vfs_subr.c revision 102210
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $FreeBSD: head/sys/kern/vfs_subr.c 102210 2002-08-21 06:19:29Z jeff $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46#include "opt_mac.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/conf.h>
53#include <sys/eventhandler.h>
54#include <sys/fcntl.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/mac.h>
58#include <sys/malloc.h>
59#include <sys/mount.h>
60#include <sys/namei.h>
61#include <sys/stat.h>
62#include <sys/sysctl.h>
63#include <sys/syslog.h>
64#include <sys/vmmeter.h>
65#include <sys/vnode.h>
66
67#include <vm/vm.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_page.h>
73#include <vm/uma.h>
74
75static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
76
77static void	addalias(struct vnode *vp, dev_t nvp_rdev);
78static void	insmntque(struct vnode *vp, struct mount *mp);
79static void	vclean(struct vnode *vp, int flags, struct thread *td);
80static void	vlruvp(struct vnode *vp);
81static int	flushbuflist(struct buf *blist, int flags, struct vnode *vp,
82		    int slpflag, int slptimeo, int *errorp);
83static int	vcanrecycle(struct vnode *vp);
84
85
86/*
87 * Number of vnodes in existence.  Increased whenever getnewvnode()
88 * allocates a new vnode, never decreased.
89 */
90static unsigned long	numvnodes;
91
92SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
93
94/*
95 * Conversion tables for conversion from vnode types to inode formats
96 * and back.
97 */
98enum vtype iftovt_tab[16] = {
99	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
101};
102int vttoif_tab[9] = {
103	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104	S_IFSOCK, S_IFIFO, S_IFMT,
105};
106
107/*
108 * List of vnodes that are ready for recycling.
109 */
110static TAILQ_HEAD(freelst, vnode) vnode_free_list;
111
112/*
113 * Minimum number of free vnodes.  If there are fewer than this free vnodes,
114 * getnewvnode() will return a newly allocated vnode.
115 */
116static u_long wantfreevnodes = 25;
117SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
118/* Number of vnodes in the free list. */
119static u_long freevnodes;
120SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
121
122/*
123 * Various variables used for debugging the new implementation of
124 * reassignbuf().
125 * XXX these are probably of (very) limited utility now.
126 */
127static int reassignbufcalls;
128SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
129static int nameileafonly;
130SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
131
132#ifdef ENABLE_VFS_IOOPT
133/* See NOTES for a description of this setting. */
134int vfs_ioopt;
135SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
136#endif
137
138/*
139 * Cache for the mount type id assigned to NFS.  This is used for
140 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
141 */
142int	nfs_mount_type = -1;
143
144/* To keep more than one thread at a time from running vfs_getnewfsid */
145static struct mtx mntid_mtx;
146
147/*
148 * Lock for any access to the following:
149 *	vnode_free_list
150 *	numvnodes
151 *	freevnodes
152 */
153static struct mtx vnode_free_list_mtx;
154
155/*
156 * For any iteration/modification of dev->si_hlist (linked through
157 * v_specnext)
158 */
159static struct mtx spechash_mtx;
160
161/* Publicly exported FS */
162struct nfs_public nfs_pub;
163
164/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
165static uma_zone_t vnode_zone;
166static uma_zone_t vnodepoll_zone;
167
168/* Set to 1 to print out reclaim of active vnodes */
169int	prtactive;
170
171/*
172 * The workitem queue.
173 *
174 * It is useful to delay writes of file data and filesystem metadata
175 * for tens of seconds so that quickly created and deleted files need
176 * not waste disk bandwidth being created and removed. To realize this,
177 * we append vnodes to a "workitem" queue. When running with a soft
178 * updates implementation, most pending metadata dependencies should
179 * not wait for more than a few seconds. Thus, mounted on block devices
180 * are delayed only about a half the time that file data is delayed.
181 * Similarly, directory updates are more critical, so are only delayed
182 * about a third the time that file data is delayed. Thus, there are
183 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
184 * one each second (driven off the filesystem syncer process). The
185 * syncer_delayno variable indicates the next queue that is to be processed.
186 * Items that need to be processed soon are placed in this queue:
187 *
188 *	syncer_workitem_pending[syncer_delayno]
189 *
190 * A delay of fifteen seconds is done by placing the request fifteen
191 * entries later in the queue:
192 *
193 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
194 *
195 */
196static int syncer_delayno;
197static long syncer_mask;
198LIST_HEAD(synclist, vnode);
199static struct synclist *syncer_workitem_pending;
200
201#define SYNCER_MAXDELAY		32
202static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
203static int syncdelay = 30;		/* max time to delay syncing data */
204static int filedelay = 30;		/* time to delay syncing files */
205SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
206static int dirdelay = 29;		/* time to delay syncing directories */
207SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
208static int metadelay = 28;		/* time to delay syncing metadata */
209SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
210static int rushjob;		/* number of slots to run ASAP */
211static int stat_rush_requests;	/* number of times I/O speeded up */
212SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
213
214/*
215 * Number of vnodes we want to exist at any one time.  This is mostly used
216 * to size hash tables in vnode-related code.  It is normally not used in
217 * getnewvnode(), as wantfreevnodes is normally nonzero.)
218 *
219 * XXX desiredvnodes is historical cruft and should not exist.
220 */
221int desiredvnodes;
222SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
223    &desiredvnodes, 0, "Maximum number of vnodes");
224static int minvnodes;
225SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
226    &minvnodes, 0, "Minimum number of vnodes");
227static int vnlru_nowhere;
228SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
229    "Number of times the vnlru process ran without success");
230
231/* Hook for calling soft updates */
232int (*softdep_process_worklist_hook)(struct mount *);
233
234#ifdef DEBUG_VFS_LOCKS
235/* Print lock violations */
236int vfs_badlock_print = 1;
237
238/* Panic on violation */
239int vfs_badlock_panic = 1;
240
241/* Check for interlock across VOPs */
242int vfs_badlock_mutex = 0;
243
244void
245vop_rename_pre(void *ap)
246{
247	struct vop_rename_args *a = ap;
248
249	if (a->a_tvp)
250		ASSERT_VI_UNLOCKED(a->a_tvp);
251	ASSERT_VI_UNLOCKED(a->a_tdvp);
252	ASSERT_VI_UNLOCKED(a->a_fvp);
253	ASSERT_VI_UNLOCKED(a->a_fdvp);
254
255	/* Check the source (from) */
256	if (a->a_tdvp != a->a_fdvp)
257		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked.\n");
258	if (a->a_tvp != a->a_fvp)
259		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked.\n");
260
261	/* Check the target */
262	if (a->a_tvp)
263		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked.\n");
264
265	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked.\n");
266}
267
268void
269vop_strategy_pre(void *ap)
270{
271	struct vop_strategy_args *a = ap;
272	struct buf *bp;
273
274	bp = a->a_bp;
275
276	/*
277	 * Cluster ops lock their component buffers but not the IO container.
278	 */
279	if ((bp->b_flags & B_CLUSTER) != 0)
280		return;
281
282	if (BUF_REFCNT(bp) < 1) {
283		if (vfs_badlock_print)
284			printf("VOP_STRATEGY: bp is not locked but should be.\n");
285		if (vfs_badlock_panic)
286			Debugger("Lock violation.\n");
287	}
288}
289
290void
291vop_lookup_pre(void *ap)
292{
293	struct vop_lookup_args *a = ap;
294	struct vnode *dvp;
295
296	dvp = a->a_dvp;
297
298	ASSERT_VI_UNLOCKED(dvp);
299	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
300}
301
302void
303vop_lookup_post(void *ap, int rc)
304{
305	struct vop_lookup_args *a = ap;
306	struct componentname *cnp;
307	struct vnode *dvp;
308	struct vnode *vp;
309	int flags;
310
311	dvp = a->a_dvp;
312	cnp = a->a_cnp;
313	vp = *(a->a_vpp);
314	flags = cnp->cn_flags;
315
316
317	ASSERT_VI_UNLOCKED(dvp);
318	/*
319	 * If this is the last path component for this lookup and LOCPARENT
320	 * is set, OR if there is an error the directory has to be locked.
321	 */
322	if ((flags & LOCKPARENT) && (flags & ISLASTCN))
323		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)");
324	else if (rc != 0)
325		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)");
326	else if (dvp != vp)
327		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)");
328
329	if (flags & PDIRUNLOCK)
330		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)");
331
332	if (rc == 0) {
333		ASSERT_VI_UNLOCKED(vp);
334		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (vpp)");
335	}
336}
337
338void
339vop_unlock_pre(void *ap)
340{
341	struct vop_unlock_args *a = ap;
342
343	if ((a->a_flags & LK_INTERLOCK) == 0)
344		ASSERT_VI_UNLOCKED(a->a_vp);
345	else
346		ASSERT_VI_LOCKED(a->a_vp);
347}
348
349void
350vop_unlock_post(void *ap, int rc)
351{
352	struct vop_unlock_args *a = ap;
353
354	ASSERT_VI_UNLOCKED(a->a_vp);
355}
356
357void
358vop_lock_pre(void *ap)
359{
360	struct vop_lock_args *a = ap;
361
362	if ((a->a_flags & LK_INTERLOCK) == 0)
363		ASSERT_VI_UNLOCKED(a->a_vp);
364	else
365		ASSERT_VI_LOCKED(a->a_vp);
366}
367
368void
369vop_lock_post(void *ap, int rc)
370{
371	struct vop_lock_args *a = ap;
372
373	ASSERT_VI_UNLOCKED(a->a_vp);
374	ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
375}
376
377#endif	/* DEBUG_VFS_LOCKS */
378
379void
380v_addpollinfo(struct vnode *vp)
381{
382	vp->v_pollinfo = uma_zalloc(vnodepoll_zone, M_WAITOK);
383	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
384}
385
386/*
387 * Initialize the vnode management data structures.
388 */
389static void
390vntblinit(void *dummy __unused)
391{
392
393	desiredvnodes = maxproc + cnt.v_page_count / 4;
394	minvnodes = desiredvnodes / 4;
395	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
396	mtx_init(&mntvnode_mtx, "mntvnode", NULL, MTX_DEF);
397	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
398	mtx_init(&spechash_mtx, "spechash", NULL, MTX_DEF);
399	TAILQ_INIT(&vnode_free_list);
400	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
401	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
402	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
403	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
404	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
405	/*
406	 * Initialize the filesystem syncer.
407	 */
408	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
409		&syncer_mask);
410	syncer_maxdelay = syncer_mask + 1;
411}
412SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
413
414
415/*
416 * Mark a mount point as busy. Used to synchronize access and to delay
417 * unmounting. Interlock is not released on failure.
418 */
419int
420vfs_busy(mp, flags, interlkp, td)
421	struct mount *mp;
422	int flags;
423	struct mtx *interlkp;
424	struct thread *td;
425{
426	int lkflags;
427
428	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
429		if (flags & LK_NOWAIT)
430			return (ENOENT);
431		mp->mnt_kern_flag |= MNTK_MWAIT;
432		/*
433		 * Since all busy locks are shared except the exclusive
434		 * lock granted when unmounting, the only place that a
435		 * wakeup needs to be done is at the release of the
436		 * exclusive lock at the end of dounmount.
437		 */
438		msleep(mp, interlkp, PVFS, "vfs_busy", 0);
439		return (ENOENT);
440	}
441	lkflags = LK_SHARED | LK_NOPAUSE;
442	if (interlkp)
443		lkflags |= LK_INTERLOCK;
444	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
445		panic("vfs_busy: unexpected lock failure");
446	return (0);
447}
448
449/*
450 * Free a busy filesystem.
451 */
452void
453vfs_unbusy(mp, td)
454	struct mount *mp;
455	struct thread *td;
456{
457
458	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
459}
460
461/*
462 * Lookup a mount point by filesystem identifier.
463 */
464struct mount *
465vfs_getvfs(fsid)
466	fsid_t *fsid;
467{
468	register struct mount *mp;
469
470	mtx_lock(&mountlist_mtx);
471	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
472		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
473		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
474			mtx_unlock(&mountlist_mtx);
475			return (mp);
476	    }
477	}
478	mtx_unlock(&mountlist_mtx);
479	return ((struct mount *) 0);
480}
481
482/*
483 * Get a new unique fsid.  Try to make its val[0] unique, since this value
484 * will be used to create fake device numbers for stat().  Also try (but
485 * not so hard) make its val[0] unique mod 2^16, since some emulators only
486 * support 16-bit device numbers.  We end up with unique val[0]'s for the
487 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
488 *
489 * Keep in mind that several mounts may be running in parallel.  Starting
490 * the search one past where the previous search terminated is both a
491 * micro-optimization and a defense against returning the same fsid to
492 * different mounts.
493 */
494void
495vfs_getnewfsid(mp)
496	struct mount *mp;
497{
498	static u_int16_t mntid_base;
499	fsid_t tfsid;
500	int mtype;
501
502	mtx_lock(&mntid_mtx);
503	mtype = mp->mnt_vfc->vfc_typenum;
504	tfsid.val[1] = mtype;
505	mtype = (mtype & 0xFF) << 24;
506	for (;;) {
507		tfsid.val[0] = makeudev(255,
508		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
509		mntid_base++;
510		if (vfs_getvfs(&tfsid) == NULL)
511			break;
512	}
513	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
514	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
515	mtx_unlock(&mntid_mtx);
516}
517
518/*
519 * Knob to control the precision of file timestamps:
520 *
521 *   0 = seconds only; nanoseconds zeroed.
522 *   1 = seconds and nanoseconds, accurate within 1/HZ.
523 *   2 = seconds and nanoseconds, truncated to microseconds.
524 * >=3 = seconds and nanoseconds, maximum precision.
525 */
526enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
527
528static int timestamp_precision = TSP_SEC;
529SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
530    &timestamp_precision, 0, "");
531
532/*
533 * Get a current timestamp.
534 */
535void
536vfs_timestamp(tsp)
537	struct timespec *tsp;
538{
539	struct timeval tv;
540
541	switch (timestamp_precision) {
542	case TSP_SEC:
543		tsp->tv_sec = time_second;
544		tsp->tv_nsec = 0;
545		break;
546	case TSP_HZ:
547		getnanotime(tsp);
548		break;
549	case TSP_USEC:
550		microtime(&tv);
551		TIMEVAL_TO_TIMESPEC(&tv, tsp);
552		break;
553	case TSP_NSEC:
554	default:
555		nanotime(tsp);
556		break;
557	}
558}
559
560/*
561 * Set vnode attributes to VNOVAL
562 */
563void
564vattr_null(vap)
565	register struct vattr *vap;
566{
567
568	vap->va_type = VNON;
569	vap->va_size = VNOVAL;
570	vap->va_bytes = VNOVAL;
571	vap->va_mode = VNOVAL;
572	vap->va_nlink = VNOVAL;
573	vap->va_uid = VNOVAL;
574	vap->va_gid = VNOVAL;
575	vap->va_fsid = VNOVAL;
576	vap->va_fileid = VNOVAL;
577	vap->va_blocksize = VNOVAL;
578	vap->va_rdev = VNOVAL;
579	vap->va_atime.tv_sec = VNOVAL;
580	vap->va_atime.tv_nsec = VNOVAL;
581	vap->va_mtime.tv_sec = VNOVAL;
582	vap->va_mtime.tv_nsec = VNOVAL;
583	vap->va_ctime.tv_sec = VNOVAL;
584	vap->va_ctime.tv_nsec = VNOVAL;
585	vap->va_birthtime.tv_sec = VNOVAL;
586	vap->va_birthtime.tv_nsec = VNOVAL;
587	vap->va_flags = VNOVAL;
588	vap->va_gen = VNOVAL;
589	vap->va_vaflags = 0;
590}
591
592/*
593 * This routine is called when we have too many vnodes.  It attempts
594 * to free <count> vnodes and will potentially free vnodes that still
595 * have VM backing store (VM backing store is typically the cause
596 * of a vnode blowout so we want to do this).  Therefore, this operation
597 * is not considered cheap.
598 *
599 * A number of conditions may prevent a vnode from being reclaimed.
600 * the buffer cache may have references on the vnode, a directory
601 * vnode may still have references due to the namei cache representing
602 * underlying files, or the vnode may be in active use.   It is not
603 * desireable to reuse such vnodes.  These conditions may cause the
604 * number of vnodes to reach some minimum value regardless of what
605 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
606 */
607static int
608vlrureclaim(struct mount *mp, int count)
609{
610	struct vnode *vp;
611	int done;
612	int trigger;
613	int usevnodes;
614
615	/*
616	 * Calculate the trigger point, don't allow user
617	 * screwups to blow us up.   This prevents us from
618	 * recycling vnodes with lots of resident pages.  We
619	 * aren't trying to free memory, we are trying to
620	 * free vnodes.
621	 */
622	usevnodes = desiredvnodes;
623	if (usevnodes <= 0)
624		usevnodes = 1;
625	trigger = cnt.v_page_count * 2 / usevnodes;
626
627	done = 0;
628	mtx_lock(&mntvnode_mtx);
629	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
630		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
631		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
632
633		if (vp->v_type != VNON &&
634		    vp->v_type != VBAD &&
635		    VI_TRYLOCK(vp)) {
636			if (VMIGHTFREE(vp) &&           /* critical path opt */
637			    (vp->v_object == NULL ||
638			    vp->v_object->resident_page_count < trigger)) {
639				mtx_unlock(&mntvnode_mtx);
640				vgonel(vp, curthread);
641				done++;
642				mtx_lock(&mntvnode_mtx);
643			} else
644				VI_UNLOCK(vp);
645		}
646		--count;
647	}
648	mtx_unlock(&mntvnode_mtx);
649	return done;
650}
651
652/*
653 * Attempt to recycle vnodes in a context that is always safe to block.
654 * Calling vlrurecycle() from the bowels of filesystem code has some
655 * interesting deadlock problems.
656 */
657static struct proc *vnlruproc;
658static int vnlruproc_sig;
659
660static void
661vnlru_proc(void)
662{
663	struct mount *mp, *nmp;
664	int s;
665	int done;
666	struct proc *p = vnlruproc;
667	struct thread *td = FIRST_THREAD_IN_PROC(p);	/* XXXKSE */
668
669	mtx_lock(&Giant);
670
671	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
672	    SHUTDOWN_PRI_FIRST);
673
674	s = splbio();
675	for (;;) {
676		kthread_suspend_check(p);
677		mtx_lock(&vnode_free_list_mtx);
678		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
679			mtx_unlock(&vnode_free_list_mtx);
680			vnlruproc_sig = 0;
681			tsleep(vnlruproc, PVFS, "vlruwt", 0);
682			continue;
683		}
684		mtx_unlock(&vnode_free_list_mtx);
685		done = 0;
686		mtx_lock(&mountlist_mtx);
687		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
688			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
689				nmp = TAILQ_NEXT(mp, mnt_list);
690				continue;
691			}
692			done += vlrureclaim(mp, 10);
693			mtx_lock(&mountlist_mtx);
694			nmp = TAILQ_NEXT(mp, mnt_list);
695			vfs_unbusy(mp, td);
696		}
697		mtx_unlock(&mountlist_mtx);
698		if (done == 0) {
699#if 0
700			/* These messages are temporary debugging aids */
701			if (vnlru_nowhere < 5)
702				printf("vnlru process getting nowhere..\n");
703			else if (vnlru_nowhere == 5)
704				printf("vnlru process messages stopped.\n");
705#endif
706			vnlru_nowhere++;
707			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
708		}
709	}
710	splx(s);
711}
712
713static struct kproc_desc vnlru_kp = {
714	"vnlru",
715	vnlru_proc,
716	&vnlruproc
717};
718SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
719
720
721/*
722 * Routines having to do with the management of the vnode table.
723 */
724
725/*
726 * Check to see if a free vnode can be recycled.  If it can, return it locked
727 * with the vn lock, but not interlock.  Otherwise indicate the error.
728 */
729static int
730vcanrecycle(struct vnode *vp)
731{
732	struct thread *td = curthread;
733	vm_object_t object;
734	int error;
735
736	/* Don't recycle if we can't get the interlock */
737	if (!mtx_trylock(&vp->v_interlock))
738		return (EWOULDBLOCK);
739
740	/* We should be able to immediately acquire this */
741	/* XXX This looks like it should panic if it fails */
742	if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td) != 0)
743		return (EWOULDBLOCK);
744	/*
745	 * Don't recycle if we still have cached pages.
746	 */
747	if (VOP_GETVOBJECT(vp, &object) == 0 &&
748	     (object->resident_page_count ||
749	      object->ref_count)) {
750		VOP_UNLOCK(vp, 0, td);
751		error = EBUSY;
752		goto done;
753	}
754	if (LIST_FIRST(&vp->v_cache_src)) {
755		/*
756		 * note: nameileafonly sysctl is temporary,
757		 * for debugging only, and will eventually be
758		 * removed.
759		 */
760		if (nameileafonly > 0) {
761			/*
762			 * Do not reuse namei-cached directory
763			 * vnodes that have cached
764			 * subdirectories.
765			 */
766			if (cache_leaf_test(vp) < 0) {
767				error = EISDIR;
768				goto done;
769			}
770		} else if (nameileafonly < 0 ||
771			    vmiodirenable == 0) {
772			/*
773			 * Do not reuse namei-cached directory
774			 * vnodes if nameileafonly is -1 or
775			 * if VMIO backing for directories is
776			 * turned off (otherwise we reuse them
777			 * too quickly).
778			 */
779			error = EBUSY;
780			goto done;
781		}
782	}
783	return (0);
784done:
785	VOP_UNLOCK(vp, 0, td);
786	return (error);
787}
788
789/*
790 * Return the next vnode from the free list.
791 */
792int
793getnewvnode(tag, mp, vops, vpp)
794	enum vtagtype tag;
795	struct mount *mp;
796	vop_t **vops;
797	struct vnode **vpp;
798{
799	int s;
800	struct thread *td = curthread;	/* XXX */
801	struct vnode *vp = NULL;
802	struct mount *vnmp;
803
804	s = splbio();
805	mtx_lock(&vnode_free_list_mtx);
806
807	/*
808	 * Try to reuse vnodes if we hit the max.  This situation only
809	 * occurs in certain large-memory (2G+) situations.  We cannot
810	 * attempt to directly reclaim vnodes due to nasty recursion
811	 * problems.
812	 */
813	if (vnlruproc_sig == 0 && numvnodes - freevnodes > desiredvnodes) {
814		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
815		wakeup(vnlruproc);
816	}
817
818	/*
819	 * Attempt to reuse a vnode already on the free list, allocating
820	 * a new vnode if we can't find one or if we have not reached a
821	 * good minimum for good LRU performance.
822	 */
823
824	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
825		int error;
826		int count;
827
828		for (count = 0; count < freevnodes; count++) {
829			vp = TAILQ_FIRST(&vnode_free_list);
830
831			KASSERT(vp->v_usecount == 0,
832			    ("getnewvnode: free vnode isn't"));
833
834			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
835			/*
836			 * We have to drop the free list mtx to avoid lock
837			 * order reversals with interlock.
838			 */
839			mtx_unlock(&vnode_free_list_mtx);
840			error = vcanrecycle(vp);
841			/*
842			 * Skip over it if its filesystem is being suspended.
843			 */
844			if (error == 0 &&
845			    vn_start_write(vp, &vnmp, V_NOWAIT) != 0)
846				error = EBUSY;
847
848			mtx_lock(&vnode_free_list_mtx);
849			if (error != 0)
850				TAILQ_INSERT_TAIL(&vnode_free_list, vp,
851				    v_freelist);
852			else
853				break;
854		}
855	}
856	/*
857	 * Unlocked access to this vp is ok because we are assured that there
858	 * are no other references to it.
859	 */
860	if (vp) {
861		freevnodes--;
862		mtx_unlock(&vnode_free_list_mtx);
863
864		vp->v_iflag |= VI_DOOMED;
865		vp->v_iflag &= ~VI_FREE;
866		cache_purge(vp);
867		if (vp->v_type != VBAD) {
868			VOP_UNLOCK(vp, 0, td);
869			vgone(vp);
870		} else {
871			VOP_UNLOCK(vp, 0, td);
872		}
873		vn_finished_write(vnmp);
874
875#ifdef INVARIANTS
876		{
877			if (vp->v_data)
878				panic("cleaned vnode isn't");
879			VI_LOCK(vp);
880			if (vp->v_numoutput)
881				panic("Clean vnode has pending I/O's");
882			if (vp->v_writecount != 0)
883				panic("Non-zero write count");
884			VI_UNLOCK(vp);
885		}
886#endif
887		if (vp->v_pollinfo) {
888			mtx_destroy(&vp->v_pollinfo->vpi_lock);
889			uma_zfree(vnodepoll_zone, vp->v_pollinfo);
890		}
891		vp->v_pollinfo = NULL;
892#ifdef MAC
893		mac_destroy_vnode(vp);
894#endif
895		vp->v_iflag = 0;
896		vp->v_vflag = 0;
897		vp->v_lastw = 0;
898		vp->v_lasta = 0;
899		vp->v_cstart = 0;
900		vp->v_clen = 0;
901		vp->v_socket = 0;
902		KASSERT(vp->v_cleanblkroot == NULL, ("cleanblkroot not NULL"));
903		KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
904	} else {
905		numvnodes++;
906		mtx_unlock(&vnode_free_list_mtx);
907
908		vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
909		mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
910		vp->v_dd = vp;
911		cache_purge(vp);
912		LIST_INIT(&vp->v_cache_src);
913		TAILQ_INIT(&vp->v_cache_dst);
914	}
915
916	TAILQ_INIT(&vp->v_cleanblkhd);
917	TAILQ_INIT(&vp->v_dirtyblkhd);
918	vp->v_type = VNON;
919	vp->v_tag = tag;
920	vp->v_op = vops;
921	lockinit(&vp->v_lock, PVFS, "vnlock", VLKTIMEOUT, LK_NOPAUSE);
922#ifdef MAC
923	mac_init_vnode(vp);
924#endif
925	insmntque(vp, mp);
926	*vpp = vp;
927	vp->v_usecount = 1;
928	vp->v_data = 0;
929	vp->v_cachedid = -1;
930
931	splx(s);
932
933#if 0
934	mp_fixme("This code does not lock access to numvnodes && freevnodes.");
935	vnodeallocs++;
936	if (vnodeallocs % vnoderecycleperiod == 0 &&
937	    freevnodes < vnoderecycleminfreevn &&
938	    vnoderecyclemintotalvn < numvnodes) {
939		/* Recycle vnodes. */
940		cache_purgeleafdirs(vnoderecyclenumber);
941	}
942#endif
943
944	return (0);
945}
946
947/*
948 * Move a vnode from one mount queue to another.
949 */
950static void
951insmntque(vp, mp)
952	register struct vnode *vp;
953	register struct mount *mp;
954{
955
956	mtx_lock(&mntvnode_mtx);
957	/*
958	 * Delete from old mount point vnode list, if on one.
959	 */
960	if (vp->v_mount != NULL)
961		TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
962	/*
963	 * Insert into list of vnodes for the new mount point, if available.
964	 */
965	if ((vp->v_mount = mp) == NULL) {
966		mtx_unlock(&mntvnode_mtx);
967		return;
968	}
969	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
970	mtx_unlock(&mntvnode_mtx);
971}
972
973/*
974 * Update outstanding I/O count and do wakeup if requested.
975 */
976void
977vwakeup(bp)
978	register struct buf *bp;
979{
980	register struct vnode *vp;
981
982	bp->b_flags &= ~B_WRITEINPROG;
983	if ((vp = bp->b_vp)) {
984		VI_LOCK(vp);
985		vp->v_numoutput--;
986		if (vp->v_numoutput < 0)
987			panic("vwakeup: neg numoutput");
988		if ((vp->v_numoutput == 0) && (vp->v_iflag & VI_BWAIT)) {
989			vp->v_iflag &= ~VI_BWAIT;
990			wakeup(&vp->v_numoutput);
991		}
992		VI_UNLOCK(vp);
993	}
994}
995
996/*
997 * Flush out and invalidate all buffers associated with a vnode.
998 * Called with the underlying object locked.
999 */
1000int
1001vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
1002	struct vnode *vp;
1003	int flags;
1004	struct ucred *cred;
1005	struct thread *td;
1006	int slpflag, slptimeo;
1007{
1008	struct buf *blist;
1009	int s, error;
1010	vm_object_t object;
1011
1012	GIANT_REQUIRED;
1013
1014	if (flags & V_SAVE) {
1015		s = splbio();
1016		VI_LOCK(vp);
1017		while (vp->v_numoutput) {
1018			vp->v_iflag |= VI_BWAIT;
1019			error = msleep(&vp->v_numoutput, VI_MTX(vp),
1020			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
1021			if (error) {
1022				VI_UNLOCK(vp);
1023				splx(s);
1024				return (error);
1025			}
1026		}
1027		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1028			splx(s);
1029			VI_UNLOCK(vp);
1030			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
1031				return (error);
1032			/*
1033			 * XXX We could save a lock/unlock if this was only
1034			 * enabled under INVARIANTS
1035			 */
1036			VI_LOCK(vp);
1037			s = splbio();
1038			if (vp->v_numoutput > 0 ||
1039			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
1040				panic("vinvalbuf: dirty bufs");
1041		}
1042		VI_UNLOCK(vp);
1043		splx(s);
1044	}
1045	s = splbio();
1046	for (error = 0;;) {
1047		if ((blist = TAILQ_FIRST(&vp->v_cleanblkhd)) != 0 &&
1048		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
1049			if (error)
1050				break;
1051			continue;
1052		}
1053		if ((blist = TAILQ_FIRST(&vp->v_dirtyblkhd)) != 0 &&
1054		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
1055			if (error)
1056				break;
1057			continue;
1058		}
1059		break;
1060	}
1061	if (error) {
1062		splx(s);
1063		return (error);
1064	}
1065
1066	/*
1067	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1068	 * have write I/O in-progress but if there is a VM object then the
1069	 * VM object can also have read-I/O in-progress.
1070	 */
1071	VI_LOCK(vp);
1072	do {
1073		while (vp->v_numoutput > 0) {
1074			vp->v_iflag |= VI_BWAIT;
1075			msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vnvlbv", 0);
1076		}
1077		VI_UNLOCK(vp);
1078		if (VOP_GETVOBJECT(vp, &object) == 0) {
1079			while (object->paging_in_progress)
1080			vm_object_pip_sleep(object, "vnvlbx");
1081		}
1082		VI_LOCK(vp);
1083	} while (vp->v_numoutput > 0);
1084	VI_UNLOCK(vp);
1085
1086	splx(s);
1087
1088	/*
1089	 * Destroy the copy in the VM cache, too.
1090	 */
1091	if (VOP_GETVOBJECT(vp, &object) == 0) {
1092		vm_object_page_remove(object, 0, 0,
1093			(flags & V_SAVE) ? TRUE : FALSE);
1094	}
1095
1096	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1097	    (!TAILQ_EMPTY(&vp->v_dirtyblkhd) ||
1098	     !TAILQ_EMPTY(&vp->v_cleanblkhd)))
1099		panic("vinvalbuf: flush failed");
1100	return (0);
1101}
1102
1103/*
1104 * Flush out buffers on the specified list.
1105 */
1106static int
1107flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp)
1108	struct buf *blist;
1109	int flags;
1110	struct vnode *vp;
1111	int slpflag, slptimeo;
1112	int *errorp;
1113{
1114	struct buf *bp, *nbp;
1115	int found, error;
1116
1117	for (found = 0, bp = blist; bp; bp = nbp) {
1118		nbp = TAILQ_NEXT(bp, b_vnbufs);
1119		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1120		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))
1121			continue;
1122		found += 1;
1123		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1124			error = BUF_TIMELOCK(bp,
1125			    LK_EXCLUSIVE | LK_SLEEPFAIL,
1126			    "flushbuf", slpflag, slptimeo);
1127			if (error != ENOLCK)
1128				*errorp = error;
1129			return (found);
1130		}
1131		/*
1132		 * XXX Since there are no node locks for NFS, I
1133		 * believe there is a slight chance that a delayed
1134		 * write will occur while sleeping just above, so
1135		 * check for it.  Note that vfs_bio_awrite expects
1136		 * buffers to reside on a queue, while BUF_WRITE and
1137		 * brelse do not.
1138		 */
1139		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1140			(flags & V_SAVE)) {
1141
1142			if (bp->b_vp == vp) {
1143				if (bp->b_flags & B_CLUSTEROK) {
1144					BUF_UNLOCK(bp);
1145					vfs_bio_awrite(bp);
1146				} else {
1147					bremfree(bp);
1148					bp->b_flags |= B_ASYNC;
1149					BUF_WRITE(bp);
1150				}
1151			} else {
1152				bremfree(bp);
1153				(void) BUF_WRITE(bp);
1154			}
1155			return (found);
1156		}
1157		bremfree(bp);
1158		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1159		bp->b_flags &= ~B_ASYNC;
1160		brelse(bp);
1161	}
1162	return (found);
1163}
1164
1165/*
1166 * Truncate a file's buffer and pages to a specified length.  This
1167 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1168 * sync activity.
1169 */
1170int
1171vtruncbuf(vp, cred, td, length, blksize)
1172	register struct vnode *vp;
1173	struct ucred *cred;
1174	struct thread *td;
1175	off_t length;
1176	int blksize;
1177{
1178	register struct buf *bp;
1179	struct buf *nbp;
1180	int s, anyfreed;
1181	int trunclbn;
1182
1183	/*
1184	 * Round up to the *next* lbn.
1185	 */
1186	trunclbn = (length + blksize - 1) / blksize;
1187
1188	s = splbio();
1189restart:
1190	anyfreed = 1;
1191	for (;anyfreed;) {
1192		anyfreed = 0;
1193		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1194			nbp = TAILQ_NEXT(bp, b_vnbufs);
1195			if (bp->b_lblkno >= trunclbn) {
1196				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1197					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1198					goto restart;
1199				} else {
1200					bremfree(bp);
1201					bp->b_flags |= (B_INVAL | B_RELBUF);
1202					bp->b_flags &= ~B_ASYNC;
1203					brelse(bp);
1204					anyfreed = 1;
1205				}
1206				if (nbp &&
1207				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1208				    (nbp->b_vp != vp) ||
1209				    (nbp->b_flags & B_DELWRI))) {
1210					goto restart;
1211				}
1212			}
1213		}
1214
1215		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1216			nbp = TAILQ_NEXT(bp, b_vnbufs);
1217			if (bp->b_lblkno >= trunclbn) {
1218				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1219					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1220					goto restart;
1221				} else {
1222					bremfree(bp);
1223					bp->b_flags |= (B_INVAL | B_RELBUF);
1224					bp->b_flags &= ~B_ASYNC;
1225					brelse(bp);
1226					anyfreed = 1;
1227				}
1228				if (nbp &&
1229				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1230				    (nbp->b_vp != vp) ||
1231				    (nbp->b_flags & B_DELWRI) == 0)) {
1232					goto restart;
1233				}
1234			}
1235		}
1236	}
1237
1238	if (length > 0) {
1239restartsync:
1240		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1241			nbp = TAILQ_NEXT(bp, b_vnbufs);
1242			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1243				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1244					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1245					goto restart;
1246				} else {
1247					bremfree(bp);
1248					if (bp->b_vp == vp) {
1249						bp->b_flags |= B_ASYNC;
1250					} else {
1251						bp->b_flags &= ~B_ASYNC;
1252					}
1253					BUF_WRITE(bp);
1254				}
1255				goto restartsync;
1256			}
1257
1258		}
1259	}
1260
1261	VI_LOCK(vp);
1262	while (vp->v_numoutput > 0) {
1263		vp->v_iflag |= VI_BWAIT;
1264		msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vbtrunc", 0);
1265	}
1266	VI_UNLOCK(vp);
1267	splx(s);
1268
1269	vnode_pager_setsize(vp, length);
1270
1271	return (0);
1272}
1273
1274/*
1275 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1276 * 		 a vnode.
1277 *
1278 *	NOTE: We have to deal with the special case of a background bitmap
1279 *	buffer, a situation where two buffers will have the same logical
1280 *	block offset.  We want (1) only the foreground buffer to be accessed
1281 *	in a lookup and (2) must differentiate between the foreground and
1282 *	background buffer in the splay tree algorithm because the splay
1283 *	tree cannot normally handle multiple entities with the same 'index'.
1284 *	We accomplish this by adding differentiating flags to the splay tree's
1285 *	numerical domain.
1286 */
1287static
1288struct buf *
1289buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1290{
1291	struct buf dummy;
1292	struct buf *lefttreemax, *righttreemin, *y;
1293
1294	if (root == NULL)
1295		return (NULL);
1296	lefttreemax = righttreemin = &dummy;
1297	for (;;) {
1298		if (lblkno < root->b_lblkno ||
1299		    (lblkno == root->b_lblkno &&
1300		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1301			if ((y = root->b_left) == NULL)
1302				break;
1303			if (lblkno < y->b_lblkno) {
1304				/* Rotate right. */
1305				root->b_left = y->b_right;
1306				y->b_right = root;
1307				root = y;
1308				if ((y = root->b_left) == NULL)
1309					break;
1310			}
1311			/* Link into the new root's right tree. */
1312			righttreemin->b_left = root;
1313			righttreemin = root;
1314		} else if (lblkno > root->b_lblkno ||
1315		    (lblkno == root->b_lblkno &&
1316		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1317			if ((y = root->b_right) == NULL)
1318				break;
1319			if (lblkno > y->b_lblkno) {
1320				/* Rotate left. */
1321				root->b_right = y->b_left;
1322				y->b_left = root;
1323				root = y;
1324				if ((y = root->b_right) == NULL)
1325					break;
1326			}
1327			/* Link into the new root's left tree. */
1328			lefttreemax->b_right = root;
1329			lefttreemax = root;
1330		} else {
1331			break;
1332		}
1333		root = y;
1334	}
1335	/* Assemble the new root. */
1336	lefttreemax->b_right = root->b_left;
1337	righttreemin->b_left = root->b_right;
1338	root->b_left = dummy.b_right;
1339	root->b_right = dummy.b_left;
1340	return (root);
1341}
1342
1343static
1344void
1345buf_vlist_remove(struct buf *bp)
1346{
1347	struct vnode *vp = bp->b_vp;
1348	struct buf *root;
1349
1350	if (bp->b_xflags & BX_VNDIRTY) {
1351		if (bp != vp->v_dirtyblkroot) {
1352			root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1353			KASSERT(root == bp, ("splay lookup failed during dirty remove"));
1354		}
1355		if (bp->b_left == NULL) {
1356			root = bp->b_right;
1357		} else {
1358			root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1359			root->b_right = bp->b_right;
1360		}
1361		vp->v_dirtyblkroot = root;
1362		TAILQ_REMOVE(&vp->v_dirtyblkhd, bp, b_vnbufs);
1363	} else {
1364		/* KASSERT(bp->b_xflags & BX_VNCLEAN, ("bp wasn't clean")); */
1365		if (bp != vp->v_cleanblkroot) {
1366			root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1367			KASSERT(root == bp, ("splay lookup failed during clean remove"));
1368		}
1369		if (bp->b_left == NULL) {
1370			root = bp->b_right;
1371		} else {
1372			root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1373			root->b_right = bp->b_right;
1374		}
1375		vp->v_cleanblkroot = root;
1376		TAILQ_REMOVE(&vp->v_cleanblkhd, bp, b_vnbufs);
1377	}
1378	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1379}
1380
1381/*
1382 * Add the buffer to the sorted clean or dirty block list using a
1383 * splay tree algorithm.
1384 *
1385 * NOTE: xflags is passed as a constant, optimizing this inline function!
1386 */
1387static
1388void
1389buf_vlist_add(struct buf *bp, struct vnode *vp, b_xflags_t xflags)
1390{
1391	struct buf *root;
1392
1393	bp->b_xflags |= xflags;
1394	if (xflags & BX_VNDIRTY) {
1395		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1396		if (root == NULL) {
1397			bp->b_left = NULL;
1398			bp->b_right = NULL;
1399			TAILQ_INSERT_TAIL(&vp->v_dirtyblkhd, bp, b_vnbufs);
1400		} else if (bp->b_lblkno < root->b_lblkno ||
1401		    (bp->b_lblkno == root->b_lblkno &&
1402		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1403			bp->b_left = root->b_left;
1404			bp->b_right = root;
1405			root->b_left = NULL;
1406			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1407		} else {
1408			bp->b_right = root->b_right;
1409			bp->b_left = root;
1410			root->b_right = NULL;
1411			TAILQ_INSERT_AFTER(&vp->v_dirtyblkhd,
1412			    root, bp, b_vnbufs);
1413		}
1414		vp->v_dirtyblkroot = bp;
1415	} else {
1416		/* KASSERT(xflags & BX_VNCLEAN, ("xflags not clean")); */
1417		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1418		if (root == NULL) {
1419			bp->b_left = NULL;
1420			bp->b_right = NULL;
1421			TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1422		} else if (bp->b_lblkno < root->b_lblkno ||
1423		    (bp->b_lblkno == root->b_lblkno &&
1424		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1425			bp->b_left = root->b_left;
1426			bp->b_right = root;
1427			root->b_left = NULL;
1428			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1429		} else {
1430			bp->b_right = root->b_right;
1431			bp->b_left = root;
1432			root->b_right = NULL;
1433			TAILQ_INSERT_AFTER(&vp->v_cleanblkhd,
1434			    root, bp, b_vnbufs);
1435		}
1436		vp->v_cleanblkroot = bp;
1437	}
1438}
1439
1440#ifndef USE_BUFHASH
1441
1442/*
1443 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1444 * shadow buffers used in background bitmap writes.
1445 *
1446 * This code isn't quite efficient as it could be because we are maintaining
1447 * two sorted lists and do not know which list the block resides in.
1448 */
1449struct buf *
1450gbincore(struct vnode *vp, daddr_t lblkno)
1451{
1452	struct buf *bp;
1453
1454	GIANT_REQUIRED;
1455
1456	bp = vp->v_cleanblkroot = buf_splay(lblkno, 0, vp->v_cleanblkroot);
1457	if (bp && bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1458		return(bp);
1459	bp = vp->v_dirtyblkroot = buf_splay(lblkno, 0, vp->v_dirtyblkroot);
1460	if (bp && bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1461		return(bp);
1462	return(NULL);
1463}
1464
1465#endif
1466
1467/*
1468 * Associate a buffer with a vnode.
1469 */
1470void
1471bgetvp(vp, bp)
1472	register struct vnode *vp;
1473	register struct buf *bp;
1474{
1475	int s;
1476
1477	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1478
1479	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1480	    ("bgetvp: bp already attached! %p", bp));
1481
1482	vhold(vp);
1483	bp->b_vp = vp;
1484	bp->b_dev = vn_todev(vp);
1485	/*
1486	 * Insert onto list for new vnode.
1487	 */
1488	s = splbio();
1489	buf_vlist_add(bp, vp, BX_VNCLEAN);
1490	splx(s);
1491}
1492
1493/*
1494 * Disassociate a buffer from a vnode.
1495 */
1496void
1497brelvp(bp)
1498	register struct buf *bp;
1499{
1500	struct vnode *vp;
1501	int s;
1502
1503	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1504
1505	/*
1506	 * Delete from old vnode list, if on one.
1507	 */
1508	vp = bp->b_vp;
1509	s = splbio();
1510	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1511		buf_vlist_remove(bp);
1512	VI_LOCK(vp);
1513	if ((vp->v_iflag & VI_ONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1514		vp->v_iflag &= ~VI_ONWORKLST;
1515		LIST_REMOVE(vp, v_synclist);
1516	}
1517	VI_UNLOCK(vp);
1518	splx(s);
1519	bp->b_vp = (struct vnode *) 0;
1520	vdrop(vp);
1521	if (bp->b_object)
1522		bp->b_object = NULL;
1523}
1524
1525/*
1526 * Add an item to the syncer work queue.
1527 */
1528static void
1529vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1530{
1531	int s, slot;
1532
1533	s = splbio();
1534	ASSERT_VI_LOCKED(vp);
1535
1536	if (vp->v_iflag & VI_ONWORKLST)
1537		LIST_REMOVE(vp, v_synclist);
1538	else
1539		vp->v_iflag |= VI_ONWORKLST;
1540
1541	if (delay > syncer_maxdelay - 2)
1542		delay = syncer_maxdelay - 2;
1543	slot = (syncer_delayno + delay) & syncer_mask;
1544
1545	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1546
1547	splx(s);
1548}
1549
1550struct  proc *updateproc;
1551static void sched_sync(void);
1552static struct kproc_desc up_kp = {
1553	"syncer",
1554	sched_sync,
1555	&updateproc
1556};
1557SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1558
1559/*
1560 * System filesystem synchronizer daemon.
1561 */
1562void
1563sched_sync(void)
1564{
1565	struct synclist *slp;
1566	struct vnode *vp;
1567	struct mount *mp;
1568	long starttime;
1569	int s;
1570	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);  /* XXXKSE */
1571
1572	mtx_lock(&Giant);
1573
1574	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, td->td_proc,
1575	    SHUTDOWN_PRI_LAST);
1576
1577	for (;;) {
1578		kthread_suspend_check(td->td_proc);
1579
1580		starttime = time_second;
1581
1582		/*
1583		 * Push files whose dirty time has expired.  Be careful
1584		 * of interrupt race on slp queue.
1585		 */
1586		s = splbio();
1587		slp = &syncer_workitem_pending[syncer_delayno];
1588		syncer_delayno += 1;
1589		if (syncer_delayno == syncer_maxdelay)
1590			syncer_delayno = 0;
1591		splx(s);
1592
1593		while ((vp = LIST_FIRST(slp)) != NULL) {
1594			if (VOP_ISLOCKED(vp, NULL) == 0 &&
1595			    vn_start_write(vp, &mp, V_NOWAIT) == 0) {
1596				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1597				(void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td);
1598				VOP_UNLOCK(vp, 0, td);
1599				vn_finished_write(mp);
1600			}
1601			s = splbio();
1602			if (LIST_FIRST(slp) == vp) {
1603				/*
1604				 * Note: v_tag VT_VFS vps can remain on the
1605				 * worklist too with no dirty blocks, but
1606				 * since sync_fsync() moves it to a different
1607				 * slot we are safe.
1608				 */
1609				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1610				    !vn_isdisk(vp, NULL))
1611					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1612				/*
1613				 * Put us back on the worklist.  The worklist
1614				 * routine will remove us from our current
1615				 * position and then add us back in at a later
1616				 * position.
1617				 */
1618				VI_LOCK(vp);
1619				vn_syncer_add_to_worklist(vp, syncdelay);
1620				VI_UNLOCK(vp);
1621			}
1622			splx(s);
1623		}
1624
1625		/*
1626		 * Do soft update processing.
1627		 */
1628		if (softdep_process_worklist_hook != NULL)
1629			(*softdep_process_worklist_hook)(NULL);
1630
1631		/*
1632		 * The variable rushjob allows the kernel to speed up the
1633		 * processing of the filesystem syncer process. A rushjob
1634		 * value of N tells the filesystem syncer to process the next
1635		 * N seconds worth of work on its queue ASAP. Currently rushjob
1636		 * is used by the soft update code to speed up the filesystem
1637		 * syncer process when the incore state is getting so far
1638		 * ahead of the disk that the kernel memory pool is being
1639		 * threatened with exhaustion.
1640		 */
1641		if (rushjob > 0) {
1642			rushjob -= 1;
1643			continue;
1644		}
1645		/*
1646		 * If it has taken us less than a second to process the
1647		 * current work, then wait. Otherwise start right over
1648		 * again. We can still lose time if any single round
1649		 * takes more than two seconds, but it does not really
1650		 * matter as we are just trying to generally pace the
1651		 * filesystem activity.
1652		 */
1653		if (time_second == starttime)
1654			tsleep(&lbolt, PPAUSE, "syncer", 0);
1655	}
1656}
1657
1658/*
1659 * Request the syncer daemon to speed up its work.
1660 * We never push it to speed up more than half of its
1661 * normal turn time, otherwise it could take over the cpu.
1662 * XXXKSE  only one update?
1663 */
1664int
1665speedup_syncer()
1666{
1667
1668	mtx_lock_spin(&sched_lock);
1669	if (FIRST_THREAD_IN_PROC(updateproc)->td_wchan == &lbolt) /* XXXKSE */
1670		setrunnable(FIRST_THREAD_IN_PROC(updateproc));
1671	mtx_unlock_spin(&sched_lock);
1672	if (rushjob < syncdelay / 2) {
1673		rushjob += 1;
1674		stat_rush_requests += 1;
1675		return (1);
1676	}
1677	return(0);
1678}
1679
1680/*
1681 * Associate a p-buffer with a vnode.
1682 *
1683 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1684 * with the buffer.  i.e. the bp has not been linked into the vnode or
1685 * ref-counted.
1686 */
1687void
1688pbgetvp(vp, bp)
1689	register struct vnode *vp;
1690	register struct buf *bp;
1691{
1692
1693	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1694
1695	bp->b_vp = vp;
1696	bp->b_flags |= B_PAGING;
1697	bp->b_dev = vn_todev(vp);
1698}
1699
1700/*
1701 * Disassociate a p-buffer from a vnode.
1702 */
1703void
1704pbrelvp(bp)
1705	register struct buf *bp;
1706{
1707
1708	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1709
1710	/* XXX REMOVE ME */
1711	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1712		panic(
1713		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1714		    bp,
1715		    (int)bp->b_flags
1716		);
1717	}
1718	bp->b_vp = (struct vnode *) 0;
1719	bp->b_flags &= ~B_PAGING;
1720}
1721
1722/*
1723 * Reassign a buffer from one vnode to another.
1724 * Used to assign file specific control information
1725 * (indirect blocks) to the vnode to which they belong.
1726 */
1727void
1728reassignbuf(bp, newvp)
1729	register struct buf *bp;
1730	register struct vnode *newvp;
1731{
1732	int delay;
1733	int s;
1734
1735	if (newvp == NULL) {
1736		printf("reassignbuf: NULL");
1737		return;
1738	}
1739	++reassignbufcalls;
1740
1741	/*
1742	 * B_PAGING flagged buffers cannot be reassigned because their vp
1743	 * is not fully linked in.
1744	 */
1745	if (bp->b_flags & B_PAGING)
1746		panic("cannot reassign paging buffer");
1747
1748	s = splbio();
1749	/*
1750	 * Delete from old vnode list, if on one.
1751	 */
1752	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1753		buf_vlist_remove(bp);
1754		if (bp->b_vp != newvp) {
1755			vdrop(bp->b_vp);
1756			bp->b_vp = NULL;	/* for clarification */
1757		}
1758	}
1759	/*
1760	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1761	 * of clean buffers.
1762	 */
1763	if (bp->b_flags & B_DELWRI) {
1764		VI_LOCK(newvp);
1765		if ((newvp->v_iflag & VI_ONWORKLST) == 0) {
1766			switch (newvp->v_type) {
1767			case VDIR:
1768				delay = dirdelay;
1769				break;
1770			case VCHR:
1771				if (newvp->v_rdev->si_mountpoint != NULL) {
1772					delay = metadelay;
1773					break;
1774				}
1775				/* fall through */
1776			default:
1777				delay = filedelay;
1778			}
1779			vn_syncer_add_to_worklist(newvp, delay);
1780		}
1781		VI_UNLOCK(newvp);
1782		buf_vlist_add(bp, newvp, BX_VNDIRTY);
1783	} else {
1784		buf_vlist_add(bp, newvp, BX_VNCLEAN);
1785
1786		VI_LOCK(newvp);
1787		if ((newvp->v_iflag & VI_ONWORKLST) &&
1788		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1789			newvp->v_iflag &= ~VI_ONWORKLST;
1790			LIST_REMOVE(newvp, v_synclist);
1791		}
1792		VI_UNLOCK(newvp);
1793	}
1794	if (bp->b_vp != newvp) {
1795		bp->b_vp = newvp;
1796		vhold(bp->b_vp);
1797	}
1798	splx(s);
1799}
1800
1801/*
1802 * Create a vnode for a device.
1803 * Used for mounting the root filesystem.
1804 */
1805int
1806bdevvp(dev, vpp)
1807	dev_t dev;
1808	struct vnode **vpp;
1809{
1810	register struct vnode *vp;
1811	struct vnode *nvp;
1812	int error;
1813
1814	if (dev == NODEV) {
1815		*vpp = NULLVP;
1816		return (ENXIO);
1817	}
1818	if (vfinddev(dev, VCHR, vpp))
1819		return (0);
1820	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1821	if (error) {
1822		*vpp = NULLVP;
1823		return (error);
1824	}
1825	vp = nvp;
1826	vp->v_type = VCHR;
1827	addalias(vp, dev);
1828	*vpp = vp;
1829	return (0);
1830}
1831
1832/*
1833 * Add vnode to the alias list hung off the dev_t.
1834 *
1835 * The reason for this gunk is that multiple vnodes can reference
1836 * the same physical device, so checking vp->v_usecount to see
1837 * how many users there are is inadequate; the v_usecount for
1838 * the vnodes need to be accumulated.  vcount() does that.
1839 */
1840struct vnode *
1841addaliasu(nvp, nvp_rdev)
1842	struct vnode *nvp;
1843	udev_t nvp_rdev;
1844{
1845	struct vnode *ovp;
1846	vop_t **ops;
1847	dev_t dev;
1848
1849	if (nvp->v_type == VBLK)
1850		return (nvp);
1851	if (nvp->v_type != VCHR)
1852		panic("addaliasu on non-special vnode");
1853	dev = udev2dev(nvp_rdev, 0);
1854	/*
1855	 * Check to see if we have a bdevvp vnode with no associated
1856	 * filesystem. If so, we want to associate the filesystem of
1857	 * the new newly instigated vnode with the bdevvp vnode and
1858	 * discard the newly created vnode rather than leaving the
1859	 * bdevvp vnode lying around with no associated filesystem.
1860	 */
1861	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
1862		addalias(nvp, dev);
1863		return (nvp);
1864	}
1865	/*
1866	 * Discard unneeded vnode, but save its node specific data.
1867	 * Note that if there is a lock, it is carried over in the
1868	 * node specific data to the replacement vnode.
1869	 */
1870	vref(ovp);
1871	ovp->v_data = nvp->v_data;
1872	ovp->v_tag = nvp->v_tag;
1873	nvp->v_data = NULL;
1874	lockinit(&ovp->v_lock, PVFS, nvp->v_lock.lk_wmesg,
1875	    nvp->v_lock.lk_timo, nvp->v_lock.lk_flags & LK_EXTFLG_MASK);
1876	if (nvp->v_vnlock)
1877		ovp->v_vnlock = &ovp->v_lock;
1878	ops = ovp->v_op;
1879	ovp->v_op = nvp->v_op;
1880	if (VOP_ISLOCKED(nvp, curthread)) {
1881		VOP_UNLOCK(nvp, 0, curthread);
1882		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
1883	}
1884	nvp->v_op = ops;
1885	insmntque(ovp, nvp->v_mount);
1886	vrele(nvp);
1887	vgone(nvp);
1888	return (ovp);
1889}
1890
1891/* This is a local helper function that do the same as addaliasu, but for a
1892 * dev_t instead of an udev_t. */
1893static void
1894addalias(nvp, dev)
1895	struct vnode *nvp;
1896	dev_t dev;
1897{
1898
1899	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
1900	nvp->v_rdev = dev;
1901	mtx_lock(&spechash_mtx);
1902	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1903	mtx_unlock(&spechash_mtx);
1904}
1905
1906/*
1907 * Grab a particular vnode from the free list, increment its
1908 * reference count and lock it. The vnode lock bit is set if the
1909 * vnode is being eliminated in vgone. The process is awakened
1910 * when the transition is completed, and an error returned to
1911 * indicate that the vnode is no longer usable (possibly having
1912 * been changed to a new filesystem type).
1913 */
1914int
1915vget(vp, flags, td)
1916	register struct vnode *vp;
1917	int flags;
1918	struct thread *td;
1919{
1920	int error;
1921
1922	/*
1923	 * If the vnode is in the process of being cleaned out for
1924	 * another use, we wait for the cleaning to finish and then
1925	 * return failure. Cleaning is determined by checking that
1926	 * the VI_XLOCK flag is set.
1927	 */
1928	if ((flags & LK_INTERLOCK) == 0)
1929		VI_LOCK(vp);
1930	if (vp->v_iflag & VI_XLOCK) {
1931		if (vp->v_vxproc == curthread) {
1932#if 0
1933			/* this can now occur in normal operation */
1934			log(LOG_INFO, "VXLOCK interlock avoided\n");
1935#endif
1936		} else {
1937			vp->v_iflag |= VI_XWANT;
1938			msleep(vp, VI_MTX(vp), PINOD | PDROP, "vget", 0);
1939			return (ENOENT);
1940		}
1941	}
1942
1943	vp->v_usecount++;
1944
1945	if (VSHOULDBUSY(vp))
1946		vbusy(vp);
1947	if (flags & LK_TYPE_MASK) {
1948		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1949			/*
1950			 * must expand vrele here because we do not want
1951			 * to call VOP_INACTIVE if the reference count
1952			 * drops back to zero since it was never really
1953			 * active. We must remove it from the free list
1954			 * before sleeping so that multiple processes do
1955			 * not try to recycle it.
1956			 */
1957			VI_LOCK(vp);
1958			vp->v_usecount--;
1959			if (VSHOULDFREE(vp))
1960				vfree(vp);
1961			else
1962				vlruvp(vp);
1963			VI_UNLOCK(vp);
1964		}
1965		return (error);
1966	}
1967	VI_UNLOCK(vp);
1968	return (0);
1969}
1970
1971/*
1972 * Increase the reference count of a vnode.
1973 */
1974void
1975vref(struct vnode *vp)
1976{
1977	mtx_lock(&vp->v_interlock);
1978	vp->v_usecount++;
1979	mtx_unlock(&vp->v_interlock);
1980}
1981
1982/*
1983 * Vnode put/release.
1984 * If count drops to zero, call inactive routine and return to freelist.
1985 */
1986void
1987vrele(vp)
1988	struct vnode *vp;
1989{
1990	struct thread *td = curthread;	/* XXX */
1991
1992	KASSERT(vp != NULL, ("vrele: null vp"));
1993
1994	VI_LOCK(vp);
1995
1996	/* Skip this v_writecount check if we're going to panic below. */
1997	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
1998	    ("vrele: missed vn_close"));
1999
2000	if (vp->v_usecount > 1) {
2001
2002		vp->v_usecount--;
2003		VI_UNLOCK(vp);
2004
2005		return;
2006	}
2007
2008	if (vp->v_usecount == 1) {
2009		vp->v_usecount--;
2010		/*
2011		 * We must call VOP_INACTIVE with the node locked.
2012		 * If we are doing a vput, the node is already locked,
2013		 * but, in the case of vrele, we must explicitly lock
2014		 * the vnode before calling VOP_INACTIVE.
2015		 */
2016		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0)
2017			VOP_INACTIVE(vp, td);
2018		VI_LOCK(vp);
2019		if (VSHOULDFREE(vp))
2020			vfree(vp);
2021		else
2022			vlruvp(vp);
2023		VI_UNLOCK(vp);
2024
2025	} else {
2026#ifdef DIAGNOSTIC
2027		vprint("vrele: negative ref count", vp);
2028		VI_UNLOCK(vp);
2029#endif
2030		panic("vrele: negative ref cnt");
2031	}
2032}
2033
2034/*
2035 * Release an already locked vnode.  This give the same effects as
2036 * unlock+vrele(), but takes less time and avoids releasing and
2037 * re-aquiring the lock (as vrele() aquires the lock internally.)
2038 */
2039void
2040vput(vp)
2041	struct vnode *vp;
2042{
2043	struct thread *td = curthread;	/* XXX */
2044
2045	GIANT_REQUIRED;
2046
2047	KASSERT(vp != NULL, ("vput: null vp"));
2048	mtx_lock(&vp->v_interlock);
2049	/* Skip this v_writecount check if we're going to panic below. */
2050	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2051	    ("vput: missed vn_close"));
2052
2053	if (vp->v_usecount > 1) {
2054		vp->v_usecount--;
2055		VOP_UNLOCK(vp, LK_INTERLOCK, td);
2056		return;
2057	}
2058
2059	if (vp->v_usecount == 1) {
2060		vp->v_usecount--;
2061		/*
2062		 * We must call VOP_INACTIVE with the node locked.
2063		 * If we are doing a vput, the node is already locked,
2064		 * so we just need to release the vnode mutex.
2065		 */
2066		VI_UNLOCK(vp);
2067		VOP_INACTIVE(vp, td);
2068		VI_LOCK(vp);
2069		if (VSHOULDFREE(vp))
2070			vfree(vp);
2071		else
2072			vlruvp(vp);
2073		VI_UNLOCK(vp);
2074
2075	} else {
2076#ifdef DIAGNOSTIC
2077		vprint("vput: negative ref count", vp);
2078#endif
2079		panic("vput: negative ref cnt");
2080	}
2081}
2082
2083/*
2084 * Somebody doesn't want the vnode recycled.
2085 */
2086void
2087vhold(vp)
2088	register struct vnode *vp;
2089{
2090	int s;
2091
2092	s = splbio();
2093	vp->v_holdcnt++;
2094	VI_LOCK(vp);
2095	if (VSHOULDBUSY(vp))
2096		vbusy(vp);
2097	VI_UNLOCK(vp);
2098	splx(s);
2099}
2100
2101/*
2102 * Note that there is one less who cares about this vnode.  vdrop() is the
2103 * opposite of vhold().
2104 */
2105void
2106vdrop(vp)
2107	register struct vnode *vp;
2108{
2109	int s;
2110
2111	s = splbio();
2112	if (vp->v_holdcnt <= 0)
2113		panic("vdrop: holdcnt");
2114	vp->v_holdcnt--;
2115	VI_LOCK(vp);
2116	if (VSHOULDFREE(vp))
2117		vfree(vp);
2118	else
2119		vlruvp(vp);
2120	VI_UNLOCK(vp);
2121	splx(s);
2122}
2123
2124/*
2125 * Remove any vnodes in the vnode table belonging to mount point mp.
2126 *
2127 * If FORCECLOSE is not specified, there should not be any active ones,
2128 * return error if any are found (nb: this is a user error, not a
2129 * system error). If FORCECLOSE is specified, detach any active vnodes
2130 * that are found.
2131 *
2132 * If WRITECLOSE is set, only flush out regular file vnodes open for
2133 * writing.
2134 *
2135 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2136 *
2137 * `rootrefs' specifies the base reference count for the root vnode
2138 * of this filesystem. The root vnode is considered busy if its
2139 * v_usecount exceeds this value. On a successful return, vflush()
2140 * will call vrele() on the root vnode exactly rootrefs times.
2141 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2142 * be zero.
2143 */
2144#ifdef DIAGNOSTIC
2145static int busyprt = 0;		/* print out busy vnodes */
2146SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2147#endif
2148
2149int
2150vflush(mp, rootrefs, flags)
2151	struct mount *mp;
2152	int rootrefs;
2153	int flags;
2154{
2155	struct thread *td = curthread;	/* XXX */
2156	struct vnode *vp, *nvp, *rootvp = NULL;
2157	struct vattr vattr;
2158	int busy = 0, error;
2159
2160	if (rootrefs > 0) {
2161		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2162		    ("vflush: bad args"));
2163		/*
2164		 * Get the filesystem root vnode. We can vput() it
2165		 * immediately, since with rootrefs > 0, it won't go away.
2166		 */
2167		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
2168			return (error);
2169		vput(rootvp);
2170
2171	}
2172	mtx_lock(&mntvnode_mtx);
2173loop:
2174	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
2175		/*
2176		 * Make sure this vnode wasn't reclaimed in getnewvnode().
2177		 * Start over if it has (it won't be on the list anymore).
2178		 */
2179		if (vp->v_mount != mp)
2180			goto loop;
2181		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2182
2183		mtx_unlock(&mntvnode_mtx);
2184		VI_LOCK(vp);
2185		/*
2186		 * Skip over a vnodes marked VV_SYSTEM.
2187		 */
2188		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2189			VI_UNLOCK(vp);
2190			mtx_lock(&mntvnode_mtx);
2191			continue;
2192		}
2193		/*
2194		 * If WRITECLOSE is set, flush out unlinked but still open
2195		 * files (even if open only for reading) and regular file
2196		 * vnodes open for writing.
2197		 */
2198		mp_fixme("Getattr called with interlock held!");
2199		if ((flags & WRITECLOSE) &&
2200		    (vp->v_type == VNON ||
2201		    (VOP_GETATTR(vp, &vattr, td->td_ucred, td) == 0 &&
2202		    vattr.va_nlink > 0)) &&
2203		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2204			mtx_unlock(&vp->v_interlock);
2205			mtx_lock(&mntvnode_mtx);
2206			continue;
2207		}
2208
2209		/*
2210		 * With v_usecount == 0, all we need to do is clear out the
2211		 * vnode data structures and we are done.
2212		 */
2213		if (vp->v_usecount == 0) {
2214			vgonel(vp, td);
2215			mtx_lock(&mntvnode_mtx);
2216			continue;
2217		}
2218
2219		/*
2220		 * If FORCECLOSE is set, forcibly close the vnode. For block
2221		 * or character devices, revert to an anonymous device. For
2222		 * all other files, just kill them.
2223		 */
2224		if (flags & FORCECLOSE) {
2225			if (vp->v_type != VCHR) {
2226				vgonel(vp, td);
2227			} else {
2228				vclean(vp, 0, td);
2229				VI_UNLOCK(vp);
2230				vp->v_op = spec_vnodeop_p;
2231				insmntque(vp, (struct mount *) 0);
2232			}
2233			mtx_lock(&mntvnode_mtx);
2234			continue;
2235		}
2236#ifdef DIAGNOSTIC
2237		if (busyprt)
2238			vprint("vflush: busy vnode", vp);
2239#endif
2240		VI_UNLOCK(vp);
2241		mtx_lock(&mntvnode_mtx);
2242		busy++;
2243	}
2244	mtx_unlock(&mntvnode_mtx);
2245	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2246		/*
2247		 * If just the root vnode is busy, and if its refcount
2248		 * is equal to `rootrefs', then go ahead and kill it.
2249		 */
2250		mtx_lock(&rootvp->v_interlock);
2251		KASSERT(busy > 0, ("vflush: not busy"));
2252		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
2253		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2254			vgonel(rootvp, td);
2255			busy = 0;
2256		} else
2257			mtx_unlock(&rootvp->v_interlock);
2258	}
2259	if (busy)
2260		return (EBUSY);
2261	for (; rootrefs > 0; rootrefs--)
2262		vrele(rootvp);
2263	return (0);
2264}
2265
2266/*
2267 * This moves a now (likely recyclable) vnode to the end of the
2268 * mountlist.  XXX However, it is temporarily disabled until we
2269 * can clean up ffs_sync() and friends, which have loop restart
2270 * conditions which this code causes to operate O(N^2).
2271 */
2272static void
2273vlruvp(struct vnode *vp)
2274{
2275#if 0
2276	struct mount *mp;
2277
2278	if ((mp = vp->v_mount) != NULL) {
2279		mtx_lock(&mntvnode_mtx);
2280		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2281		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2282		mtx_unlock(&mntvnode_mtx);
2283	}
2284#endif
2285}
2286
2287/*
2288 * Disassociate the underlying filesystem from a vnode.
2289 */
2290static void
2291vclean(vp, flags, td)
2292	struct vnode *vp;
2293	int flags;
2294	struct thread *td;
2295{
2296	int active;
2297
2298	ASSERT_VI_LOCKED(vp);
2299	/*
2300	 * Check to see if the vnode is in use. If so we have to reference it
2301	 * before we clean it out so that its count cannot fall to zero and
2302	 * generate a race against ourselves to recycle it.
2303	 */
2304	if ((active = vp->v_usecount))
2305		vp->v_usecount++;
2306
2307	/*
2308	 * Prevent the vnode from being recycled or brought into use while we
2309	 * clean it out.
2310	 */
2311	if (vp->v_iflag & VI_XLOCK)
2312		panic("vclean: deadlock");
2313	vp->v_iflag |= VI_XLOCK;
2314	vp->v_vxproc = curthread;
2315	/*
2316	 * Even if the count is zero, the VOP_INACTIVE routine may still
2317	 * have the object locked while it cleans it out. The VOP_LOCK
2318	 * ensures that the VOP_INACTIVE routine is done with its work.
2319	 * For active vnodes, it ensures that no other activity can
2320	 * occur while the underlying object is being cleaned out.
2321	 */
2322	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2323
2324	/*
2325	 * Clean out any buffers associated with the vnode.
2326	 * If the flush fails, just toss the buffers.
2327	 */
2328	if (flags & DOCLOSE) {
2329		if (TAILQ_FIRST(&vp->v_dirtyblkhd) != NULL)
2330			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2331		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2332			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2333	}
2334
2335	VOP_DESTROYVOBJECT(vp);
2336
2337	/*
2338	 * Any other processes trying to obtain this lock must first
2339	 * wait for VXLOCK to clear, then call the new lock operation.
2340	 */
2341	VOP_UNLOCK(vp, 0, td);
2342
2343	/*
2344	 * If purging an active vnode, it must be closed and
2345	 * deactivated before being reclaimed. Note that the
2346	 * VOP_INACTIVE will unlock the vnode.
2347	 */
2348	if (active) {
2349		if (flags & DOCLOSE)
2350			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2351		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2352			panic("vclean: cannot relock.");
2353		VOP_INACTIVE(vp, td);
2354	}
2355
2356	/*
2357	 * Reclaim the vnode.
2358	 */
2359	if (VOP_RECLAIM(vp, td))
2360		panic("vclean: cannot reclaim");
2361
2362	if (active) {
2363		/*
2364		 * Inline copy of vrele() since VOP_INACTIVE
2365		 * has already been called.
2366		 */
2367		VI_LOCK(vp);
2368		if (--vp->v_usecount <= 0) {
2369#ifdef DIAGNOSTIC
2370			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2371				vprint("vclean: bad ref count", vp);
2372				panic("vclean: ref cnt");
2373			}
2374#endif
2375			vfree(vp);
2376		}
2377		VI_UNLOCK(vp);
2378	}
2379
2380	cache_purge(vp);
2381	vp->v_vnlock = NULL;
2382	lockdestroy(&vp->v_lock);
2383
2384	VI_LOCK(vp);
2385	if (VSHOULDFREE(vp))
2386		vfree(vp);
2387
2388	/*
2389	 * Done with purge, notify sleepers of the grim news.
2390	 */
2391	vp->v_op = dead_vnodeop_p;
2392	if (vp->v_pollinfo != NULL)
2393		vn_pollgone(vp);
2394	vp->v_tag = VT_NON;
2395	vp->v_iflag &= ~VI_XLOCK;
2396	vp->v_vxproc = NULL;
2397	if (vp->v_iflag & VI_XWANT) {
2398		vp->v_iflag &= ~VI_XWANT;
2399		wakeup(vp);
2400	}
2401}
2402
2403/*
2404 * Eliminate all activity associated with the requested vnode
2405 * and with all vnodes aliased to the requested vnode.
2406 */
2407int
2408vop_revoke(ap)
2409	struct vop_revoke_args /* {
2410		struct vnode *a_vp;
2411		int a_flags;
2412	} */ *ap;
2413{
2414	struct vnode *vp, *vq;
2415	dev_t dev;
2416
2417	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2418
2419	vp = ap->a_vp;
2420	VI_LOCK(vp);
2421	/*
2422	 * If a vgone (or vclean) is already in progress,
2423	 * wait until it is done and return.
2424	 */
2425	if (vp->v_iflag & VI_XLOCK) {
2426		vp->v_iflag |= VI_XWANT;
2427		msleep(vp, VI_MTX(vp), PINOD | PDROP,
2428		    "vop_revokeall", 0);
2429		VI_UNLOCK(vp);
2430		return (0);
2431	}
2432	VI_UNLOCK(vp);
2433	dev = vp->v_rdev;
2434	for (;;) {
2435		mtx_lock(&spechash_mtx);
2436		vq = SLIST_FIRST(&dev->si_hlist);
2437		mtx_unlock(&spechash_mtx);
2438		if (!vq)
2439			break;
2440		vgone(vq);
2441	}
2442	return (0);
2443}
2444
2445/*
2446 * Recycle an unused vnode to the front of the free list.
2447 * Release the passed interlock if the vnode will be recycled.
2448 */
2449int
2450vrecycle(vp, inter_lkp, td)
2451	struct vnode *vp;
2452	struct mtx *inter_lkp;
2453	struct thread *td;
2454{
2455
2456	mtx_lock(&vp->v_interlock);
2457	if (vp->v_usecount == 0) {
2458		if (inter_lkp) {
2459			mtx_unlock(inter_lkp);
2460		}
2461		vgonel(vp, td);
2462		return (1);
2463	}
2464	mtx_unlock(&vp->v_interlock);
2465	return (0);
2466}
2467
2468/*
2469 * Eliminate all activity associated with a vnode
2470 * in preparation for reuse.
2471 */
2472void
2473vgone(vp)
2474	register struct vnode *vp;
2475{
2476	struct thread *td = curthread;	/* XXX */
2477
2478	VI_LOCK(vp);
2479	vgonel(vp, td);
2480}
2481
2482/*
2483 * vgone, with the vp interlock held.
2484 */
2485void
2486vgonel(vp, td)
2487	struct vnode *vp;
2488	struct thread *td;
2489{
2490	int s;
2491
2492	/*
2493	 * If a vgone (or vclean) is already in progress,
2494	 * wait until it is done and return.
2495	 */
2496	ASSERT_VI_LOCKED(vp);
2497	if (vp->v_iflag & VI_XLOCK) {
2498		vp->v_iflag |= VI_XWANT;
2499		VI_UNLOCK(vp);
2500		tsleep(vp, PINOD | PDROP, "vgone", 0);
2501		return;
2502	}
2503
2504	/*
2505	 * Clean out the filesystem specific data.
2506	 */
2507	vclean(vp, DOCLOSE, td);
2508	VI_UNLOCK(vp);
2509
2510	/*
2511	 * Delete from old mount point vnode list, if on one.
2512	 */
2513	if (vp->v_mount != NULL)
2514		insmntque(vp, (struct mount *)0);
2515	/*
2516	 * If special device, remove it from special device alias list
2517	 * if it is on one.
2518	 */
2519	if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) {
2520		mtx_lock(&spechash_mtx);
2521		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
2522		freedev(vp->v_rdev);
2523		mtx_unlock(&spechash_mtx);
2524		vp->v_rdev = NULL;
2525	}
2526
2527	/*
2528	 * If it is on the freelist and not already at the head,
2529	 * move it to the head of the list. The test of the
2530	 * VDOOMED flag and the reference count of zero is because
2531	 * it will be removed from the free list by getnewvnode,
2532	 * but will not have its reference count incremented until
2533	 * after calling vgone. If the reference count were
2534	 * incremented first, vgone would (incorrectly) try to
2535	 * close the previous instance of the underlying object.
2536	 */
2537	VI_LOCK(vp);
2538	if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2539		s = splbio();
2540		mtx_lock(&vnode_free_list_mtx);
2541		if (vp->v_iflag & VI_FREE) {
2542			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2543		} else {
2544			vp->v_iflag |= VI_FREE;
2545			freevnodes++;
2546		}
2547		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2548		mtx_unlock(&vnode_free_list_mtx);
2549		splx(s);
2550	}
2551
2552	vp->v_type = VBAD;
2553	VI_UNLOCK(vp);
2554}
2555
2556/*
2557 * Lookup a vnode by device number.
2558 */
2559int
2560vfinddev(dev, type, vpp)
2561	dev_t dev;
2562	enum vtype type;
2563	struct vnode **vpp;
2564{
2565	struct vnode *vp;
2566
2567	mtx_lock(&spechash_mtx);
2568	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2569		if (type == vp->v_type) {
2570			*vpp = vp;
2571			mtx_unlock(&spechash_mtx);
2572			return (1);
2573		}
2574	}
2575	mtx_unlock(&spechash_mtx);
2576	return (0);
2577}
2578
2579/*
2580 * Calculate the total number of references to a special device.
2581 */
2582int
2583vcount(vp)
2584	struct vnode *vp;
2585{
2586	struct vnode *vq;
2587	int count;
2588
2589	count = 0;
2590	mtx_lock(&spechash_mtx);
2591	SLIST_FOREACH(vq, &vp->v_rdev->si_hlist, v_specnext)
2592		count += vq->v_usecount;
2593	mtx_unlock(&spechash_mtx);
2594	return (count);
2595}
2596
2597/*
2598 * Same as above, but using the dev_t as argument
2599 */
2600int
2601count_dev(dev)
2602	dev_t dev;
2603{
2604	struct vnode *vp;
2605
2606	vp = SLIST_FIRST(&dev->si_hlist);
2607	if (vp == NULL)
2608		return (0);
2609	return(vcount(vp));
2610}
2611
2612/*
2613 * Print out a description of a vnode.
2614 */
2615static char *typename[] =
2616{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2617
2618void
2619vprint(label, vp)
2620	char *label;
2621	struct vnode *vp;
2622{
2623	char buf[96];
2624
2625	if (label != NULL)
2626		printf("%s: %p: ", label, (void *)vp);
2627	else
2628		printf("%p: ", (void *)vp);
2629	printf("type %s, usecount %d, writecount %d, refcount %d,",
2630	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2631	    vp->v_holdcnt);
2632	buf[0] = '\0';
2633	if (vp->v_vflag & VV_ROOT)
2634		strcat(buf, "|VV_ROOT");
2635	if (vp->v_vflag & VV_TEXT)
2636		strcat(buf, "|VV_TEXT");
2637	if (vp->v_vflag & VV_SYSTEM)
2638		strcat(buf, "|VV_SYSTEM");
2639	if (vp->v_iflag & VI_XLOCK)
2640		strcat(buf, "|VI_XLOCK");
2641	if (vp->v_iflag & VI_XWANT)
2642		strcat(buf, "|VI_XWANT");
2643	if (vp->v_iflag & VI_BWAIT)
2644		strcat(buf, "|VI_BWAIT");
2645	if (vp->v_iflag & VI_DOOMED)
2646		strcat(buf, "|VI_DOOMED");
2647	if (vp->v_iflag & VI_FREE)
2648		strcat(buf, "|VI_FREE");
2649	if (vp->v_vflag & VV_OBJBUF)
2650		strcat(buf, "|VV_OBJBUF");
2651	if (buf[0] != '\0')
2652		printf(" flags (%s)", &buf[1]);
2653	if (vp->v_data == NULL) {
2654		printf("\n");
2655	} else {
2656		printf("\n\t");
2657		VOP_PRINT(vp);
2658	}
2659}
2660
2661#ifdef DDB
2662#include <ddb/ddb.h>
2663/*
2664 * List all of the locked vnodes in the system.
2665 * Called when debugging the kernel.
2666 */
2667DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2668{
2669	struct thread *td = curthread;	/* XXX */
2670	struct mount *mp, *nmp;
2671	struct vnode *vp;
2672
2673	printf("Locked vnodes\n");
2674	mtx_lock(&mountlist_mtx);
2675	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2676		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
2677			nmp = TAILQ_NEXT(mp, mnt_list);
2678			continue;
2679		}
2680		mtx_lock(&mntvnode_mtx);
2681		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2682			if (VOP_ISLOCKED(vp, NULL))
2683				vprint((char *)0, vp);
2684		}
2685		mtx_unlock(&mntvnode_mtx);
2686		mtx_lock(&mountlist_mtx);
2687		nmp = TAILQ_NEXT(mp, mnt_list);
2688		vfs_unbusy(mp, td);
2689	}
2690	mtx_unlock(&mountlist_mtx);
2691}
2692#endif
2693
2694/*
2695 * Fill in a struct xvfsconf based on a struct vfsconf.
2696 */
2697static void
2698vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2699{
2700
2701	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2702	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2703	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2704	xvfsp->vfc_flags = vfsp->vfc_flags;
2705	/*
2706	 * These are unused in userland, we keep them
2707	 * to not break binary compatibility.
2708	 */
2709	xvfsp->vfc_vfsops = NULL;
2710	xvfsp->vfc_next = NULL;
2711}
2712
2713static int
2714sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2715{
2716	struct vfsconf *vfsp;
2717	struct xvfsconf *xvfsp;
2718	int cnt, error, i;
2719
2720	cnt = 0;
2721	for (vfsp = vfsconf; vfsp != NULL; vfsp = vfsp->vfc_next)
2722		cnt++;
2723	xvfsp = malloc(sizeof(struct xvfsconf) * cnt, M_TEMP, M_WAITOK);
2724	/*
2725	 * Handle the race that we will have here when struct vfsconf
2726	 * will be locked down by using both cnt and checking vfc_next
2727	 * against NULL to determine the end of the loop.  The race will
2728	 * happen because we will have to unlock before calling malloc().
2729	 * We are protected by Giant for now.
2730	 */
2731	i = 0;
2732	for (vfsp = vfsconf; vfsp != NULL && i < cnt; vfsp = vfsp->vfc_next) {
2733		vfsconf2x(vfsp, xvfsp + i);
2734		i++;
2735	}
2736	error = SYSCTL_OUT(req, xvfsp, sizeof(struct xvfsconf) * i);
2737	free(xvfsp, M_TEMP);
2738	return (error);
2739}
2740
2741SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2742    "S,xvfsconf", "List of all configured filesystems");
2743
2744/*
2745 * Top level filesystem related information gathering.
2746 */
2747static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2748
2749static int
2750vfs_sysctl(SYSCTL_HANDLER_ARGS)
2751{
2752	int *name = (int *)arg1 - 1;	/* XXX */
2753	u_int namelen = arg2 + 1;	/* XXX */
2754	struct vfsconf *vfsp;
2755	struct xvfsconf xvfsp;
2756
2757	printf("WARNING: userland calling deprecated sysctl, "
2758	    "please rebuild world\n");
2759
2760#if 1 || defined(COMPAT_PRELITE2)
2761	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2762	if (namelen == 1)
2763		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2764#endif
2765
2766	switch (name[1]) {
2767	case VFS_MAXTYPENUM:
2768		if (namelen != 2)
2769			return (ENOTDIR);
2770		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2771	case VFS_CONF:
2772		if (namelen != 3)
2773			return (ENOTDIR);	/* overloaded */
2774		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2775			if (vfsp->vfc_typenum == name[2])
2776				break;
2777		if (vfsp == NULL)
2778			return (EOPNOTSUPP);
2779		vfsconf2x(vfsp, &xvfsp);
2780		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2781	}
2782	return (EOPNOTSUPP);
2783}
2784
2785SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, vfs_sysctl,
2786	"Generic filesystem");
2787
2788#if 1 || defined(COMPAT_PRELITE2)
2789
2790static int
2791sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2792{
2793	int error;
2794	struct vfsconf *vfsp;
2795	struct ovfsconf ovfs;
2796
2797	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2798		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2799		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2800		ovfs.vfc_index = vfsp->vfc_typenum;
2801		ovfs.vfc_refcount = vfsp->vfc_refcount;
2802		ovfs.vfc_flags = vfsp->vfc_flags;
2803		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2804		if (error)
2805			return error;
2806	}
2807	return 0;
2808}
2809
2810#endif /* 1 || COMPAT_PRELITE2 */
2811
2812#define KINFO_VNODESLOP		10
2813/*
2814 * Dump vnode list (via sysctl).
2815 */
2816/* ARGSUSED */
2817static int
2818sysctl_vnode(SYSCTL_HANDLER_ARGS)
2819{
2820	struct xvnode *xvn;
2821	struct thread *td = req->td;
2822	struct mount *mp;
2823	struct vnode *vp;
2824	int error, len, n;
2825
2826	/*
2827	 * Stale numvnodes access is not fatal here.
2828	 */
2829	req->lock = 0;
2830	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2831	if (!req->oldptr)
2832		/* Make an estimate */
2833		return (SYSCTL_OUT(req, 0, len));
2834
2835	sysctl_wire_old_buffer(req, 0);
2836	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2837	n = 0;
2838	mtx_lock(&mountlist_mtx);
2839	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2840		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
2841			continue;
2842		mtx_lock(&mntvnode_mtx);
2843		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2844			if (n == len)
2845				break;
2846			vref(vp);
2847			xvn[n].xv_size = sizeof *xvn;
2848			xvn[n].xv_vnode = vp;
2849#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
2850			XV_COPY(usecount);
2851			XV_COPY(writecount);
2852			XV_COPY(holdcnt);
2853			XV_COPY(id);
2854			XV_COPY(mount);
2855			XV_COPY(numoutput);
2856			XV_COPY(type);
2857#undef XV_COPY
2858			xvn[n].xv_flag = vp->v_vflag;
2859
2860			switch (vp->v_type) {
2861			case VREG:
2862			case VDIR:
2863			case VLNK:
2864				xvn[n].xv_dev = vp->v_cachedfs;
2865				xvn[n].xv_ino = vp->v_cachedid;
2866				break;
2867			case VBLK:
2868			case VCHR:
2869				if (vp->v_rdev == NULL) {
2870					vrele(vp);
2871					continue;
2872				}
2873				xvn[n].xv_dev = dev2udev(vp->v_rdev);
2874				break;
2875			case VSOCK:
2876				xvn[n].xv_socket = vp->v_socket;
2877				break;
2878			case VFIFO:
2879				xvn[n].xv_fifo = vp->v_fifoinfo;
2880				break;
2881			case VNON:
2882			case VBAD:
2883			default:
2884				/* shouldn't happen? */
2885				vrele(vp);
2886				continue;
2887			}
2888			vrele(vp);
2889			++n;
2890		}
2891		mtx_unlock(&mntvnode_mtx);
2892		mtx_lock(&mountlist_mtx);
2893		vfs_unbusy(mp, td);
2894		if (n == len)
2895			break;
2896	}
2897	mtx_unlock(&mountlist_mtx);
2898
2899	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
2900	free(xvn, M_TEMP);
2901	return (error);
2902}
2903
2904SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2905	0, 0, sysctl_vnode, "S,xvnode", "");
2906
2907/*
2908 * Check to see if a filesystem is mounted on a block device.
2909 */
2910int
2911vfs_mountedon(vp)
2912	struct vnode *vp;
2913{
2914
2915	if (vp->v_rdev->si_mountpoint != NULL)
2916		return (EBUSY);
2917	return (0);
2918}
2919
2920/*
2921 * Unmount all filesystems. The list is traversed in reverse order
2922 * of mounting to avoid dependencies.
2923 */
2924void
2925vfs_unmountall()
2926{
2927	struct mount *mp;
2928	struct thread *td;
2929	int error;
2930
2931	if (curthread != NULL)
2932		td = curthread;
2933	else
2934		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
2935	/*
2936	 * Since this only runs when rebooting, it is not interlocked.
2937	 */
2938	while(!TAILQ_EMPTY(&mountlist)) {
2939		mp = TAILQ_LAST(&mountlist, mntlist);
2940		error = dounmount(mp, MNT_FORCE, td);
2941		if (error) {
2942			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2943			printf("unmount of %s failed (",
2944			    mp->mnt_stat.f_mntonname);
2945			if (error == EBUSY)
2946				printf("BUSY)\n");
2947			else
2948				printf("%d)\n", error);
2949		} else {
2950			/* The unmount has removed mp from the mountlist */
2951		}
2952	}
2953}
2954
2955/*
2956 * perform msync on all vnodes under a mount point
2957 * the mount point must be locked.
2958 */
2959void
2960vfs_msync(struct mount *mp, int flags)
2961{
2962	struct vnode *vp, *nvp;
2963	struct vm_object *obj;
2964	int tries;
2965
2966	GIANT_REQUIRED;
2967
2968	tries = 5;
2969	mtx_lock(&mntvnode_mtx);
2970loop:
2971	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
2972		if (vp->v_mount != mp) {
2973			if (--tries > 0)
2974				goto loop;
2975			break;
2976		}
2977		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2978
2979		mp_fixme("What locks do we need here?");
2980		if (vp->v_iflag & VI_XLOCK)	/* XXX: what if MNT_WAIT? */
2981			continue;
2982
2983		if (vp->v_vflag & VV_NOSYNC)	/* unlinked, skip it */
2984			continue;
2985
2986		if ((vp->v_iflag & VI_OBJDIRTY) &&
2987		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2988			mtx_unlock(&mntvnode_mtx);
2989			if (!vget(vp,
2990			    LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curthread)) {
2991				if (VOP_GETVOBJECT(vp, &obj) == 0) {
2992					vm_object_page_clean(obj, 0, 0,
2993					    flags == MNT_WAIT ?
2994					    OBJPC_SYNC : OBJPC_NOSYNC);
2995				}
2996				vput(vp);
2997			}
2998			mtx_lock(&mntvnode_mtx);
2999			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
3000				if (--tries > 0)
3001					goto loop;
3002				break;
3003			}
3004		}
3005	}
3006	mtx_unlock(&mntvnode_mtx);
3007}
3008
3009/*
3010 * Create the VM object needed for VMIO and mmap support.  This
3011 * is done for all VREG files in the system.  Some filesystems might
3012 * afford the additional metadata buffering capability of the
3013 * VMIO code by making the device node be VMIO mode also.
3014 *
3015 * vp must be locked when vfs_object_create is called.
3016 */
3017int
3018vfs_object_create(vp, td, cred)
3019	struct vnode *vp;
3020	struct thread *td;
3021	struct ucred *cred;
3022{
3023	GIANT_REQUIRED;
3024	return (VOP_CREATEVOBJECT(vp, cred, td));
3025}
3026
3027/*
3028 * Mark a vnode as free, putting it up for recycling.
3029 */
3030void
3031vfree(vp)
3032	struct vnode *vp;
3033{
3034	int s;
3035
3036	ASSERT_VI_LOCKED(vp);
3037	s = splbio();
3038	mtx_lock(&vnode_free_list_mtx);
3039	KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
3040	if (vp->v_iflag & VI_AGE) {
3041		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3042	} else {
3043		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3044	}
3045	freevnodes++;
3046	mtx_unlock(&vnode_free_list_mtx);
3047	vp->v_iflag &= ~VI_AGE;
3048	vp->v_iflag |= VI_FREE;
3049	splx(s);
3050}
3051
3052/*
3053 * Opposite of vfree() - mark a vnode as in use.
3054 */
3055void
3056vbusy(vp)
3057	struct vnode *vp;
3058{
3059	int s;
3060
3061	s = splbio();
3062	ASSERT_VI_LOCKED(vp);
3063	mtx_lock(&vnode_free_list_mtx);
3064	KASSERT((vp->v_iflag & VI_FREE) != 0, ("vnode not free"));
3065	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3066	freevnodes--;
3067	mtx_unlock(&vnode_free_list_mtx);
3068	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3069	splx(s);
3070}
3071
3072/*
3073 * Record a process's interest in events which might happen to
3074 * a vnode.  Because poll uses the historic select-style interface
3075 * internally, this routine serves as both the ``check for any
3076 * pending events'' and the ``record my interest in future events''
3077 * functions.  (These are done together, while the lock is held,
3078 * to avoid race conditions.)
3079 */
3080int
3081vn_pollrecord(vp, td, events)
3082	struct vnode *vp;
3083	struct thread *td;
3084	short events;
3085{
3086
3087	if (vp->v_pollinfo == NULL)
3088		v_addpollinfo(vp);
3089	mtx_lock(&vp->v_pollinfo->vpi_lock);
3090	if (vp->v_pollinfo->vpi_revents & events) {
3091		/*
3092		 * This leaves events we are not interested
3093		 * in available for the other process which
3094		 * which presumably had requested them
3095		 * (otherwise they would never have been
3096		 * recorded).
3097		 */
3098		events &= vp->v_pollinfo->vpi_revents;
3099		vp->v_pollinfo->vpi_revents &= ~events;
3100
3101		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3102		return events;
3103	}
3104	vp->v_pollinfo->vpi_events |= events;
3105	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3106	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3107	return 0;
3108}
3109
3110/*
3111 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3112 * it is possible for us to miss an event due to race conditions, but
3113 * that condition is expected to be rare, so for the moment it is the
3114 * preferred interface.
3115 */
3116void
3117vn_pollevent(vp, events)
3118	struct vnode *vp;
3119	short events;
3120{
3121
3122	if (vp->v_pollinfo == NULL)
3123		v_addpollinfo(vp);
3124	mtx_lock(&vp->v_pollinfo->vpi_lock);
3125	if (vp->v_pollinfo->vpi_events & events) {
3126		/*
3127		 * We clear vpi_events so that we don't
3128		 * call selwakeup() twice if two events are
3129		 * posted before the polling process(es) is
3130		 * awakened.  This also ensures that we take at
3131		 * most one selwakeup() if the polling process
3132		 * is no longer interested.  However, it does
3133		 * mean that only one event can be noticed at
3134		 * a time.  (Perhaps we should only clear those
3135		 * event bits which we note?) XXX
3136		 */
3137		vp->v_pollinfo->vpi_events = 0;	/* &= ~events ??? */
3138		vp->v_pollinfo->vpi_revents |= events;
3139		selwakeup(&vp->v_pollinfo->vpi_selinfo);
3140	}
3141	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3142}
3143
3144/*
3145 * Wake up anyone polling on vp because it is being revoked.
3146 * This depends on dead_poll() returning POLLHUP for correct
3147 * behavior.
3148 */
3149void
3150vn_pollgone(vp)
3151	struct vnode *vp;
3152{
3153
3154	mtx_lock(&vp->v_pollinfo->vpi_lock);
3155	VN_KNOTE(vp, NOTE_REVOKE);
3156	if (vp->v_pollinfo->vpi_events) {
3157		vp->v_pollinfo->vpi_events = 0;
3158		selwakeup(&vp->v_pollinfo->vpi_selinfo);
3159	}
3160	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3161}
3162
3163
3164
3165/*
3166 * Routine to create and manage a filesystem syncer vnode.
3167 */
3168#define sync_close ((int (*)(struct  vop_close_args *))nullop)
3169static int	sync_fsync(struct  vop_fsync_args *);
3170static int	sync_inactive(struct  vop_inactive_args *);
3171static int	sync_reclaim(struct  vop_reclaim_args *);
3172static int	sync_print(struct vop_print_args *);
3173
3174static vop_t **sync_vnodeop_p;
3175static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3176	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
3177	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
3178	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
3179	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
3180	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
3181	{ &vop_lock_desc,	(vop_t *) vop_stdlock },	/* lock */
3182	{ &vop_unlock_desc,	(vop_t *) vop_stdunlock },	/* unlock */
3183	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
3184	{ &vop_islocked_desc,	(vop_t *) vop_stdislocked },	/* islocked */
3185	{ NULL, NULL }
3186};
3187static struct vnodeopv_desc sync_vnodeop_opv_desc =
3188	{ &sync_vnodeop_p, sync_vnodeop_entries };
3189
3190VNODEOP_SET(sync_vnodeop_opv_desc);
3191
3192/*
3193 * Create a new filesystem syncer vnode for the specified mount point.
3194 */
3195int
3196vfs_allocate_syncvnode(mp)
3197	struct mount *mp;
3198{
3199	struct vnode *vp;
3200	static long start, incr, next;
3201	int error;
3202
3203	/* Allocate a new vnode */
3204	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
3205		mp->mnt_syncer = NULL;
3206		return (error);
3207	}
3208	vp->v_type = VNON;
3209	/*
3210	 * Place the vnode onto the syncer worklist. We attempt to
3211	 * scatter them about on the list so that they will go off
3212	 * at evenly distributed times even if all the filesystems
3213	 * are mounted at once.
3214	 */
3215	next += incr;
3216	if (next == 0 || next > syncer_maxdelay) {
3217		start /= 2;
3218		incr /= 2;
3219		if (start == 0) {
3220			start = syncer_maxdelay / 2;
3221			incr = syncer_maxdelay;
3222		}
3223		next = start;
3224	}
3225	VI_LOCK(vp);
3226	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3227	VI_UNLOCK(vp);
3228	mp->mnt_syncer = vp;
3229	return (0);
3230}
3231
3232/*
3233 * Do a lazy sync of the filesystem.
3234 */
3235static int
3236sync_fsync(ap)
3237	struct vop_fsync_args /* {
3238		struct vnode *a_vp;
3239		struct ucred *a_cred;
3240		int a_waitfor;
3241		struct thread *a_td;
3242	} */ *ap;
3243{
3244	struct vnode *syncvp = ap->a_vp;
3245	struct mount *mp = syncvp->v_mount;
3246	struct thread *td = ap->a_td;
3247	int asyncflag;
3248
3249	/*
3250	 * We only need to do something if this is a lazy evaluation.
3251	 */
3252	if (ap->a_waitfor != MNT_LAZY)
3253		return (0);
3254
3255	/*
3256	 * Move ourselves to the back of the sync list.
3257	 */
3258	VI_LOCK(syncvp);
3259	vn_syncer_add_to_worklist(syncvp, syncdelay);
3260	VI_UNLOCK(syncvp);
3261
3262	/*
3263	 * Walk the list of vnodes pushing all that are dirty and
3264	 * not already on the sync list.
3265	 */
3266	mtx_lock(&mountlist_mtx);
3267	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3268		mtx_unlock(&mountlist_mtx);
3269		return (0);
3270	}
3271	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3272		vfs_unbusy(mp, td);
3273		return (0);
3274	}
3275	asyncflag = mp->mnt_flag & MNT_ASYNC;
3276	mp->mnt_flag &= ~MNT_ASYNC;
3277	vfs_msync(mp, MNT_NOWAIT);
3278	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
3279	if (asyncflag)
3280		mp->mnt_flag |= MNT_ASYNC;
3281	vn_finished_write(mp);
3282	vfs_unbusy(mp, td);
3283	return (0);
3284}
3285
3286/*
3287 * The syncer vnode is no referenced.
3288 */
3289static int
3290sync_inactive(ap)
3291	struct vop_inactive_args /* {
3292		struct vnode *a_vp;
3293		struct thread *a_td;
3294	} */ *ap;
3295{
3296
3297	VOP_UNLOCK(ap->a_vp, 0, ap->a_td);
3298	vgone(ap->a_vp);
3299	return (0);
3300}
3301
3302/*
3303 * The syncer vnode is no longer needed and is being decommissioned.
3304 *
3305 * Modifications to the worklist must be protected at splbio().
3306 */
3307static int
3308sync_reclaim(ap)
3309	struct vop_reclaim_args /* {
3310		struct vnode *a_vp;
3311	} */ *ap;
3312{
3313	struct vnode *vp = ap->a_vp;
3314	int s;
3315
3316	s = splbio();
3317	vp->v_mount->mnt_syncer = NULL;
3318	VI_LOCK(vp);
3319	if (vp->v_iflag & VI_ONWORKLST) {
3320		LIST_REMOVE(vp, v_synclist);
3321		vp->v_iflag &= ~VI_ONWORKLST;
3322	}
3323	VI_UNLOCK(vp);
3324	splx(s);
3325
3326	return (0);
3327}
3328
3329/*
3330 * Print out a syncer vnode.
3331 */
3332static int
3333sync_print(ap)
3334	struct vop_print_args /* {
3335		struct vnode *a_vp;
3336	} */ *ap;
3337{
3338	struct vnode *vp = ap->a_vp;
3339
3340	printf("syncer vnode");
3341	if (vp->v_vnlock != NULL)
3342		lockmgr_printinfo(vp->v_vnlock);
3343	printf("\n");
3344	return (0);
3345}
3346
3347/*
3348 * extract the dev_t from a VCHR
3349 */
3350dev_t
3351vn_todev(vp)
3352	struct vnode *vp;
3353{
3354	if (vp->v_type != VCHR)
3355		return (NODEV);
3356	return (vp->v_rdev);
3357}
3358
3359/*
3360 * Check if vnode represents a disk device
3361 */
3362int
3363vn_isdisk(vp, errp)
3364	struct vnode *vp;
3365	int *errp;
3366{
3367	struct cdevsw *cdevsw;
3368
3369	if (vp->v_type != VCHR) {
3370		if (errp != NULL)
3371			*errp = ENOTBLK;
3372		return (0);
3373	}
3374	if (vp->v_rdev == NULL) {
3375		if (errp != NULL)
3376			*errp = ENXIO;
3377		return (0);
3378	}
3379	cdevsw = devsw(vp->v_rdev);
3380	if (cdevsw == NULL) {
3381		if (errp != NULL)
3382			*errp = ENXIO;
3383		return (0);
3384	}
3385	if (!(cdevsw->d_flags & D_DISK)) {
3386		if (errp != NULL)
3387			*errp = ENOTBLK;
3388		return (0);
3389	}
3390	if (errp != NULL)
3391		*errp = 0;
3392	return (1);
3393}
3394
3395/*
3396 * Free data allocated by namei(); see namei(9) for details.
3397 */
3398void
3399NDFREE(ndp, flags)
3400     struct nameidata *ndp;
3401     const uint flags;
3402{
3403	if (!(flags & NDF_NO_FREE_PNBUF) &&
3404	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3405		uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3406		ndp->ni_cnd.cn_flags &= ~HASBUF;
3407	}
3408	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3409	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3410	    ndp->ni_dvp != ndp->ni_vp)
3411		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3412	if (!(flags & NDF_NO_DVP_RELE) &&
3413	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3414		vrele(ndp->ni_dvp);
3415		ndp->ni_dvp = NULL;
3416	}
3417	if (!(flags & NDF_NO_VP_UNLOCK) &&
3418	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3419		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3420	if (!(flags & NDF_NO_VP_RELE) &&
3421	    ndp->ni_vp) {
3422		vrele(ndp->ni_vp);
3423		ndp->ni_vp = NULL;
3424	}
3425	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3426	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3427		vrele(ndp->ni_startdir);
3428		ndp->ni_startdir = NULL;
3429	}
3430}
3431
3432/*
3433 * Common filesystem object access control check routine.  Accepts a
3434 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3435 * and optional call-by-reference privused argument allowing vaccess()
3436 * to indicate to the caller whether privilege was used to satisfy the
3437 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3438 */
3439int
3440vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3441	enum vtype type;
3442	mode_t file_mode;
3443	uid_t file_uid;
3444	gid_t file_gid;
3445	mode_t acc_mode;
3446	struct ucred *cred;
3447	int *privused;
3448{
3449	mode_t dac_granted;
3450#ifdef CAPABILITIES
3451	mode_t cap_granted;
3452#endif
3453
3454	/*
3455	 * Look for a normal, non-privileged way to access the file/directory
3456	 * as requested.  If it exists, go with that.
3457	 */
3458
3459	if (privused != NULL)
3460		*privused = 0;
3461
3462	dac_granted = 0;
3463
3464	/* Check the owner. */
3465	if (cred->cr_uid == file_uid) {
3466		dac_granted |= VADMIN;
3467		if (file_mode & S_IXUSR)
3468			dac_granted |= VEXEC;
3469		if (file_mode & S_IRUSR)
3470			dac_granted |= VREAD;
3471		if (file_mode & S_IWUSR)
3472			dac_granted |= (VWRITE | VAPPEND);
3473
3474		if ((acc_mode & dac_granted) == acc_mode)
3475			return (0);
3476
3477		goto privcheck;
3478	}
3479
3480	/* Otherwise, check the groups (first match) */
3481	if (groupmember(file_gid, cred)) {
3482		if (file_mode & S_IXGRP)
3483			dac_granted |= VEXEC;
3484		if (file_mode & S_IRGRP)
3485			dac_granted |= VREAD;
3486		if (file_mode & S_IWGRP)
3487			dac_granted |= (VWRITE | VAPPEND);
3488
3489		if ((acc_mode & dac_granted) == acc_mode)
3490			return (0);
3491
3492		goto privcheck;
3493	}
3494
3495	/* Otherwise, check everyone else. */
3496	if (file_mode & S_IXOTH)
3497		dac_granted |= VEXEC;
3498	if (file_mode & S_IROTH)
3499		dac_granted |= VREAD;
3500	if (file_mode & S_IWOTH)
3501		dac_granted |= (VWRITE | VAPPEND);
3502	if ((acc_mode & dac_granted) == acc_mode)
3503		return (0);
3504
3505privcheck:
3506	if (!suser_cred(cred, PRISON_ROOT)) {
3507		/* XXX audit: privilege used */
3508		if (privused != NULL)
3509			*privused = 1;
3510		return (0);
3511	}
3512
3513#ifdef CAPABILITIES
3514	/*
3515	 * Build a capability mask to determine if the set of capabilities
3516	 * satisfies the requirements when combined with the granted mask
3517	 * from above.
3518	 * For each capability, if the capability is required, bitwise
3519	 * or the request type onto the cap_granted mask.
3520	 */
3521	cap_granted = 0;
3522
3523	if (type == VDIR) {
3524		/*
3525		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3526		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3527		 */
3528		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3529		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3530			cap_granted |= VEXEC;
3531	} else {
3532		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3533		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT))
3534			cap_granted |= VEXEC;
3535	}
3536
3537	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3538	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3539		cap_granted |= VREAD;
3540
3541	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3542	    !cap_check(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT))
3543		cap_granted |= (VWRITE | VAPPEND);
3544
3545	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3546	    !cap_check(cred, NULL, CAP_FOWNER, PRISON_ROOT))
3547		cap_granted |= VADMIN;
3548
3549	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3550		/* XXX audit: privilege used */
3551		if (privused != NULL)
3552			*privused = 1;
3553		return (0);
3554	}
3555#endif
3556
3557	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3558}
3559