOT)
2884		strcat(buf, "|VV_ROOT");
2885	if (vp->v_vflag & VV_TEXT)
2886		strcat(buf, "|VV_TEXT");
2887	if (vp->v_vflag & VV_SYSTEM)
2888		strcat(buf, "|VV_SYSTEM");
2889	if (vp->v_iflag & VI_XLOCK)
2890		strcat(buf, "|VI_XLOCK");
2891	if (vp->v_iflag & VI_XWANT)
2892		strcat(buf, "|VI_XWANT");
2893	if (vp->v_iflag & VI_BWAIT)
2894		strcat(buf, "|VI_BWAIT");
2895	if (vp->v_iflag & VI_DOOMED)
2896		strcat(buf, "|VI_DOOMED");
2897	if (vp->v_iflag & VI_FREE)
2898		strcat(buf, "|VI_FREE");
2899	if (vp->v_vflag & VV_OBJBUF)
2900		strcat(buf, "|VV_OBJBUF");
2901	if (buf[0] != '\0')
2902		printf(" flags (%s),", &buf[1]);
2903	lockmgr_printinfo(vp->v_vnlock);
2904	printf("\n");
2905	if (vp->v_data != NULL)
2906		VOP_PRINT(vp);
2907}
2908
2909#ifdef DDB
2910#include <ddb/ddb.h>
2911/*
2912 * List all of the locked vnodes in the system.
2913 * Called when debugging the kernel.
2914 */
2915DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2916{
2917	struct mount *mp, *nmp;
2918	struct vnode *vp;
2919
2920	/*
2921	 * Note: because this is DDB, we can't obey the locking semantics
2922	 * for these structures, which means we could catch an inconsistent
2923	 * state and dereference a nasty pointer.  Not much to be done
2924	 * about that.
2925	 */
2926	printf("Locked vnodes\n");
2927	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2928		nmp = TAILQ_NEXT(mp, mnt_list);
2929		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2930			if (VOP_ISLOCKED(vp, NULL))
2931				vprint(NULL, vp);
2932		}
2933		nmp = TAILQ_NEXT(mp, mnt_list);
2934	}
2935}
2936#endif
2937
2938/*
2939 * Fill in a struct xvfsconf based on a struct vfsconf.
2940 */
2941static void
2942vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2943{
2944
2945	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2946	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2947	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2948	xvfsp->vfc_flags = vfsp->vfc_flags;
2949	/*
2950	 * These are unused in userland, we keep them
2951	 * to not break binary compatibility.
2952	 */
2953	xvfsp->vfc_vfsops = NULL;
2954	xvfsp->vfc_next = NULL;
2955}
2956
2957static int
2958sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2959{
2960	struct vfsconf *vfsp;
2961	struct xvfsconf *xvfsp;
2962	int cnt, error, i;
2963
2964	cnt = 0;
2965	for (vfsp = vfsconf; vfsp != NULL; vfsp = vfsp->vfc_next)
2966		cnt++;
2967	xvfsp = malloc(sizeof(struct xvfsconf) * cnt, M_TEMP, M_WAITOK);
2968	/*
2969	 * Handle the race that we will have here when struct vfsconf
2970	 * will be locked down by using both cnt and checking vfc_next
2971	 * against NULL to determine the end of the loop.  The race will
2972	 * happen because we will have to unlock before calling malloc().
2973	 * We are protected by Giant for now.
2974	 */
2975	i = 0;
2976	for (vfsp = vfsconf; vfsp != NULL && i < cnt; vfsp = vfsp->vfc_next) {
2977		vfsconf2x(vfsp, xvfsp + i);
2978		i++;
2979	}
2980	error = SYSCTL_OUT(req, xvfsp, sizeof(struct xvfsconf) * i);
2981	free(xvfsp, M_TEMP);
2982	return (error);
2983}
2984
2985SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2986    "S,xvfsconf", "List of all configured filesystems");
2987
2988/*
2989 * Top level filesystem related information gathering.
2990 */
2991static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2992
2993static int
2994vfs_sysctl(SYSCTL_HANDLER_ARGS)
2995{
2996	int *name = (int *)arg1 - 1;	/* XXX */
2997	u_int namelen = arg2 + 1;	/* XXX */
2998	struct vfsconf *vfsp;
2999	struct xvfsconf xvfsp;
3000
3001	printf("WARNING: userland calling deprecated sysctl, "
3002	    "please rebuild world\n");
3003
3004#if 1 || defined(COMPAT_PRELITE2)
3005	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3006	if (namelen == 1)
3007		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3008#endif
3009
3010	switch (name[1]) {
3011	case VFS_MAXTYPENUM:
3012		if (namelen != 2)
3013			return (ENOTDIR);
3014		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3015	case VFS_CONF:
3016		if (namelen != 3)
3017			return (ENOTDIR);	/* overloaded */
3018		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
3019			if (vfsp->vfc_typenum == name[2])
3020				break;
3021		if (vfsp == NULL)
3022			return (EOPNOTSUPP);
3023		vfsconf2x(vfsp, &xvfsp);
3024		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3025	}
3026	return (EOPNOTSUPP);
3027}
3028
3029SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, vfs_sysctl,
3030	"Generic filesystem");
3031
3032#if 1 || defined(COMPAT_PRELITE2)
3033
3034static int
3035sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3036{
3037	int error;
3038	struct vfsconf *vfsp;
3039	struct ovfsconf ovfs;
3040
3041	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
3042		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3043		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3044		ovfs.vfc_index = vfsp->vfc_typenum;
3045		ovfs.vfc_refcount = vfsp->vfc_refcount;
3046		ovfs.vfc_flags = vfsp->vfc_flags;
3047		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3048		if (error)
3049			return error;
3050	}
3051	return 0;
3052}
3053
3054#endif /* 1 || COMPAT_PRELITE2 */
3055
3056#define KINFO_VNODESLOP		10
3057#ifdef notyet
3058/*
3059 * Dump vnode list (via sysctl).
3060 */
3061/* ARGSUSED */
3062static int
3063sysctl_vnode(SYSCTL_HANDLER_ARGS)
3064{
3065	struct xvnode *xvn;
3066	struct thread *td = req->td;
3067	struct mount *mp;
3068	struct vnode *vp;
3069	int error, len, n;
3070
3071	/*
3072	 * Stale numvnodes access is not fatal here.
3073	 */
3074	req->lock = 0;
3075	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3076	if (!req->oldptr)
3077		/* Make an estimate */
3078		return (SYSCTL_OUT(req, 0, len));
3079
3080	sysctl_wire_old_buffer(req, 0);
3081	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3082	n = 0;
3083	mtx_lock(&mountlist_mtx);
3084	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3085		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
3086			continue;
3087		mtx_lock(&mntvnode_mtx);
3088		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3089			if (n == len)
3090				break;
3091			vref(vp);
3092			xvn[n].xv_size = sizeof *xvn;
3093			xvn[n].xv_vnode = vp;
3094#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3095			XV_COPY(usecount);
3096			XV_COPY(writecount);
3097			XV_COPY(holdcnt);
3098			XV_COPY(id);
3099			XV_COPY(mount);
3100			XV_COPY(numoutput);
3101			XV_COPY(type);
3102#undef XV_COPY
3103			xvn[n].xv_flag = vp->v_vflag;
3104
3105			switch (vp->v_type) {
3106			case VREG:
3107			case VDIR:
3108			case VLNK:
3109				xvn[n].xv_dev = vp->v_cachedfs;
3110				xvn[n].xv_ino = vp->v_cachedid;
3111				break;
3112			case VBLK:
3113			case VCHR:
3114				if (vp->v_rdev == NULL) {
3115					vrele(vp);
3116					continue;
3117				}
3118				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3119				break;
3120			case VSOCK:
3121				xvn[n].xv_socket = vp->v_socket;
3122				break;
3123			case VFIFO:
3124				xvn[n].xv_fifo = vp->v_fifoinfo;
3125				break;
3126			case VNON:
3127			case VBAD:
3128			default:
3129				/* shouldn't happen? */
3130				vrele(vp);
3131				continue;
3132			}
3133			vrele(vp);
3134			++n;
3135		}
3136		mtx_unlock(&mntvnode_mtx);
3137		mtx_lock(&mountlist_mtx);
3138		vfs_unbusy(mp, td);
3139		if (n == len)
3140			break;
3141	}
3142	mtx_unlock(&mountlist_mtx);
3143
3144	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3145	free(xvn, M_TEMP);
3146	return (error);
3147}
3148
3149SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3150	0, 0, sysctl_vnode, "S,xvnode", "");
3151#endif
3152
3153/*
3154 * Check to see if a filesystem is mounted on a block device.
3155 */
3156int
3157vfs_mountedon(vp)
3158	struct vnode *vp;
3159{
3160
3161	if (vp->v_rdev->si_mountpoint != NULL)
3162		return (EBUSY);
3163	return (0);
3164}
3165
3166/*
3167 * Unmount all filesystems. The list is traversed in reverse order
3168 * of mounting to avoid dependencies.
3169 */
3170void
3171vfs_unmountall()
3172{
3173	struct mount *mp;
3174	struct thread *td;
3175	int error;
3176
3177	if (curthread != NULL)
3178		td = curthread;
3179	else
3180		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
3181	/*
3182	 * Since this only runs when rebooting, it is not interlocked.
3183	 */
3184	while(!TAILQ_EMPTY(&mountlist)) {
3185		mp = TAILQ_LAST(&mountlist, mntlist);
3186		error = dounmount(mp, MNT_FORCE, td);
3187		if (error) {
3188			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3189			printf("unmount of %s failed (",
3190			    mp->mnt_stat.f_mntonname);
3191			if (error == EBUSY)
3192				printf("BUSY)\n");
3193			else
3194				printf("%d)\n", error);
3195		} else {
3196			/* The unmount has removed mp from the mountlist */
3197		}
3198	}
3199}
3200
3201/*
3202 * perform msync on all vnodes under a mount point
3203 * the mount point must be locked.
3204 */
3205void
3206vfs_msync(struct mount *mp, int flags)
3207{
3208	struct vnode *vp, *nvp;
3209	struct vm_object *obj;
3210	int tries;
3211
3212	GIANT_REQUIRED;
3213
3214	tries = 5;
3215	mtx_lock(&mntvnode_mtx);
3216loop:
3217	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
3218		if (vp->v_mount != mp) {
3219			if (--tries > 0)
3220				goto loop;
3221			break;
3222		}
3223		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
3224
3225		VI_LOCK(vp);
3226		if (vp->v_iflag & VI_XLOCK) {	/* XXX: what if MNT_WAIT? */
3227			VI_UNLOCK(vp);
3228			continue;
3229		}
3230
3231		if ((vp->v_iflag & VI_OBJDIRTY) &&
3232		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
3233			mtx_unlock(&mntvnode_mtx);
3234			if (!vget(vp,
3235			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3236			    curthread)) {
3237				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3238					vput(vp);
3239					mtx_lock(&mntvnode_mtx);
3240					continue;
3241				}
3242
3243				if (VOP_GETVOBJECT(vp, &obj) == 0) {
3244					VM_OBJECT_LOCK(obj);
3245					vm_object_page_clean(obj, 0, 0,
3246					    flags == MNT_WAIT ?
3247					    OBJPC_SYNC : OBJPC_NOSYNC);
3248					VM_OBJECT_UNLOCK(obj);
3249				}
3250				vput(vp);
3251			}
3252			mtx_lock(&mntvnode_mtx);
3253			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
3254				if (--tries > 0)
3255					goto loop;
3256				break;
3257			}
3258		} else
3259			VI_UNLOCK(vp);
3260	}
3261	mtx_unlock(&mntvnode_mtx);
3262}
3263
3264/*
3265 * Create the VM object needed for VMIO and mmap support.  This
3266 * is done for all VREG files in the system.  Some filesystems might
3267 * afford the additional metadata buffering capability of the
3268 * VMIO code by making the device node be VMIO mode also.
3269 *
3270 * vp must be locked when vfs_object_create is called.
3271 */
3272int
3273vfs_object_create(vp, td, cred)
3274	struct vnode *vp;
3275	struct thread *td;
3276	struct ucred *cred;
3277{
3278	GIANT_REQUIRED;
3279	return (VOP_CREATEVOBJECT(vp, cred, td));
3280}
3281
3282/*
3283 * Mark a vnode as free, putting it up for recycling.
3284 */
3285void
3286vfree(vp)
3287	struct vnode *vp;
3288{
3289	int s;
3290
3291	ASSERT_VI_LOCKED(vp, "vfree");
3292	s = splbio();
3293	mtx_lock(&vnode_free_list_mtx);
3294	KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
3295	if (vp->v_iflag & VI_AGE) {
3296		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3297	} else {
3298		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3299	}
3300	freevnodes++;
3301	mtx_unlock(&vnode_free_list_mtx);
3302	vp->v_iflag &= ~VI_AGE;
3303	vp->v_iflag |= VI_FREE;
3304	splx(s);
3305}
3306
3307/*
3308 * Opposite of vfree() - mark a vnode as in use.
3309 */
3310void
3311vbusy(vp)
3312	struct vnode *vp;
3313{
3314	int s;
3315
3316	s = splbio();
3317	ASSERT_VI_LOCKED(vp, "vbusy");
3318	KASSERT((vp->v_iflag & VI_FREE) != 0, ("vnode not free"));
3319
3320	mtx_lock(&vnode_free_list_mtx);
3321	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3322	freevnodes--;
3323	mtx_unlock(&vnode_free_list_mtx);
3324
3325	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3326	splx(s);
3327}
3328
3329/*
3330 * Record a process's interest in events which might happen to
3331 * a vnode.  Because poll uses the historic select-style interface
3332 * internally, this routine serves as both the ``check for any
3333 * pending events'' and the ``record my interest in future events''
3334 * functions.  (These are done together, while the lock is held,
3335 * to avoid race conditions.)
3336 */
3337int
3338vn_pollrecord(vp, td, events)
3339	struct vnode *vp;
3340	struct thread *td;
3341	short events;
3342{
3343
3344	if (vp->v_pollinfo == NULL)
3345		v_addpollinfo(vp);
3346	mtx_lock(&vp->v_pollinfo->vpi_lock);
3347	if (vp->v_pollinfo->vpi_revents & events) {
3348		/*
3349		 * This leaves events we are not interested
3350		 * in available for the other process which
3351		 * which presumably had requested them
3352		 * (otherwise they would never have been
3353		 * recorded).
3354		 */
3355		events &= vp->v_pollinfo->vpi_revents;
3356		vp->v_pollinfo->vpi_revents &= ~events;
3357
3358		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3359		return events;
3360	}
3361	vp->v_pollinfo->vpi_events |= events;
3362	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3363	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3364	return 0;
3365}
3366
3367/*
3368 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3369 * it is possible for us to miss an event due to race conditions, but
3370 * that condition is expected to be rare, so for the moment it is the
3371 * preferred interface.
3372 */
3373void
3374vn_pollevent(vp, events)
3375	struct vnode *vp;
3376	short events;
3377{
3378
3379	if (vp->v_pollinfo == NULL)
3380		v_addpollinfo(vp);
3381	mtx_lock(&vp->v_pollinfo->vpi_lock);
3382	if (vp->v_pollinfo->vpi_events & events) {
3383		/*
3384		 * We clear vpi_events so that we don't
3385		 * call selwakeup() twice if two events are
3386		 * posted before the polling process(es) is
3387		 * awakened.  This also ensures that we take at
3388		 * most one selwakeup() if the polling process
3389		 * is no longer interested.  However, it does
3390		 * mean that only one event can be noticed at
3391		 * a time.  (Perhaps we should only clear those
3392		 * event bits which we note?) XXX
3393		 */
3394		vp->v_pollinfo->vpi_events = 0;	/* &= ~events ??? */
3395		vp->v_pollinfo->vpi_revents |= events;
3396		selwakeup(&vp->v_pollinfo->vpi_selinfo);
3397	}
3398	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3399}
3400
3401/*
3402 * Wake up anyone polling on vp because it is being revoked.
3403 * This depends on dead_poll() returning POLLHUP for correct
3404 * behavior.
3405 */
3406void
3407vn_pollgone(vp)
3408	struct vnode *vp;
3409{
3410
3411	mtx_lock(&vp->v_pollinfo->vpi_lock);
3412	VN_KNOTE(vp, NOTE_REVOKE);
3413	if (vp->v_pollinfo->vpi_events) {
3414		vp->v_pollinfo->vpi_events = 0;
3415		selwakeup(&vp->v_pollinfo->vpi_selinfo);
3416	}
3417	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3418}
3419
3420
3421
3422/*
3423 * Routine to create and manage a filesystem syncer vnode.
3424 */
3425#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3426static int	sync_fsync(struct  vop_fsync_args *);
3427static int	sync_inactive(struct  vop_inactive_args *);
3428static int	sync_reclaim(struct  vop_reclaim_args *);
3429
3430static vop_t **sync_vnodeop_p;
3431static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3432	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
3433	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
3434	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
3435	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
3436	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
3437	{ &vop_lock_desc,	(vop_t *) vop_stdlock },	/* lock */
3438	{ &vop_unlock_desc,	(vop_t *) vop_stdunlock },	/* unlock */
3439	{ &vop_islocked_desc,	(vop_t *) vop_stdislocked },	/* islocked */
3440	{ NULL, NULL }
3441};
3442static struct vnodeopv_desc sync_vnodeop_opv_desc =
3443	{ &sync_vnodeop_p, sync_vnodeop_entries };
3444
3445VNODEOP_SET(sync_vnodeop_opv_desc);
3446
3447/*
3448 * Create a new filesystem syncer vnode for the specified mount point.
3449 */
3450int
3451vfs_allocate_syncvnode(mp)
3452	struct mount *mp;
3453{
3454	struct vnode *vp;
3455	static long start, incr, next;
3456	int error;
3457
3458	/* Allocate a new vnode */
3459	if ((error = getnewvnode("syncer", mp, sync_vnodeop_p, &vp)) != 0) {
3460		mp->mnt_syncer = NULL;
3461		return (error);
3462	}
3463	vp->v_type = VNON;
3464	/*
3465	 * Place the vnode onto the syncer worklist. We attempt to
3466	 * scatter them about on the list so that they will go off
3467	 * at evenly distributed times even if all the filesystems
3468	 * are mounted at once.
3469	 */
3470	next += incr;
3471	if (next == 0 || next > syncer_maxdelay) {
3472		start /= 2;
3473		incr /= 2;
3474		if (start == 0) {
3475			start = syncer_maxdelay / 2;
3476			incr = syncer_maxdelay;
3477		}
3478		next = start;
3479	}
3480	VI_LOCK(vp);
3481	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3482	VI_UNLOCK(vp);
3483	mp->mnt_syncer = vp;
3484	return (0);
3485}
3486
3487/*
3488 * Do a lazy sync of the filesystem.
3489 */
3490static int
3491sync_fsync(ap)
3492	struct vop_fsync_args /* {
3493		struct vnode *a_vp;
3494		struct ucred *a_cred;
3495		int a_waitfor;
3496		struct thread *a_td;
3497	} */ *ap;
3498{
3499	struct vnode *syncvp = ap->a_vp;
3500	struct mount *mp = syncvp->v_mount;
3501	struct thread *td = ap->a_td;
3502	int error, asyncflag;
3503
3504	/*
3505	 * We only need to do something if this is a lazy evaluation.
3506	 */
3507	if (ap->a_waitfor != MNT_LAZY)
3508		return (0);
3509
3510	/*
3511	 * Move ourselves to the back of the sync list.
3512	 */
3513	VI_LOCK(syncvp);
3514	vn_syncer_add_to_worklist(syncvp, syncdelay);
3515	VI_UNLOCK(syncvp);
3516
3517	/*
3518	 * Walk the list of vnodes pushing all that are dirty and
3519	 * not already on the sync list.
3520	 */
3521	mtx_lock(&mountlist_mtx);
3522	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3523		mtx_unlock(&mountlist_mtx);
3524		return (0);
3525	}
3526	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3527		vfs_unbusy(mp, td);
3528		return (0);
3529	}
3530	asyncflag = mp->mnt_flag & MNT_ASYNC;
3531	mp->mnt_flag &= ~MNT_ASYNC;
3532	vfs_msync(mp, MNT_NOWAIT);
3533	error = VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
3534	if (asyncflag)
3535		mp->mnt_flag |= MNT_ASYNC;
3536	vn_finished_write(mp);
3537	vfs_unbusy(mp, td);
3538	return (error);
3539}
3540
3541/*
3542 * The syncer vnode is no referenced.
3543 */
3544static int
3545sync_inactive(ap)
3546	struct vop_inactive_args /* {
3547		struct vnode *a_vp;
3548		struct thread *a_td;
3549	} */ *ap;
3550{
3551
3552	VOP_UNLOCK(ap->a_vp, 0, ap->a_td);
3553	vgone(ap->a_vp);
3554	return (0);
3555}
3556
3557/*
3558 * The syncer vnode is no longer needed and is being decommissioned.
3559 *
3560 * Modifications to the worklist must be protected at splbio().
3561 */
3562static int
3563sync_reclaim(ap)
3564	struct vop_reclaim_args /* {
3565		struct vnode *a_vp;
3566	} */ *ap;
3567{
3568	struct vnode *vp = ap->a_vp;
3569	int s;
3570
3571	s = splbio();
3572	vp->v_mount->mnt_syncer = NULL;
3573	VI_LOCK(vp);
3574	if (vp->v_iflag & VI_ONWORKLST) {
3575		mtx_lock(&sync_mtx);
3576		LIST_REMOVE(vp, v_synclist);
3577		mtx_unlock(&sync_mtx);
3578		vp->v_iflag &= ~VI_ONWORKLST;
3579	}
3580	VI_UNLOCK(vp);
3581	splx(s);
3582
3583	return (0);
3584}
3585
3586/*
3587 * extract the dev_t from a VCHR
3588 */
3589dev_t
3590vn_todev(vp)
3591	struct vnode *vp;
3592{
3593	if (vp->v_type != VCHR)
3594		return (NODEV);
3595	return (vp->v_rdev);
3596}
3597
3598/*
3599 * Check if vnode represents a disk device
3600 */
3601int
3602vn_isdisk(vp, errp)
3603	struct vnode *vp;
3604	int *errp;
3605{
3606	struct cdevsw *cdevsw;
3607
3608	if (vp->v_type != VCHR) {
3609		if (errp != NULL)
3610			*errp = ENOTBLK;
3611		return (0);
3612	}
3613	if (vp->v_rdev == NULL) {
3614		if (errp != NULL)
3615			*errp = ENXIO;
3616		return (0);
3617	}
3618	cdevsw = devsw(vp->v_rdev);
3619	if (cdevsw == NULL) {
3620		if (errp != NULL)
3621			*errp = ENXIO;
3622		return (0);
3623	}
3624	if (!(cdevsw->d_flags & D_DISK)) {
3625		if (errp != NULL)
3626			*errp = ENOTBLK;
3627		return (0);
3628	}
3629	if (errp != NULL)
3630		*errp = 0;
3631	return (1);
3632}
3633
3634/*
3635 * Free data allocated by namei(); see namei(9) for details.
3636 */
3637void
3638NDFREE(ndp, flags)
3639     struct nameidata *ndp;
3640     const uint flags;
3641{
3642	if (!(flags & NDF_NO_FREE_PNBUF) &&
3643	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3644		uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3645		ndp->ni_cnd.cn_flags &= ~HASBUF;
3646	}
3647	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3648	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3649	    ndp->ni_dvp != ndp->ni_vp)
3650		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3651	if (!(flags & NDF_NO_DVP_RELE) &&
3652	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3653		vrele(ndp->ni_dvp);
3654		ndp->ni_dvp = NULL;
3655	}
3656	if (!(flags & NDF_NO_VP_UNLOCK) &&
3657	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3658		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3659	if (!(flags & NDF_NO_VP_RELE) &&
3660	    ndp->ni_vp) {
3661		vrele(ndp->ni_vp);
3662		ndp->ni_vp = NULL;
3663	}
3664	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3665	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3666		vrele(ndp->ni_startdir);
3667		ndp->ni_startdir = NULL;
3668	}
3669}
3670
3671/*
3672 * Common filesystem object access control check routine.  Accepts a
3673 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3674 * and optional call-by-reference privused argument allowing vaccess()
3675 * to indicate to the caller whether privilege was used to satisfy the
3676 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3677 */
3678int
3679vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3680	enum vtype type;
3681	mode_t file_mode;
3682	uid_t file_uid;
3683	gid_t file_gid;
3684	mode_t acc_mode;
3685	struct ucred *cred;
3686	int *privused;
3687{
3688	mode_t dac_granted;
3689#ifdef CAPABILITIES
3690	mode_t cap_granted;
3691#endif
3692
3693	/*
3694	 * Look for a normal, non-privileged way to access the file/directory
3695	 * as requested.  If it exists, go with that.
3696	 */
3697
3698	if (privused != NULL)
3699		*privused = 0;
3700
3701	dac_granted = 0;
3702
3703	/* Check the owner. */
3704	if (cred->cr_uid == file_uid) {
3705		dac_granted |= VADMIN;
3706		if (file_mode & S_IXUSR)
3707			dac_granted |= VEXEC;
3708		if (file_mode & S_IRUSR)
3709			dac_granted |= VREAD;
3710		if (file_mode & S_IWUSR)
3711			dac_granted |= (VWRITE | VAPPEND);
3712
3713		if ((acc_mode & dac_granted) == acc_mode)
3714			return (0);
3715
3716		goto privcheck;
3717	}
3718
3719	/* Otherwise, check the groups (first match) */
3720	if (groupmember(file_gid, cred)) {
3721		if (file_mode & S_IXGRP)
3722			dac_granted |= VEXEC;
3723		if (file_mode & S_IRGRP)
3724			dac_granted |= VREAD;
3725		if (file_mode & S_IWGRP)
3726			dac_granted |= (VWRITE | VAPPEND);
3727
3728		if ((acc_mode & dac_granted) == acc_mode)
3729			return (0);
3730
3731		goto privcheck;
3732	}
3733
3734	/* Otherwise, check everyone else. */
3735	if (file_mode & S_IXOTH)
3736		dac_granted |= VEXEC;
3737	if (file_mode & S_IROTH)
3738		dac_granted |= VREAD;
3739	if (file_mode & S_IWOTH)
3740		dac_granted |= (VWRITE | VAPPEND);
3741	if ((acc_mode & dac_granted) == acc_mode)
3742		return (0);
3743
3744privcheck:
3745	if (!suser_cred(cred, PRISON_ROOT)) {
3746		/* XXX audit: privilege used */
3747		if (privused != NULL)
3748			*privused = 1;
3749		return (0);
3750	}
3751
3752#ifdef CAPABILITIES
3753	/*
3754	 * Build a capability mask to determine if the set of capabilities
3755	 * satisfies the requirements when combined with the granted mask
3756	 * from above.
3757	 * For each capability, if the capability is required, bitwise
3758	 * or the request type onto the cap_granted mask.
3759	 */
3760	cap_granted = 0;
3761
3762	if (type == VDIR) {
3763		/*
3764		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3765		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3766		 */
3767		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3768		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3769			cap_granted |= VEXEC;
3770	} else {
3771		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3772		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT))
3773			cap_granted |= VEXEC;
3774	}
3775
3776	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3777	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3778		cap_granted |= VREAD;
3779
3780	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3781	    !cap_check(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT))
3782		cap_granted |= (VWRITE | VAPPEND);
3783
3784	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3785	    !cap_check(cred, NULL, CAP_FOWNER, PRISON_ROOT))
3786		cap_granted |= VADMIN;
3787
3788	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3789		/* XXX audit: privilege used */
3790		if (privused != NULL)
3791			*privused = 1;
3792		return (0);
3793	}
3794#endif
3795
3796	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3797}
3798
3799/*
3800 * Credential check based on process requesting service, and per-attribute
3801 * permissions.
3802 */
3803int
3804extattr_check_cred(struct vnode *vp, int attrnamespace,
3805    struct ucred *cred, struct thread *td, int access)
3806{
3807
3808	/*
3809	 * Kernel-invoked always succeeds.
3810	 */
3811	if (cred == NOCRED)
3812		return (0);
3813
3814	/*
3815	 * Do not allow privileged processes in jail to directly
3816	 * manipulate system attributes.
3817	 *
3818	 * XXX What capability should apply here?
3819	 * Probably CAP_SYS_SETFFLAG.
3820	 */
3821	switch (attrnamespace) {
3822	case EXTATTR_NAMESPACE_SYSTEM:
3823		/* Potentially should be: return (EPERM); */
3824		return (suser_cred(cred, 0));
3825	case EXTATTR_NAMESPACE_USER:
3826		return (VOP_ACCESS(vp, access, cred, td));
3827	default:
3828		return (EPERM);
3829	}
3830}
3831