vfs_bio.c revision 75580
1241900Sdim/*
2241900Sdim * Copyright (c) 1994,1997 John S. Dyson
3241900Sdim * All rights reserved.
4241900Sdim *
5241900Sdim * Redistribution and use in source and binary forms, with or without
6241900Sdim * modification, are permitted provided that the following conditions
7241900Sdim * are met:
8241900Sdim * 1. Redistributions of source code must retain the above copyright
9241900Sdim *    notice immediately at the beginning of the file, without modification,
10241900Sdim *    this list of conditions, and the following disclaimer.
11249998Sdim * 2. Absolutely no warranty of function or purpose is made by the author
12249998Sdim *		John S. Dyson.
13249998Sdim *
14241900Sdim * $FreeBSD: head/sys/kern/vfs_bio.c 75580 2001-04-17 08:56:39Z phk $
15249998Sdim */
16249998Sdim
17249998Sdim/*
18249998Sdim * this file contains a new buffer I/O scheme implementing a coherent
19249998Sdim * VM object and buffer cache scheme.  Pains have been taken to make
20249998Sdim * sure that the performance degradation associated with schemes such
21249998Sdim * as this is not realized.
22249998Sdim *
23249998Sdim * Author:  John S. Dyson
24249998Sdim * Significant help during the development and debugging phases
25249998Sdim * had been provided by David Greenman, also of the FreeBSD core team.
26249998Sdim *
27249998Sdim * see man buf(9) for more info.
28249998Sdim */
29249998Sdim
30249998Sdim#include <sys/param.h>
31241900Sdim#include <sys/systm.h>
32241900Sdim#include <sys/bio.h>
33241900Sdim#include <sys/buf.h>
34262801Sdim#include <sys/eventhandler.h>
35262801Sdim#include <sys/lock.h>
36262801Sdim#include <sys/malloc.h>
37262801Sdim#include <sys/mount.h>
38262801Sdim#include <sys/mutex.h>
39262801Sdim#include <sys/kernel.h>
40262801Sdim#include <sys/kthread.h>
41262801Sdim#include <sys/ktr.h>
42241900Sdim#include <sys/proc.h>
43241900Sdim#include <sys/reboot.h>
44249998Sdim#include <sys/resourcevar.h>
45249998Sdim#include <sys/sysctl.h>
46241900Sdim#include <sys/vmmeter.h>
47249998Sdim#include <sys/vnode.h>
48249998Sdim#include <vm/vm.h>
49249998Sdim#include <vm/vm_param.h>
50241900Sdim#include <vm/vm_kern.h>
51249998Sdim#include <vm/vm_pageout.h>
52249998Sdim#include <vm/vm_page.h>
53249998Sdim#include <vm/vm_object.h>
54241900Sdim#include <vm/vm_extern.h>
55249998Sdim#include <vm/vm_map.h>
56249998Sdim
57249998Sdimstatic MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58249998Sdim
59262801Sdimstruct	bio_ops bioops;		/* I/O operation notification */
60262801Sdim
61262801Sdimstruct	buf_ops buf_ops_bio = {
62262801Sdim	"buf_ops_bio",
63249998Sdim	bwrite
64249998Sdim};
65249998Sdim
66249998Sdimstruct buf *buf;		/* buffer header pool */
67249998Sdimstruct swqueue bswlist;
68249998Sdimstruct mtx buftimelock;		/* Interlock on setting prio and timo */
69249998Sdim
70249998Sdimstatic void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
71241900Sdim		vm_offset_t to);
72241900Sdimstatic void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
73241900Sdim		vm_offset_t to);
74241900Sdimstatic void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
75249998Sdim			       int pageno, vm_page_t m);
76249998Sdimstatic void vfs_clean_pages(struct buf * bp);
77249998Sdimstatic void vfs_setdirty(struct buf *bp);
78249998Sdimstatic void vfs_vmio_release(struct buf *bp);
79262801Sdimstatic void vfs_backgroundwritedone(struct buf *bp);
80262801Sdimstatic int flushbufqueues(void);
81262801Sdim
82262801Sdimstatic int bd_request;
83249998Sdim
84249998Sdimstatic void buf_daemon __P((void));
85249998Sdim/*
86241900Sdim * bogus page -- for I/O to/from partially complete buffers
87241900Sdim * this is a temporary solution to the problem, but it is not
88241900Sdim * really that bad.  it would be better to split the buffer
89241900Sdim * for input in the case of buffers partially already in memory,
90241900Sdim * but the code is intricate enough already.
91241900Sdim */
92241900Sdimvm_page_t bogus_page;
93262801Sdimint vmiodirenable = FALSE;
94262801Sdimint runningbufspace;
95262801Sdimstatic vm_offset_t bogus_offset;
96262801Sdim
97262801Sdimstatic int bufspace, maxbufspace,
98262801Sdim	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
99262801Sdimstatic int bufreusecnt, bufdefragcnt, buffreekvacnt;
100262801Sdimstatic int needsbuffer;
101249998Sdimstatic int lorunningspace, hirunningspace, runningbufreq;
102249998Sdimstatic int numdirtybuffers, lodirtybuffers, hidirtybuffers;
103241900Sdimstatic int numfreebuffers, lofreebuffers, hifreebuffers;
104249998Sdimstatic int getnewbufcalls;
105249998Sdimstatic int getnewbufrestarts;
106249998Sdim
107249998SdimSYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
108249998Sdim	&numdirtybuffers, 0, "");
109249998SdimSYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
110241900Sdim	&lodirtybuffers, 0, "");
111241900SdimSYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
112262801Sdim	&hidirtybuffers, 0, "");
113262801SdimSYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
114262801Sdim	&numfreebuffers, 0, "");
115262801SdimSYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
116262801Sdim	&lofreebuffers, 0, "");
117262801SdimSYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
118262801Sdim	&hifreebuffers, 0, "");
119262801SdimSYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
120249998Sdim	&runningbufspace, 0, "");
121249998SdimSYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
122249998Sdim	&lorunningspace, 0, "");
123249998SdimSYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
124	&hirunningspace, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
126	&maxbufspace, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
128	&hibufspace, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
130	&lobufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132	&bufspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
134	&maxbufmallocspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
136	&bufmallocspace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
138	&getnewbufcalls, 0, "");
139SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
140	&getnewbufrestarts, 0, "");
141SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
142	&vmiodirenable, 0, "");
143SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
144	&bufdefragcnt, 0, "");
145SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
146	&buffreekvacnt, 0, "");
147SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
148	&bufreusecnt, 0, "");
149
150static int bufhashmask;
151static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
152struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
153char *buf_wmesg = BUF_WMESG;
154
155extern int vm_swap_size;
156
157#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
158#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
159#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
160#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
161
162/*
163 * Buffer hash table code.  Note that the logical block scans linearly, which
164 * gives us some L1 cache locality.
165 */
166
167static __inline
168struct bufhashhdr *
169bufhash(struct vnode *vnp, daddr_t bn)
170{
171	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
172}
173
174/*
175 *	numdirtywakeup:
176 *
177 *	If someone is blocked due to there being too many dirty buffers,
178 *	and numdirtybuffers is now reasonable, wake them up.
179 */
180
181static __inline void
182numdirtywakeup(int level)
183{
184	if (numdirtybuffers <= level) {
185		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
186			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
187			wakeup(&needsbuffer);
188		}
189	}
190}
191
192/*
193 *	bufspacewakeup:
194 *
195 *	Called when buffer space is potentially available for recovery.
196 *	getnewbuf() will block on this flag when it is unable to free
197 *	sufficient buffer space.  Buffer space becomes recoverable when
198 *	bp's get placed back in the queues.
199 */
200
201static __inline void
202bufspacewakeup(void)
203{
204	/*
205	 * If someone is waiting for BUF space, wake them up.  Even
206	 * though we haven't freed the kva space yet, the waiting
207	 * process will be able to now.
208	 */
209	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
210		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
211		wakeup(&needsbuffer);
212	}
213}
214
215/*
216 * runningbufwakeup() - in-progress I/O accounting.
217 *
218 */
219static __inline void
220runningbufwakeup(struct buf *bp)
221{
222	if (bp->b_runningbufspace) {
223		runningbufspace -= bp->b_runningbufspace;
224		bp->b_runningbufspace = 0;
225		if (runningbufreq && runningbufspace <= lorunningspace) {
226			runningbufreq = 0;
227			wakeup(&runningbufreq);
228		}
229	}
230}
231
232/*
233 *	bufcountwakeup:
234 *
235 *	Called when a buffer has been added to one of the free queues to
236 *	account for the buffer and to wakeup anyone waiting for free buffers.
237 *	This typically occurs when large amounts of metadata are being handled
238 *	by the buffer cache ( else buffer space runs out first, usually ).
239 */
240
241static __inline void
242bufcountwakeup(void)
243{
244	++numfreebuffers;
245	if (needsbuffer) {
246		needsbuffer &= ~VFS_BIO_NEED_ANY;
247		if (numfreebuffers >= hifreebuffers)
248			needsbuffer &= ~VFS_BIO_NEED_FREE;
249		wakeup(&needsbuffer);
250	}
251}
252
253/*
254 *	waitrunningbufspace()
255 *
256 *	runningbufspace is a measure of the amount of I/O currently
257 *	running.  This routine is used in async-write situations to
258 *	prevent creating huge backups of pending writes to a device.
259 *	Only asynchronous writes are governed by this function.
260 *
261 *	Reads will adjust runningbufspace, but will not block based on it.
262 *	The read load has a side effect of reducing the allowed write load.
263 *
264 *	This does NOT turn an async write into a sync write.  It waits
265 *	for earlier writes to complete and generally returns before the
266 *	caller's write has reached the device.
267 */
268static __inline void
269waitrunningbufspace(void)
270{
271	while (runningbufspace > hirunningspace) {
272		++runningbufreq;
273		tsleep(&runningbufreq, PVM, "wdrain", 0);
274	}
275}
276
277
278/*
279 *	vfs_buf_test_cache:
280 *
281 *	Called when a buffer is extended.  This function clears the B_CACHE
282 *	bit if the newly extended portion of the buffer does not contain
283 *	valid data.
284 */
285static __inline__
286void
287vfs_buf_test_cache(struct buf *bp,
288		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
289		  vm_page_t m)
290{
291	if (bp->b_flags & B_CACHE) {
292		int base = (foff + off) & PAGE_MASK;
293		if (vm_page_is_valid(m, base, size) == 0)
294			bp->b_flags &= ~B_CACHE;
295	}
296}
297
298static __inline__
299void
300bd_wakeup(int dirtybuflevel)
301{
302	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
303		bd_request = 1;
304		wakeup(&bd_request);
305	}
306}
307
308/*
309 * bd_speedup - speedup the buffer cache flushing code
310 */
311
312static __inline__
313void
314bd_speedup(void)
315{
316	bd_wakeup(1);
317}
318
319/*
320 * Initialize buffer headers and related structures.
321 */
322
323caddr_t
324bufhashinit(caddr_t vaddr)
325{
326	/* first, make a null hash table */
327	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
328		;
329	bufhashtbl = (void *)vaddr;
330	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
331	--bufhashmask;
332	return(vaddr);
333}
334
335void
336bufinit(void)
337{
338	struct buf *bp;
339	int i;
340
341	TAILQ_INIT(&bswlist);
342	LIST_INIT(&invalhash);
343	mtx_init(&buftimelock, "buftime lock", MTX_DEF);
344
345	for (i = 0; i <= bufhashmask; i++)
346		LIST_INIT(&bufhashtbl[i]);
347
348	/* next, make a null set of free lists */
349	for (i = 0; i < BUFFER_QUEUES; i++)
350		TAILQ_INIT(&bufqueues[i]);
351
352	/* finally, initialize each buffer header and stick on empty q */
353	for (i = 0; i < nbuf; i++) {
354		bp = &buf[i];
355		bzero(bp, sizeof *bp);
356		bp->b_flags = B_INVAL;	/* we're just an empty header */
357		bp->b_dev = NODEV;
358		bp->b_rcred = NOCRED;
359		bp->b_wcred = NOCRED;
360		bp->b_qindex = QUEUE_EMPTY;
361		bp->b_xflags = 0;
362		LIST_INIT(&bp->b_dep);
363		BUF_LOCKINIT(bp);
364		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
365		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
366	}
367
368	/*
369	 * maxbufspace is the absolute maximum amount of buffer space we are
370	 * allowed to reserve in KVM and in real terms.  The absolute maximum
371	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
372	 * used by most other processes.  The differential is required to
373	 * ensure that buf_daemon is able to run when other processes might
374	 * be blocked waiting for buffer space.
375	 *
376	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
377	 * this may result in KVM fragmentation which is not handled optimally
378	 * by the system.
379	 */
380	maxbufspace = nbuf * BKVASIZE;
381	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
382	lobufspace = hibufspace - MAXBSIZE;
383
384	lorunningspace = 512 * 1024;
385	hirunningspace = 1024 * 1024;
386
387/*
388 * Limit the amount of malloc memory since it is wired permanently into
389 * the kernel space.  Even though this is accounted for in the buffer
390 * allocation, we don't want the malloced region to grow uncontrolled.
391 * The malloc scheme improves memory utilization significantly on average
392 * (small) directories.
393 */
394	maxbufmallocspace = hibufspace / 20;
395
396/*
397 * Reduce the chance of a deadlock occuring by limiting the number
398 * of delayed-write dirty buffers we allow to stack up.
399 */
400	hidirtybuffers = nbuf / 4 + 20;
401	numdirtybuffers = 0;
402/*
403 * To support extreme low-memory systems, make sure hidirtybuffers cannot
404 * eat up all available buffer space.  This occurs when our minimum cannot
405 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
406 * BKVASIZE'd (8K) buffers.
407 */
408	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
409		hidirtybuffers >>= 1;
410	}
411	lodirtybuffers = hidirtybuffers / 2;
412
413/*
414 * Try to keep the number of free buffers in the specified range,
415 * and give special processes (e.g. like buf_daemon) access to an
416 * emergency reserve.
417 */
418	lofreebuffers = nbuf / 18 + 5;
419	hifreebuffers = 2 * lofreebuffers;
420	numfreebuffers = nbuf;
421
422/*
423 * Maximum number of async ops initiated per buf_daemon loop.  This is
424 * somewhat of a hack at the moment, we really need to limit ourselves
425 * based on the number of bytes of I/O in-transit that were initiated
426 * from buf_daemon.
427 */
428
429	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
430	bogus_page = vm_page_alloc(kernel_object,
431			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
432			VM_ALLOC_NORMAL);
433	cnt.v_wire_count++;
434
435}
436
437/*
438 * bfreekva() - free the kva allocation for a buffer.
439 *
440 *	Must be called at splbio() or higher as this is the only locking for
441 *	buffer_map.
442 *
443 *	Since this call frees up buffer space, we call bufspacewakeup().
444 */
445static void
446bfreekva(struct buf * bp)
447{
448	if (bp->b_kvasize) {
449		++buffreekvacnt;
450		bufspace -= bp->b_kvasize;
451		vm_map_delete(buffer_map,
452		    (vm_offset_t) bp->b_kvabase,
453		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
454		);
455		bp->b_kvasize = 0;
456		bufspacewakeup();
457	}
458}
459
460/*
461 *	bremfree:
462 *
463 *	Remove the buffer from the appropriate free list.
464 */
465void
466bremfree(struct buf * bp)
467{
468	int s = splbio();
469	int old_qindex = bp->b_qindex;
470
471	if (bp->b_qindex != QUEUE_NONE) {
472		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
473		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
474		bp->b_qindex = QUEUE_NONE;
475	} else {
476		if (BUF_REFCNT(bp) <= 1)
477			panic("bremfree: removing a buffer not on a queue");
478	}
479
480	/*
481	 * Fixup numfreebuffers count.  If the buffer is invalid or not
482	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
483	 * the buffer was free and we must decrement numfreebuffers.
484	 */
485	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
486		switch(old_qindex) {
487		case QUEUE_DIRTY:
488		case QUEUE_CLEAN:
489		case QUEUE_EMPTY:
490		case QUEUE_EMPTYKVA:
491			--numfreebuffers;
492			break;
493		default:
494			break;
495		}
496	}
497	splx(s);
498}
499
500
501/*
502 * Get a buffer with the specified data.  Look in the cache first.  We
503 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
504 * is set, the buffer is valid and we do not have to do anything ( see
505 * getblk() ).
506 */
507int
508bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
509    struct buf ** bpp)
510{
511	struct buf *bp;
512
513	bp = getblk(vp, blkno, size, 0, 0);
514	*bpp = bp;
515
516	/* if not found in cache, do some I/O */
517	if ((bp->b_flags & B_CACHE) == 0) {
518		if (curproc != PCPU_GET(idleproc))
519			curproc->p_stats->p_ru.ru_inblock++;
520		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
521		bp->b_iocmd = BIO_READ;
522		bp->b_flags &= ~B_INVAL;
523		bp->b_ioflags &= ~BIO_ERROR;
524		if (bp->b_rcred == NOCRED) {
525			if (cred != NOCRED)
526				crhold(cred);
527			bp->b_rcred = cred;
528		}
529		vfs_busy_pages(bp, 0);
530		VOP_STRATEGY(vp, bp);
531		return (bufwait(bp));
532	}
533	return (0);
534}
535
536/*
537 * Operates like bread, but also starts asynchronous I/O on
538 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
539 * to initiating I/O . If B_CACHE is set, the buffer is valid
540 * and we do not have to do anything.
541 */
542int
543breadn(struct vnode * vp, daddr_t blkno, int size,
544    daddr_t * rablkno, int *rabsize,
545    int cnt, struct ucred * cred, struct buf ** bpp)
546{
547	struct buf *bp, *rabp;
548	int i;
549	int rv = 0, readwait = 0;
550
551	*bpp = bp = getblk(vp, blkno, size, 0, 0);
552
553	/* if not found in cache, do some I/O */
554	if ((bp->b_flags & B_CACHE) == 0) {
555		if (curproc != PCPU_GET(idleproc))
556			curproc->p_stats->p_ru.ru_inblock++;
557		bp->b_iocmd = BIO_READ;
558		bp->b_flags &= ~B_INVAL;
559		bp->b_ioflags &= ~BIO_ERROR;
560		if (bp->b_rcred == NOCRED) {
561			if (cred != NOCRED)
562				crhold(cred);
563			bp->b_rcred = cred;
564		}
565		vfs_busy_pages(bp, 0);
566		VOP_STRATEGY(vp, bp);
567		++readwait;
568	}
569
570	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
571		if (inmem(vp, *rablkno))
572			continue;
573		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
574
575		if ((rabp->b_flags & B_CACHE) == 0) {
576			if (curproc != PCPU_GET(idleproc))
577				curproc->p_stats->p_ru.ru_inblock++;
578			rabp->b_flags |= B_ASYNC;
579			rabp->b_flags &= ~B_INVAL;
580			rabp->b_ioflags &= ~BIO_ERROR;
581			rabp->b_iocmd = BIO_READ;
582			if (rabp->b_rcred == NOCRED) {
583				if (cred != NOCRED)
584					crhold(cred);
585				rabp->b_rcred = cred;
586			}
587			vfs_busy_pages(rabp, 0);
588			BUF_KERNPROC(rabp);
589			VOP_STRATEGY(vp, rabp);
590		} else {
591			brelse(rabp);
592		}
593	}
594
595	if (readwait) {
596		rv = bufwait(bp);
597	}
598	return (rv);
599}
600
601/*
602 * Write, release buffer on completion.  (Done by iodone
603 * if async).  Do not bother writing anything if the buffer
604 * is invalid.
605 *
606 * Note that we set B_CACHE here, indicating that buffer is
607 * fully valid and thus cacheable.  This is true even of NFS
608 * now so we set it generally.  This could be set either here
609 * or in biodone() since the I/O is synchronous.  We put it
610 * here.
611 */
612
613int dobkgrdwrite = 1;
614SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, "");
615
616int
617bwrite(struct buf * bp)
618{
619	int oldflags, s;
620	struct buf *newbp;
621
622	if (bp->b_flags & B_INVAL) {
623		brelse(bp);
624		return (0);
625	}
626
627	oldflags = bp->b_flags;
628
629	if (BUF_REFCNT(bp) == 0)
630		panic("bwrite: buffer is not busy???");
631	s = splbio();
632	/*
633	 * If a background write is already in progress, delay
634	 * writing this block if it is asynchronous. Otherwise
635	 * wait for the background write to complete.
636	 */
637	if (bp->b_xflags & BX_BKGRDINPROG) {
638		if (bp->b_flags & B_ASYNC) {
639			splx(s);
640			bdwrite(bp);
641			return (0);
642		}
643		bp->b_xflags |= BX_BKGRDWAIT;
644		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
645		if (bp->b_xflags & BX_BKGRDINPROG)
646			panic("bwrite: still writing");
647	}
648
649	/* Mark the buffer clean */
650	bundirty(bp);
651
652	/*
653	 * If this buffer is marked for background writing and we
654	 * do not have to wait for it, make a copy and write the
655	 * copy so as to leave this buffer ready for further use.
656	 *
657	 * This optimization eats a lot of memory.  If we have a page
658	 * or buffer shortfall we can't do it.
659	 */
660	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
661	    (bp->b_flags & B_ASYNC) &&
662	    !vm_page_count_severe() &&
663	    !buf_dirty_count_severe()) {
664		if (bp->b_iodone != NULL) {
665			printf("bp->b_iodone = %p\n", bp->b_iodone);
666			panic("bwrite: need chained iodone");
667		}
668
669		/* get a new block */
670		newbp = geteblk(bp->b_bufsize);
671
672		/* set it to be identical to the old block */
673		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
674		bgetvp(bp->b_vp, newbp);
675		newbp->b_lblkno = bp->b_lblkno;
676		newbp->b_blkno = bp->b_blkno;
677		newbp->b_offset = bp->b_offset;
678		newbp->b_iodone = vfs_backgroundwritedone;
679		newbp->b_flags |= B_ASYNC;
680		newbp->b_flags &= ~B_INVAL;
681
682		/* move over the dependencies */
683		if (LIST_FIRST(&bp->b_dep) != NULL)
684			buf_movedeps(bp, newbp);
685
686		/*
687		 * Initiate write on the copy, release the original to
688		 * the B_LOCKED queue so that it cannot go away until
689		 * the background write completes. If not locked it could go
690		 * away and then be reconstituted while it was being written.
691		 * If the reconstituted buffer were written, we could end up
692		 * with two background copies being written at the same time.
693		 */
694		bp->b_xflags |= BX_BKGRDINPROG;
695		bp->b_flags |= B_LOCKED;
696		bqrelse(bp);
697		bp = newbp;
698	}
699
700	bp->b_flags &= ~B_DONE;
701	bp->b_ioflags &= ~BIO_ERROR;
702	bp->b_flags |= B_WRITEINPROG | B_CACHE;
703	bp->b_iocmd = BIO_WRITE;
704
705	bp->b_vp->v_numoutput++;
706	vfs_busy_pages(bp, 1);
707
708	/*
709	 * Normal bwrites pipeline writes
710	 */
711	bp->b_runningbufspace = bp->b_bufsize;
712	runningbufspace += bp->b_runningbufspace;
713
714	if (curproc != PCPU_GET(idleproc))
715		curproc->p_stats->p_ru.ru_oublock++;
716	splx(s);
717	if (oldflags & B_ASYNC)
718		BUF_KERNPROC(bp);
719	BUF_STRATEGY(bp);
720
721	if ((oldflags & B_ASYNC) == 0) {
722		int rtval = bufwait(bp);
723		brelse(bp);
724		return (rtval);
725	} else {
726		/*
727		 * don't allow the async write to saturate the I/O
728		 * system.  There is no chance of deadlock here because
729		 * we are blocking on I/O that is already in-progress.
730		 */
731		waitrunningbufspace();
732	}
733
734	return (0);
735}
736
737/*
738 * Complete a background write started from bwrite.
739 */
740static void
741vfs_backgroundwritedone(bp)
742	struct buf *bp;
743{
744	struct buf *origbp;
745
746	/*
747	 * Find the original buffer that we are writing.
748	 */
749	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
750		panic("backgroundwritedone: lost buffer");
751	/*
752	 * Process dependencies then return any unfinished ones.
753	 */
754	if (LIST_FIRST(&bp->b_dep) != NULL)
755		buf_complete(bp);
756	if (LIST_FIRST(&bp->b_dep) != NULL)
757		buf_movedeps(bp, origbp);
758	/*
759	 * Clear the BX_BKGRDINPROG flag in the original buffer
760	 * and awaken it if it is waiting for the write to complete.
761	 * If BX_BKGRDINPROG is not set in the original buffer it must
762	 * have been released and re-instantiated - which is not legal.
763	 */
764	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
765	origbp->b_xflags &= ~BX_BKGRDINPROG;
766	if (origbp->b_xflags & BX_BKGRDWAIT) {
767		origbp->b_xflags &= ~BX_BKGRDWAIT;
768		wakeup(&origbp->b_xflags);
769	}
770	/*
771	 * Clear the B_LOCKED flag and remove it from the locked
772	 * queue if it currently resides there.
773	 */
774	origbp->b_flags &= ~B_LOCKED;
775	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
776		bremfree(origbp);
777		bqrelse(origbp);
778	}
779	/*
780	 * This buffer is marked B_NOCACHE, so when it is released
781	 * by biodone, it will be tossed. We mark it with BIO_READ
782	 * to avoid biodone doing a second vwakeup.
783	 */
784	bp->b_flags |= B_NOCACHE;
785	bp->b_iocmd = BIO_READ;
786	bp->b_flags &= ~(B_CACHE | B_DONE);
787	bp->b_iodone = 0;
788	bufdone(bp);
789}
790
791/*
792 * Delayed write. (Buffer is marked dirty).  Do not bother writing
793 * anything if the buffer is marked invalid.
794 *
795 * Note that since the buffer must be completely valid, we can safely
796 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
797 * biodone() in order to prevent getblk from writing the buffer
798 * out synchronously.
799 */
800void
801bdwrite(struct buf * bp)
802{
803	if (BUF_REFCNT(bp) == 0)
804		panic("bdwrite: buffer is not busy");
805
806	if (bp->b_flags & B_INVAL) {
807		brelse(bp);
808		return;
809	}
810	bdirty(bp);
811
812	/*
813	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
814	 * true even of NFS now.
815	 */
816	bp->b_flags |= B_CACHE;
817
818	/*
819	 * This bmap keeps the system from needing to do the bmap later,
820	 * perhaps when the system is attempting to do a sync.  Since it
821	 * is likely that the indirect block -- or whatever other datastructure
822	 * that the filesystem needs is still in memory now, it is a good
823	 * thing to do this.  Note also, that if the pageout daemon is
824	 * requesting a sync -- there might not be enough memory to do
825	 * the bmap then...  So, this is important to do.
826	 */
827	if (bp->b_lblkno == bp->b_blkno) {
828		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
829	}
830
831	/*
832	 * Set the *dirty* buffer range based upon the VM system dirty pages.
833	 */
834	vfs_setdirty(bp);
835
836	/*
837	 * We need to do this here to satisfy the vnode_pager and the
838	 * pageout daemon, so that it thinks that the pages have been
839	 * "cleaned".  Note that since the pages are in a delayed write
840	 * buffer -- the VFS layer "will" see that the pages get written
841	 * out on the next sync, or perhaps the cluster will be completed.
842	 */
843	vfs_clean_pages(bp);
844	bqrelse(bp);
845
846	/*
847	 * Wakeup the buffer flushing daemon if we have a lot of dirty
848	 * buffers (midpoint between our recovery point and our stall
849	 * point).
850	 */
851	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
852
853	/*
854	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
855	 * due to the softdep code.
856	 */
857}
858
859/*
860 *	bdirty:
861 *
862 *	Turn buffer into delayed write request.  We must clear BIO_READ and
863 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
864 *	itself to properly update it in the dirty/clean lists.  We mark it
865 *	B_DONE to ensure that any asynchronization of the buffer properly
866 *	clears B_DONE ( else a panic will occur later ).
867 *
868 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
869 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
870 *	should only be called if the buffer is known-good.
871 *
872 *	Since the buffer is not on a queue, we do not update the numfreebuffers
873 *	count.
874 *
875 *	Must be called at splbio().
876 *	The buffer must be on QUEUE_NONE.
877 */
878void
879bdirty(bp)
880	struct buf *bp;
881{
882	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
883	bp->b_flags &= ~(B_RELBUF);
884	bp->b_iocmd = BIO_WRITE;
885
886	if ((bp->b_flags & B_DELWRI) == 0) {
887		bp->b_flags |= B_DONE | B_DELWRI;
888		reassignbuf(bp, bp->b_vp);
889		++numdirtybuffers;
890		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
891	}
892}
893
894/*
895 *	bundirty:
896 *
897 *	Clear B_DELWRI for buffer.
898 *
899 *	Since the buffer is not on a queue, we do not update the numfreebuffers
900 *	count.
901 *
902 *	Must be called at splbio().
903 *	The buffer must be on QUEUE_NONE.
904 */
905
906void
907bundirty(bp)
908	struct buf *bp;
909{
910	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
911
912	if (bp->b_flags & B_DELWRI) {
913		bp->b_flags &= ~B_DELWRI;
914		reassignbuf(bp, bp->b_vp);
915		--numdirtybuffers;
916		numdirtywakeup(lodirtybuffers);
917	}
918	/*
919	 * Since it is now being written, we can clear its deferred write flag.
920	 */
921	bp->b_flags &= ~B_DEFERRED;
922}
923
924/*
925 *	bawrite:
926 *
927 *	Asynchronous write.  Start output on a buffer, but do not wait for
928 *	it to complete.  The buffer is released when the output completes.
929 *
930 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
931 *	B_INVAL buffers.  Not us.
932 */
933void
934bawrite(struct buf * bp)
935{
936	bp->b_flags |= B_ASYNC;
937	(void) BUF_WRITE(bp);
938}
939
940/*
941 *	bowrite:
942 *
943 *	Ordered write.  Start output on a buffer, and flag it so that the
944 *	device will write it in the order it was queued.  The buffer is
945 *	released when the output completes.  bwrite() ( or the VOP routine
946 *	anyway ) is responsible for handling B_INVAL buffers.
947 */
948int
949bowrite(struct buf * bp)
950{
951	bp->b_ioflags |= BIO_ORDERED;
952	bp->b_flags |= B_ASYNC;
953	return (BUF_WRITE(bp));
954}
955
956/*
957 *	bwillwrite:
958 *
959 *	Called prior to the locking of any vnodes when we are expecting to
960 *	write.  We do not want to starve the buffer cache with too many
961 *	dirty buffers so we block here.  By blocking prior to the locking
962 *	of any vnodes we attempt to avoid the situation where a locked vnode
963 *	prevents the various system daemons from flushing related buffers.
964 */
965
966void
967bwillwrite(void)
968{
969	if (numdirtybuffers >= hidirtybuffers) {
970		int s;
971
972		s = splbio();
973		while (numdirtybuffers >= hidirtybuffers) {
974			bd_wakeup(1);
975			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
976			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
977		}
978		splx(s);
979	}
980}
981
982/*
983 * Return true if we have too many dirty buffers.
984 */
985int
986buf_dirty_count_severe(void)
987{
988	return(numdirtybuffers >= hidirtybuffers);
989}
990
991/*
992 *	brelse:
993 *
994 *	Release a busy buffer and, if requested, free its resources.  The
995 *	buffer will be stashed in the appropriate bufqueue[] allowing it
996 *	to be accessed later as a cache entity or reused for other purposes.
997 */
998void
999brelse(struct buf * bp)
1000{
1001	int s;
1002
1003	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1004
1005	s = splbio();
1006
1007	if (bp->b_flags & B_LOCKED)
1008		bp->b_ioflags &= ~BIO_ERROR;
1009
1010	if (bp->b_iocmd == BIO_WRITE &&
1011	    (bp->b_ioflags & BIO_ERROR) &&
1012	    !(bp->b_flags & B_INVAL)) {
1013		/*
1014		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1015		 * pages from being scrapped.  If B_INVAL is set then
1016		 * this case is not run and the next case is run to
1017		 * destroy the buffer.  B_INVAL can occur if the buffer
1018		 * is outside the range supported by the underlying device.
1019		 */
1020		bp->b_ioflags &= ~BIO_ERROR;
1021		bdirty(bp);
1022	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1023	    (bp->b_ioflags & BIO_ERROR) ||
1024	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1025		/*
1026		 * Either a failed I/O or we were asked to free or not
1027		 * cache the buffer.
1028		 */
1029		bp->b_flags |= B_INVAL;
1030		if (LIST_FIRST(&bp->b_dep) != NULL)
1031			buf_deallocate(bp);
1032		if (bp->b_flags & B_DELWRI) {
1033			--numdirtybuffers;
1034			numdirtywakeup(lodirtybuffers);
1035		}
1036		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1037		if ((bp->b_flags & B_VMIO) == 0) {
1038			if (bp->b_bufsize)
1039				allocbuf(bp, 0);
1040			if (bp->b_vp)
1041				brelvp(bp);
1042		}
1043	}
1044
1045	/*
1046	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1047	 * is called with B_DELWRI set, the underlying pages may wind up
1048	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1049	 * because pages associated with a B_DELWRI bp are marked clean.
1050	 *
1051	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1052	 * if B_DELWRI is set.
1053	 *
1054	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1055	 * on pages to return pages to the VM page queues.
1056	 */
1057	if (bp->b_flags & B_DELWRI)
1058		bp->b_flags &= ~B_RELBUF;
1059	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1060		bp->b_flags |= B_RELBUF;
1061
1062	/*
1063	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1064	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1065	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1066	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1067	 *
1068	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1069	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1070	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1071	 *
1072	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1073	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1074	 * the commit state and we cannot afford to lose the buffer. If the
1075	 * buffer has a background write in progress, we need to keep it
1076	 * around to prevent it from being reconstituted and starting a second
1077	 * background write.
1078	 */
1079	if ((bp->b_flags & B_VMIO)
1080	    && !(bp->b_vp->v_tag == VT_NFS &&
1081		 !vn_isdisk(bp->b_vp, NULL) &&
1082		 (bp->b_flags & B_DELWRI))
1083	    ) {
1084
1085		int i, j, resid;
1086		vm_page_t m;
1087		off_t foff;
1088		vm_pindex_t poff;
1089		vm_object_t obj;
1090		struct vnode *vp;
1091
1092		vp = bp->b_vp;
1093
1094		/*
1095		 * Get the base offset and length of the buffer.  Note that
1096		 * for block sizes that are less then PAGE_SIZE, the b_data
1097		 * base of the buffer does not represent exactly b_offset and
1098		 * neither b_offset nor b_size are necessarily page aligned.
1099		 * Instead, the starting position of b_offset is:
1100		 *
1101		 * 	b_data + (b_offset & PAGE_MASK)
1102		 *
1103		 * block sizes less then DEV_BSIZE (usually 512) are not
1104		 * supported due to the page granularity bits (m->valid,
1105		 * m->dirty, etc...).
1106		 *
1107		 * See man buf(9) for more information
1108		 */
1109		resid = bp->b_bufsize;
1110		foff = bp->b_offset;
1111
1112		for (i = 0; i < bp->b_npages; i++) {
1113			int had_bogus = 0;
1114
1115			m = bp->b_pages[i];
1116			vm_page_flag_clear(m, PG_ZERO);
1117
1118			/*
1119			 * If we hit a bogus page, fixup *all* the bogus pages
1120			 * now.
1121			 */
1122			if (m == bogus_page) {
1123				VOP_GETVOBJECT(vp, &obj);
1124				poff = OFF_TO_IDX(bp->b_offset);
1125				had_bogus = 1;
1126
1127				for (j = i; j < bp->b_npages; j++) {
1128					vm_page_t mtmp;
1129					mtmp = bp->b_pages[j];
1130					if (mtmp == bogus_page) {
1131						mtmp = vm_page_lookup(obj, poff + j);
1132						if (!mtmp) {
1133							panic("brelse: page missing\n");
1134						}
1135						bp->b_pages[j] = mtmp;
1136					}
1137				}
1138
1139				if ((bp->b_flags & B_INVAL) == 0) {
1140					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1141				}
1142				m = bp->b_pages[i];
1143			}
1144			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1145				int poffset = foff & PAGE_MASK;
1146				int presid = resid > (PAGE_SIZE - poffset) ?
1147					(PAGE_SIZE - poffset) : resid;
1148
1149				KASSERT(presid >= 0, ("brelse: extra page"));
1150				vm_page_set_invalid(m, poffset, presid);
1151				if (had_bogus)
1152					printf("avoided corruption bug in bogus_page/brelse code\n");
1153			}
1154			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1155			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1156		}
1157
1158		if (bp->b_flags & (B_INVAL | B_RELBUF))
1159			vfs_vmio_release(bp);
1160
1161	} else if (bp->b_flags & B_VMIO) {
1162
1163		if (bp->b_flags & (B_INVAL | B_RELBUF))
1164			vfs_vmio_release(bp);
1165
1166	}
1167
1168	if (bp->b_qindex != QUEUE_NONE)
1169		panic("brelse: free buffer onto another queue???");
1170	if (BUF_REFCNT(bp) > 1) {
1171		/* do not release to free list */
1172		BUF_UNLOCK(bp);
1173		splx(s);
1174		return;
1175	}
1176
1177	/* enqueue */
1178
1179	/* buffers with no memory */
1180	if (bp->b_bufsize == 0) {
1181		bp->b_flags |= B_INVAL;
1182		bp->b_xflags &= ~BX_BKGRDWRITE;
1183		if (bp->b_xflags & BX_BKGRDINPROG)
1184			panic("losing buffer 1");
1185		if (bp->b_kvasize) {
1186			bp->b_qindex = QUEUE_EMPTYKVA;
1187		} else {
1188			bp->b_qindex = QUEUE_EMPTY;
1189		}
1190		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1191		LIST_REMOVE(bp, b_hash);
1192		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1193		bp->b_dev = NODEV;
1194	/* buffers with junk contents */
1195	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) {
1196		bp->b_flags |= B_INVAL;
1197		bp->b_xflags &= ~BX_BKGRDWRITE;
1198		if (bp->b_xflags & BX_BKGRDINPROG)
1199			panic("losing buffer 2");
1200		bp->b_qindex = QUEUE_CLEAN;
1201		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1202		LIST_REMOVE(bp, b_hash);
1203		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1204		bp->b_dev = NODEV;
1205
1206	/* buffers that are locked */
1207	} else if (bp->b_flags & B_LOCKED) {
1208		bp->b_qindex = QUEUE_LOCKED;
1209		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1210
1211	/* remaining buffers */
1212	} else {
1213		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1214		case B_DELWRI | B_AGE:
1215		    bp->b_qindex = QUEUE_DIRTY;
1216		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1217		    break;
1218		case B_DELWRI:
1219		    bp->b_qindex = QUEUE_DIRTY;
1220		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1221		    break;
1222		case B_AGE:
1223		    bp->b_qindex = QUEUE_CLEAN;
1224		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1225		    break;
1226		default:
1227		    bp->b_qindex = QUEUE_CLEAN;
1228		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1229		    break;
1230		}
1231	}
1232
1233	/*
1234	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1235	 * on the correct queue.
1236	 */
1237	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1238		bp->b_flags &= ~B_DELWRI;
1239		--numdirtybuffers;
1240		numdirtywakeup(lodirtybuffers);
1241	}
1242
1243	/*
1244	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1245	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1246	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1247	 * if B_INVAL is set ).
1248	 */
1249
1250	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1251		bufcountwakeup();
1252
1253	/*
1254	 * Something we can maybe free or reuse
1255	 */
1256	if (bp->b_bufsize || bp->b_kvasize)
1257		bufspacewakeup();
1258
1259	/* unlock */
1260	BUF_UNLOCK(bp);
1261	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1262	bp->b_ioflags &= ~BIO_ORDERED;
1263	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1264		panic("brelse: not dirty");
1265	splx(s);
1266}
1267
1268/*
1269 * Release a buffer back to the appropriate queue but do not try to free
1270 * it.  The buffer is expected to be used again soon.
1271 *
1272 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1273 * biodone() to requeue an async I/O on completion.  It is also used when
1274 * known good buffers need to be requeued but we think we may need the data
1275 * again soon.
1276 */
1277void
1278bqrelse(struct buf * bp)
1279{
1280	int s;
1281
1282	s = splbio();
1283
1284	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1285
1286	if (bp->b_qindex != QUEUE_NONE)
1287		panic("bqrelse: free buffer onto another queue???");
1288	if (BUF_REFCNT(bp) > 1) {
1289		/* do not release to free list */
1290		BUF_UNLOCK(bp);
1291		splx(s);
1292		return;
1293	}
1294	if (bp->b_flags & B_LOCKED) {
1295		bp->b_ioflags &= ~BIO_ERROR;
1296		bp->b_qindex = QUEUE_LOCKED;
1297		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1298		/* buffers with stale but valid contents */
1299	} else if (bp->b_flags & B_DELWRI) {
1300		bp->b_qindex = QUEUE_DIRTY;
1301		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1302	} else if (vm_page_count_severe()) {
1303		/*
1304		 * We are too low on memory, we have to try to free the
1305		 * buffer (most importantly: the wired pages making up its
1306		 * backing store) *now*.
1307		 */
1308		splx(s);
1309		brelse(bp);
1310		return;
1311	} else {
1312		bp->b_qindex = QUEUE_CLEAN;
1313		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1314	}
1315
1316	if ((bp->b_flags & B_LOCKED) == 0 &&
1317	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1318		bufcountwakeup();
1319	}
1320
1321	/*
1322	 * Something we can maybe free or reuse.
1323	 */
1324	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1325		bufspacewakeup();
1326
1327	/* unlock */
1328	BUF_UNLOCK(bp);
1329	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1330	bp->b_ioflags &= ~BIO_ORDERED;
1331	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1332		panic("bqrelse: not dirty");
1333	splx(s);
1334}
1335
1336static void
1337vfs_vmio_release(bp)
1338	struct buf *bp;
1339{
1340	int i, s;
1341	vm_page_t m;
1342
1343	s = splvm();
1344	for (i = 0; i < bp->b_npages; i++) {
1345		m = bp->b_pages[i];
1346		bp->b_pages[i] = NULL;
1347		/*
1348		 * In order to keep page LRU ordering consistent, put
1349		 * everything on the inactive queue.
1350		 */
1351		vm_page_unwire(m, 0);
1352		/*
1353		 * We don't mess with busy pages, it is
1354		 * the responsibility of the process that
1355		 * busied the pages to deal with them.
1356		 */
1357		if ((m->flags & PG_BUSY) || (m->busy != 0))
1358			continue;
1359
1360		if (m->wire_count == 0) {
1361			vm_page_flag_clear(m, PG_ZERO);
1362			/*
1363			 * Might as well free the page if we can and it has
1364			 * no valid data.
1365			 */
1366			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1367				vm_page_busy(m);
1368				vm_page_protect(m, VM_PROT_NONE);
1369				vm_page_free(m);
1370			} else if (vm_page_count_severe()) {
1371				vm_page_try_to_cache(m);
1372			}
1373		}
1374	}
1375	splx(s);
1376	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1377	if (bp->b_bufsize) {
1378		bufspacewakeup();
1379		bp->b_bufsize = 0;
1380	}
1381	bp->b_npages = 0;
1382	bp->b_flags &= ~B_VMIO;
1383	if (bp->b_vp)
1384		brelvp(bp);
1385}
1386
1387/*
1388 * Check to see if a block is currently memory resident.
1389 */
1390struct buf *
1391gbincore(struct vnode * vp, daddr_t blkno)
1392{
1393	struct buf *bp;
1394	struct bufhashhdr *bh;
1395
1396	bh = bufhash(vp, blkno);
1397
1398	/* Search hash chain */
1399	LIST_FOREACH(bp, bh, b_hash) {
1400		/* hit */
1401		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1402		    (bp->b_flags & B_INVAL) == 0) {
1403			break;
1404		}
1405	}
1406	return (bp);
1407}
1408
1409/*
1410 *	vfs_bio_awrite:
1411 *
1412 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1413 *	This is much better then the old way of writing only one buffer at
1414 *	a time.  Note that we may not be presented with the buffers in the
1415 *	correct order, so we search for the cluster in both directions.
1416 */
1417int
1418vfs_bio_awrite(struct buf * bp)
1419{
1420	int i;
1421	int j;
1422	daddr_t lblkno = bp->b_lblkno;
1423	struct vnode *vp = bp->b_vp;
1424	int s;
1425	int ncl;
1426	struct buf *bpa;
1427	int nwritten;
1428	int size;
1429	int maxcl;
1430
1431	s = splbio();
1432	/*
1433	 * right now we support clustered writing only to regular files.  If
1434	 * we find a clusterable block we could be in the middle of a cluster
1435	 * rather then at the beginning.
1436	 */
1437	if ((vp->v_type == VREG) &&
1438	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1439	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1440
1441		size = vp->v_mount->mnt_stat.f_iosize;
1442		maxcl = MAXPHYS / size;
1443
1444		for (i = 1; i < maxcl; i++) {
1445			if ((bpa = gbincore(vp, lblkno + i)) &&
1446			    BUF_REFCNT(bpa) == 0 &&
1447			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1448			    (B_DELWRI | B_CLUSTEROK)) &&
1449			    (bpa->b_bufsize == size)) {
1450				if ((bpa->b_blkno == bpa->b_lblkno) ||
1451				    (bpa->b_blkno !=
1452				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1453					break;
1454			} else {
1455				break;
1456			}
1457		}
1458		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1459			if ((bpa = gbincore(vp, lblkno - j)) &&
1460			    BUF_REFCNT(bpa) == 0 &&
1461			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1462			    (B_DELWRI | B_CLUSTEROK)) &&
1463			    (bpa->b_bufsize == size)) {
1464				if ((bpa->b_blkno == bpa->b_lblkno) ||
1465				    (bpa->b_blkno !=
1466				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1467					break;
1468			} else {
1469				break;
1470			}
1471		}
1472		--j;
1473		ncl = i + j;
1474		/*
1475		 * this is a possible cluster write
1476		 */
1477		if (ncl != 1) {
1478			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1479			splx(s);
1480			return nwritten;
1481		}
1482	}
1483
1484	BUF_LOCK(bp, LK_EXCLUSIVE);
1485	bremfree(bp);
1486	bp->b_flags |= B_ASYNC;
1487
1488	splx(s);
1489	/*
1490	 * default (old) behavior, writing out only one block
1491	 *
1492	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1493	 */
1494	nwritten = bp->b_bufsize;
1495	(void) BUF_WRITE(bp);
1496
1497	return nwritten;
1498}
1499
1500/*
1501 *	getnewbuf:
1502 *
1503 *	Find and initialize a new buffer header, freeing up existing buffers
1504 *	in the bufqueues as necessary.  The new buffer is returned locked.
1505 *
1506 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1507 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1508 *
1509 *	We block if:
1510 *		We have insufficient buffer headers
1511 *		We have insufficient buffer space
1512 *		buffer_map is too fragmented ( space reservation fails )
1513 *		If we have to flush dirty buffers ( but we try to avoid this )
1514 *
1515 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1516 *	Instead we ask the buf daemon to do it for us.  We attempt to
1517 *	avoid piecemeal wakeups of the pageout daemon.
1518 */
1519
1520static struct buf *
1521getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1522{
1523	struct buf *bp;
1524	struct buf *nbp;
1525	int defrag = 0;
1526	int nqindex;
1527	static int flushingbufs;
1528
1529	/*
1530	 * We can't afford to block since we might be holding a vnode lock,
1531	 * which may prevent system daemons from running.  We deal with
1532	 * low-memory situations by proactively returning memory and running
1533	 * async I/O rather then sync I/O.
1534	 */
1535
1536	++getnewbufcalls;
1537	--getnewbufrestarts;
1538restart:
1539	++getnewbufrestarts;
1540
1541	/*
1542	 * Setup for scan.  If we do not have enough free buffers,
1543	 * we setup a degenerate case that immediately fails.  Note
1544	 * that if we are specially marked process, we are allowed to
1545	 * dip into our reserves.
1546	 *
1547	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1548	 *
1549	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1550	 * However, there are a number of cases (defragging, reusing, ...)
1551	 * where we cannot backup.
1552	 */
1553	nqindex = QUEUE_EMPTYKVA;
1554	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1555
1556	if (nbp == NULL) {
1557		/*
1558		 * If no EMPTYKVA buffers and we are either
1559		 * defragging or reusing, locate a CLEAN buffer
1560		 * to free or reuse.  If bufspace useage is low
1561		 * skip this step so we can allocate a new buffer.
1562		 */
1563		if (defrag || bufspace >= lobufspace) {
1564			nqindex = QUEUE_CLEAN;
1565			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1566		}
1567
1568		/*
1569		 * If we could not find or were not allowed to reuse a
1570		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1571		 * buffer.  We can only use an EMPTY buffer if allocating
1572		 * its KVA would not otherwise run us out of buffer space.
1573		 */
1574		if (nbp == NULL && defrag == 0 &&
1575		    bufspace + maxsize < hibufspace) {
1576			nqindex = QUEUE_EMPTY;
1577			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1578		}
1579	}
1580
1581	/*
1582	 * Run scan, possibly freeing data and/or kva mappings on the fly
1583	 * depending.
1584	 */
1585
1586	while ((bp = nbp) != NULL) {
1587		int qindex = nqindex;
1588
1589		/*
1590		 * Calculate next bp ( we can only use it if we do not block
1591		 * or do other fancy things ).
1592		 */
1593		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1594			switch(qindex) {
1595			case QUEUE_EMPTY:
1596				nqindex = QUEUE_EMPTYKVA;
1597				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1598					break;
1599				/* fall through */
1600			case QUEUE_EMPTYKVA:
1601				nqindex = QUEUE_CLEAN;
1602				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1603					break;
1604				/* fall through */
1605			case QUEUE_CLEAN:
1606				/*
1607				 * nbp is NULL.
1608				 */
1609				break;
1610			}
1611		}
1612
1613		/*
1614		 * Sanity Checks
1615		 */
1616		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1617
1618		/*
1619		 * Note: we no longer distinguish between VMIO and non-VMIO
1620		 * buffers.
1621		 */
1622
1623		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1624
1625		/*
1626		 * If we are defragging then we need a buffer with
1627		 * b_kvasize != 0.  XXX this situation should no longer
1628		 * occur, if defrag is non-zero the buffer's b_kvasize
1629		 * should also be non-zero at this point.  XXX
1630		 */
1631		if (defrag && bp->b_kvasize == 0) {
1632			printf("Warning: defrag empty buffer %p\n", bp);
1633			continue;
1634		}
1635
1636		/*
1637		 * Start freeing the bp.  This is somewhat involved.  nbp
1638		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1639		 */
1640
1641		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1642			panic("getnewbuf: locked buf");
1643		bremfree(bp);
1644
1645		if (qindex == QUEUE_CLEAN) {
1646			if (bp->b_flags & B_VMIO) {
1647				bp->b_flags &= ~B_ASYNC;
1648				vfs_vmio_release(bp);
1649			}
1650			if (bp->b_vp)
1651				brelvp(bp);
1652		}
1653
1654		/*
1655		 * NOTE:  nbp is now entirely invalid.  We can only restart
1656		 * the scan from this point on.
1657		 *
1658		 * Get the rest of the buffer freed up.  b_kva* is still
1659		 * valid after this operation.
1660		 */
1661
1662		if (bp->b_rcred != NOCRED) {
1663			crfree(bp->b_rcred);
1664			bp->b_rcred = NOCRED;
1665		}
1666		if (bp->b_wcred != NOCRED) {
1667			crfree(bp->b_wcred);
1668			bp->b_wcred = NOCRED;
1669		}
1670		if (LIST_FIRST(&bp->b_dep) != NULL)
1671			buf_deallocate(bp);
1672		if (bp->b_xflags & BX_BKGRDINPROG)
1673			panic("losing buffer 3");
1674		LIST_REMOVE(bp, b_hash);
1675		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1676
1677		if (bp->b_bufsize)
1678			allocbuf(bp, 0);
1679
1680		bp->b_flags = 0;
1681		bp->b_ioflags = 0;
1682		bp->b_xflags = 0;
1683		bp->b_dev = NODEV;
1684		bp->b_vp = NULL;
1685		bp->b_blkno = bp->b_lblkno = 0;
1686		bp->b_offset = NOOFFSET;
1687		bp->b_iodone = 0;
1688		bp->b_error = 0;
1689		bp->b_resid = 0;
1690		bp->b_bcount = 0;
1691		bp->b_npages = 0;
1692		bp->b_dirtyoff = bp->b_dirtyend = 0;
1693		bp->b_magic = B_MAGIC_BIO;
1694		bp->b_op = &buf_ops_bio;
1695
1696		LIST_INIT(&bp->b_dep);
1697
1698		/*
1699		 * If we are defragging then free the buffer.
1700		 */
1701		if (defrag) {
1702			bp->b_flags |= B_INVAL;
1703			bfreekva(bp);
1704			brelse(bp);
1705			defrag = 0;
1706			goto restart;
1707		}
1708
1709		/*
1710		 * If we are overcomitted then recover the buffer and its
1711		 * KVM space.  This occurs in rare situations when multiple
1712		 * processes are blocked in getnewbuf() or allocbuf().
1713		 */
1714		if (bufspace >= hibufspace)
1715			flushingbufs = 1;
1716		if (flushingbufs && bp->b_kvasize != 0) {
1717			bp->b_flags |= B_INVAL;
1718			bfreekva(bp);
1719			brelse(bp);
1720			goto restart;
1721		}
1722		if (bufspace < lobufspace)
1723			flushingbufs = 0;
1724		break;
1725	}
1726
1727	/*
1728	 * If we exhausted our list, sleep as appropriate.  We may have to
1729	 * wakeup various daemons and write out some dirty buffers.
1730	 *
1731	 * Generally we are sleeping due to insufficient buffer space.
1732	 */
1733
1734	if (bp == NULL) {
1735		int flags;
1736		char *waitmsg;
1737
1738		if (defrag) {
1739			flags = VFS_BIO_NEED_BUFSPACE;
1740			waitmsg = "nbufkv";
1741		} else if (bufspace >= hibufspace) {
1742			waitmsg = "nbufbs";
1743			flags = VFS_BIO_NEED_BUFSPACE;
1744		} else {
1745			waitmsg = "newbuf";
1746			flags = VFS_BIO_NEED_ANY;
1747		}
1748
1749		bd_speedup();	/* heeeelp */
1750
1751		needsbuffer |= flags;
1752		while (needsbuffer & flags) {
1753			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1754			    waitmsg, slptimeo))
1755				return (NULL);
1756		}
1757	} else {
1758		/*
1759		 * We finally have a valid bp.  We aren't quite out of the
1760		 * woods, we still have to reserve kva space.  In order
1761		 * to keep fragmentation sane we only allocate kva in
1762		 * BKVASIZE chunks.
1763		 */
1764		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1765
1766		if (maxsize != bp->b_kvasize) {
1767			vm_offset_t addr = 0;
1768
1769			bfreekva(bp);
1770
1771			if (vm_map_findspace(buffer_map,
1772				vm_map_min(buffer_map), maxsize, &addr)) {
1773				/*
1774				 * Uh oh.  Buffer map is to fragmented.  We
1775				 * must defragment the map.
1776				 */
1777				++bufdefragcnt;
1778				defrag = 1;
1779				bp->b_flags |= B_INVAL;
1780				brelse(bp);
1781				goto restart;
1782			}
1783			if (addr) {
1784				vm_map_insert(buffer_map, NULL, 0,
1785					addr, addr + maxsize,
1786					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1787
1788				bp->b_kvabase = (caddr_t) addr;
1789				bp->b_kvasize = maxsize;
1790				bufspace += bp->b_kvasize;
1791				++bufreusecnt;
1792			}
1793		}
1794		bp->b_data = bp->b_kvabase;
1795	}
1796	return(bp);
1797}
1798
1799/*
1800 *	buf_daemon:
1801 *
1802 *	buffer flushing daemon.  Buffers are normally flushed by the
1803 *	update daemon but if it cannot keep up this process starts to
1804 *	take the load in an attempt to prevent getnewbuf() from blocking.
1805 */
1806
1807static struct proc *bufdaemonproc;
1808
1809static struct kproc_desc buf_kp = {
1810	"bufdaemon",
1811	buf_daemon,
1812	&bufdaemonproc
1813};
1814SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1815
1816static void
1817buf_daemon()
1818{
1819	int s;
1820
1821	mtx_lock(&Giant);
1822
1823	/*
1824	 * This process needs to be suspended prior to shutdown sync.
1825	 */
1826	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1827	    SHUTDOWN_PRI_LAST);
1828
1829	/*
1830	 * This process is allowed to take the buffer cache to the limit
1831	 */
1832	curproc->p_flag |= P_BUFEXHAUST;
1833	s = splbio();
1834
1835	for (;;) {
1836		kthread_suspend_check(bufdaemonproc);
1837
1838		bd_request = 0;
1839
1840		/*
1841		 * Do the flush.  Limit the amount of in-transit I/O we
1842		 * allow to build up, otherwise we would completely saturate
1843		 * the I/O system.  Wakeup any waiting processes before we
1844		 * normally would so they can run in parallel with our drain.
1845		 */
1846		while (numdirtybuffers > lodirtybuffers) {
1847			if (flushbufqueues() == 0)
1848				break;
1849			waitrunningbufspace();
1850			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1851		}
1852
1853		/*
1854		 * Only clear bd_request if we have reached our low water
1855		 * mark.  The buf_daemon normally waits 5 seconds and
1856		 * then incrementally flushes any dirty buffers that have
1857		 * built up, within reason.
1858		 *
1859		 * If we were unable to hit our low water mark and couldn't
1860		 * find any flushable buffers, we sleep half a second.
1861		 * Otherwise we loop immediately.
1862		 */
1863		if (numdirtybuffers <= lodirtybuffers) {
1864			/*
1865			 * We reached our low water mark, reset the
1866			 * request and sleep until we are needed again.
1867			 * The sleep is just so the suspend code works.
1868			 */
1869			bd_request = 0;
1870			tsleep(&bd_request, PVM, "psleep", hz);
1871		} else {
1872			/*
1873			 * We couldn't find any flushable dirty buffers but
1874			 * still have too many dirty buffers, we
1875			 * have to sleep and try again.  (rare)
1876			 */
1877			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1878		}
1879	}
1880}
1881
1882/*
1883 *	flushbufqueues:
1884 *
1885 *	Try to flush a buffer in the dirty queue.  We must be careful to
1886 *	free up B_INVAL buffers instead of write them, which NFS is
1887 *	particularly sensitive to.
1888 */
1889
1890static int
1891flushbufqueues(void)
1892{
1893	struct buf *bp;
1894	int r = 0;
1895
1896	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1897
1898	while (bp) {
1899		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1900		if ((bp->b_flags & B_DELWRI) != 0 &&
1901		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1902			if (bp->b_flags & B_INVAL) {
1903				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1904					panic("flushbufqueues: locked buf");
1905				bremfree(bp);
1906				brelse(bp);
1907				++r;
1908				break;
1909			}
1910			if (LIST_FIRST(&bp->b_dep) != NULL &&
1911			    (bp->b_flags & B_DEFERRED) == 0 &&
1912			    buf_countdeps(bp, 0)) {
1913				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1914				    bp, b_freelist);
1915				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1916				    bp, b_freelist);
1917				bp->b_flags |= B_DEFERRED;
1918				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1919				continue;
1920			}
1921			vfs_bio_awrite(bp);
1922			++r;
1923			break;
1924		}
1925		bp = TAILQ_NEXT(bp, b_freelist);
1926	}
1927	return (r);
1928}
1929
1930/*
1931 * Check to see if a block is currently memory resident.
1932 */
1933struct buf *
1934incore(struct vnode * vp, daddr_t blkno)
1935{
1936	struct buf *bp;
1937
1938	int s = splbio();
1939	bp = gbincore(vp, blkno);
1940	splx(s);
1941	return (bp);
1942}
1943
1944/*
1945 * Returns true if no I/O is needed to access the
1946 * associated VM object.  This is like incore except
1947 * it also hunts around in the VM system for the data.
1948 */
1949
1950int
1951inmem(struct vnode * vp, daddr_t blkno)
1952{
1953	vm_object_t obj;
1954	vm_offset_t toff, tinc, size;
1955	vm_page_t m;
1956	vm_ooffset_t off;
1957
1958	if (incore(vp, blkno))
1959		return 1;
1960	if (vp->v_mount == NULL)
1961		return 0;
1962	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
1963		return 0;
1964
1965	size = PAGE_SIZE;
1966	if (size > vp->v_mount->mnt_stat.f_iosize)
1967		size = vp->v_mount->mnt_stat.f_iosize;
1968	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1969
1970	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1971		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1972		if (!m)
1973			return 0;
1974		tinc = size;
1975		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1976			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1977		if (vm_page_is_valid(m,
1978		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1979			return 0;
1980	}
1981	return 1;
1982}
1983
1984/*
1985 *	vfs_setdirty:
1986 *
1987 *	Sets the dirty range for a buffer based on the status of the dirty
1988 *	bits in the pages comprising the buffer.
1989 *
1990 *	The range is limited to the size of the buffer.
1991 *
1992 *	This routine is primarily used by NFS, but is generalized for the
1993 *	B_VMIO case.
1994 */
1995static void
1996vfs_setdirty(struct buf *bp)
1997{
1998	int i;
1999	vm_object_t object;
2000
2001	/*
2002	 * Degenerate case - empty buffer
2003	 */
2004
2005	if (bp->b_bufsize == 0)
2006		return;
2007
2008	/*
2009	 * We qualify the scan for modified pages on whether the
2010	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2011	 * is not cleared simply by protecting pages off.
2012	 */
2013
2014	if ((bp->b_flags & B_VMIO) == 0)
2015		return;
2016
2017	object = bp->b_pages[0]->object;
2018
2019	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2020		printf("Warning: object %p writeable but not mightbedirty\n", object);
2021	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2022		printf("Warning: object %p mightbedirty but not writeable\n", object);
2023
2024	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2025		vm_offset_t boffset;
2026		vm_offset_t eoffset;
2027
2028		/*
2029		 * test the pages to see if they have been modified directly
2030		 * by users through the VM system.
2031		 */
2032		for (i = 0; i < bp->b_npages; i++) {
2033			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2034			vm_page_test_dirty(bp->b_pages[i]);
2035		}
2036
2037		/*
2038		 * Calculate the encompassing dirty range, boffset and eoffset,
2039		 * (eoffset - boffset) bytes.
2040		 */
2041
2042		for (i = 0; i < bp->b_npages; i++) {
2043			if (bp->b_pages[i]->dirty)
2044				break;
2045		}
2046		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2047
2048		for (i = bp->b_npages - 1; i >= 0; --i) {
2049			if (bp->b_pages[i]->dirty) {
2050				break;
2051			}
2052		}
2053		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2054
2055		/*
2056		 * Fit it to the buffer.
2057		 */
2058
2059		if (eoffset > bp->b_bcount)
2060			eoffset = bp->b_bcount;
2061
2062		/*
2063		 * If we have a good dirty range, merge with the existing
2064		 * dirty range.
2065		 */
2066
2067		if (boffset < eoffset) {
2068			if (bp->b_dirtyoff > boffset)
2069				bp->b_dirtyoff = boffset;
2070			if (bp->b_dirtyend < eoffset)
2071				bp->b_dirtyend = eoffset;
2072		}
2073	}
2074}
2075
2076/*
2077 *	getblk:
2078 *
2079 *	Get a block given a specified block and offset into a file/device.
2080 *	The buffers B_DONE bit will be cleared on return, making it almost
2081 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2082 *	return.  The caller should clear B_INVAL prior to initiating a
2083 *	READ.
2084 *
2085 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2086 *	an existing buffer.
2087 *
2088 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2089 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2090 *	and then cleared based on the backing VM.  If the previous buffer is
2091 *	non-0-sized but invalid, B_CACHE will be cleared.
2092 *
2093 *	If getblk() must create a new buffer, the new buffer is returned with
2094 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2095 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2096 *	backing VM.
2097 *
2098 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2099 *	B_CACHE bit is clear.
2100 *
2101 *	What this means, basically, is that the caller should use B_CACHE to
2102 *	determine whether the buffer is fully valid or not and should clear
2103 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2104 *	the buffer by loading its data area with something, the caller needs
2105 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2106 *	the caller should set B_CACHE ( as an optimization ), else the caller
2107 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2108 *	a write attempt or if it was a successfull read.  If the caller
2109 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2110 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2111 */
2112struct buf *
2113getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2114{
2115	struct buf *bp;
2116	int s;
2117	struct bufhashhdr *bh;
2118
2119	if (size > MAXBSIZE)
2120		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2121
2122	s = splbio();
2123loop:
2124	/*
2125	 * Block if we are low on buffers.   Certain processes are allowed
2126	 * to completely exhaust the buffer cache.
2127         *
2128         * If this check ever becomes a bottleneck it may be better to
2129         * move it into the else, when gbincore() fails.  At the moment
2130         * it isn't a problem.
2131	 *
2132	 * XXX remove if 0 sections (clean this up after its proven)
2133         */
2134	if (numfreebuffers == 0) {
2135		if (curproc == PCPU_GET(idleproc))
2136			return NULL;
2137		needsbuffer |= VFS_BIO_NEED_ANY;
2138	}
2139
2140	if ((bp = gbincore(vp, blkno))) {
2141		/*
2142		 * Buffer is in-core.  If the buffer is not busy, it must
2143		 * be on a queue.
2144		 */
2145
2146		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2147			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2148			    "getblk", slpflag, slptimeo) == ENOLCK)
2149				goto loop;
2150			splx(s);
2151			return (struct buf *) NULL;
2152		}
2153
2154		/*
2155		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2156		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2157		 * and for a VMIO buffer B_CACHE is adjusted according to the
2158		 * backing VM cache.
2159		 */
2160		if (bp->b_flags & B_INVAL)
2161			bp->b_flags &= ~B_CACHE;
2162		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2163			bp->b_flags |= B_CACHE;
2164		bremfree(bp);
2165
2166		/*
2167		 * check for size inconsistancies for non-VMIO case.
2168		 */
2169
2170		if (bp->b_bcount != size) {
2171			if ((bp->b_flags & B_VMIO) == 0 ||
2172			    (size > bp->b_kvasize)) {
2173				if (bp->b_flags & B_DELWRI) {
2174					bp->b_flags |= B_NOCACHE;
2175					BUF_WRITE(bp);
2176				} else {
2177					if ((bp->b_flags & B_VMIO) &&
2178					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2179						bp->b_flags |= B_RELBUF;
2180						brelse(bp);
2181					} else {
2182						bp->b_flags |= B_NOCACHE;
2183						BUF_WRITE(bp);
2184					}
2185				}
2186				goto loop;
2187			}
2188		}
2189
2190		/*
2191		 * If the size is inconsistant in the VMIO case, we can resize
2192		 * the buffer.  This might lead to B_CACHE getting set or
2193		 * cleared.  If the size has not changed, B_CACHE remains
2194		 * unchanged from its previous state.
2195		 */
2196
2197		if (bp->b_bcount != size)
2198			allocbuf(bp, size);
2199
2200		KASSERT(bp->b_offset != NOOFFSET,
2201		    ("getblk: no buffer offset"));
2202
2203		/*
2204		 * A buffer with B_DELWRI set and B_CACHE clear must
2205		 * be committed before we can return the buffer in
2206		 * order to prevent the caller from issuing a read
2207		 * ( due to B_CACHE not being set ) and overwriting
2208		 * it.
2209		 *
2210		 * Most callers, including NFS and FFS, need this to
2211		 * operate properly either because they assume they
2212		 * can issue a read if B_CACHE is not set, or because
2213		 * ( for example ) an uncached B_DELWRI might loop due
2214		 * to softupdates re-dirtying the buffer.  In the latter
2215		 * case, B_CACHE is set after the first write completes,
2216		 * preventing further loops.
2217		 */
2218
2219		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2220			BUF_WRITE(bp);
2221			goto loop;
2222		}
2223
2224		splx(s);
2225		bp->b_flags &= ~B_DONE;
2226	} else {
2227		/*
2228		 * Buffer is not in-core, create new buffer.  The buffer
2229		 * returned by getnewbuf() is locked.  Note that the returned
2230		 * buffer is also considered valid (not marked B_INVAL).
2231		 */
2232		int bsize, maxsize, vmio;
2233		off_t offset;
2234
2235		if (vn_isdisk(vp, NULL))
2236			bsize = DEV_BSIZE;
2237		else if (vp->v_mountedhere)
2238			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2239		else if (vp->v_mount)
2240			bsize = vp->v_mount->mnt_stat.f_iosize;
2241		else
2242			bsize = size;
2243
2244		offset = (off_t)blkno * bsize;
2245		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2246		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2247		maxsize = imax(maxsize, bsize);
2248
2249		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2250			if (slpflag || slptimeo) {
2251				splx(s);
2252				return NULL;
2253			}
2254			goto loop;
2255		}
2256
2257		/*
2258		 * This code is used to make sure that a buffer is not
2259		 * created while the getnewbuf routine is blocked.
2260		 * This can be a problem whether the vnode is locked or not.
2261		 * If the buffer is created out from under us, we have to
2262		 * throw away the one we just created.  There is now window
2263		 * race because we are safely running at splbio() from the
2264		 * point of the duplicate buffer creation through to here,
2265		 * and we've locked the buffer.
2266		 */
2267		if (gbincore(vp, blkno)) {
2268			bp->b_flags |= B_INVAL;
2269			brelse(bp);
2270			goto loop;
2271		}
2272
2273		/*
2274		 * Insert the buffer into the hash, so that it can
2275		 * be found by incore.
2276		 */
2277		bp->b_blkno = bp->b_lblkno = blkno;
2278		bp->b_offset = offset;
2279
2280		bgetvp(vp, bp);
2281		LIST_REMOVE(bp, b_hash);
2282		bh = bufhash(vp, blkno);
2283		LIST_INSERT_HEAD(bh, bp, b_hash);
2284
2285		/*
2286		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2287		 * buffer size starts out as 0, B_CACHE will be set by
2288		 * allocbuf() for the VMIO case prior to it testing the
2289		 * backing store for validity.
2290		 */
2291
2292		if (vmio) {
2293			bp->b_flags |= B_VMIO;
2294#if defined(VFS_BIO_DEBUG)
2295			if (vp->v_type != VREG)
2296				printf("getblk: vmioing file type %d???\n", vp->v_type);
2297#endif
2298		} else {
2299			bp->b_flags &= ~B_VMIO;
2300		}
2301
2302		allocbuf(bp, size);
2303
2304		splx(s);
2305		bp->b_flags &= ~B_DONE;
2306	}
2307	return (bp);
2308}
2309
2310/*
2311 * Get an empty, disassociated buffer of given size.  The buffer is initially
2312 * set to B_INVAL.
2313 */
2314struct buf *
2315geteblk(int size)
2316{
2317	struct buf *bp;
2318	int s;
2319	int maxsize;
2320
2321	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2322
2323	s = splbio();
2324	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2325	splx(s);
2326	allocbuf(bp, size);
2327	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2328	return (bp);
2329}
2330
2331
2332/*
2333 * This code constitutes the buffer memory from either anonymous system
2334 * memory (in the case of non-VMIO operations) or from an associated
2335 * VM object (in the case of VMIO operations).  This code is able to
2336 * resize a buffer up or down.
2337 *
2338 * Note that this code is tricky, and has many complications to resolve
2339 * deadlock or inconsistant data situations.  Tread lightly!!!
2340 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2341 * the caller.  Calling this code willy nilly can result in the loss of data.
2342 *
2343 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2344 * B_CACHE for the non-VMIO case.
2345 */
2346
2347int
2348allocbuf(struct buf *bp, int size)
2349{
2350	int newbsize, mbsize;
2351	int i;
2352
2353	if (BUF_REFCNT(bp) == 0)
2354		panic("allocbuf: buffer not busy");
2355
2356	if (bp->b_kvasize < size)
2357		panic("allocbuf: buffer too small");
2358
2359	if ((bp->b_flags & B_VMIO) == 0) {
2360		caddr_t origbuf;
2361		int origbufsize;
2362		/*
2363		 * Just get anonymous memory from the kernel.  Don't
2364		 * mess with B_CACHE.
2365		 */
2366		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2367#if !defined(NO_B_MALLOC)
2368		if (bp->b_flags & B_MALLOC)
2369			newbsize = mbsize;
2370		else
2371#endif
2372			newbsize = round_page(size);
2373
2374		if (newbsize < bp->b_bufsize) {
2375#if !defined(NO_B_MALLOC)
2376			/*
2377			 * malloced buffers are not shrunk
2378			 */
2379			if (bp->b_flags & B_MALLOC) {
2380				if (newbsize) {
2381					bp->b_bcount = size;
2382				} else {
2383					free(bp->b_data, M_BIOBUF);
2384					if (bp->b_bufsize) {
2385						bufmallocspace -= bp->b_bufsize;
2386						bufspacewakeup();
2387						bp->b_bufsize = 0;
2388					}
2389					bp->b_data = bp->b_kvabase;
2390					bp->b_bcount = 0;
2391					bp->b_flags &= ~B_MALLOC;
2392				}
2393				return 1;
2394			}
2395#endif
2396			vm_hold_free_pages(
2397			    bp,
2398			    (vm_offset_t) bp->b_data + newbsize,
2399			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2400		} else if (newbsize > bp->b_bufsize) {
2401#if !defined(NO_B_MALLOC)
2402			/*
2403			 * We only use malloced memory on the first allocation.
2404			 * and revert to page-allocated memory when the buffer
2405			 * grows.
2406			 */
2407			if ( (bufmallocspace < maxbufmallocspace) &&
2408				(bp->b_bufsize == 0) &&
2409				(mbsize <= PAGE_SIZE/2)) {
2410
2411				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2412				bp->b_bufsize = mbsize;
2413				bp->b_bcount = size;
2414				bp->b_flags |= B_MALLOC;
2415				bufmallocspace += mbsize;
2416				return 1;
2417			}
2418#endif
2419			origbuf = NULL;
2420			origbufsize = 0;
2421#if !defined(NO_B_MALLOC)
2422			/*
2423			 * If the buffer is growing on its other-than-first allocation,
2424			 * then we revert to the page-allocation scheme.
2425			 */
2426			if (bp->b_flags & B_MALLOC) {
2427				origbuf = bp->b_data;
2428				origbufsize = bp->b_bufsize;
2429				bp->b_data = bp->b_kvabase;
2430				if (bp->b_bufsize) {
2431					bufmallocspace -= bp->b_bufsize;
2432					bufspacewakeup();
2433					bp->b_bufsize = 0;
2434				}
2435				bp->b_flags &= ~B_MALLOC;
2436				newbsize = round_page(newbsize);
2437			}
2438#endif
2439			vm_hold_load_pages(
2440			    bp,
2441			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2442			    (vm_offset_t) bp->b_data + newbsize);
2443#if !defined(NO_B_MALLOC)
2444			if (origbuf) {
2445				bcopy(origbuf, bp->b_data, origbufsize);
2446				free(origbuf, M_BIOBUF);
2447			}
2448#endif
2449		}
2450	} else {
2451		vm_page_t m;
2452		int desiredpages;
2453
2454		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2455		desiredpages = (size == 0) ? 0 :
2456			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2457
2458#if !defined(NO_B_MALLOC)
2459		if (bp->b_flags & B_MALLOC)
2460			panic("allocbuf: VMIO buffer can't be malloced");
2461#endif
2462		/*
2463		 * Set B_CACHE initially if buffer is 0 length or will become
2464		 * 0-length.
2465		 */
2466		if (size == 0 || bp->b_bufsize == 0)
2467			bp->b_flags |= B_CACHE;
2468
2469		if (newbsize < bp->b_bufsize) {
2470			/*
2471			 * DEV_BSIZE aligned new buffer size is less then the
2472			 * DEV_BSIZE aligned existing buffer size.  Figure out
2473			 * if we have to remove any pages.
2474			 */
2475			if (desiredpages < bp->b_npages) {
2476				for (i = desiredpages; i < bp->b_npages; i++) {
2477					/*
2478					 * the page is not freed here -- it
2479					 * is the responsibility of
2480					 * vnode_pager_setsize
2481					 */
2482					m = bp->b_pages[i];
2483					KASSERT(m != bogus_page,
2484					    ("allocbuf: bogus page found"));
2485					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2486						;
2487
2488					bp->b_pages[i] = NULL;
2489					vm_page_unwire(m, 0);
2490				}
2491				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2492				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2493				bp->b_npages = desiredpages;
2494			}
2495		} else if (size > bp->b_bcount) {
2496			/*
2497			 * We are growing the buffer, possibly in a
2498			 * byte-granular fashion.
2499			 */
2500			struct vnode *vp;
2501			vm_object_t obj;
2502			vm_offset_t toff;
2503			vm_offset_t tinc;
2504
2505			/*
2506			 * Step 1, bring in the VM pages from the object,
2507			 * allocating them if necessary.  We must clear
2508			 * B_CACHE if these pages are not valid for the
2509			 * range covered by the buffer.
2510			 */
2511
2512			vp = bp->b_vp;
2513			VOP_GETVOBJECT(vp, &obj);
2514
2515			while (bp->b_npages < desiredpages) {
2516				vm_page_t m;
2517				vm_pindex_t pi;
2518
2519				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2520				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2521					/*
2522					 * note: must allocate system pages
2523					 * since blocking here could intefere
2524					 * with paging I/O, no matter which
2525					 * process we are.
2526					 */
2527					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2528					if (m == NULL) {
2529						VM_WAIT;
2530						vm_pageout_deficit += desiredpages - bp->b_npages;
2531					} else {
2532						vm_page_wire(m);
2533						vm_page_wakeup(m);
2534						bp->b_flags &= ~B_CACHE;
2535						bp->b_pages[bp->b_npages] = m;
2536						++bp->b_npages;
2537					}
2538					continue;
2539				}
2540
2541				/*
2542				 * We found a page.  If we have to sleep on it,
2543				 * retry because it might have gotten freed out
2544				 * from under us.
2545				 *
2546				 * We can only test PG_BUSY here.  Blocking on
2547				 * m->busy might lead to a deadlock:
2548				 *
2549				 *  vm_fault->getpages->cluster_read->allocbuf
2550				 *
2551				 */
2552
2553				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2554					continue;
2555
2556				/*
2557				 * We have a good page.  Should we wakeup the
2558				 * page daemon?
2559				 */
2560				if ((curproc != pageproc) &&
2561				    ((m->queue - m->pc) == PQ_CACHE) &&
2562				    ((cnt.v_free_count + cnt.v_cache_count) <
2563					(cnt.v_free_min + cnt.v_cache_min))) {
2564					pagedaemon_wakeup();
2565				}
2566				vm_page_flag_clear(m, PG_ZERO);
2567				vm_page_wire(m);
2568				bp->b_pages[bp->b_npages] = m;
2569				++bp->b_npages;
2570			}
2571
2572			/*
2573			 * Step 2.  We've loaded the pages into the buffer,
2574			 * we have to figure out if we can still have B_CACHE
2575			 * set.  Note that B_CACHE is set according to the
2576			 * byte-granular range ( bcount and size ), new the
2577			 * aligned range ( newbsize ).
2578			 *
2579			 * The VM test is against m->valid, which is DEV_BSIZE
2580			 * aligned.  Needless to say, the validity of the data
2581			 * needs to also be DEV_BSIZE aligned.  Note that this
2582			 * fails with NFS if the server or some other client
2583			 * extends the file's EOF.  If our buffer is resized,
2584			 * B_CACHE may remain set! XXX
2585			 */
2586
2587			toff = bp->b_bcount;
2588			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2589
2590			while ((bp->b_flags & B_CACHE) && toff < size) {
2591				vm_pindex_t pi;
2592
2593				if (tinc > (size - toff))
2594					tinc = size - toff;
2595
2596				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2597				    PAGE_SHIFT;
2598
2599				vfs_buf_test_cache(
2600				    bp,
2601				    bp->b_offset,
2602				    toff,
2603				    tinc,
2604				    bp->b_pages[pi]
2605				);
2606				toff += tinc;
2607				tinc = PAGE_SIZE;
2608			}
2609
2610			/*
2611			 * Step 3, fixup the KVM pmap.  Remember that
2612			 * bp->b_data is relative to bp->b_offset, but
2613			 * bp->b_offset may be offset into the first page.
2614			 */
2615
2616			bp->b_data = (caddr_t)
2617			    trunc_page((vm_offset_t)bp->b_data);
2618			pmap_qenter(
2619			    (vm_offset_t)bp->b_data,
2620			    bp->b_pages,
2621			    bp->b_npages
2622			);
2623			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2624			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2625		}
2626	}
2627	if (newbsize < bp->b_bufsize)
2628		bufspacewakeup();
2629	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2630	bp->b_bcount = size;		/* requested buffer size	*/
2631	return 1;
2632}
2633
2634/*
2635 *	bufwait:
2636 *
2637 *	Wait for buffer I/O completion, returning error status.  The buffer
2638 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2639 *	error and cleared.
2640 */
2641int
2642bufwait(register struct buf * bp)
2643{
2644	int s;
2645
2646	s = splbio();
2647	while ((bp->b_flags & B_DONE) == 0) {
2648		if (bp->b_iocmd == BIO_READ)
2649			tsleep(bp, PRIBIO, "biord", 0);
2650		else
2651			tsleep(bp, PRIBIO, "biowr", 0);
2652	}
2653	splx(s);
2654	if (bp->b_flags & B_EINTR) {
2655		bp->b_flags &= ~B_EINTR;
2656		return (EINTR);
2657	}
2658	if (bp->b_ioflags & BIO_ERROR) {
2659		return (bp->b_error ? bp->b_error : EIO);
2660	} else {
2661		return (0);
2662	}
2663}
2664
2665 /*
2666  * Call back function from struct bio back up to struct buf.
2667  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2668  */
2669void
2670bufdonebio(struct bio *bp)
2671{
2672	bufdone(bp->bio_caller2);
2673}
2674
2675/*
2676 *	bufdone:
2677 *
2678 *	Finish I/O on a buffer, optionally calling a completion function.
2679 *	This is usually called from an interrupt so process blocking is
2680 *	not allowed.
2681 *
2682 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2683 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2684 *	assuming B_INVAL is clear.
2685 *
2686 *	For the VMIO case, we set B_CACHE if the op was a read and no
2687 *	read error occured, or if the op was a write.  B_CACHE is never
2688 *	set if the buffer is invalid or otherwise uncacheable.
2689 *
2690 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2691 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2692 *	in the biodone routine.
2693 */
2694void
2695bufdone(struct buf *bp)
2696{
2697	int s, error;
2698	void    (*biodone) __P((struct buf *));
2699
2700	s = splbio();
2701
2702	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2703	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2704
2705	bp->b_flags |= B_DONE;
2706	runningbufwakeup(bp);
2707
2708	if (bp->b_iocmd == BIO_DELETE) {
2709		brelse(bp);
2710		splx(s);
2711		return;
2712	}
2713
2714	if (bp->b_iocmd == BIO_WRITE) {
2715		vwakeup(bp);
2716	}
2717
2718	/* call optional completion function if requested */
2719	if (bp->b_iodone != NULL) {
2720		biodone = bp->b_iodone;
2721		bp->b_iodone = NULL;
2722		(*biodone) (bp);
2723		splx(s);
2724		return;
2725	}
2726	if (LIST_FIRST(&bp->b_dep) != NULL)
2727		buf_complete(bp);
2728
2729	if (bp->b_flags & B_VMIO) {
2730		int i;
2731		vm_ooffset_t foff;
2732		vm_page_t m;
2733		vm_object_t obj;
2734		int iosize;
2735		struct vnode *vp = bp->b_vp;
2736
2737		error = VOP_GETVOBJECT(vp, &obj);
2738
2739#if defined(VFS_BIO_DEBUG)
2740		if (vp->v_usecount == 0) {
2741			panic("biodone: zero vnode ref count");
2742		}
2743
2744		if (error) {
2745			panic("biodone: missing VM object");
2746		}
2747
2748		if ((vp->v_flag & VOBJBUF) == 0) {
2749			panic("biodone: vnode is not setup for merged cache");
2750		}
2751#endif
2752
2753		foff = bp->b_offset;
2754		KASSERT(bp->b_offset != NOOFFSET,
2755		    ("biodone: no buffer offset"));
2756
2757		if (error) {
2758			panic("biodone: no object");
2759		}
2760#if defined(VFS_BIO_DEBUG)
2761		if (obj->paging_in_progress < bp->b_npages) {
2762			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2763			    obj->paging_in_progress, bp->b_npages);
2764		}
2765#endif
2766
2767		/*
2768		 * Set B_CACHE if the op was a normal read and no error
2769		 * occured.  B_CACHE is set for writes in the b*write()
2770		 * routines.
2771		 */
2772		iosize = bp->b_bcount - bp->b_resid;
2773		if (bp->b_iocmd == BIO_READ &&
2774		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2775		    !(bp->b_ioflags & BIO_ERROR)) {
2776			bp->b_flags |= B_CACHE;
2777		}
2778
2779		for (i = 0; i < bp->b_npages; i++) {
2780			int bogusflag = 0;
2781			int resid;
2782
2783			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2784			if (resid > iosize)
2785				resid = iosize;
2786
2787			/*
2788			 * cleanup bogus pages, restoring the originals
2789			 */
2790			m = bp->b_pages[i];
2791			if (m == bogus_page) {
2792				bogusflag = 1;
2793				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2794				if (m == NULL)
2795					panic("biodone: page disappeared!");
2796				bp->b_pages[i] = m;
2797				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2798			}
2799#if defined(VFS_BIO_DEBUG)
2800			if (OFF_TO_IDX(foff) != m->pindex) {
2801				printf(
2802"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2803				    (unsigned long)foff, m->pindex);
2804			}
2805#endif
2806
2807			/*
2808			 * In the write case, the valid and clean bits are
2809			 * already changed correctly ( see bdwrite() ), so we
2810			 * only need to do this here in the read case.
2811			 */
2812			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2813				vfs_page_set_valid(bp, foff, i, m);
2814			}
2815			vm_page_flag_clear(m, PG_ZERO);
2816
2817			/*
2818			 * when debugging new filesystems or buffer I/O methods, this
2819			 * is the most common error that pops up.  if you see this, you
2820			 * have not set the page busy flag correctly!!!
2821			 */
2822			if (m->busy == 0) {
2823				printf("biodone: page busy < 0, "
2824				    "pindex: %d, foff: 0x(%x,%x), "
2825				    "resid: %d, index: %d\n",
2826				    (int) m->pindex, (int)(foff >> 32),
2827						(int) foff & 0xffffffff, resid, i);
2828				if (!vn_isdisk(vp, NULL))
2829					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2830					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2831					    (int) bp->b_lblkno,
2832					    bp->b_flags, bp->b_npages);
2833				else
2834					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2835					    (int) bp->b_lblkno,
2836					    bp->b_flags, bp->b_npages);
2837				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2838				    m->valid, m->dirty, m->wire_count);
2839				panic("biodone: page busy < 0\n");
2840			}
2841			vm_page_io_finish(m);
2842			vm_object_pip_subtract(obj, 1);
2843			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2844			iosize -= resid;
2845		}
2846		if (obj)
2847			vm_object_pip_wakeupn(obj, 0);
2848	}
2849
2850	/*
2851	 * For asynchronous completions, release the buffer now. The brelse
2852	 * will do a wakeup there if necessary - so no need to do a wakeup
2853	 * here in the async case. The sync case always needs to do a wakeup.
2854	 */
2855
2856	if (bp->b_flags & B_ASYNC) {
2857		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2858			brelse(bp);
2859		else
2860			bqrelse(bp);
2861	} else {
2862		wakeup(bp);
2863	}
2864	splx(s);
2865}
2866
2867/*
2868 * This routine is called in lieu of iodone in the case of
2869 * incomplete I/O.  This keeps the busy status for pages
2870 * consistant.
2871 */
2872void
2873vfs_unbusy_pages(struct buf * bp)
2874{
2875	int i;
2876
2877	runningbufwakeup(bp);
2878	if (bp->b_flags & B_VMIO) {
2879		struct vnode *vp = bp->b_vp;
2880		vm_object_t obj;
2881
2882		VOP_GETVOBJECT(vp, &obj);
2883
2884		for (i = 0; i < bp->b_npages; i++) {
2885			vm_page_t m = bp->b_pages[i];
2886
2887			if (m == bogus_page) {
2888				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2889				if (!m) {
2890					panic("vfs_unbusy_pages: page missing\n");
2891				}
2892				bp->b_pages[i] = m;
2893				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2894			}
2895			vm_object_pip_subtract(obj, 1);
2896			vm_page_flag_clear(m, PG_ZERO);
2897			vm_page_io_finish(m);
2898		}
2899		vm_object_pip_wakeupn(obj, 0);
2900	}
2901}
2902
2903/*
2904 * vfs_page_set_valid:
2905 *
2906 *	Set the valid bits in a page based on the supplied offset.   The
2907 *	range is restricted to the buffer's size.
2908 *
2909 *	This routine is typically called after a read completes.
2910 */
2911static void
2912vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2913{
2914	vm_ooffset_t soff, eoff;
2915
2916	/*
2917	 * Start and end offsets in buffer.  eoff - soff may not cross a
2918	 * page boundry or cross the end of the buffer.  The end of the
2919	 * buffer, in this case, is our file EOF, not the allocation size
2920	 * of the buffer.
2921	 */
2922	soff = off;
2923	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2924	if (eoff > bp->b_offset + bp->b_bcount)
2925		eoff = bp->b_offset + bp->b_bcount;
2926
2927	/*
2928	 * Set valid range.  This is typically the entire buffer and thus the
2929	 * entire page.
2930	 */
2931	if (eoff > soff) {
2932		vm_page_set_validclean(
2933		    m,
2934		   (vm_offset_t) (soff & PAGE_MASK),
2935		   (vm_offset_t) (eoff - soff)
2936		);
2937	}
2938}
2939
2940/*
2941 * This routine is called before a device strategy routine.
2942 * It is used to tell the VM system that paging I/O is in
2943 * progress, and treat the pages associated with the buffer
2944 * almost as being PG_BUSY.  Also the object paging_in_progress
2945 * flag is handled to make sure that the object doesn't become
2946 * inconsistant.
2947 *
2948 * Since I/O has not been initiated yet, certain buffer flags
2949 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
2950 * and should be ignored.
2951 */
2952void
2953vfs_busy_pages(struct buf * bp, int clear_modify)
2954{
2955	int i, bogus;
2956
2957	if (bp->b_flags & B_VMIO) {
2958		struct vnode *vp = bp->b_vp;
2959		vm_object_t obj;
2960		vm_ooffset_t foff;
2961
2962		VOP_GETVOBJECT(vp, &obj);
2963		foff = bp->b_offset;
2964		KASSERT(bp->b_offset != NOOFFSET,
2965		    ("vfs_busy_pages: no buffer offset"));
2966		vfs_setdirty(bp);
2967
2968retry:
2969		for (i = 0; i < bp->b_npages; i++) {
2970			vm_page_t m = bp->b_pages[i];
2971			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2972				goto retry;
2973		}
2974
2975		bogus = 0;
2976		for (i = 0; i < bp->b_npages; i++) {
2977			vm_page_t m = bp->b_pages[i];
2978
2979			vm_page_flag_clear(m, PG_ZERO);
2980			if ((bp->b_flags & B_CLUSTER) == 0) {
2981				vm_object_pip_add(obj, 1);
2982				vm_page_io_start(m);
2983			}
2984
2985			/*
2986			 * When readying a buffer for a read ( i.e
2987			 * clear_modify == 0 ), it is important to do
2988			 * bogus_page replacement for valid pages in
2989			 * partially instantiated buffers.  Partially
2990			 * instantiated buffers can, in turn, occur when
2991			 * reconstituting a buffer from its VM backing store
2992			 * base.  We only have to do this if B_CACHE is
2993			 * clear ( which causes the I/O to occur in the
2994			 * first place ).  The replacement prevents the read
2995			 * I/O from overwriting potentially dirty VM-backed
2996			 * pages.  XXX bogus page replacement is, uh, bogus.
2997			 * It may not work properly with small-block devices.
2998			 * We need to find a better way.
2999			 */
3000
3001			vm_page_protect(m, VM_PROT_NONE);
3002			if (clear_modify)
3003				vfs_page_set_valid(bp, foff, i, m);
3004			else if (m->valid == VM_PAGE_BITS_ALL &&
3005				(bp->b_flags & B_CACHE) == 0) {
3006				bp->b_pages[i] = bogus_page;
3007				bogus++;
3008			}
3009			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3010		}
3011		if (bogus)
3012			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3013	}
3014}
3015
3016/*
3017 * Tell the VM system that the pages associated with this buffer
3018 * are clean.  This is used for delayed writes where the data is
3019 * going to go to disk eventually without additional VM intevention.
3020 *
3021 * Note that while we only really need to clean through to b_bcount, we
3022 * just go ahead and clean through to b_bufsize.
3023 */
3024static void
3025vfs_clean_pages(struct buf * bp)
3026{
3027	int i;
3028
3029	if (bp->b_flags & B_VMIO) {
3030		vm_ooffset_t foff;
3031
3032		foff = bp->b_offset;
3033		KASSERT(bp->b_offset != NOOFFSET,
3034		    ("vfs_clean_pages: no buffer offset"));
3035		for (i = 0; i < bp->b_npages; i++) {
3036			vm_page_t m = bp->b_pages[i];
3037			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3038			vm_ooffset_t eoff = noff;
3039
3040			if (eoff > bp->b_offset + bp->b_bufsize)
3041				eoff = bp->b_offset + bp->b_bufsize;
3042			vfs_page_set_valid(bp, foff, i, m);
3043			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3044			foff = noff;
3045		}
3046	}
3047}
3048
3049/*
3050 *	vfs_bio_set_validclean:
3051 *
3052 *	Set the range within the buffer to valid and clean.  The range is
3053 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3054 *	itself may be offset from the beginning of the first page.
3055 */
3056
3057void
3058vfs_bio_set_validclean(struct buf *bp, int base, int size)
3059{
3060	if (bp->b_flags & B_VMIO) {
3061		int i;
3062		int n;
3063
3064		/*
3065		 * Fixup base to be relative to beginning of first page.
3066		 * Set initial n to be the maximum number of bytes in the
3067		 * first page that can be validated.
3068		 */
3069
3070		base += (bp->b_offset & PAGE_MASK);
3071		n = PAGE_SIZE - (base & PAGE_MASK);
3072
3073		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3074			vm_page_t m = bp->b_pages[i];
3075
3076			if (n > size)
3077				n = size;
3078
3079			vm_page_set_validclean(m, base & PAGE_MASK, n);
3080			base += n;
3081			size -= n;
3082			n = PAGE_SIZE;
3083		}
3084	}
3085}
3086
3087/*
3088 *	vfs_bio_clrbuf:
3089 *
3090 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3091 *	to clear BIO_ERROR and B_INVAL.
3092 *
3093 *	Note that while we only theoretically need to clear through b_bcount,
3094 *	we go ahead and clear through b_bufsize.
3095 */
3096
3097void
3098vfs_bio_clrbuf(struct buf *bp) {
3099	int i, mask = 0;
3100	caddr_t sa, ea;
3101	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3102		bp->b_flags &= ~B_INVAL;
3103		bp->b_ioflags &= ~BIO_ERROR;
3104		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3105		    (bp->b_offset & PAGE_MASK) == 0) {
3106			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3107			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3108			    ((bp->b_pages[0]->valid & mask) != mask)) {
3109				bzero(bp->b_data, bp->b_bufsize);
3110			}
3111			bp->b_pages[0]->valid |= mask;
3112			bp->b_resid = 0;
3113			return;
3114		}
3115		ea = sa = bp->b_data;
3116		for(i=0;i<bp->b_npages;i++,sa=ea) {
3117			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3118			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3119			ea = (caddr_t)(vm_offset_t)ulmin(
3120			    (u_long)(vm_offset_t)ea,
3121			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3122			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3123			if ((bp->b_pages[i]->valid & mask) == mask)
3124				continue;
3125			if ((bp->b_pages[i]->valid & mask) == 0) {
3126				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3127					bzero(sa, ea - sa);
3128				}
3129			} else {
3130				for (; sa < ea; sa += DEV_BSIZE, j++) {
3131					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3132						(bp->b_pages[i]->valid & (1<<j)) == 0)
3133						bzero(sa, DEV_BSIZE);
3134				}
3135			}
3136			bp->b_pages[i]->valid |= mask;
3137			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3138		}
3139		bp->b_resid = 0;
3140	} else {
3141		clrbuf(bp);
3142	}
3143}
3144
3145/*
3146 * vm_hold_load_pages and vm_hold_unload pages get pages into
3147 * a buffers address space.  The pages are anonymous and are
3148 * not associated with a file object.
3149 */
3150void
3151vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3152{
3153	vm_offset_t pg;
3154	vm_page_t p;
3155	int index;
3156
3157	to = round_page(to);
3158	from = round_page(from);
3159	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3160
3161	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3162
3163tryagain:
3164
3165		/*
3166		 * note: must allocate system pages since blocking here
3167		 * could intefere with paging I/O, no matter which
3168		 * process we are.
3169		 */
3170		p = vm_page_alloc(kernel_object,
3171			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3172		    VM_ALLOC_SYSTEM);
3173		if (!p) {
3174			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3175			VM_WAIT;
3176			goto tryagain;
3177		}
3178		vm_page_wire(p);
3179		p->valid = VM_PAGE_BITS_ALL;
3180		vm_page_flag_clear(p, PG_ZERO);
3181		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3182		bp->b_pages[index] = p;
3183		vm_page_wakeup(p);
3184	}
3185	bp->b_npages = index;
3186}
3187
3188void
3189vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3190{
3191	vm_offset_t pg;
3192	vm_page_t p;
3193	int index, newnpages;
3194
3195	from = round_page(from);
3196	to = round_page(to);
3197	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3198
3199	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3200		p = bp->b_pages[index];
3201		if (p && (index < bp->b_npages)) {
3202			if (p->busy) {
3203				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3204					bp->b_blkno, bp->b_lblkno);
3205			}
3206			bp->b_pages[index] = NULL;
3207			pmap_kremove(pg);
3208			vm_page_busy(p);
3209			vm_page_unwire(p, 0);
3210			vm_page_free(p);
3211		}
3212	}
3213	bp->b_npages = newnpages;
3214}
3215
3216
3217#include "opt_ddb.h"
3218#ifdef DDB
3219#include <ddb/ddb.h>
3220
3221DB_SHOW_COMMAND(buffer, db_show_buffer)
3222{
3223	/* get args */
3224	struct buf *bp = (struct buf *)addr;
3225
3226	if (!have_addr) {
3227		db_printf("usage: show buffer <addr>\n");
3228		return;
3229	}
3230
3231	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3232	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3233		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3234		  "b_blkno = %d, b_pblkno = %d\n",
3235		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3236		  major(bp->b_dev), minor(bp->b_dev),
3237		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3238	if (bp->b_npages) {
3239		int i;
3240		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3241		for (i = 0; i < bp->b_npages; i++) {
3242			vm_page_t m;
3243			m = bp->b_pages[i];
3244			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3245			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3246			if ((i + 1) < bp->b_npages)
3247				db_printf(",");
3248		}
3249		db_printf("\n");
3250	}
3251}
3252#endif /* DDB */
3253