vfs_subr.c revision 101040
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $FreeBSD: head/sys/kern/vfs_subr.c 101040 2002-07-31 12:24:35Z des $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46#include "opt_mac.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/conf.h>
53#include <sys/eventhandler.h>
54#include <sys/fcntl.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/malloc.h>
58#include <sys/mac.h>
59#include <sys/mount.h>
60#include <sys/namei.h>
61#include <sys/stat.h>
62#include <sys/sysctl.h>
63#include <sys/syslog.h>
64#include <sys/vmmeter.h>
65#include <sys/vnode.h>
66
67#include <vm/vm.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_page.h>
73#include <vm/uma.h>
74
75static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
76
77static void	addalias(struct vnode *vp, dev_t nvp_rdev);
78static void	insmntque(struct vnode *vp, struct mount *mp);
79static void	vclean(struct vnode *vp, int flags, struct thread *td);
80static void	vlruvp(struct vnode *vp);
81static int	flushbuflist(struct buf *blist, int flags, struct vnode *vp,
82		    int slpflag, int slptimeo, int *errorp);
83
84/*
85 * Number of vnodes in existence.  Increased whenever getnewvnode()
86 * allocates a new vnode, never decreased.
87 */
88static unsigned long	numvnodes;
89
90SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
91
92/*
93 * Conversion tables for conversion from vnode types to inode formats
94 * and back.
95 */
96enum vtype iftovt_tab[16] = {
97	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
98	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99};
100int vttoif_tab[9] = {
101	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
102	S_IFSOCK, S_IFIFO, S_IFMT,
103};
104
105/*
106 * List of vnodes that are ready for recycling.
107 */
108static TAILQ_HEAD(freelst, vnode) vnode_free_list;
109
110/*
111 * Minimum number of free vnodes.  If there are fewer than this free vnodes,
112 * getnewvnode() will return a newly allocated vnode.
113 */
114static u_long wantfreevnodes = 25;
115SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
116/* Number of vnodes in the free list. */
117static u_long freevnodes;
118SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
119
120/*
121 * Various variables used for debugging the new implementation of
122 * reassignbuf().
123 * XXX these are probably of (very) limited utility now.
124 */
125static int reassignbufcalls;
126SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
127static int nameileafonly;
128SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
129
130#ifdef ENABLE_VFS_IOOPT
131/* See NOTES for a description of this setting. */
132int vfs_ioopt;
133SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
134#endif
135
136/*
137 * Cache for the mount type id assigned to NFS.  This is used for
138 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
139 */
140int	nfs_mount_type = -1;
141
142/* To keep more than one thread at a time from running vfs_getnewfsid */
143static struct mtx mntid_mtx;
144
145/* For any iteration/modification of vnode_free_list */
146static struct mtx vnode_free_list_mtx;
147
148/*
149 * For any iteration/modification of dev->si_hlist (linked through
150 * v_specnext)
151 */
152static struct mtx spechash_mtx;
153
154/* Publicly exported FS */
155struct nfs_public nfs_pub;
156
157/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
158static uma_zone_t vnode_zone;
159static uma_zone_t vnodepoll_zone;
160
161/* Set to 1 to print out reclaim of active vnodes */
162int	prtactive;
163
164/*
165 * The workitem queue.
166 *
167 * It is useful to delay writes of file data and filesystem metadata
168 * for tens of seconds so that quickly created and deleted files need
169 * not waste disk bandwidth being created and removed. To realize this,
170 * we append vnodes to a "workitem" queue. When running with a soft
171 * updates implementation, most pending metadata dependencies should
172 * not wait for more than a few seconds. Thus, mounted on block devices
173 * are delayed only about a half the time that file data is delayed.
174 * Similarly, directory updates are more critical, so are only delayed
175 * about a third the time that file data is delayed. Thus, there are
176 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
177 * one each second (driven off the filesystem syncer process). The
178 * syncer_delayno variable indicates the next queue that is to be processed.
179 * Items that need to be processed soon are placed in this queue:
180 *
181 *	syncer_workitem_pending[syncer_delayno]
182 *
183 * A delay of fifteen seconds is done by placing the request fifteen
184 * entries later in the queue:
185 *
186 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
187 *
188 */
189static int syncer_delayno;
190static long syncer_mask;
191LIST_HEAD(synclist, vnode);
192static struct synclist *syncer_workitem_pending;
193
194#define SYNCER_MAXDELAY		32
195static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
196static int syncdelay = 30;		/* max time to delay syncing data */
197static int filedelay = 30;		/* time to delay syncing files */
198SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
199static int dirdelay = 29;		/* time to delay syncing directories */
200SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
201static int metadelay = 28;		/* time to delay syncing metadata */
202SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
203static int rushjob;		/* number of slots to run ASAP */
204static int stat_rush_requests;	/* number of times I/O speeded up */
205SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
206
207/*
208 * Number of vnodes we want to exist at any one time.  This is mostly used
209 * to size hash tables in vnode-related code.  It is normally not used in
210 * getnewvnode(), as wantfreevnodes is normally nonzero.)
211 *
212 * XXX desiredvnodes is historical cruft and should not exist.
213 */
214int desiredvnodes;
215SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
216    &desiredvnodes, 0, "Maximum number of vnodes");
217static int minvnodes;
218SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
219    &minvnodes, 0, "Minimum number of vnodes");
220static int vnlru_nowhere;
221SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
222    "Number of times the vnlru process ran without success");
223
224/* Hook for calling soft updates */
225int (*softdep_process_worklist_hook)(struct mount *);
226
227#ifdef DEBUG_VFS_LOCKS
228/* Print lock violations */
229int vfs_badlock_print = 1;
230/* Panic on violation */
231int vfs_badlock_panic = 1;
232
233void
234vop_rename_pre(void *ap)
235{
236	struct vop_rename_args *a = ap;
237
238	/* Check the source (from) */
239	if (a->a_tdvp != a->a_fdvp)
240		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked.\n");
241	if (a->a_tvp != a->a_fvp)
242		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked.\n");
243
244	/* Check the target */
245	if (a->a_tvp)
246		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked.\n");
247
248	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked.\n");
249}
250
251void
252vop_strategy_pre(void *ap)
253{
254	struct vop_strategy_args *a = ap;
255	struct buf *bp;
256
257	bp = a->a_bp;
258
259	/*
260	 * Cluster ops lock their component buffers but not the IO container.
261	 */
262	if ((bp->b_flags & B_CLUSTER) != 0)
263		return;
264
265	if (BUF_REFCNT(bp) < 1) {
266		if (vfs_badlock_print)
267			printf("VOP_STRATEGY: bp is not locked but should be.\n");
268		if (vfs_badlock_panic)
269			Debugger("Lock violation.\n");
270	}
271}
272
273void
274vop_lookup_pre(void *ap)
275{
276	struct vop_lookup_args *a = ap;
277	struct vnode *dvp;
278
279	dvp = a->a_dvp;
280
281	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
282}
283
284void
285vop_lookup_post(void *ap, int rc)
286{
287	struct vop_lookup_args *a = ap;
288	struct componentname *cnp;
289	struct vnode *dvp;
290	struct vnode *vp;
291	int flags;
292
293	dvp = a->a_dvp;
294	cnp = a->a_cnp;
295	vp = *(a->a_vpp);
296	flags = cnp->cn_flags;
297
298
299	/*
300	 * If this is the last path component for this lookup and LOCPARENT
301	 * is set, OR if there is an error the directory has to be locked.
302	 */
303	if ((flags & LOCKPARENT) && (flags & ISLASTCN))
304		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)");
305	else if (rc != 0)
306		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)");
307	else if (dvp != vp)
308		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)");
309
310	if (flags & PDIRUNLOCK)
311		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)");
312
313	if (rc == 0)
314		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (vpp)");
315}
316
317#endif	/* DEBUG_VFS_LOCKS */
318
319void
320v_addpollinfo(struct vnode *vp)
321{
322	vp->v_pollinfo = uma_zalloc(vnodepoll_zone, M_WAITOK);
323	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
324}
325
326/*
327 * Initialize the vnode management data structures.
328 */
329static void
330vntblinit(void *dummy __unused)
331{
332
333	desiredvnodes = maxproc + cnt.v_page_count / 4;
334	minvnodes = desiredvnodes / 4;
335	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
336	mtx_init(&mntvnode_mtx, "mntvnode", NULL, MTX_DEF);
337	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
338	mtx_init(&spechash_mtx, "spechash", NULL, MTX_DEF);
339	TAILQ_INIT(&vnode_free_list);
340	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
341	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
342	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
343	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
344	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
345	/*
346	 * Initialize the filesystem syncer.
347	 */
348	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
349		&syncer_mask);
350	syncer_maxdelay = syncer_mask + 1;
351}
352SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
353
354
355/*
356 * Mark a mount point as busy. Used to synchronize access and to delay
357 * unmounting. Interlock is not released on failure.
358 */
359int
360vfs_busy(mp, flags, interlkp, td)
361	struct mount *mp;
362	int flags;
363	struct mtx *interlkp;
364	struct thread *td;
365{
366	int lkflags;
367
368	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
369		if (flags & LK_NOWAIT)
370			return (ENOENT);
371		mp->mnt_kern_flag |= MNTK_MWAIT;
372		/*
373		 * Since all busy locks are shared except the exclusive
374		 * lock granted when unmounting, the only place that a
375		 * wakeup needs to be done is at the release of the
376		 * exclusive lock at the end of dounmount.
377		 */
378		msleep(mp, interlkp, PVFS, "vfs_busy", 0);
379		return (ENOENT);
380	}
381	lkflags = LK_SHARED | LK_NOPAUSE;
382	if (interlkp)
383		lkflags |= LK_INTERLOCK;
384	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
385		panic("vfs_busy: unexpected lock failure");
386	return (0);
387}
388
389/*
390 * Free a busy filesystem.
391 */
392void
393vfs_unbusy(mp, td)
394	struct mount *mp;
395	struct thread *td;
396{
397
398	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
399}
400
401/*
402 * Lookup a mount point by filesystem identifier.
403 */
404struct mount *
405vfs_getvfs(fsid)
406	fsid_t *fsid;
407{
408	register struct mount *mp;
409
410	mtx_lock(&mountlist_mtx);
411	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
412		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
413		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
414			mtx_unlock(&mountlist_mtx);
415			return (mp);
416	    }
417	}
418	mtx_unlock(&mountlist_mtx);
419	return ((struct mount *) 0);
420}
421
422/*
423 * Get a new unique fsid.  Try to make its val[0] unique, since this value
424 * will be used to create fake device numbers for stat().  Also try (but
425 * not so hard) make its val[0] unique mod 2^16, since some emulators only
426 * support 16-bit device numbers.  We end up with unique val[0]'s for the
427 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
428 *
429 * Keep in mind that several mounts may be running in parallel.  Starting
430 * the search one past where the previous search terminated is both a
431 * micro-optimization and a defense against returning the same fsid to
432 * different mounts.
433 */
434void
435vfs_getnewfsid(mp)
436	struct mount *mp;
437{
438	static u_int16_t mntid_base;
439	fsid_t tfsid;
440	int mtype;
441
442	mtx_lock(&mntid_mtx);
443	mtype = mp->mnt_vfc->vfc_typenum;
444	tfsid.val[1] = mtype;
445	mtype = (mtype & 0xFF) << 24;
446	for (;;) {
447		tfsid.val[0] = makeudev(255,
448		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
449		mntid_base++;
450		if (vfs_getvfs(&tfsid) == NULL)
451			break;
452	}
453	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
454	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
455	mtx_unlock(&mntid_mtx);
456}
457
458/*
459 * Knob to control the precision of file timestamps:
460 *
461 *   0 = seconds only; nanoseconds zeroed.
462 *   1 = seconds and nanoseconds, accurate within 1/HZ.
463 *   2 = seconds and nanoseconds, truncated to microseconds.
464 * >=3 = seconds and nanoseconds, maximum precision.
465 */
466enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
467
468static int timestamp_precision = TSP_SEC;
469SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
470    &timestamp_precision, 0, "");
471
472/*
473 * Get a current timestamp.
474 */
475void
476vfs_timestamp(tsp)
477	struct timespec *tsp;
478{
479	struct timeval tv;
480
481	switch (timestamp_precision) {
482	case TSP_SEC:
483		tsp->tv_sec = time_second;
484		tsp->tv_nsec = 0;
485		break;
486	case TSP_HZ:
487		getnanotime(tsp);
488		break;
489	case TSP_USEC:
490		microtime(&tv);
491		TIMEVAL_TO_TIMESPEC(&tv, tsp);
492		break;
493	case TSP_NSEC:
494	default:
495		nanotime(tsp);
496		break;
497	}
498}
499
500/*
501 * Set vnode attributes to VNOVAL
502 */
503void
504vattr_null(vap)
505	register struct vattr *vap;
506{
507
508	vap->va_type = VNON;
509	vap->va_size = VNOVAL;
510	vap->va_bytes = VNOVAL;
511	vap->va_mode = VNOVAL;
512	vap->va_nlink = VNOVAL;
513	vap->va_uid = VNOVAL;
514	vap->va_gid = VNOVAL;
515	vap->va_fsid = VNOVAL;
516	vap->va_fileid = VNOVAL;
517	vap->va_blocksize = VNOVAL;
518	vap->va_rdev = VNOVAL;
519	vap->va_atime.tv_sec = VNOVAL;
520	vap->va_atime.tv_nsec = VNOVAL;
521	vap->va_mtime.tv_sec = VNOVAL;
522	vap->va_mtime.tv_nsec = VNOVAL;
523	vap->va_ctime.tv_sec = VNOVAL;
524	vap->va_ctime.tv_nsec = VNOVAL;
525	vap->va_birthtime.tv_sec = VNOVAL;
526	vap->va_birthtime.tv_nsec = VNOVAL;
527	vap->va_flags = VNOVAL;
528	vap->va_gen = VNOVAL;
529	vap->va_vaflags = 0;
530}
531
532/*
533 * This routine is called when we have too many vnodes.  It attempts
534 * to free <count> vnodes and will potentially free vnodes that still
535 * have VM backing store (VM backing store is typically the cause
536 * of a vnode blowout so we want to do this).  Therefore, this operation
537 * is not considered cheap.
538 *
539 * A number of conditions may prevent a vnode from being reclaimed.
540 * the buffer cache may have references on the vnode, a directory
541 * vnode may still have references due to the namei cache representing
542 * underlying files, or the vnode may be in active use.   It is not
543 * desireable to reuse such vnodes.  These conditions may cause the
544 * number of vnodes to reach some minimum value regardless of what
545 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
546 */
547static int
548vlrureclaim(struct mount *mp, int count)
549{
550	struct vnode *vp;
551	int done;
552	int trigger;
553	int usevnodes;
554
555	/*
556	 * Calculate the trigger point, don't allow user
557	 * screwups to blow us up.   This prevents us from
558	 * recycling vnodes with lots of resident pages.  We
559	 * aren't trying to free memory, we are trying to
560	 * free vnodes.
561	 */
562	usevnodes = desiredvnodes;
563	if (usevnodes <= 0)
564		usevnodes = 1;
565	trigger = cnt.v_page_count * 2 / usevnodes;
566
567	done = 0;
568	mtx_lock(&mntvnode_mtx);
569	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
570		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
571		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
572
573		if (vp->v_type != VNON &&
574		    vp->v_type != VBAD &&
575		    VMIGHTFREE(vp) &&           /* critical path opt */
576		    (vp->v_object == NULL || vp->v_object->resident_page_count < trigger) &&
577		    mtx_trylock(&vp->v_interlock)
578		) {
579			mtx_unlock(&mntvnode_mtx);
580			if (VMIGHTFREE(vp)) {
581				vgonel(vp, curthread);
582				done++;
583			} else {
584				mtx_unlock(&vp->v_interlock);
585			}
586			mtx_lock(&mntvnode_mtx);
587		}
588		--count;
589	}
590	mtx_unlock(&mntvnode_mtx);
591	return done;
592}
593
594/*
595 * Attempt to recycle vnodes in a context that is always safe to block.
596 * Calling vlrurecycle() from the bowels of filesystem code has some
597 * interesting deadlock problems.
598 */
599static struct proc *vnlruproc;
600static int vnlruproc_sig;
601
602static void
603vnlru_proc(void)
604{
605	struct mount *mp, *nmp;
606	int s;
607	int done;
608	struct proc *p = vnlruproc;
609	struct thread *td = FIRST_THREAD_IN_PROC(p);	/* XXXKSE */
610
611	mtx_lock(&Giant);
612
613	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
614	    SHUTDOWN_PRI_FIRST);
615
616	s = splbio();
617	for (;;) {
618		kthread_suspend_check(p);
619		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
620			vnlruproc_sig = 0;
621			tsleep(vnlruproc, PVFS, "vlruwt", 0);
622			continue;
623		}
624		done = 0;
625		mtx_lock(&mountlist_mtx);
626		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
627			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
628				nmp = TAILQ_NEXT(mp, mnt_list);
629				continue;
630			}
631			done += vlrureclaim(mp, 10);
632			mtx_lock(&mountlist_mtx);
633			nmp = TAILQ_NEXT(mp, mnt_list);
634			vfs_unbusy(mp, td);
635		}
636		mtx_unlock(&mountlist_mtx);
637		if (done == 0) {
638#if 0
639			/* These messages are temporary debugging aids */
640			if (vnlru_nowhere < 5)
641				printf("vnlru process getting nowhere..\n");
642			else if (vnlru_nowhere == 5)
643				printf("vnlru process messages stopped.\n");
644#endif
645			vnlru_nowhere++;
646			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
647		}
648	}
649	splx(s);
650}
651
652static struct kproc_desc vnlru_kp = {
653	"vnlru",
654	vnlru_proc,
655	&vnlruproc
656};
657SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
658
659
660/*
661 * Routines having to do with the management of the vnode table.
662 */
663
664/*
665 * Return the next vnode from the free list.
666 */
667int
668getnewvnode(tag, mp, vops, vpp)
669	enum vtagtype tag;
670	struct mount *mp;
671	vop_t **vops;
672	struct vnode **vpp;
673{
674	int s;
675	struct thread *td = curthread;	/* XXX */
676	struct vnode *vp = NULL;
677	struct mount *vnmp;
678	vm_object_t object;
679
680	s = splbio();
681	/*
682	 * Try to reuse vnodes if we hit the max.  This situation only
683	 * occurs in certain large-memory (2G+) situations.  We cannot
684	 * attempt to directly reclaim vnodes due to nasty recursion
685	 * problems.
686	 */
687	if (vnlruproc_sig == 0 && numvnodes - freevnodes > desiredvnodes) {
688		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
689		wakeup(vnlruproc);
690	}
691
692	/*
693	 * Attempt to reuse a vnode already on the free list, allocating
694	 * a new vnode if we can't find one or if we have not reached a
695	 * good minimum for good LRU performance.
696	 */
697
698	mtx_lock(&vnode_free_list_mtx);
699
700	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
701		int count;
702
703		for (count = 0; count < freevnodes; count++) {
704			vp = TAILQ_FIRST(&vnode_free_list);
705			if (vp == NULL || vp->v_usecount)
706				panic("getnewvnode: free vnode isn't");
707			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
708
709			/* Don't recycle if we can't get the interlock */
710			if (!mtx_trylock(&vp->v_interlock)) {
711				vp = NULL;
712				continue;
713			}
714
715			/* We should be able to immediately acquire this */
716			if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td) != 0)
717				continue;
718			/*
719			 * Don't recycle if we still have cached pages.
720			 */
721			if (VOP_GETVOBJECT(vp, &object) == 0 &&
722			     (object->resident_page_count ||
723			      object->ref_count)) {
724				TAILQ_INSERT_TAIL(&vnode_free_list, vp,
725						    v_freelist);
726				VOP_UNLOCK(vp, 0, td);
727				vp = NULL;
728				continue;
729			}
730			if (LIST_FIRST(&vp->v_cache_src)) {
731				/*
732				 * note: nameileafonly sysctl is temporary,
733				 * for debugging only, and will eventually be
734				 * removed.
735				 */
736				if (nameileafonly > 0) {
737					/*
738					 * Do not reuse namei-cached directory
739					 * vnodes that have cached
740					 * subdirectories.
741					 */
742					if (cache_leaf_test(vp) < 0) {
743						VOP_UNLOCK(vp, 0, td);
744						TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
745						vp = NULL;
746						continue;
747					}
748				} else if (nameileafonly < 0 ||
749					    vmiodirenable == 0) {
750					/*
751					 * Do not reuse namei-cached directory
752					 * vnodes if nameileafonly is -1 or
753					 * if VMIO backing for directories is
754					 * turned off (otherwise we reuse them
755					 * too quickly).
756					 */
757					VOP_UNLOCK(vp, 0, td);
758					TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
759					vp = NULL;
760					continue;
761				}
762			}
763			/*
764			 * Skip over it if its filesystem is being suspended.
765			 */
766			if (vn_start_write(vp, &vnmp, V_NOWAIT) == 0)
767				break;
768			VOP_UNLOCK(vp, 0, td);
769			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
770			vp = NULL;
771		}
772	}
773	if (vp) {
774		vp->v_flag |= VDOOMED;
775		vp->v_flag &= ~VFREE;
776		freevnodes--;
777		mtx_unlock(&vnode_free_list_mtx);
778		cache_purge(vp);
779		if (vp->v_type != VBAD) {
780			VOP_UNLOCK(vp, 0, td);
781			vgone(vp);
782		} else {
783			VOP_UNLOCK(vp, 0, td);
784		}
785		vn_finished_write(vnmp);
786
787#ifdef INVARIANTS
788		{
789			int s;
790
791			if (vp->v_data)
792				panic("cleaned vnode isn't");
793			s = splbio();
794			if (vp->v_numoutput)
795				panic("Clean vnode has pending I/O's");
796			splx(s);
797			if (vp->v_writecount != 0)
798				panic("Non-zero write count");
799		}
800#endif
801		if (vp->v_pollinfo) {
802			mtx_destroy(&vp->v_pollinfo->vpi_lock);
803			uma_zfree(vnodepoll_zone, vp->v_pollinfo);
804		}
805		vp->v_pollinfo = NULL;
806#ifdef MAC
807		mac_destroy_vnode(vp);
808#endif
809		vp->v_flag = 0;
810		vp->v_lastw = 0;
811		vp->v_lasta = 0;
812		vp->v_cstart = 0;
813		vp->v_clen = 0;
814		vp->v_socket = 0;
815		KASSERT(vp->v_cleanblkroot == NULL, ("cleanblkroot not NULL"));
816		KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
817	} else {
818		mtx_unlock(&vnode_free_list_mtx);
819		vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK);
820		bzero((char *) vp, sizeof *vp);
821		mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
822		vp->v_dd = vp;
823		cache_purge(vp);
824		LIST_INIT(&vp->v_cache_src);
825		TAILQ_INIT(&vp->v_cache_dst);
826		numvnodes++;
827	}
828
829	TAILQ_INIT(&vp->v_cleanblkhd);
830	TAILQ_INIT(&vp->v_dirtyblkhd);
831	vp->v_type = VNON;
832	vp->v_tag = tag;
833	vp->v_op = vops;
834	lockinit(&vp->v_lock, PVFS, "vnlock", VLKTIMEOUT, LK_NOPAUSE);
835#ifdef MAC
836	mac_init_vnode(vp);
837#endif
838	insmntque(vp, mp);
839	*vpp = vp;
840	vp->v_usecount = 1;
841	vp->v_data = 0;
842	vp->v_cachedid = -1;
843
844	splx(s);
845
846#if 0
847	vnodeallocs++;
848	if (vnodeallocs % vnoderecycleperiod == 0 &&
849	    freevnodes < vnoderecycleminfreevn &&
850	    vnoderecyclemintotalvn < numvnodes) {
851		/* Recycle vnodes. */
852		cache_purgeleafdirs(vnoderecyclenumber);
853	}
854#endif
855
856	return (0);
857}
858
859/*
860 * Move a vnode from one mount queue to another.
861 */
862static void
863insmntque(vp, mp)
864	register struct vnode *vp;
865	register struct mount *mp;
866{
867
868	mtx_lock(&mntvnode_mtx);
869	/*
870	 * Delete from old mount point vnode list, if on one.
871	 */
872	if (vp->v_mount != NULL)
873		TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
874	/*
875	 * Insert into list of vnodes for the new mount point, if available.
876	 */
877	if ((vp->v_mount = mp) == NULL) {
878		mtx_unlock(&mntvnode_mtx);
879		return;
880	}
881	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
882	mtx_unlock(&mntvnode_mtx);
883}
884
885/*
886 * Update outstanding I/O count and do wakeup if requested.
887 */
888void
889vwakeup(bp)
890	register struct buf *bp;
891{
892	register struct vnode *vp;
893
894	bp->b_flags &= ~B_WRITEINPROG;
895	if ((vp = bp->b_vp)) {
896		vp->v_numoutput--;
897		if (vp->v_numoutput < 0)
898			panic("vwakeup: neg numoutput");
899		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
900			vp->v_flag &= ~VBWAIT;
901			wakeup(&vp->v_numoutput);
902		}
903	}
904}
905
906/*
907 * Flush out and invalidate all buffers associated with a vnode.
908 * Called with the underlying object locked.
909 */
910int
911vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
912	struct vnode *vp;
913	int flags;
914	struct ucred *cred;
915	struct thread *td;
916	int slpflag, slptimeo;
917{
918	struct buf *blist;
919	int s, error;
920	vm_object_t object;
921
922	GIANT_REQUIRED;
923
924	if (flags & V_SAVE) {
925		s = splbio();
926		while (vp->v_numoutput) {
927			vp->v_flag |= VBWAIT;
928			error = tsleep(&vp->v_numoutput,
929			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
930			if (error) {
931				splx(s);
932				return (error);
933			}
934		}
935		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
936			splx(s);
937			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
938				return (error);
939			s = splbio();
940			if (vp->v_numoutput > 0 ||
941			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
942				panic("vinvalbuf: dirty bufs");
943		}
944		splx(s);
945	}
946	s = splbio();
947	for (error = 0;;) {
948		if ((blist = TAILQ_FIRST(&vp->v_cleanblkhd)) != 0 &&
949		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
950			if (error)
951				break;
952			continue;
953		}
954		if ((blist = TAILQ_FIRST(&vp->v_dirtyblkhd)) != 0 &&
955		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
956			if (error)
957				break;
958			continue;
959		}
960		break;
961	}
962	if (error) {
963		splx(s);
964		return (error);
965	}
966
967	/*
968	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
969	 * have write I/O in-progress but if there is a VM object then the
970	 * VM object can also have read-I/O in-progress.
971	 */
972	do {
973		while (vp->v_numoutput > 0) {
974			vp->v_flag |= VBWAIT;
975			tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
976		}
977		if (VOP_GETVOBJECT(vp, &object) == 0) {
978			while (object->paging_in_progress)
979			vm_object_pip_sleep(object, "vnvlbx");
980		}
981	} while (vp->v_numoutput > 0);
982
983	splx(s);
984
985	/*
986	 * Destroy the copy in the VM cache, too.
987	 */
988	mtx_lock(&vp->v_interlock);
989	if (VOP_GETVOBJECT(vp, &object) == 0) {
990		vm_object_page_remove(object, 0, 0,
991			(flags & V_SAVE) ? TRUE : FALSE);
992	}
993	mtx_unlock(&vp->v_interlock);
994
995	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
996	    (!TAILQ_EMPTY(&vp->v_dirtyblkhd) ||
997	     !TAILQ_EMPTY(&vp->v_cleanblkhd)))
998		panic("vinvalbuf: flush failed");
999	return (0);
1000}
1001
1002/*
1003 * Flush out buffers on the specified list.
1004 */
1005static int
1006flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp)
1007	struct buf *blist;
1008	int flags;
1009	struct vnode *vp;
1010	int slpflag, slptimeo;
1011	int *errorp;
1012{
1013	struct buf *bp, *nbp;
1014	int found, error;
1015
1016	for (found = 0, bp = blist; bp; bp = nbp) {
1017		nbp = TAILQ_NEXT(bp, b_vnbufs);
1018		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1019		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))
1020			continue;
1021		found += 1;
1022		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1023			error = BUF_TIMELOCK(bp,
1024			    LK_EXCLUSIVE | LK_SLEEPFAIL,
1025			    "flushbuf", slpflag, slptimeo);
1026			if (error != ENOLCK)
1027				*errorp = error;
1028			return (found);
1029		}
1030		/*
1031		 * XXX Since there are no node locks for NFS, I
1032		 * believe there is a slight chance that a delayed
1033		 * write will occur while sleeping just above, so
1034		 * check for it.  Note that vfs_bio_awrite expects
1035		 * buffers to reside on a queue, while BUF_WRITE and
1036		 * brelse do not.
1037		 */
1038		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1039			(flags & V_SAVE)) {
1040
1041			if (bp->b_vp == vp) {
1042				if (bp->b_flags & B_CLUSTEROK) {
1043					BUF_UNLOCK(bp);
1044					vfs_bio_awrite(bp);
1045				} else {
1046					bremfree(bp);
1047					bp->b_flags |= B_ASYNC;
1048					BUF_WRITE(bp);
1049				}
1050			} else {
1051				bremfree(bp);
1052				(void) BUF_WRITE(bp);
1053			}
1054			return (found);
1055		}
1056		bremfree(bp);
1057		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1058		bp->b_flags &= ~B_ASYNC;
1059		brelse(bp);
1060	}
1061	return (found);
1062}
1063
1064/*
1065 * Truncate a file's buffer and pages to a specified length.  This
1066 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1067 * sync activity.
1068 */
1069int
1070vtruncbuf(vp, cred, td, length, blksize)
1071	register struct vnode *vp;
1072	struct ucred *cred;
1073	struct thread *td;
1074	off_t length;
1075	int blksize;
1076{
1077	register struct buf *bp;
1078	struct buf *nbp;
1079	int s, anyfreed;
1080	int trunclbn;
1081
1082	/*
1083	 * Round up to the *next* lbn.
1084	 */
1085	trunclbn = (length + blksize - 1) / blksize;
1086
1087	s = splbio();
1088restart:
1089	anyfreed = 1;
1090	for (;anyfreed;) {
1091		anyfreed = 0;
1092		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1093			nbp = TAILQ_NEXT(bp, b_vnbufs);
1094			if (bp->b_lblkno >= trunclbn) {
1095				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1096					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1097					goto restart;
1098				} else {
1099					bremfree(bp);
1100					bp->b_flags |= (B_INVAL | B_RELBUF);
1101					bp->b_flags &= ~B_ASYNC;
1102					brelse(bp);
1103					anyfreed = 1;
1104				}
1105				if (nbp &&
1106				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1107				    (nbp->b_vp != vp) ||
1108				    (nbp->b_flags & B_DELWRI))) {
1109					goto restart;
1110				}
1111			}
1112		}
1113
1114		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1115			nbp = TAILQ_NEXT(bp, b_vnbufs);
1116			if (bp->b_lblkno >= trunclbn) {
1117				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1118					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1119					goto restart;
1120				} else {
1121					bremfree(bp);
1122					bp->b_flags |= (B_INVAL | B_RELBUF);
1123					bp->b_flags &= ~B_ASYNC;
1124					brelse(bp);
1125					anyfreed = 1;
1126				}
1127				if (nbp &&
1128				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1129				    (nbp->b_vp != vp) ||
1130				    (nbp->b_flags & B_DELWRI) == 0)) {
1131					goto restart;
1132				}
1133			}
1134		}
1135	}
1136
1137	if (length > 0) {
1138restartsync:
1139		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1140			nbp = TAILQ_NEXT(bp, b_vnbufs);
1141			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1142				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1143					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1144					goto restart;
1145				} else {
1146					bremfree(bp);
1147					if (bp->b_vp == vp) {
1148						bp->b_flags |= B_ASYNC;
1149					} else {
1150						bp->b_flags &= ~B_ASYNC;
1151					}
1152					BUF_WRITE(bp);
1153				}
1154				goto restartsync;
1155			}
1156
1157		}
1158	}
1159
1160	while (vp->v_numoutput > 0) {
1161		vp->v_flag |= VBWAIT;
1162		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
1163	}
1164
1165	splx(s);
1166
1167	vnode_pager_setsize(vp, length);
1168
1169	return (0);
1170}
1171
1172/*
1173 * buf_splay() - splay tree core for the clean/dirty list of buffers in
1174 * 		 a vnode.
1175 *
1176 *	NOTE: We have to deal with the special case of a background bitmap
1177 *	buffer, a situation where two buffers will have the same logical
1178 *	block offset.  We want (1) only the foreground buffer to be accessed
1179 *	in a lookup and (2) must differentiate between the foreground and
1180 *	background buffer in the splay tree algorithm because the splay
1181 *	tree cannot normally handle multiple entities with the same 'index'.
1182 *	We accomplish this by adding differentiating flags to the splay tree's
1183 *	numerical domain.
1184 */
1185static
1186struct buf *
1187buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1188{
1189	struct buf dummy;
1190	struct buf *lefttreemax, *righttreemin, *y;
1191
1192	if (root == NULL)
1193		return (NULL);
1194	lefttreemax = righttreemin = &dummy;
1195	for (;;) {
1196		if (lblkno < root->b_lblkno ||
1197		    (lblkno == root->b_lblkno &&
1198		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1199			if ((y = root->b_left) == NULL)
1200				break;
1201			if (lblkno < y->b_lblkno) {
1202				/* Rotate right. */
1203				root->b_left = y->b_right;
1204				y->b_right = root;
1205				root = y;
1206				if ((y = root->b_left) == NULL)
1207					break;
1208			}
1209			/* Link into the new root's right tree. */
1210			righttreemin->b_left = root;
1211			righttreemin = root;
1212		} else if (lblkno > root->b_lblkno ||
1213		    (lblkno == root->b_lblkno &&
1214		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1215			if ((y = root->b_right) == NULL)
1216				break;
1217			if (lblkno > y->b_lblkno) {
1218				/* Rotate left. */
1219				root->b_right = y->b_left;
1220				y->b_left = root;
1221				root = y;
1222				if ((y = root->b_right) == NULL)
1223					break;
1224			}
1225			/* Link into the new root's left tree. */
1226			lefttreemax->b_right = root;
1227			lefttreemax = root;
1228		} else {
1229			break;
1230		}
1231		root = y;
1232	}
1233	/* Assemble the new root. */
1234	lefttreemax->b_right = root->b_left;
1235	righttreemin->b_left = root->b_right;
1236	root->b_left = dummy.b_right;
1237	root->b_right = dummy.b_left;
1238	return (root);
1239}
1240
1241static
1242void
1243buf_vlist_remove(struct buf *bp)
1244{
1245	struct vnode *vp = bp->b_vp;
1246	struct buf *root;
1247
1248	if (bp->b_xflags & BX_VNDIRTY) {
1249		if (bp != vp->v_dirtyblkroot) {
1250			root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1251			KASSERT(root == bp, ("splay lookup failed during dirty remove"));
1252		}
1253		if (bp->b_left == NULL) {
1254			root = bp->b_right;
1255		} else {
1256			root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1257			root->b_right = bp->b_right;
1258		}
1259		vp->v_dirtyblkroot = root;
1260		TAILQ_REMOVE(&vp->v_dirtyblkhd, bp, b_vnbufs);
1261	} else {
1262		/* KASSERT(bp->b_xflags & BX_VNCLEAN, ("bp wasn't clean")); */
1263		if (bp != vp->v_cleanblkroot) {
1264			root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1265			KASSERT(root == bp, ("splay lookup failed during clean remove"));
1266		}
1267		if (bp->b_left == NULL) {
1268			root = bp->b_right;
1269		} else {
1270			root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1271			root->b_right = bp->b_right;
1272		}
1273		vp->v_cleanblkroot = root;
1274		TAILQ_REMOVE(&vp->v_cleanblkhd, bp, b_vnbufs);
1275	}
1276	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1277}
1278
1279/*
1280 * Add the buffer to the sorted clean or dirty block list using a
1281 * splay tree algorithm.
1282 *
1283 * NOTE: xflags is passed as a constant, optimizing this inline function!
1284 */
1285static
1286void
1287buf_vlist_add(struct buf *bp, struct vnode *vp, b_xflags_t xflags)
1288{
1289	struct buf *root;
1290
1291	bp->b_xflags |= xflags;
1292	if (xflags & BX_VNDIRTY) {
1293		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1294		if (root == NULL) {
1295			bp->b_left = NULL;
1296			bp->b_right = NULL;
1297			TAILQ_INSERT_TAIL(&vp->v_dirtyblkhd, bp, b_vnbufs);
1298		} else if (bp->b_lblkno < root->b_lblkno ||
1299		    (bp->b_lblkno == root->b_lblkno &&
1300		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1301			bp->b_left = root->b_left;
1302			bp->b_right = root;
1303			root->b_left = NULL;
1304			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1305		} else {
1306			bp->b_right = root->b_right;
1307			bp->b_left = root;
1308			root->b_right = NULL;
1309			TAILQ_INSERT_AFTER(&vp->v_dirtyblkhd,
1310			    root, bp, b_vnbufs);
1311		}
1312		vp->v_dirtyblkroot = bp;
1313	} else {
1314		/* KASSERT(xflags & BX_VNCLEAN, ("xflags not clean")); */
1315		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1316		if (root == NULL) {
1317			bp->b_left = NULL;
1318			bp->b_right = NULL;
1319			TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1320		} else if (bp->b_lblkno < root->b_lblkno ||
1321		    (bp->b_lblkno == root->b_lblkno &&
1322		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1323			bp->b_left = root->b_left;
1324			bp->b_right = root;
1325			root->b_left = NULL;
1326			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1327		} else {
1328			bp->b_right = root->b_right;
1329			bp->b_left = root;
1330			root->b_right = NULL;
1331			TAILQ_INSERT_AFTER(&vp->v_cleanblkhd,
1332			    root, bp, b_vnbufs);
1333		}
1334		vp->v_cleanblkroot = bp;
1335	}
1336}
1337
1338#ifndef USE_BUFHASH
1339
1340/*
1341 * Lookup a buffer using the splay tree.  Note that we specifically avoid
1342 * shadow buffers used in background bitmap writes.
1343 *
1344 * This code isn't quite efficient as it could be because we are maintaining
1345 * two sorted lists and do not know which list the block resides in.
1346 */
1347struct buf *
1348gbincore(struct vnode *vp, daddr_t lblkno)
1349{
1350	struct buf *bp;
1351
1352	GIANT_REQUIRED;
1353
1354	bp = vp->v_cleanblkroot = buf_splay(lblkno, 0, vp->v_cleanblkroot);
1355	if (bp && bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1356		return(bp);
1357	bp = vp->v_dirtyblkroot = buf_splay(lblkno, 0, vp->v_dirtyblkroot);
1358	if (bp && bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1359		return(bp);
1360	return(NULL);
1361}
1362
1363#endif
1364
1365/*
1366 * Associate a buffer with a vnode.
1367 */
1368void
1369bgetvp(vp, bp)
1370	register struct vnode *vp;
1371	register struct buf *bp;
1372{
1373	int s;
1374
1375	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1376
1377	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1378	    ("bgetvp: bp already attached! %p", bp));
1379
1380	vhold(vp);
1381	bp->b_vp = vp;
1382	bp->b_dev = vn_todev(vp);
1383	/*
1384	 * Insert onto list for new vnode.
1385	 */
1386	s = splbio();
1387	buf_vlist_add(bp, vp, BX_VNCLEAN);
1388	splx(s);
1389}
1390
1391/*
1392 * Disassociate a buffer from a vnode.
1393 */
1394void
1395brelvp(bp)
1396	register struct buf *bp;
1397{
1398	struct vnode *vp;
1399	int s;
1400
1401	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1402
1403	/*
1404	 * Delete from old vnode list, if on one.
1405	 */
1406	vp = bp->b_vp;
1407	s = splbio();
1408	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1409		buf_vlist_remove(bp);
1410	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1411		vp->v_flag &= ~VONWORKLST;
1412		LIST_REMOVE(vp, v_synclist);
1413	}
1414	splx(s);
1415	bp->b_vp = (struct vnode *) 0;
1416	vdrop(vp);
1417	if (bp->b_object)
1418		bp->b_object = NULL;
1419}
1420
1421/*
1422 * Add an item to the syncer work queue.
1423 */
1424static void
1425vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1426{
1427	int s, slot;
1428
1429	s = splbio();
1430
1431	if (vp->v_flag & VONWORKLST) {
1432		LIST_REMOVE(vp, v_synclist);
1433	}
1434
1435	if (delay > syncer_maxdelay - 2)
1436		delay = syncer_maxdelay - 2;
1437	slot = (syncer_delayno + delay) & syncer_mask;
1438
1439	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1440	vp->v_flag |= VONWORKLST;
1441	splx(s);
1442}
1443
1444struct  proc *updateproc;
1445static void sched_sync(void);
1446static struct kproc_desc up_kp = {
1447	"syncer",
1448	sched_sync,
1449	&updateproc
1450};
1451SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1452
1453/*
1454 * System filesystem synchronizer daemon.
1455 */
1456void
1457sched_sync(void)
1458{
1459	struct synclist *slp;
1460	struct vnode *vp;
1461	struct mount *mp;
1462	long starttime;
1463	int s;
1464	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);  /* XXXKSE */
1465
1466	mtx_lock(&Giant);
1467
1468	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, td->td_proc,
1469	    SHUTDOWN_PRI_LAST);
1470
1471	for (;;) {
1472		kthread_suspend_check(td->td_proc);
1473
1474		starttime = time_second;
1475
1476		/*
1477		 * Push files whose dirty time has expired.  Be careful
1478		 * of interrupt race on slp queue.
1479		 */
1480		s = splbio();
1481		slp = &syncer_workitem_pending[syncer_delayno];
1482		syncer_delayno += 1;
1483		if (syncer_delayno == syncer_maxdelay)
1484			syncer_delayno = 0;
1485		splx(s);
1486
1487		while ((vp = LIST_FIRST(slp)) != NULL) {
1488			if (VOP_ISLOCKED(vp, NULL) == 0 &&
1489			    vn_start_write(vp, &mp, V_NOWAIT) == 0) {
1490				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1491				(void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td);
1492				VOP_UNLOCK(vp, 0, td);
1493				vn_finished_write(mp);
1494			}
1495			s = splbio();
1496			if (LIST_FIRST(slp) == vp) {
1497				/*
1498				 * Note: v_tag VT_VFS vps can remain on the
1499				 * worklist too with no dirty blocks, but
1500				 * since sync_fsync() moves it to a different
1501				 * slot we are safe.
1502				 */
1503				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1504				    !vn_isdisk(vp, NULL))
1505					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1506				/*
1507				 * Put us back on the worklist.  The worklist
1508				 * routine will remove us from our current
1509				 * position and then add us back in at a later
1510				 * position.
1511				 */
1512				vn_syncer_add_to_worklist(vp, syncdelay);
1513			}
1514			splx(s);
1515		}
1516
1517		/*
1518		 * Do soft update processing.
1519		 */
1520		if (softdep_process_worklist_hook != NULL)
1521			(*softdep_process_worklist_hook)(NULL);
1522
1523		/*
1524		 * The variable rushjob allows the kernel to speed up the
1525		 * processing of the filesystem syncer process. A rushjob
1526		 * value of N tells the filesystem syncer to process the next
1527		 * N seconds worth of work on its queue ASAP. Currently rushjob
1528		 * is used by the soft update code to speed up the filesystem
1529		 * syncer process when the incore state is getting so far
1530		 * ahead of the disk that the kernel memory pool is being
1531		 * threatened with exhaustion.
1532		 */
1533		if (rushjob > 0) {
1534			rushjob -= 1;
1535			continue;
1536		}
1537		/*
1538		 * If it has taken us less than a second to process the
1539		 * current work, then wait. Otherwise start right over
1540		 * again. We can still lose time if any single round
1541		 * takes more than two seconds, but it does not really
1542		 * matter as we are just trying to generally pace the
1543		 * filesystem activity.
1544		 */
1545		if (time_second == starttime)
1546			tsleep(&lbolt, PPAUSE, "syncer", 0);
1547	}
1548}
1549
1550/*
1551 * Request the syncer daemon to speed up its work.
1552 * We never push it to speed up more than half of its
1553 * normal turn time, otherwise it could take over the cpu.
1554 * XXXKSE  only one update?
1555 */
1556int
1557speedup_syncer()
1558{
1559
1560	mtx_lock_spin(&sched_lock);
1561	if (FIRST_THREAD_IN_PROC(updateproc)->td_wchan == &lbolt) /* XXXKSE */
1562		setrunnable(FIRST_THREAD_IN_PROC(updateproc));
1563	mtx_unlock_spin(&sched_lock);
1564	if (rushjob < syncdelay / 2) {
1565		rushjob += 1;
1566		stat_rush_requests += 1;
1567		return (1);
1568	}
1569	return(0);
1570}
1571
1572/*
1573 * Associate a p-buffer with a vnode.
1574 *
1575 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1576 * with the buffer.  i.e. the bp has not been linked into the vnode or
1577 * ref-counted.
1578 */
1579void
1580pbgetvp(vp, bp)
1581	register struct vnode *vp;
1582	register struct buf *bp;
1583{
1584
1585	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1586
1587	bp->b_vp = vp;
1588	bp->b_flags |= B_PAGING;
1589	bp->b_dev = vn_todev(vp);
1590}
1591
1592/*
1593 * Disassociate a p-buffer from a vnode.
1594 */
1595void
1596pbrelvp(bp)
1597	register struct buf *bp;
1598{
1599
1600	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1601
1602	/* XXX REMOVE ME */
1603	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1604		panic(
1605		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1606		    bp,
1607		    (int)bp->b_flags
1608		);
1609	}
1610	bp->b_vp = (struct vnode *) 0;
1611	bp->b_flags &= ~B_PAGING;
1612}
1613
1614/*
1615 * Reassign a buffer from one vnode to another.
1616 * Used to assign file specific control information
1617 * (indirect blocks) to the vnode to which they belong.
1618 */
1619void
1620reassignbuf(bp, newvp)
1621	register struct buf *bp;
1622	register struct vnode *newvp;
1623{
1624	int delay;
1625	int s;
1626
1627	if (newvp == NULL) {
1628		printf("reassignbuf: NULL");
1629		return;
1630	}
1631	++reassignbufcalls;
1632
1633	/*
1634	 * B_PAGING flagged buffers cannot be reassigned because their vp
1635	 * is not fully linked in.
1636	 */
1637	if (bp->b_flags & B_PAGING)
1638		panic("cannot reassign paging buffer");
1639
1640	s = splbio();
1641	/*
1642	 * Delete from old vnode list, if on one.
1643	 */
1644	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1645		buf_vlist_remove(bp);
1646		if (bp->b_vp != newvp) {
1647			vdrop(bp->b_vp);
1648			bp->b_vp = NULL;	/* for clarification */
1649		}
1650	}
1651	/*
1652	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1653	 * of clean buffers.
1654	 */
1655	if (bp->b_flags & B_DELWRI) {
1656		if ((newvp->v_flag & VONWORKLST) == 0) {
1657			switch (newvp->v_type) {
1658			case VDIR:
1659				delay = dirdelay;
1660				break;
1661			case VCHR:
1662				if (newvp->v_rdev->si_mountpoint != NULL) {
1663					delay = metadelay;
1664					break;
1665				}
1666				/* fall through */
1667			default:
1668				delay = filedelay;
1669			}
1670			vn_syncer_add_to_worklist(newvp, delay);
1671		}
1672		buf_vlist_add(bp, newvp, BX_VNDIRTY);
1673	} else {
1674		buf_vlist_add(bp, newvp, BX_VNCLEAN);
1675
1676		if ((newvp->v_flag & VONWORKLST) &&
1677		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1678			newvp->v_flag &= ~VONWORKLST;
1679			LIST_REMOVE(newvp, v_synclist);
1680		}
1681	}
1682	if (bp->b_vp != newvp) {
1683		bp->b_vp = newvp;
1684		vhold(bp->b_vp);
1685	}
1686	splx(s);
1687}
1688
1689/*
1690 * Create a vnode for a device.
1691 * Used for mounting the root filesystem.
1692 */
1693int
1694bdevvp(dev, vpp)
1695	dev_t dev;
1696	struct vnode **vpp;
1697{
1698	register struct vnode *vp;
1699	struct vnode *nvp;
1700	int error;
1701
1702	if (dev == NODEV) {
1703		*vpp = NULLVP;
1704		return (ENXIO);
1705	}
1706	if (vfinddev(dev, VCHR, vpp))
1707		return (0);
1708	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1709	if (error) {
1710		*vpp = NULLVP;
1711		return (error);
1712	}
1713	vp = nvp;
1714	vp->v_type = VCHR;
1715	addalias(vp, dev);
1716	*vpp = vp;
1717	return (0);
1718}
1719
1720/*
1721 * Add vnode to the alias list hung off the dev_t.
1722 *
1723 * The reason for this gunk is that multiple vnodes can reference
1724 * the same physical device, so checking vp->v_usecount to see
1725 * how many users there are is inadequate; the v_usecount for
1726 * the vnodes need to be accumulated.  vcount() does that.
1727 */
1728struct vnode *
1729addaliasu(nvp, nvp_rdev)
1730	struct vnode *nvp;
1731	udev_t nvp_rdev;
1732{
1733	struct vnode *ovp;
1734	vop_t **ops;
1735	dev_t dev;
1736
1737	if (nvp->v_type == VBLK)
1738		return (nvp);
1739	if (nvp->v_type != VCHR)
1740		panic("addaliasu on non-special vnode");
1741	dev = udev2dev(nvp_rdev, 0);
1742	/*
1743	 * Check to see if we have a bdevvp vnode with no associated
1744	 * filesystem. If so, we want to associate the filesystem of
1745	 * the new newly instigated vnode with the bdevvp vnode and
1746	 * discard the newly created vnode rather than leaving the
1747	 * bdevvp vnode lying around with no associated filesystem.
1748	 */
1749	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
1750		addalias(nvp, dev);
1751		return (nvp);
1752	}
1753	/*
1754	 * Discard unneeded vnode, but save its node specific data.
1755	 * Note that if there is a lock, it is carried over in the
1756	 * node specific data to the replacement vnode.
1757	 */
1758	vref(ovp);
1759	ovp->v_data = nvp->v_data;
1760	ovp->v_tag = nvp->v_tag;
1761	nvp->v_data = NULL;
1762	lockinit(&ovp->v_lock, PVFS, nvp->v_lock.lk_wmesg,
1763	    nvp->v_lock.lk_timo, nvp->v_lock.lk_flags & LK_EXTFLG_MASK);
1764	if (nvp->v_vnlock)
1765		ovp->v_vnlock = &ovp->v_lock;
1766	ops = ovp->v_op;
1767	ovp->v_op = nvp->v_op;
1768	if (VOP_ISLOCKED(nvp, curthread)) {
1769		VOP_UNLOCK(nvp, 0, curthread);
1770		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
1771	}
1772	nvp->v_op = ops;
1773	insmntque(ovp, nvp->v_mount);
1774	vrele(nvp);
1775	vgone(nvp);
1776	return (ovp);
1777}
1778
1779/* This is a local helper function that do the same as addaliasu, but for a
1780 * dev_t instead of an udev_t. */
1781static void
1782addalias(nvp, dev)
1783	struct vnode *nvp;
1784	dev_t dev;
1785{
1786
1787	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
1788	nvp->v_rdev = dev;
1789	mtx_lock(&spechash_mtx);
1790	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1791	mtx_unlock(&spechash_mtx);
1792}
1793
1794/*
1795 * Grab a particular vnode from the free list, increment its
1796 * reference count and lock it. The vnode lock bit is set if the
1797 * vnode is being eliminated in vgone. The process is awakened
1798 * when the transition is completed, and an error returned to
1799 * indicate that the vnode is no longer usable (possibly having
1800 * been changed to a new filesystem type).
1801 */
1802int
1803vget(vp, flags, td)
1804	register struct vnode *vp;
1805	int flags;
1806	struct thread *td;
1807{
1808	int error;
1809
1810	/*
1811	 * If the vnode is in the process of being cleaned out for
1812	 * another use, we wait for the cleaning to finish and then
1813	 * return failure. Cleaning is determined by checking that
1814	 * the VXLOCK flag is set.
1815	 */
1816	if ((flags & LK_INTERLOCK) == 0)
1817		mtx_lock(&vp->v_interlock);
1818	if (vp->v_flag & VXLOCK) {
1819		if (vp->v_vxproc == curthread) {
1820#if 0
1821			/* this can now occur in normal operation */
1822			log(LOG_INFO, "VXLOCK interlock avoided\n");
1823#endif
1824		} else {
1825			vp->v_flag |= VXWANT;
1826			msleep(vp, &vp->v_interlock, PINOD | PDROP, "vget", 0);
1827			return (ENOENT);
1828		}
1829	}
1830
1831	vp->v_usecount++;
1832
1833	if (VSHOULDBUSY(vp))
1834		vbusy(vp);
1835	if (flags & LK_TYPE_MASK) {
1836		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1837			/*
1838			 * must expand vrele here because we do not want
1839			 * to call VOP_INACTIVE if the reference count
1840			 * drops back to zero since it was never really
1841			 * active. We must remove it from the free list
1842			 * before sleeping so that multiple processes do
1843			 * not try to recycle it.
1844			 */
1845			mtx_lock(&vp->v_interlock);
1846			vp->v_usecount--;
1847			if (VSHOULDFREE(vp))
1848				vfree(vp);
1849			else
1850				vlruvp(vp);
1851			mtx_unlock(&vp->v_interlock);
1852		}
1853		return (error);
1854	}
1855	mtx_unlock(&vp->v_interlock);
1856	return (0);
1857}
1858
1859/*
1860 * Increase the reference count of a vnode.
1861 */
1862void
1863vref(struct vnode *vp)
1864{
1865	mtx_lock(&vp->v_interlock);
1866	vp->v_usecount++;
1867	mtx_unlock(&vp->v_interlock);
1868}
1869
1870/*
1871 * Vnode put/release.
1872 * If count drops to zero, call inactive routine and return to freelist.
1873 */
1874void
1875vrele(vp)
1876	struct vnode *vp;
1877{
1878	struct thread *td = curthread;	/* XXX */
1879
1880	KASSERT(vp != NULL, ("vrele: null vp"));
1881
1882	mtx_lock(&vp->v_interlock);
1883
1884	/* Skip this v_writecount check if we're going to panic below. */
1885	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
1886	    ("vrele: missed vn_close"));
1887
1888	if (vp->v_usecount > 1) {
1889
1890		vp->v_usecount--;
1891		mtx_unlock(&vp->v_interlock);
1892
1893		return;
1894	}
1895
1896	if (vp->v_usecount == 1) {
1897		vp->v_usecount--;
1898		/*
1899		 * We must call VOP_INACTIVE with the node locked.
1900		 * If we are doing a vput, the node is already locked,
1901		 * but, in the case of vrele, we must explicitly lock
1902		 * the vnode before calling VOP_INACTIVE.
1903		 */
1904		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0)
1905			VOP_INACTIVE(vp, td);
1906		if (VSHOULDFREE(vp))
1907			vfree(vp);
1908		else
1909			vlruvp(vp);
1910
1911	} else {
1912#ifdef DIAGNOSTIC
1913		vprint("vrele: negative ref count", vp);
1914		mtx_unlock(&vp->v_interlock);
1915#endif
1916		panic("vrele: negative ref cnt");
1917	}
1918}
1919
1920/*
1921 * Release an already locked vnode.  This give the same effects as
1922 * unlock+vrele(), but takes less time and avoids releasing and
1923 * re-aquiring the lock (as vrele() aquires the lock internally.)
1924 */
1925void
1926vput(vp)
1927	struct vnode *vp;
1928{
1929	struct thread *td = curthread;	/* XXX */
1930
1931	GIANT_REQUIRED;
1932
1933	KASSERT(vp != NULL, ("vput: null vp"));
1934	mtx_lock(&vp->v_interlock);
1935	/* Skip this v_writecount check if we're going to panic below. */
1936	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
1937	    ("vput: missed vn_close"));
1938
1939	if (vp->v_usecount > 1) {
1940		vp->v_usecount--;
1941		VOP_UNLOCK(vp, LK_INTERLOCK, td);
1942		return;
1943	}
1944
1945	if (vp->v_usecount == 1) {
1946		vp->v_usecount--;
1947		/*
1948		 * We must call VOP_INACTIVE with the node locked.
1949		 * If we are doing a vput, the node is already locked,
1950		 * so we just need to release the vnode mutex.
1951		 */
1952		mtx_unlock(&vp->v_interlock);
1953		VOP_INACTIVE(vp, td);
1954		if (VSHOULDFREE(vp))
1955			vfree(vp);
1956		else
1957			vlruvp(vp);
1958
1959	} else {
1960#ifdef DIAGNOSTIC
1961		vprint("vput: negative ref count", vp);
1962#endif
1963		panic("vput: negative ref cnt");
1964	}
1965}
1966
1967/*
1968 * Somebody doesn't want the vnode recycled.
1969 */
1970void
1971vhold(vp)
1972	register struct vnode *vp;
1973{
1974	int s;
1975
1976	s = splbio();
1977	vp->v_holdcnt++;
1978	if (VSHOULDBUSY(vp))
1979		vbusy(vp);
1980	splx(s);
1981}
1982
1983/*
1984 * Note that there is one less who cares about this vnode.  vdrop() is the
1985 * opposite of vhold().
1986 */
1987void
1988vdrop(vp)
1989	register struct vnode *vp;
1990{
1991	int s;
1992
1993	s = splbio();
1994	if (vp->v_holdcnt <= 0)
1995		panic("vdrop: holdcnt");
1996	vp->v_holdcnt--;
1997	if (VSHOULDFREE(vp))
1998		vfree(vp);
1999	else
2000		vlruvp(vp);
2001	splx(s);
2002}
2003
2004/*
2005 * Remove any vnodes in the vnode table belonging to mount point mp.
2006 *
2007 * If FORCECLOSE is not specified, there should not be any active ones,
2008 * return error if any are found (nb: this is a user error, not a
2009 * system error). If FORCECLOSE is specified, detach any active vnodes
2010 * that are found.
2011 *
2012 * If WRITECLOSE is set, only flush out regular file vnodes open for
2013 * writing.
2014 *
2015 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
2016 *
2017 * `rootrefs' specifies the base reference count for the root vnode
2018 * of this filesystem. The root vnode is considered busy if its
2019 * v_usecount exceeds this value. On a successful return, vflush()
2020 * will call vrele() on the root vnode exactly rootrefs times.
2021 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2022 * be zero.
2023 */
2024#ifdef DIAGNOSTIC
2025static int busyprt = 0;		/* print out busy vnodes */
2026SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2027#endif
2028
2029int
2030vflush(mp, rootrefs, flags)
2031	struct mount *mp;
2032	int rootrefs;
2033	int flags;
2034{
2035	struct thread *td = curthread;	/* XXX */
2036	struct vnode *vp, *nvp, *rootvp = NULL;
2037	struct vattr vattr;
2038	int busy = 0, error;
2039
2040	if (rootrefs > 0) {
2041		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2042		    ("vflush: bad args"));
2043		/*
2044		 * Get the filesystem root vnode. We can vput() it
2045		 * immediately, since with rootrefs > 0, it won't go away.
2046		 */
2047		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
2048			return (error);
2049		vput(rootvp);
2050
2051	}
2052	mtx_lock(&mntvnode_mtx);
2053loop:
2054	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
2055		/*
2056		 * Make sure this vnode wasn't reclaimed in getnewvnode().
2057		 * Start over if it has (it won't be on the list anymore).
2058		 */
2059		if (vp->v_mount != mp)
2060			goto loop;
2061		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2062
2063		mtx_unlock(&mntvnode_mtx);
2064		mtx_lock(&vp->v_interlock);
2065		/*
2066		 * Skip over a vnodes marked VSYSTEM.
2067		 */
2068		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
2069			mtx_unlock(&vp->v_interlock);
2070			mtx_lock(&mntvnode_mtx);
2071			continue;
2072		}
2073		/*
2074		 * If WRITECLOSE is set, flush out unlinked but still open
2075		 * files (even if open only for reading) and regular file
2076		 * vnodes open for writing.
2077		 */
2078		if ((flags & WRITECLOSE) &&
2079		    (vp->v_type == VNON ||
2080		    (VOP_GETATTR(vp, &vattr, td->td_ucred, td) == 0 &&
2081		    vattr.va_nlink > 0)) &&
2082		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2083			mtx_unlock(&vp->v_interlock);
2084			mtx_lock(&mntvnode_mtx);
2085			continue;
2086		}
2087
2088		/*
2089		 * With v_usecount == 0, all we need to do is clear out the
2090		 * vnode data structures and we are done.
2091		 */
2092		if (vp->v_usecount == 0) {
2093			vgonel(vp, td);
2094			mtx_lock(&mntvnode_mtx);
2095			continue;
2096		}
2097
2098		/*
2099		 * If FORCECLOSE is set, forcibly close the vnode. For block
2100		 * or character devices, revert to an anonymous device. For
2101		 * all other files, just kill them.
2102		 */
2103		if (flags & FORCECLOSE) {
2104			if (vp->v_type != VCHR) {
2105				vgonel(vp, td);
2106			} else {
2107				vclean(vp, 0, td);
2108				vp->v_op = spec_vnodeop_p;
2109				insmntque(vp, (struct mount *) 0);
2110			}
2111			mtx_lock(&mntvnode_mtx);
2112			continue;
2113		}
2114#ifdef DIAGNOSTIC
2115		if (busyprt)
2116			vprint("vflush: busy vnode", vp);
2117#endif
2118		mtx_unlock(&vp->v_interlock);
2119		mtx_lock(&mntvnode_mtx);
2120		busy++;
2121	}
2122	mtx_unlock(&mntvnode_mtx);
2123	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2124		/*
2125		 * If just the root vnode is busy, and if its refcount
2126		 * is equal to `rootrefs', then go ahead and kill it.
2127		 */
2128		mtx_lock(&rootvp->v_interlock);
2129		KASSERT(busy > 0, ("vflush: not busy"));
2130		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
2131		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2132			vgonel(rootvp, td);
2133			busy = 0;
2134		} else
2135			mtx_unlock(&rootvp->v_interlock);
2136	}
2137	if (busy)
2138		return (EBUSY);
2139	for (; rootrefs > 0; rootrefs--)
2140		vrele(rootvp);
2141	return (0);
2142}
2143
2144/*
2145 * This moves a now (likely recyclable) vnode to the end of the
2146 * mountlist.  XXX However, it is temporarily disabled until we
2147 * can clean up ffs_sync() and friends, which have loop restart
2148 * conditions which this code causes to operate O(N^2).
2149 */
2150static void
2151vlruvp(struct vnode *vp)
2152{
2153#if 0
2154	struct mount *mp;
2155
2156	if ((mp = vp->v_mount) != NULL) {
2157		mtx_lock(&mntvnode_mtx);
2158		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2159		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2160		mtx_unlock(&mntvnode_mtx);
2161	}
2162#endif
2163}
2164
2165/*
2166 * Disassociate the underlying filesystem from a vnode.
2167 */
2168static void
2169vclean(vp, flags, td)
2170	struct vnode *vp;
2171	int flags;
2172	struct thread *td;
2173{
2174	int active;
2175
2176	/*
2177	 * Check to see if the vnode is in use. If so we have to reference it
2178	 * before we clean it out so that its count cannot fall to zero and
2179	 * generate a race against ourselves to recycle it.
2180	 */
2181	if ((active = vp->v_usecount))
2182		vp->v_usecount++;
2183
2184	/*
2185	 * Prevent the vnode from being recycled or brought into use while we
2186	 * clean it out.
2187	 */
2188	if (vp->v_flag & VXLOCK)
2189		panic("vclean: deadlock");
2190	vp->v_flag |= VXLOCK;
2191	vp->v_vxproc = curthread;
2192	/*
2193	 * Even if the count is zero, the VOP_INACTIVE routine may still
2194	 * have the object locked while it cleans it out. The VOP_LOCK
2195	 * ensures that the VOP_INACTIVE routine is done with its work.
2196	 * For active vnodes, it ensures that no other activity can
2197	 * occur while the underlying object is being cleaned out.
2198	 */
2199	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2200
2201	/*
2202	 * Clean out any buffers associated with the vnode.
2203	 * If the flush fails, just toss the buffers.
2204	 */
2205	if (flags & DOCLOSE) {
2206		if (TAILQ_FIRST(&vp->v_dirtyblkhd) != NULL)
2207			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2208		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2209			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2210	}
2211
2212	VOP_DESTROYVOBJECT(vp);
2213
2214	/*
2215	 * Any other processes trying to obtain this lock must first
2216	 * wait for VXLOCK to clear, then call the new lock operation.
2217	 */
2218	VOP_UNLOCK(vp, 0, td);
2219
2220	/*
2221	 * If purging an active vnode, it must be closed and
2222	 * deactivated before being reclaimed. Note that the
2223	 * VOP_INACTIVE will unlock the vnode.
2224	 */
2225	if (active) {
2226		if (flags & DOCLOSE)
2227			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2228		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2229			panic("vclean: cannot relock.");
2230		VOP_INACTIVE(vp, td);
2231	}
2232
2233	/*
2234	 * Reclaim the vnode.
2235	 */
2236	if (VOP_RECLAIM(vp, td))
2237		panic("vclean: cannot reclaim");
2238
2239	if (active) {
2240		/*
2241		 * Inline copy of vrele() since VOP_INACTIVE
2242		 * has already been called.
2243		 */
2244		mtx_lock(&vp->v_interlock);
2245		if (--vp->v_usecount <= 0) {
2246#ifdef DIAGNOSTIC
2247			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2248				vprint("vclean: bad ref count", vp);
2249				panic("vclean: ref cnt");
2250			}
2251#endif
2252			vfree(vp);
2253		}
2254		mtx_unlock(&vp->v_interlock);
2255	}
2256
2257	cache_purge(vp);
2258	vp->v_vnlock = NULL;
2259	lockdestroy(&vp->v_lock);
2260
2261	if (VSHOULDFREE(vp))
2262		vfree(vp);
2263
2264	/*
2265	 * Done with purge, notify sleepers of the grim news.
2266	 */
2267	vp->v_op = dead_vnodeop_p;
2268	if (vp->v_pollinfo != NULL)
2269		vn_pollgone(vp);
2270	vp->v_tag = VT_NON;
2271	vp->v_flag &= ~VXLOCK;
2272	vp->v_vxproc = NULL;
2273	if (vp->v_flag & VXWANT) {
2274		vp->v_flag &= ~VXWANT;
2275		wakeup(vp);
2276	}
2277}
2278
2279/*
2280 * Eliminate all activity associated with the requested vnode
2281 * and with all vnodes aliased to the requested vnode.
2282 */
2283int
2284vop_revoke(ap)
2285	struct vop_revoke_args /* {
2286		struct vnode *a_vp;
2287		int a_flags;
2288	} */ *ap;
2289{
2290	struct vnode *vp, *vq;
2291	dev_t dev;
2292
2293	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2294
2295	vp = ap->a_vp;
2296	/*
2297	 * If a vgone (or vclean) is already in progress,
2298	 * wait until it is done and return.
2299	 */
2300	if (vp->v_flag & VXLOCK) {
2301		vp->v_flag |= VXWANT;
2302		msleep(vp, &vp->v_interlock, PINOD | PDROP,
2303		    "vop_revokeall", 0);
2304		return (0);
2305	}
2306	dev = vp->v_rdev;
2307	for (;;) {
2308		mtx_lock(&spechash_mtx);
2309		vq = SLIST_FIRST(&dev->si_hlist);
2310		mtx_unlock(&spechash_mtx);
2311		if (!vq)
2312			break;
2313		vgone(vq);
2314	}
2315	return (0);
2316}
2317
2318/*
2319 * Recycle an unused vnode to the front of the free list.
2320 * Release the passed interlock if the vnode will be recycled.
2321 */
2322int
2323vrecycle(vp, inter_lkp, td)
2324	struct vnode *vp;
2325	struct mtx *inter_lkp;
2326	struct thread *td;
2327{
2328
2329	mtx_lock(&vp->v_interlock);
2330	if (vp->v_usecount == 0) {
2331		if (inter_lkp) {
2332			mtx_unlock(inter_lkp);
2333		}
2334		vgonel(vp, td);
2335		return (1);
2336	}
2337	mtx_unlock(&vp->v_interlock);
2338	return (0);
2339}
2340
2341/*
2342 * Eliminate all activity associated with a vnode
2343 * in preparation for reuse.
2344 */
2345void
2346vgone(vp)
2347	register struct vnode *vp;
2348{
2349	struct thread *td = curthread;	/* XXX */
2350
2351	mtx_lock(&vp->v_interlock);
2352	vgonel(vp, td);
2353}
2354
2355/*
2356 * vgone, with the vp interlock held.
2357 */
2358void
2359vgonel(vp, td)
2360	struct vnode *vp;
2361	struct thread *td;
2362{
2363	int s;
2364
2365	/*
2366	 * If a vgone (or vclean) is already in progress,
2367	 * wait until it is done and return.
2368	 */
2369	if (vp->v_flag & VXLOCK) {
2370		vp->v_flag |= VXWANT;
2371		msleep(vp, &vp->v_interlock, PINOD | PDROP, "vgone", 0);
2372		return;
2373	}
2374
2375	/*
2376	 * Clean out the filesystem specific data.
2377	 */
2378	vclean(vp, DOCLOSE, td);
2379	mtx_lock(&vp->v_interlock);
2380
2381	/*
2382	 * Delete from old mount point vnode list, if on one.
2383	 */
2384	if (vp->v_mount != NULL)
2385		insmntque(vp, (struct mount *)0);
2386	/*
2387	 * If special device, remove it from special device alias list
2388	 * if it is on one.
2389	 */
2390	if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) {
2391		mtx_lock(&spechash_mtx);
2392		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
2393		freedev(vp->v_rdev);
2394		mtx_unlock(&spechash_mtx);
2395		vp->v_rdev = NULL;
2396	}
2397
2398	/*
2399	 * If it is on the freelist and not already at the head,
2400	 * move it to the head of the list. The test of the
2401	 * VDOOMED flag and the reference count of zero is because
2402	 * it will be removed from the free list by getnewvnode,
2403	 * but will not have its reference count incremented until
2404	 * after calling vgone. If the reference count were
2405	 * incremented first, vgone would (incorrectly) try to
2406	 * close the previous instance of the underlying object.
2407	 */
2408	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2409		s = splbio();
2410		mtx_lock(&vnode_free_list_mtx);
2411		if (vp->v_flag & VFREE)
2412			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2413		else
2414			freevnodes++;
2415		vp->v_flag |= VFREE;
2416		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2417		mtx_unlock(&vnode_free_list_mtx);
2418		splx(s);
2419	}
2420
2421	vp->v_type = VBAD;
2422	mtx_unlock(&vp->v_interlock);
2423}
2424
2425/*
2426 * Lookup a vnode by device number.
2427 */
2428int
2429vfinddev(dev, type, vpp)
2430	dev_t dev;
2431	enum vtype type;
2432	struct vnode **vpp;
2433{
2434	struct vnode *vp;
2435
2436	mtx_lock(&spechash_mtx);
2437	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2438		if (type == vp->v_type) {
2439			*vpp = vp;
2440			mtx_unlock(&spechash_mtx);
2441			return (1);
2442		}
2443	}
2444	mtx_unlock(&spechash_mtx);
2445	return (0);
2446}
2447
2448/*
2449 * Calculate the total number of references to a special device.
2450 */
2451int
2452vcount(vp)
2453	struct vnode *vp;
2454{
2455	struct vnode *vq;
2456	int count;
2457
2458	count = 0;
2459	mtx_lock(&spechash_mtx);
2460	SLIST_FOREACH(vq, &vp->v_rdev->si_hlist, v_specnext)
2461		count += vq->v_usecount;
2462	mtx_unlock(&spechash_mtx);
2463	return (count);
2464}
2465
2466/*
2467 * Same as above, but using the dev_t as argument
2468 */
2469int
2470count_dev(dev)
2471	dev_t dev;
2472{
2473	struct vnode *vp;
2474
2475	vp = SLIST_FIRST(&dev->si_hlist);
2476	if (vp == NULL)
2477		return (0);
2478	return(vcount(vp));
2479}
2480
2481/*
2482 * Print out a description of a vnode.
2483 */
2484static char *typename[] =
2485{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2486
2487void
2488vprint(label, vp)
2489	char *label;
2490	struct vnode *vp;
2491{
2492	char buf[96];
2493
2494	if (label != NULL)
2495		printf("%s: %p: ", label, (void *)vp);
2496	else
2497		printf("%p: ", (void *)vp);
2498	printf("type %s, usecount %d, writecount %d, refcount %d,",
2499	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2500	    vp->v_holdcnt);
2501	buf[0] = '\0';
2502	if (vp->v_flag & VROOT)
2503		strcat(buf, "|VROOT");
2504	if (vp->v_flag & VTEXT)
2505		strcat(buf, "|VTEXT");
2506	if (vp->v_flag & VSYSTEM)
2507		strcat(buf, "|VSYSTEM");
2508	if (vp->v_flag & VXLOCK)
2509		strcat(buf, "|VXLOCK");
2510	if (vp->v_flag & VXWANT)
2511		strcat(buf, "|VXWANT");
2512	if (vp->v_flag & VBWAIT)
2513		strcat(buf, "|VBWAIT");
2514	if (vp->v_flag & VDOOMED)
2515		strcat(buf, "|VDOOMED");
2516	if (vp->v_flag & VFREE)
2517		strcat(buf, "|VFREE");
2518	if (vp->v_flag & VOBJBUF)
2519		strcat(buf, "|VOBJBUF");
2520	if (buf[0] != '\0')
2521		printf(" flags (%s)", &buf[1]);
2522	if (vp->v_data == NULL) {
2523		printf("\n");
2524	} else {
2525		printf("\n\t");
2526		VOP_PRINT(vp);
2527	}
2528}
2529
2530#ifdef DDB
2531#include <ddb/ddb.h>
2532/*
2533 * List all of the locked vnodes in the system.
2534 * Called when debugging the kernel.
2535 */
2536DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2537{
2538	struct thread *td = curthread;	/* XXX */
2539	struct mount *mp, *nmp;
2540	struct vnode *vp;
2541
2542	printf("Locked vnodes\n");
2543	mtx_lock(&mountlist_mtx);
2544	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2545		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
2546			nmp = TAILQ_NEXT(mp, mnt_list);
2547			continue;
2548		}
2549		mtx_lock(&mntvnode_mtx);
2550		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2551			if (VOP_ISLOCKED(vp, NULL))
2552				vprint((char *)0, vp);
2553		}
2554		mtx_unlock(&mntvnode_mtx);
2555		mtx_lock(&mountlist_mtx);
2556		nmp = TAILQ_NEXT(mp, mnt_list);
2557		vfs_unbusy(mp, td);
2558	}
2559	mtx_unlock(&mountlist_mtx);
2560}
2561#endif
2562
2563/*
2564 * Top level filesystem related information gathering.
2565 */
2566static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2567
2568static int
2569vfs_sysctl(SYSCTL_HANDLER_ARGS)
2570{
2571	int *name = (int *)arg1 - 1;	/* XXX */
2572	u_int namelen = arg2 + 1;	/* XXX */
2573	struct vfsconf *vfsp;
2574
2575#if 1 || defined(COMPAT_PRELITE2)
2576	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2577	if (namelen == 1)
2578		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2579#endif
2580
2581	/* XXX the below code does not compile; vfs_sysctl does not exist. */
2582#ifdef notyet
2583	/* all sysctl names at this level are at least name and field */
2584	if (namelen < 2)
2585		return (ENOTDIR);		/* overloaded */
2586	if (name[0] != VFS_GENERIC) {
2587		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2588			if (vfsp->vfc_typenum == name[0])
2589				break;
2590		if (vfsp == NULL)
2591			return (EOPNOTSUPP);
2592		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2593		    oldp, oldlenp, newp, newlen, td));
2594	}
2595#endif
2596	switch (name[1]) {
2597	case VFS_MAXTYPENUM:
2598		if (namelen != 2)
2599			return (ENOTDIR);
2600		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2601	case VFS_CONF:
2602		if (namelen != 3)
2603			return (ENOTDIR);	/* overloaded */
2604		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2605			if (vfsp->vfc_typenum == name[2])
2606				break;
2607		if (vfsp == NULL)
2608			return (EOPNOTSUPP);
2609		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2610	}
2611	return (EOPNOTSUPP);
2612}
2613
2614SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2615	"Generic filesystem");
2616
2617#if 1 || defined(COMPAT_PRELITE2)
2618
2619static int
2620sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2621{
2622	int error;
2623	struct vfsconf *vfsp;
2624	struct ovfsconf ovfs;
2625
2626	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2627		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2628		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2629		ovfs.vfc_index = vfsp->vfc_typenum;
2630		ovfs.vfc_refcount = vfsp->vfc_refcount;
2631		ovfs.vfc_flags = vfsp->vfc_flags;
2632		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2633		if (error)
2634			return error;
2635	}
2636	return 0;
2637}
2638
2639#endif /* 1 || COMPAT_PRELITE2 */
2640
2641#define KINFO_VNODESLOP		10
2642/*
2643 * Dump vnode list (via sysctl).
2644 */
2645/* ARGSUSED */
2646static int
2647sysctl_vnode(SYSCTL_HANDLER_ARGS)
2648{
2649	struct xvnode *xvn;
2650	struct thread *td = req->td;
2651	struct mount *mp;
2652	struct vnode *vp;
2653	int error, len, n;
2654
2655	req->lock = 0;
2656	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2657	if (!req->oldptr)
2658		/* Make an estimate */
2659		return (SYSCTL_OUT(req, 0, len));
2660
2661	sysctl_wire_old_buffer(req, 0);
2662	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2663	n = 0;
2664	mtx_lock(&mountlist_mtx);
2665	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2666		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
2667			continue;
2668		mtx_lock(&mntvnode_mtx);
2669		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2670			if (n == len)
2671				break;
2672			vref(vp);
2673			xvn[n].xv_size = sizeof *xvn;
2674			xvn[n].xv_vnode = vp;
2675#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
2676			XV_COPY(flag);
2677			XV_COPY(usecount);
2678			XV_COPY(writecount);
2679			XV_COPY(holdcnt);
2680			XV_COPY(id);
2681			XV_COPY(mount);
2682			XV_COPY(numoutput);
2683			XV_COPY(type);
2684#undef XV_COPY
2685			switch (vp->v_type) {
2686			case VREG:
2687			case VDIR:
2688			case VLNK:
2689				xvn[n].xv_dev = vp->v_cachedfs;
2690				xvn[n].xv_ino = vp->v_cachedid;
2691				break;
2692			case VBLK:
2693			case VCHR:
2694				if (vp->v_rdev == NULL) {
2695					vrele(vp);
2696					continue;
2697				}
2698				xvn[n].xv_dev = dev2udev(vp->v_rdev);
2699				break;
2700			case VSOCK:
2701				xvn[n].xv_socket = vp->v_socket;
2702				break;
2703			case VFIFO:
2704				xvn[n].xv_fifo = vp->v_fifoinfo;
2705				break;
2706			case VNON:
2707			case VBAD:
2708			default:
2709				/* shouldn't happen? */
2710				vrele(vp);
2711				continue;
2712			}
2713			vrele(vp);
2714			++n;
2715		}
2716		mtx_unlock(&mntvnode_mtx);
2717		mtx_lock(&mountlist_mtx);
2718		vfs_unbusy(mp, td);
2719		if (n == len)
2720			break;
2721	}
2722	mtx_unlock(&mountlist_mtx);
2723
2724	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
2725	free(xvn, M_TEMP);
2726	return (error);
2727}
2728
2729SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2730	0, 0, sysctl_vnode, "S,vnode", "");
2731
2732/*
2733 * Check to see if a filesystem is mounted on a block device.
2734 */
2735int
2736vfs_mountedon(vp)
2737	struct vnode *vp;
2738{
2739
2740	if (vp->v_rdev->si_mountpoint != NULL)
2741		return (EBUSY);
2742	return (0);
2743}
2744
2745/*
2746 * Unmount all filesystems. The list is traversed in reverse order
2747 * of mounting to avoid dependencies.
2748 */
2749void
2750vfs_unmountall()
2751{
2752	struct mount *mp;
2753	struct thread *td;
2754	int error;
2755
2756	if (curthread != NULL)
2757		td = curthread;
2758	else
2759		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
2760	/*
2761	 * Since this only runs when rebooting, it is not interlocked.
2762	 */
2763	while(!TAILQ_EMPTY(&mountlist)) {
2764		mp = TAILQ_LAST(&mountlist, mntlist);
2765		error = dounmount(mp, MNT_FORCE, td);
2766		if (error) {
2767			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2768			printf("unmount of %s failed (",
2769			    mp->mnt_stat.f_mntonname);
2770			if (error == EBUSY)
2771				printf("BUSY)\n");
2772			else
2773				printf("%d)\n", error);
2774		} else {
2775			/* The unmount has removed mp from the mountlist */
2776		}
2777	}
2778}
2779
2780/*
2781 * perform msync on all vnodes under a mount point
2782 * the mount point must be locked.
2783 */
2784void
2785vfs_msync(struct mount *mp, int flags)
2786{
2787	struct vnode *vp, *nvp;
2788	struct vm_object *obj;
2789	int tries;
2790
2791	GIANT_REQUIRED;
2792
2793	tries = 5;
2794	mtx_lock(&mntvnode_mtx);
2795loop:
2796	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
2797		if (vp->v_mount != mp) {
2798			if (--tries > 0)
2799				goto loop;
2800			break;
2801		}
2802		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2803
2804		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2805			continue;
2806
2807		if (vp->v_flag & VNOSYNC)	/* unlinked, skip it */
2808			continue;
2809
2810		if ((vp->v_flag & VOBJDIRTY) &&
2811		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2812			mtx_unlock(&mntvnode_mtx);
2813			if (!vget(vp,
2814			    LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curthread)) {
2815				if (VOP_GETVOBJECT(vp, &obj) == 0) {
2816					vm_object_page_clean(obj, 0, 0,
2817					    flags == MNT_WAIT ?
2818					    OBJPC_SYNC : OBJPC_NOSYNC);
2819				}
2820				vput(vp);
2821			}
2822			mtx_lock(&mntvnode_mtx);
2823			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
2824				if (--tries > 0)
2825					goto loop;
2826				break;
2827			}
2828		}
2829	}
2830	mtx_unlock(&mntvnode_mtx);
2831}
2832
2833/*
2834 * Create the VM object needed for VMIO and mmap support.  This
2835 * is done for all VREG files in the system.  Some filesystems might
2836 * afford the additional metadata buffering capability of the
2837 * VMIO code by making the device node be VMIO mode also.
2838 *
2839 * vp must be locked when vfs_object_create is called.
2840 */
2841int
2842vfs_object_create(vp, td, cred)
2843	struct vnode *vp;
2844	struct thread *td;
2845	struct ucred *cred;
2846{
2847	GIANT_REQUIRED;
2848	return (VOP_CREATEVOBJECT(vp, cred, td));
2849}
2850
2851/*
2852 * Mark a vnode as free, putting it up for recycling.
2853 */
2854void
2855vfree(vp)
2856	struct vnode *vp;
2857{
2858	int s;
2859
2860	s = splbio();
2861	mtx_lock(&vnode_free_list_mtx);
2862	KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2863	if (vp->v_flag & VAGE) {
2864		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2865	} else {
2866		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2867	}
2868	freevnodes++;
2869	mtx_unlock(&vnode_free_list_mtx);
2870	vp->v_flag &= ~VAGE;
2871	vp->v_flag |= VFREE;
2872	splx(s);
2873}
2874
2875/*
2876 * Opposite of vfree() - mark a vnode as in use.
2877 */
2878void
2879vbusy(vp)
2880	struct vnode *vp;
2881{
2882	int s;
2883
2884	s = splbio();
2885	mtx_lock(&vnode_free_list_mtx);
2886	KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2887	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2888	freevnodes--;
2889	mtx_unlock(&vnode_free_list_mtx);
2890	vp->v_flag &= ~(VFREE|VAGE);
2891	splx(s);
2892}
2893
2894/*
2895 * Record a process's interest in events which might happen to
2896 * a vnode.  Because poll uses the historic select-style interface
2897 * internally, this routine serves as both the ``check for any
2898 * pending events'' and the ``record my interest in future events''
2899 * functions.  (These are done together, while the lock is held,
2900 * to avoid race conditions.)
2901 */
2902int
2903vn_pollrecord(vp, td, events)
2904	struct vnode *vp;
2905	struct thread *td;
2906	short events;
2907{
2908
2909	if (vp->v_pollinfo == NULL)
2910		v_addpollinfo(vp);
2911	mtx_lock(&vp->v_pollinfo->vpi_lock);
2912	if (vp->v_pollinfo->vpi_revents & events) {
2913		/*
2914		 * This leaves events we are not interested
2915		 * in available for the other process which
2916		 * which presumably had requested them
2917		 * (otherwise they would never have been
2918		 * recorded).
2919		 */
2920		events &= vp->v_pollinfo->vpi_revents;
2921		vp->v_pollinfo->vpi_revents &= ~events;
2922
2923		mtx_unlock(&vp->v_pollinfo->vpi_lock);
2924		return events;
2925	}
2926	vp->v_pollinfo->vpi_events |= events;
2927	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
2928	mtx_unlock(&vp->v_pollinfo->vpi_lock);
2929	return 0;
2930}
2931
2932/*
2933 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2934 * it is possible for us to miss an event due to race conditions, but
2935 * that condition is expected to be rare, so for the moment it is the
2936 * preferred interface.
2937 */
2938void
2939vn_pollevent(vp, events)
2940	struct vnode *vp;
2941	short events;
2942{
2943
2944	if (vp->v_pollinfo == NULL)
2945		v_addpollinfo(vp);
2946	mtx_lock(&vp->v_pollinfo->vpi_lock);
2947	if (vp->v_pollinfo->vpi_events & events) {
2948		/*
2949		 * We clear vpi_events so that we don't
2950		 * call selwakeup() twice if two events are
2951		 * posted before the polling process(es) is
2952		 * awakened.  This also ensures that we take at
2953		 * most one selwakeup() if the polling process
2954		 * is no longer interested.  However, it does
2955		 * mean that only one event can be noticed at
2956		 * a time.  (Perhaps we should only clear those
2957		 * event bits which we note?) XXX
2958		 */
2959		vp->v_pollinfo->vpi_events = 0;	/* &= ~events ??? */
2960		vp->v_pollinfo->vpi_revents |= events;
2961		selwakeup(&vp->v_pollinfo->vpi_selinfo);
2962	}
2963	mtx_unlock(&vp->v_pollinfo->vpi_lock);
2964}
2965
2966/*
2967 * Wake up anyone polling on vp because it is being revoked.
2968 * This depends on dead_poll() returning POLLHUP for correct
2969 * behavior.
2970 */
2971void
2972vn_pollgone(vp)
2973	struct vnode *vp;
2974{
2975
2976	mtx_lock(&vp->v_pollinfo->vpi_lock);
2977	VN_KNOTE(vp, NOTE_REVOKE);
2978	if (vp->v_pollinfo->vpi_events) {
2979		vp->v_pollinfo->vpi_events = 0;
2980		selwakeup(&vp->v_pollinfo->vpi_selinfo);
2981	}
2982	mtx_unlock(&vp->v_pollinfo->vpi_lock);
2983}
2984
2985
2986
2987/*
2988 * Routine to create and manage a filesystem syncer vnode.
2989 */
2990#define sync_close ((int (*)(struct  vop_close_args *))nullop)
2991static int	sync_fsync(struct  vop_fsync_args *);
2992static int	sync_inactive(struct  vop_inactive_args *);
2993static int	sync_reclaim(struct  vop_reclaim_args *);
2994static int	sync_print(struct vop_print_args *);
2995
2996static vop_t **sync_vnodeop_p;
2997static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2998	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2999	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
3000	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
3001	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
3002	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
3003	{ &vop_lock_desc,	(vop_t *) vop_stdlock },	/* lock */
3004	{ &vop_unlock_desc,	(vop_t *) vop_stdunlock },	/* unlock */
3005	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
3006	{ &vop_islocked_desc,	(vop_t *) vop_stdislocked },	/* islocked */
3007	{ NULL, NULL }
3008};
3009static struct vnodeopv_desc sync_vnodeop_opv_desc =
3010	{ &sync_vnodeop_p, sync_vnodeop_entries };
3011
3012VNODEOP_SET(sync_vnodeop_opv_desc);
3013
3014/*
3015 * Create a new filesystem syncer vnode for the specified mount point.
3016 */
3017int
3018vfs_allocate_syncvnode(mp)
3019	struct mount *mp;
3020{
3021	struct vnode *vp;
3022	static long start, incr, next;
3023	int error;
3024
3025	/* Allocate a new vnode */
3026	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
3027		mp->mnt_syncer = NULL;
3028		return (error);
3029	}
3030	vp->v_type = VNON;
3031	/*
3032	 * Place the vnode onto the syncer worklist. We attempt to
3033	 * scatter them about on the list so that they will go off
3034	 * at evenly distributed times even if all the filesystems
3035	 * are mounted at once.
3036	 */
3037	next += incr;
3038	if (next == 0 || next > syncer_maxdelay) {
3039		start /= 2;
3040		incr /= 2;
3041		if (start == 0) {
3042			start = syncer_maxdelay / 2;
3043			incr = syncer_maxdelay;
3044		}
3045		next = start;
3046	}
3047	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3048	mp->mnt_syncer = vp;
3049	return (0);
3050}
3051
3052/*
3053 * Do a lazy sync of the filesystem.
3054 */
3055static int
3056sync_fsync(ap)
3057	struct vop_fsync_args /* {
3058		struct vnode *a_vp;
3059		struct ucred *a_cred;
3060		int a_waitfor;
3061		struct thread *a_td;
3062	} */ *ap;
3063{
3064	struct vnode *syncvp = ap->a_vp;
3065	struct mount *mp = syncvp->v_mount;
3066	struct thread *td = ap->a_td;
3067	int asyncflag;
3068
3069	/*
3070	 * We only need to do something if this is a lazy evaluation.
3071	 */
3072	if (ap->a_waitfor != MNT_LAZY)
3073		return (0);
3074
3075	/*
3076	 * Move ourselves to the back of the sync list.
3077	 */
3078	vn_syncer_add_to_worklist(syncvp, syncdelay);
3079
3080	/*
3081	 * Walk the list of vnodes pushing all that are dirty and
3082	 * not already on the sync list.
3083	 */
3084	mtx_lock(&mountlist_mtx);
3085	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3086		mtx_unlock(&mountlist_mtx);
3087		return (0);
3088	}
3089	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3090		vfs_unbusy(mp, td);
3091		return (0);
3092	}
3093	asyncflag = mp->mnt_flag & MNT_ASYNC;
3094	mp->mnt_flag &= ~MNT_ASYNC;
3095	vfs_msync(mp, MNT_NOWAIT);
3096	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
3097	if (asyncflag)
3098		mp->mnt_flag |= MNT_ASYNC;
3099	vn_finished_write(mp);
3100	vfs_unbusy(mp, td);
3101	return (0);
3102}
3103
3104/*
3105 * The syncer vnode is no referenced.
3106 */
3107static int
3108sync_inactive(ap)
3109	struct vop_inactive_args /* {
3110		struct vnode *a_vp;
3111		struct thread *a_td;
3112	} */ *ap;
3113{
3114
3115	VOP_UNLOCK(ap->a_vp, 0, ap->a_td);
3116	vgone(ap->a_vp);
3117	return (0);
3118}
3119
3120/*
3121 * The syncer vnode is no longer needed and is being decommissioned.
3122 *
3123 * Modifications to the worklist must be protected at splbio().
3124 */
3125static int
3126sync_reclaim(ap)
3127	struct vop_reclaim_args /* {
3128		struct vnode *a_vp;
3129	} */ *ap;
3130{
3131	struct vnode *vp = ap->a_vp;
3132	int s;
3133
3134	s = splbio();
3135	vp->v_mount->mnt_syncer = NULL;
3136	if (vp->v_flag & VONWORKLST) {
3137		LIST_REMOVE(vp, v_synclist);
3138		vp->v_flag &= ~VONWORKLST;
3139	}
3140	splx(s);
3141
3142	return (0);
3143}
3144
3145/*
3146 * Print out a syncer vnode.
3147 */
3148static int
3149sync_print(ap)
3150	struct vop_print_args /* {
3151		struct vnode *a_vp;
3152	} */ *ap;
3153{
3154	struct vnode *vp = ap->a_vp;
3155
3156	printf("syncer vnode");
3157	if (vp->v_vnlock != NULL)
3158		lockmgr_printinfo(vp->v_vnlock);
3159	printf("\n");
3160	return (0);
3161}
3162
3163/*
3164 * extract the dev_t from a VCHR
3165 */
3166dev_t
3167vn_todev(vp)
3168	struct vnode *vp;
3169{
3170	if (vp->v_type != VCHR)
3171		return (NODEV);
3172	return (vp->v_rdev);
3173}
3174
3175/*
3176 * Check if vnode represents a disk device
3177 */
3178int
3179vn_isdisk(vp, errp)
3180	struct vnode *vp;
3181	int *errp;
3182{
3183	struct cdevsw *cdevsw;
3184
3185	if (vp->v_type != VCHR) {
3186		if (errp != NULL)
3187			*errp = ENOTBLK;
3188		return (0);
3189	}
3190	if (vp->v_rdev == NULL) {
3191		if (errp != NULL)
3192			*errp = ENXIO;
3193		return (0);
3194	}
3195	cdevsw = devsw(vp->v_rdev);
3196	if (cdevsw == NULL) {
3197		if (errp != NULL)
3198			*errp = ENXIO;
3199		return (0);
3200	}
3201	if (!(cdevsw->d_flags & D_DISK)) {
3202		if (errp != NULL)
3203			*errp = ENOTBLK;
3204		return (0);
3205	}
3206	if (errp != NULL)
3207		*errp = 0;
3208	return (1);
3209}
3210
3211/*
3212 * Free data allocated by namei(); see namei(9) for details.
3213 */
3214void
3215NDFREE(ndp, flags)
3216     struct nameidata *ndp;
3217     const uint flags;
3218{
3219	if (!(flags & NDF_NO_FREE_PNBUF) &&
3220	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3221		uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3222		ndp->ni_cnd.cn_flags &= ~HASBUF;
3223	}
3224	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3225	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3226	    ndp->ni_dvp != ndp->ni_vp)
3227		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3228	if (!(flags & NDF_NO_DVP_RELE) &&
3229	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3230		vrele(ndp->ni_dvp);
3231		ndp->ni_dvp = NULL;
3232	}
3233	if (!(flags & NDF_NO_VP_UNLOCK) &&
3234	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3235		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3236	if (!(flags & NDF_NO_VP_RELE) &&
3237	    ndp->ni_vp) {
3238		vrele(ndp->ni_vp);
3239		ndp->ni_vp = NULL;
3240	}
3241	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3242	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3243		vrele(ndp->ni_startdir);
3244		ndp->ni_startdir = NULL;
3245	}
3246}
3247
3248/*
3249 * Common filesystem object access control check routine.  Accepts a
3250 * vnode's type, "mode", uid and gid, requested access mode, credentials,
3251 * and optional call-by-reference privused argument allowing vaccess()
3252 * to indicate to the caller whether privilege was used to satisfy the
3253 * request (obsoleted).  Returns 0 on success, or an errno on failure.
3254 */
3255int
3256vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3257	enum vtype type;
3258	mode_t file_mode;
3259	uid_t file_uid;
3260	gid_t file_gid;
3261	mode_t acc_mode;
3262	struct ucred *cred;
3263	int *privused;
3264{
3265	mode_t dac_granted;
3266#ifdef CAPABILITIES
3267	mode_t cap_granted;
3268#endif
3269
3270	/*
3271	 * Look for a normal, non-privileged way to access the file/directory
3272	 * as requested.  If it exists, go with that.
3273	 */
3274
3275	if (privused != NULL)
3276		*privused = 0;
3277
3278	dac_granted = 0;
3279
3280	/* Check the owner. */
3281	if (cred->cr_uid == file_uid) {
3282		dac_granted |= VADMIN;
3283		if (file_mode & S_IXUSR)
3284			dac_granted |= VEXEC;
3285		if (file_mode & S_IRUSR)
3286			dac_granted |= VREAD;
3287		if (file_mode & S_IWUSR)
3288			dac_granted |= (VWRITE | VAPPEND);
3289
3290		if ((acc_mode & dac_granted) == acc_mode)
3291			return (0);
3292
3293		goto privcheck;
3294	}
3295
3296	/* Otherwise, check the groups (first match) */
3297	if (groupmember(file_gid, cred)) {
3298		if (file_mode & S_IXGRP)
3299			dac_granted |= VEXEC;
3300		if (file_mode & S_IRGRP)
3301			dac_granted |= VREAD;
3302		if (file_mode & S_IWGRP)
3303			dac_granted |= (VWRITE | VAPPEND);
3304
3305		if ((acc_mode & dac_granted) == acc_mode)
3306			return (0);
3307
3308		goto privcheck;
3309	}
3310
3311	/* Otherwise, check everyone else. */
3312	if (file_mode & S_IXOTH)
3313		dac_granted |= VEXEC;
3314	if (file_mode & S_IROTH)
3315		dac_granted |= VREAD;
3316	if (file_mode & S_IWOTH)
3317		dac_granted |= (VWRITE | VAPPEND);
3318	if ((acc_mode & dac_granted) == acc_mode)
3319		return (0);
3320
3321privcheck:
3322	if (!suser_cred(cred, PRISON_ROOT)) {
3323		/* XXX audit: privilege used */
3324		if (privused != NULL)
3325			*privused = 1;
3326		return (0);
3327	}
3328
3329#ifdef CAPABILITIES
3330	/*
3331	 * Build a capability mask to determine if the set of capabilities
3332	 * satisfies the requirements when combined with the granted mask
3333	 * from above.
3334	 * For each capability, if the capability is required, bitwise
3335	 * or the request type onto the cap_granted mask.
3336	 */
3337	cap_granted = 0;
3338
3339	if (type == VDIR) {
3340		/*
3341		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3342		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3343		 */
3344		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3345		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3346			cap_granted |= VEXEC;
3347	} else {
3348		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3349		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT))
3350			cap_granted |= VEXEC;
3351	}
3352
3353	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3354	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3355		cap_granted |= VREAD;
3356
3357	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3358	    !cap_check(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT))
3359		cap_granted |= (VWRITE | VAPPEND);
3360
3361	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3362	    !cap_check(cred, NULL, CAP_FOWNER, PRISON_ROOT))
3363		cap_granted |= VADMIN;
3364
3365	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3366		/* XXX audit: privilege used */
3367		if (privused != NULL)
3368			*privused = 1;
3369		return (0);
3370	}
3371#endif
3372
3373	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3374}
3375