vfs_subr.c revision 111463
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $FreeBSD: head/sys/kern/vfs_subr.c 111463 2003-02-25 03:37:48Z jeff $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46#include "opt_mac.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/conf.h>
53#include <sys/eventhandler.h>
54#include <sys/extattr.h>
55#include <sys/fcntl.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/mac.h>
59#include <sys/malloc.h>
60#include <sys/mount.h>
61#include <sys/namei.h>
62#include <sys/stat.h>
63#include <sys/sysctl.h>
64#include <sys/syslog.h>
65#include <sys/vmmeter.h>
66#include <sys/vnode.h>
67
68#include <vm/vm.h>
69#include <vm/vm_object.h>
70#include <vm/vm_extern.h>
71#include <vm/pmap.h>
72#include <vm/vm_map.h>
73#include <vm/vm_page.h>
74#include <vm/uma.h>
75
76static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
77
78static void	addalias(struct vnode *vp, dev_t nvp_rdev);
79static void	insmntque(struct vnode *vp, struct mount *mp);
80static void	vclean(struct vnode *vp, int flags, struct thread *td);
81static void	vlruvp(struct vnode *vp);
82static int	flushbuflist(struct buf *blist, int flags, struct vnode *vp,
83		    int slpflag, int slptimeo, int *errorp);
84static int	vcanrecycle(struct vnode *vp, struct mount **vnmpp);
85
86
87/*
88 * Number of vnodes in existence.  Increased whenever getnewvnode()
89 * allocates a new vnode, never decreased.
90 */
91static unsigned long	numvnodes;
92
93SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
94
95/*
96 * Conversion tables for conversion from vnode types to inode formats
97 * and back.
98 */
99enum vtype iftovt_tab[16] = {
100	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
101	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
102};
103int vttoif_tab[9] = {
104	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
105	S_IFSOCK, S_IFIFO, S_IFMT,
106};
107
108/*
109 * List of vnodes that are ready for recycling.
110 */
111static TAILQ_HEAD(freelst, vnode) vnode_free_list;
112
113/*
114 * Minimum number of free vnodes.  If there are fewer than this free vnodes,
115 * getnewvnode() will return a newly allocated vnode.
116 */
117static u_long wantfreevnodes = 25;
118SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
119/* Number of vnodes in the free list. */
120static u_long freevnodes;
121SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
122
123/*
124 * Various variables used for debugging the new implementation of
125 * reassignbuf().
126 * XXX these are probably of (very) limited utility now.
127 */
128static int reassignbufcalls;
129SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
130static int nameileafonly;
131SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
132
133#ifdef ENABLE_VFS_IOOPT
134/* See NOTES for a description of this setting. */
135int vfs_ioopt;
136SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
137#endif
138
139/*
140 * Cache for the mount type id assigned to NFS.  This is used for
141 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
142 */
143int	nfs_mount_type = -1;
144
145/* To keep more than one thread at a time from running vfs_getnewfsid */
146static struct mtx mntid_mtx;
147
148/*
149 * Lock for any access to the following:
150 *	vnode_free_list
151 *	numvnodes
152 *	freevnodes
153 */
154static struct mtx vnode_free_list_mtx;
155
156/*
157 * For any iteration/modification of dev->si_hlist (linked through
158 * v_specnext)
159 */
160static struct mtx spechash_mtx;
161
162/* Publicly exported FS */
163struct nfs_public nfs_pub;
164
165/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
166static uma_zone_t vnode_zone;
167static uma_zone_t vnodepoll_zone;
168
169/* Set to 1 to print out reclaim of active vnodes */
170int	prtactive;
171
172/*
173 * The workitem queue.
174 *
175 * It is useful to delay writes of file data and filesystem metadata
176 * for tens of seconds so that quickly created and deleted files need
177 * not waste disk bandwidth being created and removed. To realize this,
178 * we append vnodes to a "workitem" queue. When running with a soft
179 * updates implementation, most pending metadata dependencies should
180 * not wait for more than a few seconds. Thus, mounted on block devices
181 * are delayed only about a half the time that file data is delayed.
182 * Similarly, directory updates are more critical, so are only delayed
183 * about a third the time that file data is delayed. Thus, there are
184 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
185 * one each second (driven off the filesystem syncer process). The
186 * syncer_delayno variable indicates the next queue that is to be processed.
187 * Items that need to be processed soon are placed in this queue:
188 *
189 *	syncer_workitem_pending[syncer_delayno]
190 *
191 * A delay of fifteen seconds is done by placing the request fifteen
192 * entries later in the queue:
193 *
194 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
195 *
196 */
197static int syncer_delayno;
198static long syncer_mask;
199LIST_HEAD(synclist, vnode);
200static struct synclist *syncer_workitem_pending;
201/*
202 * The sync_mtx protects:
203 *	vp->v_synclist
204 *	syncer_delayno
205 *	syncer_workitem_pending
206 *	rushjob
207 */
208static struct mtx sync_mtx;
209
210#define SYNCER_MAXDELAY		32
211static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
212static int syncdelay = 30;		/* max time to delay syncing data */
213static int filedelay = 30;		/* time to delay syncing files */
214SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
215static int dirdelay = 29;		/* time to delay syncing directories */
216SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
217static int metadelay = 28;		/* time to delay syncing metadata */
218SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
219static int rushjob;		/* number of slots to run ASAP */
220static int stat_rush_requests;	/* number of times I/O speeded up */
221SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
222
223/*
224 * Number of vnodes we want to exist at any one time.  This is mostly used
225 * to size hash tables in vnode-related code.  It is normally not used in
226 * getnewvnode(), as wantfreevnodes is normally nonzero.)
227 *
228 * XXX desiredvnodes is historical cruft and should not exist.
229 */
230int desiredvnodes;
231SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
232    &desiredvnodes, 0, "Maximum number of vnodes");
233static int minvnodes;
234SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
235    &minvnodes, 0, "Minimum number of vnodes");
236static int vnlru_nowhere;
237SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
238    "Number of times the vnlru process ran without success");
239
240/* Hook for calling soft updates */
241int (*softdep_process_worklist_hook)(struct mount *);
242
243/*
244 * This only exists to supress warnings from unlocked specfs accesses.  It is
245 * no longer ok to have an unlocked VFS.
246 */
247#define IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
248
249/* Print lock violations */
250int vfs_badlock_print = 1;
251
252/* Panic on violation */
253int vfs_badlock_panic = 1;
254
255/* Check for interlock across VOPs */
256int vfs_badlock_mutex = 1;
257
258static void
259vfs_badlock(char *msg, char *str, struct vnode *vp)
260{
261	if (vfs_badlock_print)
262		printf("%s: %p %s\n", str, vp, msg);
263	if (vfs_badlock_panic)
264		Debugger("Lock violation.\n");
265}
266
267void
268assert_vi_unlocked(struct vnode *vp, char *str)
269{
270	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
271		vfs_badlock("interlock is locked but should not be", str, vp);
272}
273
274void
275assert_vi_locked(struct vnode *vp, char *str)
276{
277	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
278		vfs_badlock("interlock is not locked but should be", str, vp);
279}
280
281void
282assert_vop_locked(struct vnode *vp, char *str)
283{
284	if (vp && !IGNORE_LOCK(vp) && !VOP_ISLOCKED(vp, NULL))
285		vfs_badlock("is not locked but should be", str, vp);
286}
287
288void
289assert_vop_unlocked(struct vnode *vp, char *str)
290{
291	if (vp && !IGNORE_LOCK(vp) &&
292	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
293		vfs_badlock("is locked but should not be", str, vp);
294}
295
296void
297assert_vop_elocked(struct vnode *vp, char *str)
298{
299	if (vp && !IGNORE_LOCK(vp) &&
300	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
301		vfs_badlock("is not exclusive locked but should be", str, vp);
302}
303
304void
305assert_vop_elocked_other(struct vnode *vp, char *str)
306{
307	if (vp && !IGNORE_LOCK(vp) &&
308	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
309		vfs_badlock("is not exclusive locked by another thread",
310		    str, vp);
311}
312
313void
314assert_vop_slocked(struct vnode *vp, char *str)
315{
316	if (vp && !IGNORE_LOCK(vp) &&
317	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
318		vfs_badlock("is not locked shared but should be", str, vp);
319}
320
321void
322vop_rename_pre(void *ap)
323{
324	struct vop_rename_args *a = ap;
325
326	if (a->a_tvp)
327		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
328	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
329	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
330	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
331
332	/* Check the source (from) */
333	if (a->a_tdvp != a->a_fdvp)
334		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked.\n");
335	if (a->a_tvp != a->a_fvp)
336		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked.\n");
337
338	/* Check the target */
339	if (a->a_tvp)
340		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked.\n");
341
342	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked.\n");
343}
344
345void
346vop_strategy_pre(void *ap)
347{
348	struct vop_strategy_args *a = ap;
349	struct buf *bp;
350
351	bp = a->a_bp;
352
353	/*
354	 * Cluster ops lock their component buffers but not the IO container.
355	 */
356	if ((bp->b_flags & B_CLUSTER) != 0)
357		return;
358
359	if (BUF_REFCNT(bp) < 1) {
360		if (vfs_badlock_print)
361			printf("VOP_STRATEGY: bp is not locked but should be.\n");
362		if (vfs_badlock_panic)
363			Debugger("Lock violation.\n");
364	}
365}
366
367void
368vop_lookup_pre(void *ap)
369{
370	struct vop_lookup_args *a = ap;
371	struct vnode *dvp;
372
373	dvp = a->a_dvp;
374
375	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
376	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
377}
378
379void
380vop_lookup_post(void *ap, int rc)
381{
382	struct vop_lookup_args *a = ap;
383	struct componentname *cnp;
384	struct vnode *dvp;
385	struct vnode *vp;
386	int flags;
387
388	dvp = a->a_dvp;
389	cnp = a->a_cnp;
390	vp = *(a->a_vpp);
391	flags = cnp->cn_flags;
392
393
394	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
395	/*
396	 * If this is the last path component for this lookup and LOCPARENT
397	 * is set, OR if there is an error the directory has to be locked.
398	 */
399	if ((flags & LOCKPARENT) && (flags & ISLASTCN))
400		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)");
401	else if (rc != 0)
402		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)");
403	else if (dvp != vp)
404		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)");
405
406	if (flags & PDIRUNLOCK)
407		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)");
408}
409
410void
411vop_unlock_pre(void *ap)
412{
413	struct vop_unlock_args *a = ap;
414
415	if (a->a_flags & LK_INTERLOCK)
416		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
417
418	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
419}
420
421void
422vop_unlock_post(void *ap, int rc)
423{
424	struct vop_unlock_args *a = ap;
425
426	if (a->a_flags & LK_INTERLOCK)
427		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
428}
429
430void
431vop_lock_pre(void *ap)
432{
433	struct vop_lock_args *a = ap;
434
435	if ((a->a_flags & LK_INTERLOCK) == 0)
436		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
437	else
438		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
439}
440
441void
442vop_lock_post(void *ap, int rc)
443{
444	struct vop_lock_args *a;
445
446	a = ap;
447
448	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
449	ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
450}
451
452void
453v_addpollinfo(struct vnode *vp)
454{
455	vp->v_pollinfo = uma_zalloc(vnodepoll_zone, M_WAITOK);
456	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
457}
458
459/*
460 * Initialize the vnode management data structures.
461 */
462static void
463vntblinit(void *dummy __unused)
464{
465
466	desiredvnodes = maxproc + cnt.v_page_count / 4;
467	minvnodes = desiredvnodes / 4;
468	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
469	mtx_init(&mntvnode_mtx, "mntvnode", NULL, MTX_DEF);
470	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
471	mtx_init(&spechash_mtx, "spechash", NULL, MTX_DEF);
472	TAILQ_INIT(&vnode_free_list);
473	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
474	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
475	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
476	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
477	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
478	/*
479	 * Initialize the filesystem syncer.
480	 */
481	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
482		&syncer_mask);
483	syncer_maxdelay = syncer_mask + 1;
484	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
485}
486SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
487
488
489/*
490 * Mark a mount point as busy. Used to synchronize access and to delay
491 * unmounting. Interlock is not released on failure.
492 */
493int
494vfs_busy(mp, flags, interlkp, td)
495	struct mount *mp;
496	int flags;
497	struct mtx *interlkp;
498	struct thread *td;
499{
500	int lkflags;
501
502	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
503		if (flags & LK_NOWAIT)
504			return (ENOENT);
505		mp->mnt_kern_flag |= MNTK_MWAIT;
506		/*
507		 * Since all busy locks are shared except the exclusive
508		 * lock granted when unmounting, the only place that a
509		 * wakeup needs to be done is at the release of the
510		 * exclusive lock at the end of dounmount.
511		 */
512		msleep(mp, interlkp, PVFS, "vfs_busy", 0);
513		return (ENOENT);
514	}
515	lkflags = LK_SHARED | LK_NOPAUSE;
516	if (interlkp)
517		lkflags |= LK_INTERLOCK;
518	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
519		panic("vfs_busy: unexpected lock failure");
520	return (0);
521}
522
523/*
524 * Free a busy filesystem.
525 */
526void
527vfs_unbusy(mp, td)
528	struct mount *mp;
529	struct thread *td;
530{
531
532	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
533}
534
535/*
536 * Lookup a mount point by filesystem identifier.
537 */
538struct mount *
539vfs_getvfs(fsid)
540	fsid_t *fsid;
541{
542	register struct mount *mp;
543
544	mtx_lock(&mountlist_mtx);
545	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
546		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
547		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
548			mtx_unlock(&mountlist_mtx);
549			return (mp);
550		}
551	}
552	mtx_unlock(&mountlist_mtx);
553	return ((struct mount *) 0);
554}
555
556/*
557 * Get a new unique fsid.  Try to make its val[0] unique, since this value
558 * will be used to create fake device numbers for stat().  Also try (but
559 * not so hard) make its val[0] unique mod 2^16, since some emulators only
560 * support 16-bit device numbers.  We end up with unique val[0]'s for the
561 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
562 *
563 * Keep in mind that several mounts may be running in parallel.  Starting
564 * the search one past where the previous search terminated is both a
565 * micro-optimization and a defense against returning the same fsid to
566 * different mounts.
567 */
568void
569vfs_getnewfsid(mp)
570	struct mount *mp;
571{
572	static u_int16_t mntid_base;
573	fsid_t tfsid;
574	int mtype;
575
576	mtx_lock(&mntid_mtx);
577	mtype = mp->mnt_vfc->vfc_typenum;
578	tfsid.val[1] = mtype;
579	mtype = (mtype & 0xFF) << 24;
580	for (;;) {
581		tfsid.val[0] = makeudev(255,
582		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
583		mntid_base++;
584		if (vfs_getvfs(&tfsid) == NULL)
585			break;
586	}
587	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
588	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
589	mtx_unlock(&mntid_mtx);
590}
591
592/*
593 * Knob to control the precision of file timestamps:
594 *
595 *   0 = seconds only; nanoseconds zeroed.
596 *   1 = seconds and nanoseconds, accurate within 1/HZ.
597 *   2 = seconds and nanoseconds, truncated to microseconds.
598 * >=3 = seconds and nanoseconds, maximum precision.
599 */
600enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
601
602static int timestamp_precision = TSP_SEC;
603SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
604    &timestamp_precision, 0, "");
605
606/*
607 * Get a current timestamp.
608 */
609void
610vfs_timestamp(tsp)
611	struct timespec *tsp;
612{
613	struct timeval tv;
614
615	switch (timestamp_precision) {
616	case TSP_SEC:
617		tsp->tv_sec = time_second;
618		tsp->tv_nsec = 0;
619		break;
620	case TSP_HZ:
621		getnanotime(tsp);
622		break;
623	case TSP_USEC:
624		microtime(&tv);
625		TIMEVAL_TO_TIMESPEC(&tv, tsp);
626		break;
627	case TSP_NSEC:
628	default:
629		nanotime(tsp);
630		break;
631	}
632}
633
634/*
635 * Set vnode attributes to VNOVAL
636 */
637void
638vattr_null(vap)
639	register struct vattr *vap;
640{
641
642	vap->va_type = VNON;
643	vap->va_size = VNOVAL;
644	vap->va_bytes = VNOVAL;
645	vap->va_mode = VNOVAL;
646	vap->va_nlink = VNOVAL;
647	vap->va_uid = VNOVAL;
648	vap->va_gid = VNOVAL;
649	vap->va_fsid = VNOVAL;
650	vap->va_fileid = VNOVAL;
651	vap->va_blocksize = VNOVAL;
652	vap->va_rdev = VNOVAL;
653	vap->va_atime.tv_sec = VNOVAL;
654	vap->va_atime.tv_nsec = VNOVAL;
655	vap->va_mtime.tv_sec = VNOVAL;
656	vap->va_mtime.tv_nsec = VNOVAL;
657	vap->va_ctime.tv_sec = VNOVAL;
658	vap->va_ctime.tv_nsec = VNOVAL;
659	vap->va_birthtime.tv_sec = VNOVAL;
660	vap->va_birthtime.tv_nsec = VNOVAL;
661	vap->va_flags = VNOVAL;
662	vap->va_gen = VNOVAL;
663	vap->va_vaflags = 0;
664}
665
666/*
667 * This routine is called when we have too many vnodes.  It attempts
668 * to free <count> vnodes and will potentially free vnodes that still
669 * have VM backing store (VM backing store is typically the cause
670 * of a vnode blowout so we want to do this).  Therefore, this operation
671 * is not considered cheap.
672 *
673 * A number of conditions may prevent a vnode from being reclaimed.
674 * the buffer cache may have references on the vnode, a directory
675 * vnode may still have references due to the namei cache representing
676 * underlying files, or the vnode may be in active use.   It is not
677 * desireable to reuse such vnodes.  These conditions may cause the
678 * number of vnodes to reach some minimum value regardless of what
679 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
680 */
681static int
682vlrureclaim(struct mount *mp, int count)
683{
684	struct vnode *vp;
685	int done;
686	int trigger;
687	int usevnodes;
688
689	/*
690	 * Calculate the trigger point, don't allow user
691	 * screwups to blow us up.   This prevents us from
692	 * recycling vnodes with lots of resident pages.  We
693	 * aren't trying to free memory, we are trying to
694	 * free vnodes.
695	 */
696	usevnodes = desiredvnodes;
697	if (usevnodes <= 0)
698		usevnodes = 1;
699	trigger = cnt.v_page_count * 2 / usevnodes;
700
701	done = 0;
702	mtx_lock(&mntvnode_mtx);
703	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
704		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
705		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
706
707		if (vp->v_type != VNON &&
708		    vp->v_type != VBAD &&
709		    VI_TRYLOCK(vp)) {
710			if (VMIGHTFREE(vp) &&           /* critical path opt */
711			    (vp->v_object == NULL ||
712			    vp->v_object->resident_page_count < trigger)) {
713				mtx_unlock(&mntvnode_mtx);
714				vgonel(vp, curthread);
715				done++;
716				mtx_lock(&mntvnode_mtx);
717			} else
718				VI_UNLOCK(vp);
719		}
720		--count;
721	}
722	mtx_unlock(&mntvnode_mtx);
723	return done;
724}
725
726/*
727 * Attempt to recycle vnodes in a context that is always safe to block.
728 * Calling vlrurecycle() from the bowels of filesystem code has some
729 * interesting deadlock problems.
730 */
731static struct proc *vnlruproc;
732static int vnlruproc_sig;
733
734static void
735vnlru_proc(void)
736{
737	struct mount *mp, *nmp;
738	int s;
739	int done, take;
740	struct proc *p = vnlruproc;
741	struct thread *td = FIRST_THREAD_IN_PROC(p);	/* XXXKSE */
742
743	mtx_lock(&Giant);
744
745	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
746	    SHUTDOWN_PRI_FIRST);
747
748	s = splbio();
749	for (;;) {
750		kthread_suspend_check(p);
751		mtx_lock(&vnode_free_list_mtx);
752		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
753			mtx_unlock(&vnode_free_list_mtx);
754			vnlruproc_sig = 0;
755			wakeup(&vnlruproc_sig);
756			tsleep(vnlruproc, PVFS, "vlruwt", hz);
757			continue;
758		}
759		mtx_unlock(&vnode_free_list_mtx);
760		done = 0;
761		mtx_lock(&mountlist_mtx);
762		take = 0;
763		TAILQ_FOREACH(mp, &mountlist, mnt_list)
764			take++;
765		take = desiredvnodes / (take * 10);
766		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
767			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
768				nmp = TAILQ_NEXT(mp, mnt_list);
769				continue;
770			}
771			done += vlrureclaim(mp, take);
772			mtx_lock(&mountlist_mtx);
773			nmp = TAILQ_NEXT(mp, mnt_list);
774			vfs_unbusy(mp, td);
775		}
776		mtx_unlock(&mountlist_mtx);
777		if (done == 0) {
778#if 0
779			/* These messages are temporary debugging aids */
780			if (vnlru_nowhere < 5)
781				printf("vnlru process getting nowhere..\n");
782			else if (vnlru_nowhere == 5)
783				printf("vnlru process messages stopped.\n");
784#endif
785			vnlru_nowhere++;
786			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
787		}
788	}
789	splx(s);
790}
791
792static struct kproc_desc vnlru_kp = {
793	"vnlru",
794	vnlru_proc,
795	&vnlruproc
796};
797SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
798
799
800/*
801 * Routines having to do with the management of the vnode table.
802 */
803
804/*
805 * Check to see if a free vnode can be recycled. If it can,
806 * return it locked with the vn lock, but not interlock. Also
807 * get the vn_start_write lock. Otherwise indicate the error.
808 */
809static int
810vcanrecycle(struct vnode *vp, struct mount **vnmpp)
811{
812	struct thread *td = curthread;
813	vm_object_t object;
814	int error;
815
816	/* Don't recycle if we can't get the interlock */
817	if (!VI_TRYLOCK(vp))
818		return (EWOULDBLOCK);
819
820	/* We should be able to immediately acquire this */
821	/* XXX This looks like it should panic if it fails */
822	if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td) != 0) {
823		if (VOP_ISLOCKED(vp, td))
824			panic("vcanrecycle: locked vnode");
825		return (EWOULDBLOCK);
826	}
827
828	/*
829	 * Don't recycle if its filesystem is being suspended.
830	 */
831	if (vn_start_write(vp, vnmpp, V_NOWAIT) != 0) {
832		error = EBUSY;
833		goto done;
834	}
835
836	/*
837	 * Don't recycle if we still have cached pages.
838	 */
839	if (VOP_GETVOBJECT(vp, &object) == 0 &&
840	     (object->resident_page_count ||
841	      object->ref_count)) {
842		error = EBUSY;
843		goto done;
844	}
845	if (LIST_FIRST(&vp->v_cache_src)) {
846		/*
847		 * note: nameileafonly sysctl is temporary,
848		 * for debugging only, and will eventually be
849		 * removed.
850		 */
851		if (nameileafonly > 0) {
852			/*
853			 * Do not reuse namei-cached directory
854			 * vnodes that have cached
855			 * subdirectories.
856			 */
857			if (cache_leaf_test(vp) < 0) {
858				error = EISDIR;
859				goto done;
860			}
861		} else if (nameileafonly < 0 ||
862			    vmiodirenable == 0) {
863			/*
864			 * Do not reuse namei-cached directory
865			 * vnodes if nameileafonly is -1 or
866			 * if VMIO backing for directories is
867			 * turned off (otherwise we reuse them
868			 * too quickly).
869			 */
870			error = EBUSY;
871			goto done;
872		}
873	}
874	return (0);
875done:
876	VOP_UNLOCK(vp, 0, td);
877	return (error);
878}
879
880/*
881 * Return the next vnode from the free list.
882 */
883int
884getnewvnode(tag, mp, vops, vpp)
885	const char *tag;
886	struct mount *mp;
887	vop_t **vops;
888	struct vnode **vpp;
889{
890	int s;
891	struct thread *td = curthread;	/* XXX */
892	struct vnode *vp = NULL;
893	struct vpollinfo *pollinfo = NULL;
894	struct mount *vnmp;
895
896	s = splbio();
897	mtx_lock(&vnode_free_list_mtx);
898
899	/*
900	 * Try to reuse vnodes if we hit the max.  This situation only
901	 * occurs in certain large-memory (2G+) situations.  We cannot
902	 * attempt to directly reclaim vnodes due to nasty recursion
903	 * problems.
904	 */
905	while (numvnodes - freevnodes > desiredvnodes) {
906		if (vnlruproc_sig == 0) {
907			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
908			wakeup(vnlruproc);
909		}
910		mtx_unlock(&vnode_free_list_mtx);
911		tsleep(&vnlruproc_sig, PVFS, "vlruwk", hz);
912		mtx_lock(&vnode_free_list_mtx);
913	}
914
915	/*
916	 * Attempt to reuse a vnode already on the free list, allocating
917	 * a new vnode if we can't find one or if we have not reached a
918	 * good minimum for good LRU performance.
919	 */
920
921	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
922		int error;
923		int count;
924
925		for (count = 0; count < freevnodes; count++) {
926			vp = TAILQ_FIRST(&vnode_free_list);
927
928			KASSERT(vp->v_usecount == 0 &&
929			    (vp->v_iflag & VI_DOINGINACT) == 0,
930			    ("getnewvnode: free vnode isn't"));
931
932			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
933			/*
934			 * We have to drop the free list mtx to avoid lock
935			 * order reversals with interlock.
936			 */
937			mtx_unlock(&vnode_free_list_mtx);
938			error = vcanrecycle(vp, &vnmp);
939			mtx_lock(&vnode_free_list_mtx);
940			if (error == 0)
941				break;
942			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
943			vp = NULL;
944		}
945	}
946	if (vp) {
947		freevnodes--;
948		mtx_unlock(&vnode_free_list_mtx);
949
950		cache_purge(vp);
951		VI_LOCK(vp);
952		vp->v_iflag |= VI_DOOMED;
953		vp->v_iflag &= ~VI_FREE;
954		if (vp->v_type != VBAD) {
955			VOP_UNLOCK(vp, 0, td);
956			vgonel(vp, td);
957			VI_LOCK(vp);
958		} else {
959			VOP_UNLOCK(vp, 0, td);
960		}
961		vn_finished_write(vnmp);
962
963#ifdef INVARIANTS
964		{
965			if (vp->v_data)
966				panic("cleaned vnode isn't");
967			if (vp->v_numoutput)
968				panic("Clean vnode has pending I/O's");
969			if (vp->v_writecount != 0)
970				panic("Non-zero write count");
971		}
972#endif
973		if ((pollinfo = vp->v_pollinfo) != NULL) {
974			/*
975			 * To avoid lock order reversals, the call to
976			 * uma_zfree() must be delayed until the vnode
977			 * interlock is released.
978			 */
979			vp->v_pollinfo = NULL;
980		}
981#ifdef MAC
982		mac_destroy_vnode(vp);
983#endif
984		vp->v_iflag = 0;
985		vp->v_vflag = 0;
986		vp->v_lastw = 0;
987		vp->v_lasta = 0;
988		vp->v_cstart = 0;
989		vp->v_clen = 0;
990		vp->v_socket = 0;
991		lockdestroy(vp->v_vnlock);
992		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
993		KASSERT(vp->v_cleanblkroot == NULL, ("cleanblkroot not NULL"));
994		KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
995	} else {
996		numvnodes++;
997		mtx_unlock(&vnode_free_list_mtx);
998
999		vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
1000		mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
1001		VI_LOCK(vp);
1002		vp->v_dd = vp;
1003		vp->v_vnlock = &vp->v_lock;
1004		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
1005		cache_purge(vp);
1006		LIST_INIT(&vp->v_cache_src);
1007		TAILQ_INIT(&vp->v_cache_dst);
1008	}
1009
1010	TAILQ_INIT(&vp->v_cleanblkhd);
1011	TAILQ_INIT(&vp->v_dirtyblkhd);
1012	vp->v_type = VNON;
1013	vp->v_tag = tag;
1014	vp->v_op = vops;
1015	*vpp = vp;
1016	vp->v_usecount = 1;
1017	vp->v_data = 0;
1018	vp->v_cachedid = -1;
1019	VI_UNLOCK(vp);
1020	if (pollinfo != NULL) {
1021		mtx_destroy(&pollinfo->vpi_lock);
1022		uma_zfree(vnodepoll_zone, pollinfo);
1023	}
1024#ifdef MAC
1025	mac_init_vnode(vp);
1026	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1027		mac_associate_vnode_singlelabel(mp, vp);
1028#endif
1029	insmntque(vp, mp);
1030
1031	return (0);
1032}
1033
1034/*
1035 * Move a vnode from one mount queue to another.
1036 */
1037static void
1038insmntque(vp, mp)
1039	register struct vnode *vp;
1040	register struct mount *mp;
1041{
1042
1043	mtx_lock(&mntvnode_mtx);
1044	/*
1045	 * Delete from old mount point vnode list, if on one.
1046	 */
1047	if (vp->v_mount != NULL)
1048		TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
1049	/*
1050	 * Insert into list of vnodes for the new mount point, if available.
1051	 */
1052	if ((vp->v_mount = mp) == NULL) {
1053		mtx_unlock(&mntvnode_mtx);
1054		return;
1055	}
1056	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1057	mtx_unlock(&mntvnode_mtx);
1058}
1059
1060/*
1061 * Update outstanding I/O count and do wakeup if requested.
1062 */
1063void
1064vwakeup(bp)
1065	register struct buf *bp;
1066{
1067	register struct vnode *vp;
1068
1069	bp->b_flags &= ~B_WRITEINPROG;
1070	if ((vp = bp->b_vp)) {
1071		VI_LOCK(vp);
1072		vp->v_numoutput--;
1073		if (vp->v_numoutput < 0)
1074			panic("vwakeup: neg numoutput");
1075		if ((vp->v_numoutput == 0) && (vp->v_iflag & VI_BWAIT)) {
1076			vp->v_iflag &= ~VI_BWAIT;
1077			wakeup(&vp->v_numoutput);
1078		}
1079		VI_UNLOCK(vp);
1080	}
1081}
1082
1083/*
1084 * Flush out and invalidate all buffers associated with a vnode.
1085 * Called with the underlying object locked.
1086 */
1087int
1088vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
1089	struct vnode *vp;
1090	int flags;
1091	struct ucred *cred;
1092	struct thread *td;
1093	int slpflag, slptimeo;
1094{
1095	struct buf *blist;
1096	int s, error;
1097	vm_object_t object;
1098
1099	GIANT_REQUIRED;
1100
1101	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1102
1103	VI_LOCK(vp);
1104	if (flags & V_SAVE) {
1105		s = splbio();
1106		while (vp->v_numoutput) {
1107			vp->v_iflag |= VI_BWAIT;
1108			error = msleep(&vp->v_numoutput, VI_MTX(vp),
1109			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
1110			if (error) {
1111				VI_UNLOCK(vp);
1112				splx(s);
1113				return (error);
1114			}
1115		}
1116		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1117			splx(s);
1118			VI_UNLOCK(vp);
1119			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
1120				return (error);
1121			/*
1122			 * XXX We could save a lock/unlock if this was only
1123			 * enabled under INVARIANTS
1124			 */
1125			VI_LOCK(vp);
1126			s = splbio();
1127			if (vp->v_numoutput > 0 ||
1128			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
1129				panic("vinvalbuf: dirty bufs");
1130		}
1131		splx(s);
1132	}
1133	s = splbio();
1134	/*
1135	 * If you alter this loop please notice that interlock is dropped and
1136	 * reacquired in flushbuflist.  Special care is needed to ensure that
1137	 * no race conditions occur from this.
1138	 */
1139	for (error = 0;;) {
1140		if ((blist = TAILQ_FIRST(&vp->v_cleanblkhd)) != 0 &&
1141		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
1142			if (error)
1143				break;
1144			continue;
1145		}
1146		if ((blist = TAILQ_FIRST(&vp->v_dirtyblkhd)) != 0 &&
1147		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
1148			if (error)
1149				break;
1150			continue;
1151		}
1152		break;
1153	}
1154	if (error) {
1155		splx(s);
1156		VI_UNLOCK(vp);
1157		return (error);
1158	}
1159
1160	/*
1161	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1162	 * have write I/O in-progress but if there is a VM object then the
1163	 * VM object can also have read-I/O in-progress.
1164	 */
1165	do {
1166		while (vp->v_numoutput > 0) {
1167			vp->v_iflag |= VI_BWAIT;
1168			msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vnvlbv", 0);
1169		}
1170		VI_UNLOCK(vp);
1171		if (VOP_GETVOBJECT(vp, &object) == 0) {
1172			while (object->paging_in_progress)
1173			vm_object_pip_sleep(object, "vnvlbx");
1174		}
1175		VI_LOCK(vp);
1176	} while (vp->v_numoutput > 0);
1177	VI_UNLOCK(vp);
1178
1179	splx(s);
1180
1181	/*
1182	 * Destroy the copy in the VM cache, too.
1183	 */
1184	if (VOP_GETVOBJECT(vp, &object) == 0) {
1185		vm_object_lock(object);
1186		vm_object_page_remove(object, 0, 0,
1187			(flags & V_SAVE) ? TRUE : FALSE);
1188		vm_object_unlock(object);
1189	}
1190
1191#ifdef INVARIANTS
1192	VI_LOCK(vp);
1193	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1194	    (!TAILQ_EMPTY(&vp->v_dirtyblkhd) ||
1195	     !TAILQ_EMPTY(&vp->v_cleanblkhd)))
1196		panic("vinvalbuf: flush failed");
1197	VI_UNLOCK(vp);
1198#endif
1199	return (0);
1200}
1201
1202/*
1203 * Flush out buffers on the specified list.
1204 *
1205 */
1206static int
1207flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp)
1208	struct buf *blist;
1209	int flags;
1210	struct vnode *vp;
1211	int slpflag, slptimeo;
1212	int *errorp;
1213{
1214	struct buf *bp, *nbp;
1215	int found, error;
1216
1217	ASSERT_VI_LOCKED(vp, "flushbuflist");
1218
1219	for (found = 0, bp = blist; bp; bp = nbp) {
1220		nbp = TAILQ_NEXT(bp, b_vnbufs);
1221		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1222		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1223			continue;
1224		}
1225		found += 1;
1226		error = BUF_TIMELOCK(bp,
1227		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, VI_MTX(vp),
1228		    "flushbuf", slpflag, slptimeo);
1229		if (error) {
1230			if (error != ENOLCK)
1231				*errorp = error;
1232			goto done;
1233		}
1234		/*
1235		 * XXX Since there are no node locks for NFS, I
1236		 * believe there is a slight chance that a delayed
1237		 * write will occur while sleeping just above, so
1238		 * check for it.  Note that vfs_bio_awrite expects
1239		 * buffers to reside on a queue, while BUF_WRITE and
1240		 * brelse do not.
1241		 */
1242		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1243			(flags & V_SAVE)) {
1244
1245			if (bp->b_vp == vp) {
1246				if (bp->b_flags & B_CLUSTEROK) {
1247					BUF_UNLOCK(bp);
1248					vfs_bio_awrite(bp);
1249				} else {
1250					bremfree(bp);
1251					bp->b_flags |= B_ASYNC;
1252					BUF_WRITE(bp);
1253				}
1254			} else {
1255				bremfree(bp);
1256				(void) BUF_WRITE(bp);
1257			}
1258			goto done;
1259		}
1260		bremfree(bp);
1261		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1262		bp->b_flags &= ~B_ASYNC;
1263		brelse(bp);
1264		VI_LOCK(vp);
1265	}
1266	return (found);
1267done:
1268	VI_LOCK(vp);
1269	return (found);
1270}
1271
1272/*
1273 * Truncate a file's buffer and pages to a specified length.  This
1274 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1275 * sync activity.
1276 */
1277int
1278vtruncbuf(vp, cred, td, length, blksize)
1279	register struct vnode *vp;
1280	struct ucred *cred;
1281	struct thread *td;
1282	off_t length;
1283	int blksize;
1284{
1285	register struct buf *bp;
1286	struct buf *nbp;
1287	int s, anyfreed;
1288	int trunclbn;
1289
1290	/*
1291	 * Round up to the *next* lbn.
1292	 */
1293	trunclbn = (length + blksize - 1) / blksize;
1294
1295	s = splbio();
1296	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1297restart:
1298	VI_LOCK(vp);
1299	anyfreed = 1;
1300	for (;anyfreed;) {
1301		anyfreed = 0;
1302		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1303			nbp = TAILQ_NEXT(bp, b_vnbufs);
1304			if (bp->b_lblkno >= trunclbn) {
1305				if (BUF_LOCK(bp,
1306				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1307				    VI_MTX(vp)) == ENOLCK)
1308					goto restart;
1309
1310				bremfree(bp);
1311				bp->b_flags |= (B_INVAL | B_RELBUF);
1312				bp->b_flags &= ~B_ASYNC;
1313				brelse(bp);
1314				anyfreed = 1;
1315
1316				if (nbp &&
1317				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1318				    (nbp->b_vp != vp) ||
1319				    (nbp->b_flags & B_DELWRI))) {
1320					goto restart;
1321				}
1322				VI_LOCK(vp);
1323			}
1324		}
1325
1326		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1327			nbp = TAILQ_NEXT(bp, b_vnbufs);
1328			if (bp->b_lblkno >= trunclbn) {
1329				if (BUF_LOCK(bp,
1330				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1331				    VI_MTX(vp)) == ENOLCK)
1332					goto restart;
1333				bremfree(bp);
1334				bp->b_flags |= (B_INVAL | B_RELBUF);
1335				bp->b_flags &= ~B_ASYNC;
1336				brelse(bp);
1337				anyfreed = 1;
1338				if (nbp &&
1339				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1340				    (nbp->b_vp != vp) ||
1341				    (nbp->b_flags & B_DELWRI) == 0)) {
1342					goto restart;
1343				}
1344				VI_LOCK(vp);
1345			}
1346		}
1347	}
1348
1349	if (length > 0) {
1350restartsync:
1351		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1352			nbp = TAILQ_NEXT(bp, b_vnbufs);
1353			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1354				if (BUF_LOCK(bp,
1355				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1356				    VI_MTX(vp)) == ENOLCK)
1357					goto restart;
1358				bremfree(bp);
1359				if (bp->b_vp == vp)
1360					bp->b_flags |= B_ASYNC;
1361				else
1362					bp->b_flags &= ~B_ASYNC;
1363
1364				BUF_WRITE(bp);
1365				VI_LOCK(vp);
1366				goto restartsync;
1367			}
1368		}
1369	}
1370
1371	while (vp->v_numoutput > 0) {
1372		vp->v_iflag |= VI_BWAIT;
1373		msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vbtrunc", 0);
1374	}
1375	VI_UNLOCK(vp);
1376	splx(s);
1377
1378	vnode_pager_setsize(vp, length);
1379
1380	return (0);
1381}
1382
1383/*
1384 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1385 * 		 a vnode.
1386 *
1387 *	NOTE: We have to deal with the special case of a background bitmap
1388 *	buffer, a situation where two buffers will have the same logical
1389 *	block offset.  We want (1) only the foreground buffer to be accessed
1390 *	in a lookup and (2) must differentiate between the foreground and
1391 *	background buffer in the splay tree algorithm because the splay
1392 *	tree cannot normally handle multiple entities with the same 'index'.
1393 *	We accomplish this by adding differentiating flags to the splay tree's
1394 *	numerical domain.
1395 */
1396static
1397struct buf *
1398buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1399{
1400	struct buf dummy;
1401	struct buf *lefttreemax, *righttreemin, *y;
1402
1403	if (root == NULL)
1404		return (NULL);
1405	lefttreemax = righttreemin = &dummy;
1406	for (;;) {
1407		if (lblkno < root->b_lblkno ||
1408		    (lblkno == root->b_lblkno &&
1409		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1410			if ((y = root->b_left) == NULL)
1411				break;
1412			if (lblkno < y->b_lblkno) {
1413				/* Rotate right. */
1414				root->b_left = y->b_right;
1415				y->b_right = root;
1416				root = y;
1417				if ((y = root->b_left) == NULL)
1418					break;
1419			}
1420			/* Link into the new root's right tree. */
1421			righttreemin->b_left = root;
1422			righttreemin = root;
1423		} else if (lblkno > root->b_lblkno ||
1424		    (lblkno == root->b_lblkno &&
1425		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1426			if ((y = root->b_right) == NULL)
1427				break;
1428			if (lblkno > y->b_lblkno) {
1429				/* Rotate left. */
1430				root->b_right = y->b_left;
1431				y->b_left = root;
1432				root = y;
1433				if ((y = root->b_right) == NULL)
1434					break;
1435			}
1436			/* Link into the new root's left tree. */
1437			lefttreemax->b_right = root;
1438			lefttreemax = root;
1439		} else {
1440			break;
1441		}
1442		root = y;
1443	}
1444	/* Assemble the new root. */
1445	lefttreemax->b_right = root->b_left;
1446	righttreemin->b_left = root->b_right;
1447	root->b_left = dummy.b_right;
1448	root->b_right = dummy.b_left;
1449	return (root);
1450}
1451
1452static
1453void
1454buf_vlist_remove(struct buf *bp)
1455{
1456	struct vnode *vp = bp->b_vp;
1457	struct buf *root;
1458
1459	ASSERT_VI_LOCKED(vp, "buf_vlist_remove");
1460	if (bp->b_xflags & BX_VNDIRTY) {
1461		if (bp != vp->v_dirtyblkroot) {
1462			root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1463			KASSERT(root == bp, ("splay lookup failed during dirty remove"));
1464		}
1465		if (bp->b_left == NULL) {
1466			root = bp->b_right;
1467		} else {
1468			root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1469			root->b_right = bp->b_right;
1470		}
1471		vp->v_dirtyblkroot = root;
1472		TAILQ_REMOVE(&vp->v_dirtyblkhd, bp, b_vnbufs);
1473	} else {
1474		/* KASSERT(bp->b_xflags & BX_VNCLEAN, ("bp wasn't clean")); */
1475		if (bp != vp->v_cleanblkroot) {
1476			root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1477			KASSERT(root == bp, ("splay lookup failed during clean remove"));
1478		}
1479		if (bp->b_left == NULL) {
1480			root = bp->b_right;
1481		} else {
1482			root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1483			root->b_right = bp->b_right;
1484		}
1485		vp->v_cleanblkroot = root;
1486		TAILQ_REMOVE(&vp->v_cleanblkhd, bp, b_vnbufs);
1487	}
1488	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1489}
1490
1491/*
1492 * Add the buffer to the sorted clean or dirty block list using a
1493 * splay tree algorithm.
1494 *
1495 * NOTE: xflags is passed as a constant, optimizing this inline function!
1496 */
1497static
1498void
1499buf_vlist_add(struct buf *bp, struct vnode *vp, b_xflags_t xflags)
1500{
1501	struct buf *root;
1502
1503	ASSERT_VI_LOCKED(vp, "buf_vlist_add");
1504	bp->b_xflags |= xflags;
1505	if (xflags & BX_VNDIRTY) {
1506		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1507		if (root == NULL) {
1508			bp->b_left = NULL;
1509			bp->b_right = NULL;
1510			TAILQ_INSERT_TAIL(&vp->v_dirtyblkhd, bp, b_vnbufs);
1511		} else if (bp->b_lblkno < root->b_lblkno ||
1512		    (bp->b_lblkno == root->b_lblkno &&
1513		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1514			bp->b_left = root->b_left;
1515			bp->b_right = root;
1516			root->b_left = NULL;
1517			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1518		} else {
1519			bp->b_right = root->b_right;
1520			bp->b_left = root;
1521			root->b_right = NULL;
1522			TAILQ_INSERT_AFTER(&vp->v_dirtyblkhd,
1523			    root, bp, b_vnbufs);
1524		}
1525		vp->v_dirtyblkroot = bp;
1526	} else {
1527		/* KASSERT(xflags & BX_VNCLEAN, ("xflags not clean")); */
1528		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1529		if (root == NULL) {
1530			bp->b_left = NULL;
1531			bp->b_right = NULL;
1532			TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1533		} else if (bp->b_lblkno < root->b_lblkno ||
1534		    (bp->b_lblkno == root->b_lblkno &&
1535		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1536			bp->b_left = root->b_left;
1537			bp->b_right = root;
1538			root->b_left = NULL;
1539			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1540		} else {
1541			bp->b_right = root->b_right;
1542			bp->b_left = root;
1543			root->b_right = NULL;
1544			TAILQ_INSERT_AFTER(&vp->v_cleanblkhd,
1545			    root, bp, b_vnbufs);
1546		}
1547		vp->v_cleanblkroot = bp;
1548	}
1549}
1550
1551#ifndef USE_BUFHASH
1552
1553/*
1554 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1555 * shadow buffers used in background bitmap writes.
1556 *
1557 * This code isn't quite efficient as it could be because we are maintaining
1558 * two sorted lists and do not know which list the block resides in.
1559 */
1560struct buf *
1561gbincore(struct vnode *vp, daddr_t lblkno)
1562{
1563	struct buf *bp;
1564
1565	GIANT_REQUIRED;
1566
1567	ASSERT_VI_LOCKED(vp, "gbincore");
1568	bp = vp->v_cleanblkroot = buf_splay(lblkno, 0, vp->v_cleanblkroot);
1569	if (bp && bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1570		return(bp);
1571	bp = vp->v_dirtyblkroot = buf_splay(lblkno, 0, vp->v_dirtyblkroot);
1572	if (bp && bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1573		return(bp);
1574	return(NULL);
1575}
1576
1577#endif
1578
1579/*
1580 * Associate a buffer with a vnode.
1581 */
1582void
1583bgetvp(vp, bp)
1584	register struct vnode *vp;
1585	register struct buf *bp;
1586{
1587	int s;
1588
1589	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1590
1591	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1592	    ("bgetvp: bp already attached! %p", bp));
1593
1594	VI_LOCK(vp);
1595	vholdl(vp);
1596	bp->b_vp = vp;
1597	bp->b_dev = vn_todev(vp);
1598	/*
1599	 * Insert onto list for new vnode.
1600	 */
1601	s = splbio();
1602	buf_vlist_add(bp, vp, BX_VNCLEAN);
1603	splx(s);
1604	VI_UNLOCK(vp);
1605}
1606
1607/*
1608 * Disassociate a buffer from a vnode.
1609 */
1610void
1611brelvp(bp)
1612	register struct buf *bp;
1613{
1614	struct vnode *vp;
1615	int s;
1616
1617	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1618
1619	/*
1620	 * Delete from old vnode list, if on one.
1621	 */
1622	vp = bp->b_vp;
1623	s = splbio();
1624	VI_LOCK(vp);
1625	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1626		buf_vlist_remove(bp);
1627	if ((vp->v_iflag & VI_ONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1628		vp->v_iflag &= ~VI_ONWORKLST;
1629		mtx_lock(&sync_mtx);
1630		LIST_REMOVE(vp, v_synclist);
1631		mtx_unlock(&sync_mtx);
1632	}
1633	vdropl(vp);
1634	VI_UNLOCK(vp);
1635	bp->b_vp = (struct vnode *) 0;
1636	if (bp->b_object)
1637		bp->b_object = NULL;
1638	splx(s);
1639}
1640
1641/*
1642 * Add an item to the syncer work queue.
1643 */
1644static void
1645vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1646{
1647	int s, slot;
1648
1649	s = splbio();
1650	ASSERT_VI_LOCKED(vp, "vn_syncer_add_to_worklist");
1651
1652	mtx_lock(&sync_mtx);
1653	if (vp->v_iflag & VI_ONWORKLST)
1654		LIST_REMOVE(vp, v_synclist);
1655	else
1656		vp->v_iflag |= VI_ONWORKLST;
1657
1658	if (delay > syncer_maxdelay - 2)
1659		delay = syncer_maxdelay - 2;
1660	slot = (syncer_delayno + delay) & syncer_mask;
1661
1662	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1663	mtx_unlock(&sync_mtx);
1664
1665	splx(s);
1666}
1667
1668struct  proc *updateproc;
1669static void sched_sync(void);
1670static struct kproc_desc up_kp = {
1671	"syncer",
1672	sched_sync,
1673	&updateproc
1674};
1675SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1676
1677/*
1678 * System filesystem synchronizer daemon.
1679 */
1680static void
1681sched_sync(void)
1682{
1683	struct synclist *slp;
1684	struct vnode *vp;
1685	struct mount *mp;
1686	long starttime;
1687	int s;
1688	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);  /* XXXKSE */
1689
1690	mtx_lock(&Giant);
1691
1692	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, td->td_proc,
1693	    SHUTDOWN_PRI_LAST);
1694
1695	for (;;) {
1696		kthread_suspend_check(td->td_proc);
1697
1698		starttime = time_second;
1699
1700		/*
1701		 * Push files whose dirty time has expired.  Be careful
1702		 * of interrupt race on slp queue.
1703		 */
1704		s = splbio();
1705		mtx_lock(&sync_mtx);
1706		slp = &syncer_workitem_pending[syncer_delayno];
1707		syncer_delayno += 1;
1708		if (syncer_delayno == syncer_maxdelay)
1709			syncer_delayno = 0;
1710		splx(s);
1711
1712		while ((vp = LIST_FIRST(slp)) != NULL) {
1713			mtx_unlock(&sync_mtx);
1714			if (VOP_ISLOCKED(vp, NULL) == 0 &&
1715			    vn_start_write(vp, &mp, V_NOWAIT) == 0) {
1716				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1717				(void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td);
1718				VOP_UNLOCK(vp, 0, td);
1719				vn_finished_write(mp);
1720			}
1721			s = splbio();
1722			mtx_lock(&sync_mtx);
1723			if (LIST_FIRST(slp) == vp) {
1724				mtx_unlock(&sync_mtx);
1725				/*
1726				 * Note: VFS vnodes can remain on the
1727				 * worklist too with no dirty blocks, but
1728				 * since sync_fsync() moves it to a different
1729				 * slot we are safe.
1730				 */
1731				VI_LOCK(vp);
1732				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1733				    !vn_isdisk(vp, NULL)) {
1734					panic("sched_sync: fsync failed "
1735					      "vp %p tag %s", vp, vp->v_tag);
1736				}
1737				/*
1738				 * Put us back on the worklist.  The worklist
1739				 * routine will remove us from our current
1740				 * position and then add us back in at a later
1741				 * position.
1742				 */
1743				vn_syncer_add_to_worklist(vp, syncdelay);
1744				VI_UNLOCK(vp);
1745				mtx_lock(&sync_mtx);
1746			}
1747			splx(s);
1748		}
1749		mtx_unlock(&sync_mtx);
1750
1751		/*
1752		 * Do soft update processing.
1753		 */
1754		if (softdep_process_worklist_hook != NULL)
1755			(*softdep_process_worklist_hook)(NULL);
1756
1757		/*
1758		 * The variable rushjob allows the kernel to speed up the
1759		 * processing of the filesystem syncer process. A rushjob
1760		 * value of N tells the filesystem syncer to process the next
1761		 * N seconds worth of work on its queue ASAP. Currently rushjob
1762		 * is used by the soft update code to speed up the filesystem
1763		 * syncer process when the incore state is getting so far
1764		 * ahead of the disk that the kernel memory pool is being
1765		 * threatened with exhaustion.
1766		 */
1767		mtx_lock(&sync_mtx);
1768		if (rushjob > 0) {
1769			rushjob -= 1;
1770			mtx_unlock(&sync_mtx);
1771			continue;
1772		}
1773		mtx_unlock(&sync_mtx);
1774		/*
1775		 * If it has taken us less than a second to process the
1776		 * current work, then wait. Otherwise start right over
1777		 * again. We can still lose time if any single round
1778		 * takes more than two seconds, but it does not really
1779		 * matter as we are just trying to generally pace the
1780		 * filesystem activity.
1781		 */
1782		if (time_second == starttime)
1783			tsleep(&lbolt, PPAUSE, "syncer", 0);
1784	}
1785}
1786
1787/*
1788 * Request the syncer daemon to speed up its work.
1789 * We never push it to speed up more than half of its
1790 * normal turn time, otherwise it could take over the cpu.
1791 * XXXKSE  only one update?
1792 */
1793int
1794speedup_syncer()
1795{
1796	struct thread *td;
1797	int ret = 0;
1798
1799	td = FIRST_THREAD_IN_PROC(updateproc);
1800	mtx_lock_spin(&sched_lock);
1801	if (td->td_wchan == &lbolt) {
1802		unsleep(td);
1803		TD_CLR_SLEEPING(td);
1804		setrunnable(td);
1805	}
1806	mtx_unlock_spin(&sched_lock);
1807	mtx_lock(&sync_mtx);
1808	if (rushjob < syncdelay / 2) {
1809		rushjob += 1;
1810		stat_rush_requests += 1;
1811		ret = 1;
1812	}
1813	mtx_unlock(&sync_mtx);
1814	return (ret);
1815}
1816
1817/*
1818 * Associate a p-buffer with a vnode.
1819 *
1820 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1821 * with the buffer.  i.e. the bp has not been linked into the vnode or
1822 * ref-counted.
1823 */
1824void
1825pbgetvp(vp, bp)
1826	register struct vnode *vp;
1827	register struct buf *bp;
1828{
1829
1830	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1831
1832	bp->b_vp = vp;
1833	bp->b_flags |= B_PAGING;
1834	bp->b_dev = vn_todev(vp);
1835}
1836
1837/*
1838 * Disassociate a p-buffer from a vnode.
1839 */
1840void
1841pbrelvp(bp)
1842	register struct buf *bp;
1843{
1844
1845	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1846
1847	/* XXX REMOVE ME */
1848	VI_LOCK(bp->b_vp);
1849	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1850		panic(
1851		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1852		    bp,
1853		    (int)bp->b_flags
1854		);
1855	}
1856	VI_UNLOCK(bp->b_vp);
1857	bp->b_vp = (struct vnode *) 0;
1858	bp->b_flags &= ~B_PAGING;
1859}
1860
1861/*
1862 * Reassign a buffer from one vnode to another.
1863 * Used to assign file specific control information
1864 * (indirect blocks) to the vnode to which they belong.
1865 */
1866void
1867reassignbuf(bp, newvp)
1868	register struct buf *bp;
1869	register struct vnode *newvp;
1870{
1871	int delay;
1872	int s;
1873
1874	if (newvp == NULL) {
1875		printf("reassignbuf: NULL");
1876		return;
1877	}
1878	++reassignbufcalls;
1879
1880	/*
1881	 * B_PAGING flagged buffers cannot be reassigned because their vp
1882	 * is not fully linked in.
1883	 */
1884	if (bp->b_flags & B_PAGING)
1885		panic("cannot reassign paging buffer");
1886
1887	s = splbio();
1888	/*
1889	 * Delete from old vnode list, if on one.
1890	 */
1891	VI_LOCK(bp->b_vp);
1892	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1893		buf_vlist_remove(bp);
1894		if (bp->b_vp != newvp) {
1895			vdropl(bp->b_vp);
1896			bp->b_vp = NULL;	/* for clarification */
1897		}
1898	}
1899	VI_UNLOCK(bp->b_vp);
1900	/*
1901	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1902	 * of clean buffers.
1903	 */
1904	VI_LOCK(newvp);
1905	if (bp->b_flags & B_DELWRI) {
1906		if ((newvp->v_iflag & VI_ONWORKLST) == 0) {
1907			switch (newvp->v_type) {
1908			case VDIR:
1909				delay = dirdelay;
1910				break;
1911			case VCHR:
1912				if (newvp->v_rdev->si_mountpoint != NULL) {
1913					delay = metadelay;
1914					break;
1915				}
1916				/* FALLTHROUGH */
1917			default:
1918				delay = filedelay;
1919			}
1920			vn_syncer_add_to_worklist(newvp, delay);
1921		}
1922		buf_vlist_add(bp, newvp, BX_VNDIRTY);
1923	} else {
1924		buf_vlist_add(bp, newvp, BX_VNCLEAN);
1925
1926		if ((newvp->v_iflag & VI_ONWORKLST) &&
1927		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1928			mtx_lock(&sync_mtx);
1929			LIST_REMOVE(newvp, v_synclist);
1930			mtx_unlock(&sync_mtx);
1931			newvp->v_iflag &= ~VI_ONWORKLST;
1932		}
1933	}
1934	if (bp->b_vp != newvp) {
1935		bp->b_vp = newvp;
1936		vholdl(bp->b_vp);
1937	}
1938	VI_UNLOCK(newvp);
1939	splx(s);
1940}
1941
1942/*
1943 * Create a vnode for a device.
1944 * Used for mounting the root filesystem.
1945 */
1946int
1947bdevvp(dev, vpp)
1948	dev_t dev;
1949	struct vnode **vpp;
1950{
1951	register struct vnode *vp;
1952	struct vnode *nvp;
1953	int error;
1954
1955	if (dev == NODEV) {
1956		*vpp = NULLVP;
1957		return (ENXIO);
1958	}
1959	if (vfinddev(dev, VCHR, vpp))
1960		return (0);
1961	error = getnewvnode("none", (struct mount *)0, spec_vnodeop_p, &nvp);
1962	if (error) {
1963		*vpp = NULLVP;
1964		return (error);
1965	}
1966	vp = nvp;
1967	vp->v_type = VCHR;
1968	addalias(vp, dev);
1969	*vpp = vp;
1970	return (0);
1971}
1972
1973static void
1974v_incr_usecount(struct vnode *vp, int delta)
1975{
1976	vp->v_usecount += delta;
1977	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1978		mtx_lock(&spechash_mtx);
1979		vp->v_rdev->si_usecount += delta;
1980		mtx_unlock(&spechash_mtx);
1981	}
1982}
1983
1984/*
1985 * Add vnode to the alias list hung off the dev_t.
1986 *
1987 * The reason for this gunk is that multiple vnodes can reference
1988 * the same physical device, so checking vp->v_usecount to see
1989 * how many users there are is inadequate; the v_usecount for
1990 * the vnodes need to be accumulated.  vcount() does that.
1991 */
1992struct vnode *
1993addaliasu(nvp, nvp_rdev)
1994	struct vnode *nvp;
1995	udev_t nvp_rdev;
1996{
1997	struct vnode *ovp;
1998	vop_t **ops;
1999	dev_t dev;
2000
2001	if (nvp->v_type == VBLK)
2002		return (nvp);
2003	if (nvp->v_type != VCHR)
2004		panic("addaliasu on non-special vnode");
2005	dev = udev2dev(nvp_rdev, 0);
2006	/*
2007	 * Check to see if we have a bdevvp vnode with no associated
2008	 * filesystem. If so, we want to associate the filesystem of
2009	 * the new newly instigated vnode with the bdevvp vnode and
2010	 * discard the newly created vnode rather than leaving the
2011	 * bdevvp vnode lying around with no associated filesystem.
2012	 */
2013	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
2014		addalias(nvp, dev);
2015		return (nvp);
2016	}
2017	/*
2018	 * Discard unneeded vnode, but save its node specific data.
2019	 * Note that if there is a lock, it is carried over in the
2020	 * node specific data to the replacement vnode.
2021	 */
2022	vref(ovp);
2023	ovp->v_data = nvp->v_data;
2024	ovp->v_tag = nvp->v_tag;
2025	nvp->v_data = NULL;
2026	lockdestroy(ovp->v_vnlock);
2027	lockinit(ovp->v_vnlock, PVFS, nvp->v_vnlock->lk_wmesg,
2028	    nvp->v_vnlock->lk_timo, nvp->v_vnlock->lk_flags & LK_EXTFLG_MASK);
2029	ops = ovp->v_op;
2030	ovp->v_op = nvp->v_op;
2031	if (VOP_ISLOCKED(nvp, curthread)) {
2032		VOP_UNLOCK(nvp, 0, curthread);
2033		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
2034	}
2035	nvp->v_op = ops;
2036	insmntque(ovp, nvp->v_mount);
2037	vrele(nvp);
2038	vgone(nvp);
2039	return (ovp);
2040}
2041
2042/* This is a local helper function that do the same as addaliasu, but for a
2043 * dev_t instead of an udev_t. */
2044static void
2045addalias(nvp, dev)
2046	struct vnode *nvp;
2047	dev_t dev;
2048{
2049
2050	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
2051	nvp->v_rdev = dev;
2052	VI_LOCK(nvp);
2053	mtx_lock(&spechash_mtx);
2054	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
2055	dev->si_usecount += nvp->v_usecount;
2056	mtx_unlock(&spechash_mtx);
2057	VI_UNLOCK(nvp);
2058}
2059
2060/*
2061 * Grab a particular vnode from the free list, increment its
2062 * reference count and lock it. The vnode lock bit is set if the
2063 * vnode is being eliminated in vgone. The process is awakened
2064 * when the transition is completed, and an error returned to
2065 * indicate that the vnode is no longer usable (possibly having
2066 * been changed to a new filesystem type).
2067 */
2068int
2069vget(vp, flags, td)
2070	register struct vnode *vp;
2071	int flags;
2072	struct thread *td;
2073{
2074	int error;
2075
2076	/*
2077	 * If the vnode is in the process of being cleaned out for
2078	 * another use, we wait for the cleaning to finish and then
2079	 * return failure. Cleaning is determined by checking that
2080	 * the VI_XLOCK flag is set.
2081	 */
2082	if ((flags & LK_INTERLOCK) == 0)
2083		VI_LOCK(vp);
2084	if (vp->v_iflag & VI_XLOCK && vp->v_vxproc != curthread) {
2085		vp->v_iflag |= VI_XWANT;
2086		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vget", 0);
2087		return (ENOENT);
2088	}
2089
2090	v_incr_usecount(vp, 1);
2091
2092	if (VSHOULDBUSY(vp))
2093		vbusy(vp);
2094	if (flags & LK_TYPE_MASK) {
2095		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
2096			/*
2097			 * must expand vrele here because we do not want
2098			 * to call VOP_INACTIVE if the reference count
2099			 * drops back to zero since it was never really
2100			 * active. We must remove it from the free list
2101			 * before sleeping so that multiple processes do
2102			 * not try to recycle it.
2103			 */
2104			VI_LOCK(vp);
2105			v_incr_usecount(vp, -1);
2106			if (VSHOULDFREE(vp))
2107				vfree(vp);
2108			else
2109				vlruvp(vp);
2110			VI_UNLOCK(vp);
2111		}
2112		return (error);
2113	}
2114	VI_UNLOCK(vp);
2115	return (0);
2116}
2117
2118/*
2119 * Increase the reference count of a vnode.
2120 */
2121void
2122vref(struct vnode *vp)
2123{
2124	VI_LOCK(vp);
2125	v_incr_usecount(vp, 1);
2126	VI_UNLOCK(vp);
2127}
2128
2129/*
2130 * Return reference count of a vnode.
2131 *
2132 * The results of this call are only guaranteed when some mechanism other
2133 * than the VI lock is used to stop other processes from gaining references
2134 * to the vnode.  This may be the case if the caller holds the only reference.
2135 * This is also useful when stale data is acceptable as race conditions may
2136 * be accounted for by some other means.
2137 */
2138int
2139vrefcnt(struct vnode *vp)
2140{
2141	int usecnt;
2142
2143	VI_LOCK(vp);
2144	usecnt = vp->v_usecount;
2145	VI_UNLOCK(vp);
2146
2147	return (usecnt);
2148}
2149
2150
2151/*
2152 * Vnode put/release.
2153 * If count drops to zero, call inactive routine and return to freelist.
2154 */
2155void
2156vrele(vp)
2157	struct vnode *vp;
2158{
2159	struct thread *td = curthread;	/* XXX */
2160
2161	KASSERT(vp != NULL, ("vrele: null vp"));
2162
2163	VI_LOCK(vp);
2164
2165	/* Skip this v_writecount check if we're going to panic below. */
2166	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2167	    ("vrele: missed vn_close"));
2168
2169	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2170	    vp->v_usecount == 1)) {
2171		v_incr_usecount(vp, -1);
2172		VI_UNLOCK(vp);
2173
2174		return;
2175	}
2176
2177	if (vp->v_usecount == 1) {
2178		v_incr_usecount(vp, -1);
2179		/*
2180		 * We must call VOP_INACTIVE with the node locked. Mark
2181		 * as VI_DOINGINACT to avoid recursion.
2182		 */
2183		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
2184			VI_LOCK(vp);
2185			vp->v_iflag |= VI_DOINGINACT;
2186			VI_UNLOCK(vp);
2187			VOP_INACTIVE(vp, td);
2188			VI_LOCK(vp);
2189			KASSERT(vp->v_iflag & VI_DOINGINACT,
2190			    ("vrele: lost VI_DOINGINACT"));
2191			vp->v_iflag &= ~VI_DOINGINACT;
2192			VI_UNLOCK(vp);
2193		}
2194		VI_LOCK(vp);
2195		if (VSHOULDFREE(vp))
2196			vfree(vp);
2197		else
2198			vlruvp(vp);
2199		VI_UNLOCK(vp);
2200
2201	} else {
2202#ifdef DIAGNOSTIC
2203		vprint("vrele: negative ref count", vp);
2204#endif
2205		VI_UNLOCK(vp);
2206		panic("vrele: negative ref cnt");
2207	}
2208}
2209
2210/*
2211 * Release an already locked vnode.  This give the same effects as
2212 * unlock+vrele(), but takes less time and avoids releasing and
2213 * re-aquiring the lock (as vrele() aquires the lock internally.)
2214 */
2215void
2216vput(vp)
2217	struct vnode *vp;
2218{
2219	struct thread *td = curthread;	/* XXX */
2220
2221	GIANT_REQUIRED;
2222
2223	KASSERT(vp != NULL, ("vput: null vp"));
2224	VI_LOCK(vp);
2225	/* Skip this v_writecount check if we're going to panic below. */
2226	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2227	    ("vput: missed vn_close"));
2228
2229	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2230	    vp->v_usecount == 1)) {
2231		v_incr_usecount(vp, -1);
2232		VOP_UNLOCK(vp, LK_INTERLOCK, td);
2233		return;
2234	}
2235
2236	if (vp->v_usecount == 1) {
2237		v_incr_usecount(vp, -1);
2238		/*
2239		 * We must call VOP_INACTIVE with the node locked, so
2240		 * we just need to release the vnode mutex. Mark as
2241		 * as VI_DOINGINACT to avoid recursion.
2242		 */
2243		vp->v_iflag |= VI_DOINGINACT;
2244		VI_UNLOCK(vp);
2245		VOP_INACTIVE(vp, td);
2246		VI_LOCK(vp);
2247		KASSERT(vp->v_iflag & VI_DOINGINACT,
2248		    ("vput: lost VI_DOINGINACT"));
2249		vp->v_iflag &= ~VI_DOINGINACT;
2250		if (VSHOULDFREE(vp))
2251			vfree(vp);
2252		else
2253			vlruvp(vp);
2254		VI_UNLOCK(vp);
2255
2256	} else {
2257#ifdef DIAGNOSTIC
2258		vprint("vput: negative ref count", vp);
2259#endif
2260		panic("vput: negative ref cnt");
2261	}
2262}
2263
2264/*
2265 * Somebody doesn't want the vnode recycled.
2266 */
2267void
2268vhold(struct vnode *vp)
2269{
2270	VI_LOCK(vp);
2271	vholdl(vp);
2272	VI_UNLOCK(vp);
2273}
2274
2275void
2276vholdl(vp)
2277	register struct vnode *vp;
2278{
2279	int s;
2280
2281	s = splbio();
2282	vp->v_holdcnt++;
2283	if (VSHOULDBUSY(vp))
2284		vbusy(vp);
2285	splx(s);
2286}
2287
2288/*
2289 * Note that there is one less who cares about this vnode.  vdrop() is the
2290 * opposite of vhold().
2291 */
2292void
2293vdrop(struct vnode *vp)
2294{
2295	VI_LOCK(vp);
2296	vdropl(vp);
2297	VI_UNLOCK(vp);
2298}
2299
2300void
2301vdropl(vp)
2302	register struct vnode *vp;
2303{
2304	int s;
2305
2306	s = splbio();
2307	if (vp->v_holdcnt <= 0)
2308		panic("vdrop: holdcnt");
2309	vp->v_holdcnt--;
2310	if (VSHOULDFREE(vp))
2311		vfree(vp);
2312	else
2313		vlruvp(vp);
2314	splx(s);
2315}
2316
2317/*
2318 * Remove any vnodes in the vnode table belonging to mount point mp.
2319 *
2320 * If FORCECLOSE is not specified, there should not be any active ones,
2321 * return error if any are found (nb: this is a user error, not a
2322 * system error). If FORCECLOSE is specified, detach any active vnodes
2323 * that are found.
2324 *
2325 * If WRITECLOSE is set, only flush out regular file vnodes open for
2326 * writing.
2327 *
2328 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2329 *
2330 * `rootrefs' specifies the base reference count for the root vnode
2331 * of this filesystem. The root vnode is considered busy if its
2332 * v_usecount exceeds this value. On a successful return, vflush()
2333 * will call vrele() on the root vnode exactly rootrefs times.
2334 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2335 * be zero.
2336 */
2337#ifdef DIAGNOSTIC
2338static int busyprt = 0;		/* print out busy vnodes */
2339SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2340#endif
2341
2342int
2343vflush(mp, rootrefs, flags)
2344	struct mount *mp;
2345	int rootrefs;
2346	int flags;
2347{
2348	struct thread *td = curthread;	/* XXX */
2349	struct vnode *vp, *nvp, *rootvp = NULL;
2350	struct vattr vattr;
2351	int busy = 0, error;
2352
2353	if (rootrefs > 0) {
2354		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2355		    ("vflush: bad args"));
2356		/*
2357		 * Get the filesystem root vnode. We can vput() it
2358		 * immediately, since with rootrefs > 0, it won't go away.
2359		 */
2360		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
2361			return (error);
2362		vput(rootvp);
2363
2364	}
2365	mtx_lock(&mntvnode_mtx);
2366loop:
2367	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
2368		/*
2369		 * Make sure this vnode wasn't reclaimed in getnewvnode().
2370		 * Start over if it has (it won't be on the list anymore).
2371		 */
2372		if (vp->v_mount != mp)
2373			goto loop;
2374		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2375
2376		VI_LOCK(vp);
2377		mtx_unlock(&mntvnode_mtx);
2378		vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY, td);
2379		/*
2380		 * Skip over a vnodes marked VV_SYSTEM.
2381		 */
2382		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2383			VOP_UNLOCK(vp, 0, td);
2384			mtx_lock(&mntvnode_mtx);
2385			continue;
2386		}
2387		/*
2388		 * If WRITECLOSE is set, flush out unlinked but still open
2389		 * files (even if open only for reading) and regular file
2390		 * vnodes open for writing.
2391		 */
2392		if (flags & WRITECLOSE) {
2393			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2394			VI_LOCK(vp);
2395
2396			if ((vp->v_type == VNON ||
2397			    (error == 0 && vattr.va_nlink > 0)) &&
2398			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2399				VOP_UNLOCK(vp, LK_INTERLOCK, td);
2400				mtx_lock(&mntvnode_mtx);
2401				continue;
2402			}
2403		} else
2404			VI_LOCK(vp);
2405
2406		VOP_UNLOCK(vp, 0, td);
2407
2408		/*
2409		 * With v_usecount == 0, all we need to do is clear out the
2410		 * vnode data structures and we are done.
2411		 */
2412		if (vp->v_usecount == 0) {
2413			vgonel(vp, td);
2414			mtx_lock(&mntvnode_mtx);
2415			continue;
2416		}
2417
2418		/*
2419		 * If FORCECLOSE is set, forcibly close the vnode. For block
2420		 * or character devices, revert to an anonymous device. For
2421		 * all other files, just kill them.
2422		 */
2423		if (flags & FORCECLOSE) {
2424			if (vp->v_type != VCHR) {
2425				vgonel(vp, td);
2426			} else {
2427				vclean(vp, 0, td);
2428				VI_UNLOCK(vp);
2429				vp->v_op = spec_vnodeop_p;
2430				insmntque(vp, (struct mount *) 0);
2431			}
2432			mtx_lock(&mntvnode_mtx);
2433			continue;
2434		}
2435#ifdef DIAGNOSTIC
2436		if (busyprt)
2437			vprint("vflush: busy vnode", vp);
2438#endif
2439		VI_UNLOCK(vp);
2440		mtx_lock(&mntvnode_mtx);
2441		busy++;
2442	}
2443	mtx_unlock(&mntvnode_mtx);
2444	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2445		/*
2446		 * If just the root vnode is busy, and if its refcount
2447		 * is equal to `rootrefs', then go ahead and kill it.
2448		 */
2449		VI_LOCK(rootvp);
2450		KASSERT(busy > 0, ("vflush: not busy"));
2451		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
2452		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2453			vgonel(rootvp, td);
2454			busy = 0;
2455		} else
2456			VI_UNLOCK(rootvp);
2457	}
2458	if (busy)
2459		return (EBUSY);
2460	for (; rootrefs > 0; rootrefs--)
2461		vrele(rootvp);
2462	return (0);
2463}
2464
2465/*
2466 * This moves a now (likely recyclable) vnode to the end of the
2467 * mountlist.  XXX However, it is temporarily disabled until we
2468 * can clean up ffs_sync() and friends, which have loop restart
2469 * conditions which this code causes to operate O(N^2).
2470 */
2471static void
2472vlruvp(struct vnode *vp)
2473{
2474#if 0
2475	struct mount *mp;
2476
2477	if ((mp = vp->v_mount) != NULL) {
2478		mtx_lock(&mntvnode_mtx);
2479		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2480		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2481		mtx_unlock(&mntvnode_mtx);
2482	}
2483#endif
2484}
2485
2486/*
2487 * Disassociate the underlying filesystem from a vnode.
2488 */
2489static void
2490vclean(vp, flags, td)
2491	struct vnode *vp;
2492	int flags;
2493	struct thread *td;
2494{
2495	int active;
2496
2497	ASSERT_VI_LOCKED(vp, "vclean");
2498	/*
2499	 * Check to see if the vnode is in use. If so we have to reference it
2500	 * before we clean it out so that its count cannot fall to zero and
2501	 * generate a race against ourselves to recycle it.
2502	 */
2503	if ((active = vp->v_usecount))
2504		v_incr_usecount(vp, 1);
2505
2506	/*
2507	 * Prevent the vnode from being recycled or brought into use while we
2508	 * clean it out.
2509	 */
2510	if (vp->v_iflag & VI_XLOCK)
2511		panic("vclean: deadlock");
2512	vp->v_iflag |= VI_XLOCK;
2513	vp->v_vxproc = curthread;
2514	/*
2515	 * Even if the count is zero, the VOP_INACTIVE routine may still
2516	 * have the object locked while it cleans it out. The VOP_LOCK
2517	 * ensures that the VOP_INACTIVE routine is done with its work.
2518	 * For active vnodes, it ensures that no other activity can
2519	 * occur while the underlying object is being cleaned out.
2520	 */
2521	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2522
2523	/*
2524	 * Clean out any buffers associated with the vnode.
2525	 * If the flush fails, just toss the buffers.
2526	 */
2527	if (flags & DOCLOSE) {
2528		struct buf *bp;
2529		VI_LOCK(vp);
2530		bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
2531		VI_UNLOCK(vp);
2532		if (bp != NULL)
2533			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2534		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2535			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2536	}
2537
2538	VOP_DESTROYVOBJECT(vp);
2539
2540	/*
2541	 * Any other processes trying to obtain this lock must first
2542	 * wait for VXLOCK to clear, then call the new lock operation.
2543	 */
2544	VOP_UNLOCK(vp, 0, td);
2545
2546	/*
2547	 * If purging an active vnode, it must be closed and
2548	 * deactivated before being reclaimed. Note that the
2549	 * VOP_INACTIVE will unlock the vnode.
2550	 */
2551	if (active) {
2552		if (flags & DOCLOSE)
2553			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2554		VI_LOCK(vp);
2555		if ((vp->v_iflag & VI_DOINGINACT) == 0) {
2556			vp->v_iflag |= VI_DOINGINACT;
2557			VI_UNLOCK(vp);
2558			if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2559				panic("vclean: cannot relock.");
2560			VOP_INACTIVE(vp, td);
2561			VI_LOCK(vp);
2562			KASSERT(vp->v_iflag & VI_DOINGINACT,
2563			    ("vclean: lost VI_DOINGINACT"));
2564			vp->v_iflag &= ~VI_DOINGINACT;
2565		}
2566		VI_UNLOCK(vp);
2567	}
2568
2569	/*
2570	 * Reclaim the vnode.
2571	 */
2572	if (VOP_RECLAIM(vp, td))
2573		panic("vclean: cannot reclaim");
2574
2575	if (active) {
2576		/*
2577		 * Inline copy of vrele() since VOP_INACTIVE
2578		 * has already been called.
2579		 */
2580		VI_LOCK(vp);
2581		v_incr_usecount(vp, -1);
2582		if (vp->v_usecount <= 0) {
2583#ifdef DIAGNOSTIC
2584			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2585				vprint("vclean: bad ref count", vp);
2586				panic("vclean: ref cnt");
2587			}
2588#endif
2589			vfree(vp);
2590		}
2591		VI_UNLOCK(vp);
2592	}
2593
2594	cache_purge(vp);
2595	VI_LOCK(vp);
2596	if (VSHOULDFREE(vp))
2597		vfree(vp);
2598
2599	/*
2600	 * Done with purge, reset to the standard lock and
2601	 * notify sleepers of the grim news.
2602	 */
2603	vp->v_vnlock = &vp->v_lock;
2604	vp->v_op = dead_vnodeop_p;
2605	if (vp->v_pollinfo != NULL)
2606		vn_pollgone(vp);
2607	vp->v_tag = "none";
2608	vp->v_iflag &= ~VI_XLOCK;
2609	vp->v_vxproc = NULL;
2610	if (vp->v_iflag & VI_XWANT) {
2611		vp->v_iflag &= ~VI_XWANT;
2612		wakeup(vp);
2613	}
2614}
2615
2616/*
2617 * Eliminate all activity associated with the requested vnode
2618 * and with all vnodes aliased to the requested vnode.
2619 */
2620int
2621vop_revoke(ap)
2622	struct vop_revoke_args /* {
2623		struct vnode *a_vp;
2624		int a_flags;
2625	} */ *ap;
2626{
2627	struct vnode *vp, *vq;
2628	dev_t dev;
2629
2630	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2631	vp = ap->a_vp;
2632	KASSERT((vp->v_type == VCHR), ("vop_revoke: not VCHR"));
2633
2634	VI_LOCK(vp);
2635	/*
2636	 * If a vgone (or vclean) is already in progress,
2637	 * wait until it is done and return.
2638	 */
2639	if (vp->v_iflag & VI_XLOCK) {
2640		vp->v_iflag |= VI_XWANT;
2641		msleep(vp, VI_MTX(vp), PINOD | PDROP,
2642		    "vop_revokeall", 0);
2643		return (0);
2644	}
2645	VI_UNLOCK(vp);
2646	dev = vp->v_rdev;
2647	for (;;) {
2648		mtx_lock(&spechash_mtx);
2649		vq = SLIST_FIRST(&dev->si_hlist);
2650		mtx_unlock(&spechash_mtx);
2651		if (!vq)
2652			break;
2653		vgone(vq);
2654	}
2655	return (0);
2656}
2657
2658/*
2659 * Recycle an unused vnode to the front of the free list.
2660 * Release the passed interlock if the vnode will be recycled.
2661 */
2662int
2663vrecycle(vp, inter_lkp, td)
2664	struct vnode *vp;
2665	struct mtx *inter_lkp;
2666	struct thread *td;
2667{
2668
2669	VI_LOCK(vp);
2670	if (vp->v_usecount == 0) {
2671		if (inter_lkp) {
2672			mtx_unlock(inter_lkp);
2673		}
2674		vgonel(vp, td);
2675		return (1);
2676	}
2677	VI_UNLOCK(vp);
2678	return (0);
2679}
2680
2681/*
2682 * Eliminate all activity associated with a vnode
2683 * in preparation for reuse.
2684 */
2685void
2686vgone(vp)
2687	register struct vnode *vp;
2688{
2689	struct thread *td = curthread;	/* XXX */
2690
2691	VI_LOCK(vp);
2692	vgonel(vp, td);
2693}
2694
2695/*
2696 * vgone, with the vp interlock held.
2697 */
2698void
2699vgonel(vp, td)
2700	struct vnode *vp;
2701	struct thread *td;
2702{
2703	int s;
2704
2705	/*
2706	 * If a vgone (or vclean) is already in progress,
2707	 * wait until it is done and return.
2708	 */
2709	ASSERT_VI_LOCKED(vp, "vgonel");
2710	if (vp->v_iflag & VI_XLOCK) {
2711		vp->v_iflag |= VI_XWANT;
2712		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vgone", 0);
2713		return;
2714	}
2715
2716	/*
2717	 * Clean out the filesystem specific data.
2718	 */
2719	vclean(vp, DOCLOSE, td);
2720	VI_UNLOCK(vp);
2721
2722	/*
2723	 * Delete from old mount point vnode list, if on one.
2724	 */
2725	if (vp->v_mount != NULL)
2726		insmntque(vp, (struct mount *)0);
2727	/*
2728	 * If special device, remove it from special device alias list
2729	 * if it is on one.
2730	 */
2731	if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) {
2732		VI_LOCK(vp);
2733		mtx_lock(&spechash_mtx);
2734		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
2735		vp->v_rdev->si_usecount -= vp->v_usecount;
2736		mtx_unlock(&spechash_mtx);
2737		VI_UNLOCK(vp);
2738		vp->v_rdev = NULL;
2739	}
2740
2741	/*
2742	 * If it is on the freelist and not already at the head,
2743	 * move it to the head of the list. The test of the
2744	 * VDOOMED flag and the reference count of zero is because
2745	 * it will be removed from the free list by getnewvnode,
2746	 * but will not have its reference count incremented until
2747	 * after calling vgone. If the reference count were
2748	 * incremented first, vgone would (incorrectly) try to
2749	 * close the previous instance of the underlying object.
2750	 */
2751	VI_LOCK(vp);
2752	if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2753		s = splbio();
2754		mtx_lock(&vnode_free_list_mtx);
2755		if (vp->v_iflag & VI_FREE) {
2756			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2757		} else {
2758			vp->v_iflag |= VI_FREE;
2759			freevnodes++;
2760		}
2761		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2762		mtx_unlock(&vnode_free_list_mtx);
2763		splx(s);
2764	}
2765
2766	vp->v_type = VBAD;
2767	VI_UNLOCK(vp);
2768}
2769
2770/*
2771 * Lookup a vnode by device number.
2772 */
2773int
2774vfinddev(dev, type, vpp)
2775	dev_t dev;
2776	enum vtype type;
2777	struct vnode **vpp;
2778{
2779	struct vnode *vp;
2780
2781	mtx_lock(&spechash_mtx);
2782	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2783		if (type == vp->v_type) {
2784			*vpp = vp;
2785			mtx_unlock(&spechash_mtx);
2786			return (1);
2787		}
2788	}
2789	mtx_unlock(&spechash_mtx);
2790	return (0);
2791}
2792
2793/*
2794 * Calculate the total number of references to a special device.
2795 */
2796int
2797vcount(vp)
2798	struct vnode *vp;
2799{
2800	int count;
2801
2802	mtx_lock(&spechash_mtx);
2803	count = vp->v_rdev->si_usecount;
2804	mtx_unlock(&spechash_mtx);
2805	return (count);
2806}
2807
2808/*
2809 * Same as above, but using the dev_t as argument
2810 */
2811int
2812count_dev(dev)
2813	dev_t dev;
2814{
2815	struct vnode *vp;
2816
2817	vp = SLIST_FIRST(&dev->si_hlist);
2818	if (vp == NULL)
2819		return (0);
2820	return(vcount(vp));
2821}
2822
2823/*
2824 * Print out a description of a vnode.
2825 */
2826static char *typename[] =
2827{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2828
2829void
2830vprint(label, vp)
2831	char *label;
2832	struct vnode *vp;
2833{
2834	char buf[96];
2835
2836	if (label != NULL)
2837		printf("%s: %p: ", label, (void *)vp);
2838	else
2839		printf("%p: ", (void *)vp);
2840	printf("tag %s, type %s, usecount %d, writecount %d, refcount %d,",
2841	    vp->v_tag, typename[vp->v_type], vp->v_usecount,
2842	    vp->v_writecount, vp->v_holdcnt);
2843	buf[0] = '\0';
2844	if (vp->v_vflag & VV_ROOT)
2845		strcat(buf, "|VV_ROOT");
2846	if (vp->v_vflag & VV_TEXT)
2847		strcat(buf, "|VV_TEXT");
2848	if (vp->v_vflag & VV_SYSTEM)
2849		strcat(buf, "|VV_SYSTEM");
2850	if (vp->v_iflag & VI_XLOCK)
2851		strcat(buf, "|VI_XLOCK");
2852	if (vp->v_iflag & VI_XWANT)
2853		strcat(buf, "|VI_XWANT");
2854	if (vp->v_iflag & VI_BWAIT)
2855		strcat(buf, "|VI_BWAIT");
2856	if (vp->v_iflag & VI_DOOMED)
2857		strcat(buf, "|VI_DOOMED");
2858	if (vp->v_iflag & VI_FREE)
2859		strcat(buf, "|VI_FREE");
2860	if (vp->v_vflag & VV_OBJBUF)
2861		strcat(buf, "|VV_OBJBUF");
2862	if (buf[0] != '\0')
2863		printf(" flags (%s),", &buf[1]);
2864	lockmgr_printinfo(vp->v_vnlock);
2865	printf("\n");
2866	if (vp->v_data != NULL) {
2867		printf("\t");
2868		VOP_PRINT(vp);
2869	}
2870}
2871
2872#ifdef DDB
2873#include <ddb/ddb.h>
2874/*
2875 * List all of the locked vnodes in the system.
2876 * Called when debugging the kernel.
2877 */
2878DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2879{
2880	struct thread *td = curthread;	/* XXX */
2881	struct mount *mp, *nmp;
2882	struct vnode *vp;
2883
2884	printf("Locked vnodes\n");
2885	mtx_lock(&mountlist_mtx);
2886	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2887		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
2888			nmp = TAILQ_NEXT(mp, mnt_list);
2889			continue;
2890		}
2891		mtx_lock(&mntvnode_mtx);
2892		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2893			if (VOP_ISLOCKED(vp, NULL))
2894				vprint((char *)0, vp);
2895		}
2896		mtx_unlock(&mntvnode_mtx);
2897		mtx_lock(&mountlist_mtx);
2898		nmp = TAILQ_NEXT(mp, mnt_list);
2899		vfs_unbusy(mp, td);
2900	}
2901	mtx_unlock(&mountlist_mtx);
2902}
2903#endif
2904
2905/*
2906 * Fill in a struct xvfsconf based on a struct vfsconf.
2907 */
2908static void
2909vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2910{
2911
2912	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2913	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2914	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2915	xvfsp->vfc_flags = vfsp->vfc_flags;
2916	/*
2917	 * These are unused in userland, we keep them
2918	 * to not break binary compatibility.
2919	 */
2920	xvfsp->vfc_vfsops = NULL;
2921	xvfsp->vfc_next = NULL;
2922}
2923
2924static int
2925sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2926{
2927	struct vfsconf *vfsp;
2928	struct xvfsconf *xvfsp;
2929	int cnt, error, i;
2930
2931	cnt = 0;
2932	for (vfsp = vfsconf; vfsp != NULL; vfsp = vfsp->vfc_next)
2933		cnt++;
2934	xvfsp = malloc(sizeof(struct xvfsconf) * cnt, M_TEMP, M_WAITOK);
2935	/*
2936	 * Handle the race that we will have here when struct vfsconf
2937	 * will be locked down by using both cnt and checking vfc_next
2938	 * against NULL to determine the end of the loop.  The race will
2939	 * happen because we will have to unlock before calling malloc().
2940	 * We are protected by Giant for now.
2941	 */
2942	i = 0;
2943	for (vfsp = vfsconf; vfsp != NULL && i < cnt; vfsp = vfsp->vfc_next) {
2944		vfsconf2x(vfsp, xvfsp + i);
2945		i++;
2946	}
2947	error = SYSCTL_OUT(req, xvfsp, sizeof(struct xvfsconf) * i);
2948	free(xvfsp, M_TEMP);
2949	return (error);
2950}
2951
2952SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2953    "S,xvfsconf", "List of all configured filesystems");
2954
2955/*
2956 * Top level filesystem related information gathering.
2957 */
2958static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2959
2960static int
2961vfs_sysctl(SYSCTL_HANDLER_ARGS)
2962{
2963	int *name = (int *)arg1 - 1;	/* XXX */
2964	u_int namelen = arg2 + 1;	/* XXX */
2965	struct vfsconf *vfsp;
2966	struct xvfsconf xvfsp;
2967
2968	printf("WARNING: userland calling deprecated sysctl, "
2969	    "please rebuild world\n");
2970
2971#if 1 || defined(COMPAT_PRELITE2)
2972	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2973	if (namelen == 1)
2974		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2975#endif
2976
2977	switch (name[1]) {
2978	case VFS_MAXTYPENUM:
2979		if (namelen != 2)
2980			return (ENOTDIR);
2981		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2982	case VFS_CONF:
2983		if (namelen != 3)
2984			return (ENOTDIR);	/* overloaded */
2985		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2986			if (vfsp->vfc_typenum == name[2])
2987				break;
2988		if (vfsp == NULL)
2989			return (EOPNOTSUPP);
2990		vfsconf2x(vfsp, &xvfsp);
2991		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2992	}
2993	return (EOPNOTSUPP);
2994}
2995
2996SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, vfs_sysctl,
2997	"Generic filesystem");
2998
2999#if 1 || defined(COMPAT_PRELITE2)
3000
3001static int
3002sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3003{
3004	int error;
3005	struct vfsconf *vfsp;
3006	struct ovfsconf ovfs;
3007
3008	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
3009		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3010		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3011		ovfs.vfc_index = vfsp->vfc_typenum;
3012		ovfs.vfc_refcount = vfsp->vfc_refcount;
3013		ovfs.vfc_flags = vfsp->vfc_flags;
3014		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3015		if (error)
3016			return error;
3017	}
3018	return 0;
3019}
3020
3021#endif /* 1 || COMPAT_PRELITE2 */
3022
3023#define KINFO_VNODESLOP		10
3024#ifdef notyet
3025/*
3026 * Dump vnode list (via sysctl).
3027 */
3028/* ARGSUSED */
3029static int
3030sysctl_vnode(SYSCTL_HANDLER_ARGS)
3031{
3032	struct xvnode *xvn;
3033	struct thread *td = req->td;
3034	struct mount *mp;
3035	struct vnode *vp;
3036	int error, len, n;
3037
3038	/*
3039	 * Stale numvnodes access is not fatal here.
3040	 */
3041	req->lock = 0;
3042	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3043	if (!req->oldptr)
3044		/* Make an estimate */
3045		return (SYSCTL_OUT(req, 0, len));
3046
3047	sysctl_wire_old_buffer(req, 0);
3048	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3049	n = 0;
3050	mtx_lock(&mountlist_mtx);
3051	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3052		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
3053			continue;
3054		mtx_lock(&mntvnode_mtx);
3055		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3056			if (n == len)
3057				break;
3058			vref(vp);
3059			xvn[n].xv_size = sizeof *xvn;
3060			xvn[n].xv_vnode = vp;
3061#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3062			XV_COPY(usecount);
3063			XV_COPY(writecount);
3064			XV_COPY(holdcnt);
3065			XV_COPY(id);
3066			XV_COPY(mount);
3067			XV_COPY(numoutput);
3068			XV_COPY(type);
3069#undef XV_COPY
3070			xvn[n].xv_flag = vp->v_vflag;
3071
3072			switch (vp->v_type) {
3073			case VREG:
3074			case VDIR:
3075			case VLNK:
3076				xvn[n].xv_dev = vp->v_cachedfs;
3077				xvn[n].xv_ino = vp->v_cachedid;
3078				break;
3079			case VBLK:
3080			case VCHR:
3081				if (vp->v_rdev == NULL) {
3082					vrele(vp);
3083					continue;
3084				}
3085				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3086				break;
3087			case VSOCK:
3088				xvn[n].xv_socket = vp->v_socket;
3089				break;
3090			case VFIFO:
3091				xvn[n].xv_fifo = vp->v_fifoinfo;
3092				break;
3093			case VNON:
3094			case VBAD:
3095			default:
3096				/* shouldn't happen? */
3097				vrele(vp);
3098				continue;
3099			}
3100			vrele(vp);
3101			++n;
3102		}
3103		mtx_unlock(&mntvnode_mtx);
3104		mtx_lock(&mountlist_mtx);
3105		vfs_unbusy(mp, td);
3106		if (n == len)
3107			break;
3108	}
3109	mtx_unlock(&mountlist_mtx);
3110
3111	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3112	free(xvn, M_TEMP);
3113	return (error);
3114}
3115
3116SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3117	0, 0, sysctl_vnode, "S,xvnode", "");
3118#endif
3119
3120/*
3121 * Check to see if a filesystem is mounted on a block device.
3122 */
3123int
3124vfs_mountedon(vp)
3125	struct vnode *vp;
3126{
3127
3128	if (vp->v_rdev->si_mountpoint != NULL)
3129		return (EBUSY);
3130	return (0);
3131}
3132
3133/*
3134 * Unmount all filesystems. The list is traversed in reverse order
3135 * of mounting to avoid dependencies.
3136 */
3137void
3138vfs_unmountall()
3139{
3140	struct mount *mp;
3141	struct thread *td;
3142	int error;
3143
3144	if (curthread != NULL)
3145		td = curthread;
3146	else
3147		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
3148	/*
3149	 * Since this only runs when rebooting, it is not interlocked.
3150	 */
3151	while(!TAILQ_EMPTY(&mountlist)) {
3152		mp = TAILQ_LAST(&mountlist, mntlist);
3153		error = dounmount(mp, MNT_FORCE, td);
3154		if (error) {
3155			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3156			printf("unmount of %s failed (",
3157			    mp->mnt_stat.f_mntonname);
3158			if (error == EBUSY)
3159				printf("BUSY)\n");
3160			else
3161				printf("%d)\n", error);
3162		} else {
3163			/* The unmount has removed mp from the mountlist */
3164		}
3165	}
3166}
3167
3168/*
3169 * perform msync on all vnodes under a mount point
3170 * the mount point must be locked.
3171 */
3172void
3173vfs_msync(struct mount *mp, int flags)
3174{
3175	struct vnode *vp, *nvp;
3176	struct vm_object *obj;
3177	int tries;
3178
3179	GIANT_REQUIRED;
3180
3181	tries = 5;
3182	mtx_lock(&mntvnode_mtx);
3183loop:
3184	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
3185		if (vp->v_mount != mp) {
3186			if (--tries > 0)
3187				goto loop;
3188			break;
3189		}
3190		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
3191
3192		VI_LOCK(vp);
3193		if (vp->v_iflag & VI_XLOCK) {	/* XXX: what if MNT_WAIT? */
3194			VI_UNLOCK(vp);
3195			continue;
3196		}
3197
3198		if ((vp->v_iflag & VI_OBJDIRTY) &&
3199		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
3200			mtx_unlock(&mntvnode_mtx);
3201			if (!vget(vp,
3202			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3203			    curthread)) {
3204				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3205					vput(vp);
3206					mtx_lock(&mntvnode_mtx);
3207					continue;
3208				}
3209
3210				if (VOP_GETVOBJECT(vp, &obj) == 0) {
3211					vm_object_page_clean(obj, 0, 0,
3212					    flags == MNT_WAIT ?
3213					    OBJPC_SYNC : OBJPC_NOSYNC);
3214				}
3215				vput(vp);
3216			}
3217			mtx_lock(&mntvnode_mtx);
3218			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
3219				if (--tries > 0)
3220					goto loop;
3221				break;
3222			}
3223		} else
3224			VI_UNLOCK(vp);
3225	}
3226	mtx_unlock(&mntvnode_mtx);
3227}
3228
3229/*
3230 * Create the VM object needed for VMIO and mmap support.  This
3231 * is done for all VREG files in the system.  Some filesystems might
3232 * afford the additional metadata buffering capability of the
3233 * VMIO code by making the device node be VMIO mode also.
3234 *
3235 * vp must be locked when vfs_object_create is called.
3236 */
3237int
3238vfs_object_create(vp, td, cred)
3239	struct vnode *vp;
3240	struct thread *td;
3241	struct ucred *cred;
3242{
3243	GIANT_REQUIRED;
3244	return (VOP_CREATEVOBJECT(vp, cred, td));
3245}
3246
3247/*
3248 * Mark a vnode as free, putting it up for recycling.
3249 */
3250void
3251vfree(vp)
3252	struct vnode *vp;
3253{
3254	int s;
3255
3256	ASSERT_VI_LOCKED(vp, "vfree");
3257	s = splbio();
3258	mtx_lock(&vnode_free_list_mtx);
3259	KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
3260	if (vp->v_iflag & VI_AGE) {
3261		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3262	} else {
3263		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3264	}
3265	freevnodes++;
3266	mtx_unlock(&vnode_free_list_mtx);
3267	vp->v_iflag &= ~VI_AGE;
3268	vp->v_iflag |= VI_FREE;
3269	splx(s);
3270}
3271
3272/*
3273 * Opposite of vfree() - mark a vnode as in use.
3274 */
3275void
3276vbusy(vp)
3277	struct vnode *vp;
3278{
3279	int s;
3280
3281	s = splbio();
3282	ASSERT_VI_LOCKED(vp, "vbusy");
3283	KASSERT((vp->v_iflag & VI_FREE) != 0, ("vnode not free"));
3284
3285	mtx_lock(&vnode_free_list_mtx);
3286	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3287	freevnodes--;
3288	mtx_unlock(&vnode_free_list_mtx);
3289
3290	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3291	splx(s);
3292}
3293
3294/*
3295 * Record a process's interest in events which might happen to
3296 * a vnode.  Because poll uses the historic select-style interface
3297 * internally, this routine serves as both the ``check for any
3298 * pending events'' and the ``record my interest in future events''
3299 * functions.  (These are done together, while the lock is held,
3300 * to avoid race conditions.)
3301 */
3302int
3303vn_pollrecord(vp, td, events)
3304	struct vnode *vp;
3305	struct thread *td;
3306	short events;
3307{
3308
3309	if (vp->v_pollinfo == NULL)
3310		v_addpollinfo(vp);
3311	mtx_lock(&vp->v_pollinfo->vpi_lock);
3312	if (vp->v_pollinfo->vpi_revents & events) {
3313		/*
3314		 * This leaves events we are not interested
3315		 * in available for the other process which
3316		 * which presumably had requested them
3317		 * (otherwise they would never have been
3318		 * recorded).
3319		 */
3320		events &= vp->v_pollinfo->vpi_revents;
3321		vp->v_pollinfo->vpi_revents &= ~events;
3322
3323		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3324		return events;
3325	}
3326	vp->v_pollinfo->vpi_events |= events;
3327	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3328	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3329	return 0;
3330}
3331
3332/*
3333 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3334 * it is possible for us to miss an event due to race conditions, but
3335 * that condition is expected to be rare, so for the moment it is the
3336 * preferred interface.
3337 */
3338void
3339vn_pollevent(vp, events)
3340	struct vnode *vp;
3341	short events;
3342{
3343
3344	if (vp->v_pollinfo == NULL)
3345		v_addpollinfo(vp);
3346	mtx_lock(&vp->v_pollinfo->vpi_lock);
3347	if (vp->v_pollinfo->vpi_events & events) {
3348		/*
3349		 * We clear vpi_events so that we don't
3350		 * call selwakeup() twice if two events are
3351		 * posted before the polling process(es) is
3352		 * awakened.  This also ensures that we take at
3353		 * most one selwakeup() if the polling process
3354		 * is no longer interested.  However, it does
3355		 * mean that only one event can be noticed at
3356		 * a time.  (Perhaps we should only clear those
3357		 * event bits which we note?) XXX
3358		 */
3359		vp->v_pollinfo->vpi_events = 0;	/* &= ~events ??? */
3360		vp->v_pollinfo->vpi_revents |= events;
3361		selwakeup(&vp->v_pollinfo->vpi_selinfo);
3362	}
3363	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3364}
3365
3366/*
3367 * Wake up anyone polling on vp because it is being revoked.
3368 * This depends on dead_poll() returning POLLHUP for correct
3369 * behavior.
3370 */
3371void
3372vn_pollgone(vp)
3373	struct vnode *vp;
3374{
3375
3376	mtx_lock(&vp->v_pollinfo->vpi_lock);
3377	VN_KNOTE(vp, NOTE_REVOKE);
3378	if (vp->v_pollinfo->vpi_events) {
3379		vp->v_pollinfo->vpi_events = 0;
3380		selwakeup(&vp->v_pollinfo->vpi_selinfo);
3381	}
3382	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3383}
3384
3385
3386
3387/*
3388 * Routine to create and manage a filesystem syncer vnode.
3389 */
3390#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3391static int	sync_fsync(struct  vop_fsync_args *);
3392static int	sync_inactive(struct  vop_inactive_args *);
3393static int	sync_reclaim(struct  vop_reclaim_args *);
3394static int	sync_print(struct vop_print_args *);
3395
3396static vop_t **sync_vnodeop_p;
3397static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3398	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
3399	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
3400	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
3401	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
3402	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
3403	{ &vop_lock_desc,	(vop_t *) vop_stdlock },	/* lock */
3404	{ &vop_unlock_desc,	(vop_t *) vop_stdunlock },	/* unlock */
3405	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
3406	{ &vop_islocked_desc,	(vop_t *) vop_stdislocked },	/* islocked */
3407	{ NULL, NULL }
3408};
3409static struct vnodeopv_desc sync_vnodeop_opv_desc =
3410	{ &sync_vnodeop_p, sync_vnodeop_entries };
3411
3412VNODEOP_SET(sync_vnodeop_opv_desc);
3413
3414/*
3415 * Create a new filesystem syncer vnode for the specified mount point.
3416 */
3417int
3418vfs_allocate_syncvnode(mp)
3419	struct mount *mp;
3420{
3421	struct vnode *vp;
3422	static long start, incr, next;
3423	int error;
3424
3425	/* Allocate a new vnode */
3426	if ((error = getnewvnode("vfs", mp, sync_vnodeop_p, &vp)) != 0) {
3427		mp->mnt_syncer = NULL;
3428		return (error);
3429	}
3430	vp->v_type = VNON;
3431	/*
3432	 * Place the vnode onto the syncer worklist. We attempt to
3433	 * scatter them about on the list so that they will go off
3434	 * at evenly distributed times even if all the filesystems
3435	 * are mounted at once.
3436	 */
3437	next += incr;
3438	if (next == 0 || next > syncer_maxdelay) {
3439		start /= 2;
3440		incr /= 2;
3441		if (start == 0) {
3442			start = syncer_maxdelay / 2;
3443			incr = syncer_maxdelay;
3444		}
3445		next = start;
3446	}
3447	VI_LOCK(vp);
3448	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3449	VI_UNLOCK(vp);
3450	mp->mnt_syncer = vp;
3451	return (0);
3452}
3453
3454/*
3455 * Do a lazy sync of the filesystem.
3456 */
3457static int
3458sync_fsync(ap)
3459	struct vop_fsync_args /* {
3460		struct vnode *a_vp;
3461		struct ucred *a_cred;
3462		int a_waitfor;
3463		struct thread *a_td;
3464	} */ *ap;
3465{
3466	struct vnode *syncvp = ap->a_vp;
3467	struct mount *mp = syncvp->v_mount;
3468	struct thread *td = ap->a_td;
3469	int error, asyncflag;
3470
3471	/*
3472	 * We only need to do something if this is a lazy evaluation.
3473	 */
3474	if (ap->a_waitfor != MNT_LAZY)
3475		return (0);
3476
3477	/*
3478	 * Move ourselves to the back of the sync list.
3479	 */
3480	VI_LOCK(syncvp);
3481	vn_syncer_add_to_worklist(syncvp, syncdelay);
3482	VI_UNLOCK(syncvp);
3483
3484	/*
3485	 * Walk the list of vnodes pushing all that are dirty and
3486	 * not already on the sync list.
3487	 */
3488	mtx_lock(&mountlist_mtx);
3489	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3490		mtx_unlock(&mountlist_mtx);
3491		return (0);
3492	}
3493	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3494		vfs_unbusy(mp, td);
3495		return (0);
3496	}
3497	asyncflag = mp->mnt_flag & MNT_ASYNC;
3498	mp->mnt_flag &= ~MNT_ASYNC;
3499	vfs_msync(mp, MNT_NOWAIT);
3500	error = VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
3501	if (asyncflag)
3502		mp->mnt_flag |= MNT_ASYNC;
3503	vn_finished_write(mp);
3504	vfs_unbusy(mp, td);
3505	return (error);
3506}
3507
3508/*
3509 * The syncer vnode is no referenced.
3510 */
3511static int
3512sync_inactive(ap)
3513	struct vop_inactive_args /* {
3514		struct vnode *a_vp;
3515		struct thread *a_td;
3516	} */ *ap;
3517{
3518
3519	VOP_UNLOCK(ap->a_vp, 0, ap->a_td);
3520	vgone(ap->a_vp);
3521	return (0);
3522}
3523
3524/*
3525 * The syncer vnode is no longer needed and is being decommissioned.
3526 *
3527 * Modifications to the worklist must be protected at splbio().
3528 */
3529static int
3530sync_reclaim(ap)
3531	struct vop_reclaim_args /* {
3532		struct vnode *a_vp;
3533	} */ *ap;
3534{
3535	struct vnode *vp = ap->a_vp;
3536	int s;
3537
3538	s = splbio();
3539	vp->v_mount->mnt_syncer = NULL;
3540	VI_LOCK(vp);
3541	if (vp->v_iflag & VI_ONWORKLST) {
3542		mtx_lock(&sync_mtx);
3543		LIST_REMOVE(vp, v_synclist);
3544		mtx_unlock(&sync_mtx);
3545		vp->v_iflag &= ~VI_ONWORKLST;
3546	}
3547	VI_UNLOCK(vp);
3548	splx(s);
3549
3550	return (0);
3551}
3552
3553/*
3554 * Print out a syncer vnode.
3555 */
3556static int
3557sync_print(ap)
3558	struct vop_print_args /* {
3559		struct vnode *a_vp;
3560	} */ *ap;
3561{
3562	struct vnode *vp = ap->a_vp;
3563
3564	printf("syncer vnode");
3565	if (vp->v_vnlock != NULL)
3566		lockmgr_printinfo(vp->v_vnlock);
3567	printf("\n");
3568	return (0);
3569}
3570
3571/*
3572 * extract the dev_t from a VCHR
3573 */
3574dev_t
3575vn_todev(vp)
3576	struct vnode *vp;
3577{
3578	if (vp->v_type != VCHR)
3579		return (NODEV);
3580	return (vp->v_rdev);
3581}
3582
3583/*
3584 * Check if vnode represents a disk device
3585 */
3586int
3587vn_isdisk(vp, errp)
3588	struct vnode *vp;
3589	int *errp;
3590{
3591	struct cdevsw *cdevsw;
3592
3593	if (vp->v_type != VCHR) {
3594		if (errp != NULL)
3595			*errp = ENOTBLK;
3596		return (0);
3597	}
3598	if (vp->v_rdev == NULL) {
3599		if (errp != NULL)
3600			*errp = ENXIO;
3601		return (0);
3602	}
3603	cdevsw = devsw(vp->v_rdev);
3604	if (cdevsw == NULL) {
3605		if (errp != NULL)
3606			*errp = ENXIO;
3607		return (0);
3608	}
3609	if (!(cdevsw->d_flags & D_DISK)) {
3610		if (errp != NULL)
3611			*errp = ENOTBLK;
3612		return (0);
3613	}
3614	if (errp != NULL)
3615		*errp = 0;
3616	return (1);
3617}
3618
3619/*
3620 * Free data allocated by namei(); see namei(9) for details.
3621 */
3622void
3623NDFREE(ndp, flags)
3624     struct nameidata *ndp;
3625     const uint flags;
3626{
3627	if (!(flags & NDF_NO_FREE_PNBUF) &&
3628	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3629		uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3630		ndp->ni_cnd.cn_flags &= ~HASBUF;
3631	}
3632	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3633	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3634	    ndp->ni_dvp != ndp->ni_vp)
3635		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3636	if (!(flags & NDF_NO_DVP_RELE) &&
3637	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3638		vrele(ndp->ni_dvp);
3639		ndp->ni_dvp = NULL;
3640	}
3641	if (!(flags & NDF_NO_VP_UNLOCK) &&
3642	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3643		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3644	if (!(flags & NDF_NO_VP_RELE) &&
3645	    ndp->ni_vp) {
3646		vrele(ndp->ni_vp);
3647		ndp->ni_vp = NULL;
3648	}
3649	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3650	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3651		vrele(ndp->ni_startdir);
3652		ndp->ni_startdir = NULL;
3653	}
3654}
3655
3656/*
3657 * Common filesystem object access control check routine.  Accepts a
3658 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3659 * and optional call-by-reference privused argument allowing vaccess()
3660 * to indicate to the caller whether privilege was used to satisfy the
3661 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3662 */
3663int
3664vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3665	enum vtype type;
3666	mode_t file_mode;
3667	uid_t file_uid;
3668	gid_t file_gid;
3669	mode_t acc_mode;
3670	struct ucred *cred;
3671	int *privused;
3672{
3673	mode_t dac_granted;
3674#ifdef CAPABILITIES
3675	mode_t cap_granted;
3676#endif
3677
3678	/*
3679	 * Look for a normal, non-privileged way to access the file/directory
3680	 * as requested.  If it exists, go with that.
3681	 */
3682
3683	if (privused != NULL)
3684		*privused = 0;
3685
3686	dac_granted = 0;
3687
3688	/* Check the owner. */
3689	if (cred->cr_uid == file_uid) {
3690		dac_granted |= VADMIN;
3691		if (file_mode & S_IXUSR)
3692			dac_granted |= VEXEC;
3693		if (file_mode & S_IRUSR)
3694			dac_granted |= VREAD;
3695		if (file_mode & S_IWUSR)
3696			dac_granted |= (VWRITE | VAPPEND);
3697
3698		if ((acc_mode & dac_granted) == acc_mode)
3699			return (0);
3700
3701		goto privcheck;
3702	}
3703
3704	/* Otherwise, check the groups (first match) */
3705	if (groupmember(file_gid, cred)) {
3706		if (file_mode & S_IXGRP)
3707			dac_granted |= VEXEC;
3708		if (file_mode & S_IRGRP)
3709			dac_granted |= VREAD;
3710		if (file_mode & S_IWGRP)
3711			dac_granted |= (VWRITE | VAPPEND);
3712
3713		if ((acc_mode & dac_granted) == acc_mode)
3714			return (0);
3715
3716		goto privcheck;
3717	}
3718
3719	/* Otherwise, check everyone else. */
3720	if (file_mode & S_IXOTH)
3721		dac_granted |= VEXEC;
3722	if (file_mode & S_IROTH)
3723		dac_granted |= VREAD;
3724	if (file_mode & S_IWOTH)
3725		dac_granted |= (VWRITE | VAPPEND);
3726	if ((acc_mode & dac_granted) == acc_mode)
3727		return (0);
3728
3729privcheck:
3730	if (!suser_cred(cred, PRISON_ROOT)) {
3731		/* XXX audit: privilege used */
3732		if (privused != NULL)
3733			*privused = 1;
3734		return (0);
3735	}
3736
3737#ifdef CAPABILITIES
3738	/*
3739	 * Build a capability mask to determine if the set of capabilities
3740	 * satisfies the requirements when combined with the granted mask
3741	 * from above.
3742	 * For each capability, if the capability is required, bitwise
3743	 * or the request type onto the cap_granted mask.
3744	 */
3745	cap_granted = 0;
3746
3747	if (type == VDIR) {
3748		/*
3749		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3750		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3751		 */
3752		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3753		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3754			cap_granted |= VEXEC;
3755	} else {
3756		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3757		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT))
3758			cap_granted |= VEXEC;
3759	}
3760
3761	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3762	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3763		cap_granted |= VREAD;
3764
3765	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3766	    !cap_check(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT))
3767		cap_granted |= (VWRITE | VAPPEND);
3768
3769	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3770	    !cap_check(cred, NULL, CAP_FOWNER, PRISON_ROOT))
3771		cap_granted |= VADMIN;
3772
3773	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3774		/* XXX audit: privilege used */
3775		if (privused != NULL)
3776			*privused = 1;
3777		return (0);
3778	}
3779#endif
3780
3781	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3782}
3783
3784/*
3785 * Credential check based on process requesting service, and per-attribute
3786 * permissions.
3787 */
3788int
3789extattr_check_cred(struct vnode *vp, int attrnamespace,
3790    struct ucred *cred, struct thread *td, int access)
3791{
3792
3793	/*
3794	 * Kernel-invoked always succeeds.
3795	 */
3796	if (cred == NOCRED)
3797		return (0);
3798
3799	/*
3800	 * Do not allow privileged processes in jail to directly
3801	 * manipulate system attributes.
3802	 *
3803	 * XXX What capability should apply here?
3804	 * Probably CAP_SYS_SETFFLAG.
3805	 */
3806	switch (attrnamespace) {
3807	case EXTATTR_NAMESPACE_SYSTEM:
3808		/* Potentially should be: return (EPERM); */
3809		return (suser_cred(cred, 0));
3810	case EXTATTR_NAMESPACE_USER:
3811		return (VOP_ACCESS(vp, access, cred, td));
3812	default:
3813		return (EPERM);
3814	}
3815}
3816