vfs_bio.c revision 48710
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $Id: vfs_bio.c,v 1.222 1999/07/08 17:58:55 mckusick Exp $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#define VMIO
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/sysproto.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/proc.h>
37#include <sys/kthread.h>
38#include <sys/vnode.h>
39#include <sys/vmmeter.h>
40#include <sys/lock.h>
41#include <miscfs/specfs/specdev.h>
42#include <vm/vm.h>
43#include <vm/vm_param.h>
44#include <vm/vm_prot.h>
45#include <vm/vm_kern.h>
46#include <vm/vm_pageout.h>
47#include <vm/vm_page.h>
48#include <vm/vm_object.h>
49#include <vm/vm_extern.h>
50#include <vm/vm_map.h>
51#include <sys/buf.h>
52#include <sys/mount.h>
53#include <sys/malloc.h>
54#include <sys/resourcevar.h>
55
56static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
57
58struct	bio_ops bioops;		/* I/O operation notification */
59
60struct buf *buf;		/* buffer header pool */
61struct swqueue bswlist;
62
63static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
64		vm_offset_t to);
65static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
66		vm_offset_t to);
67static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
68			       int pageno, vm_page_t m);
69static void vfs_clean_pages(struct buf * bp);
70static void vfs_setdirty(struct buf *bp);
71static void vfs_vmio_release(struct buf *bp);
72static int flushbufqueues(void);
73
74static int bd_request;
75
76static void buf_daemon __P((void));
77/*
78 * bogus page -- for I/O to/from partially complete buffers
79 * this is a temporary solution to the problem, but it is not
80 * really that bad.  it would be better to split the buffer
81 * for input in the case of buffers partially already in memory,
82 * but the code is intricate enough already.
83 */
84vm_page_t bogus_page;
85int runningbufspace;
86static vm_offset_t bogus_offset;
87
88static int bufspace, maxbufspace, vmiospace,
89	bufmallocspace, maxbufmallocspace, hibufspace;
90#if 0
91static int maxvmiobufspace;
92#endif
93static int maxbdrun;
94static int needsbuffer;
95static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
96static int numfreebuffers, lofreebuffers, hifreebuffers;
97static int getnewbufcalls;
98static int getnewbufrestarts;
99static int kvafreespace;
100
101SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
102	&numdirtybuffers, 0, "");
103SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
104	&lodirtybuffers, 0, "");
105SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
106	&hidirtybuffers, 0, "");
107SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
108	&numfreebuffers, 0, "");
109SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
110	&lofreebuffers, 0, "");
111SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
112	&hifreebuffers, 0, "");
113SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
114	&runningbufspace, 0, "");
115SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
116	&maxbufspace, 0, "");
117SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
118	&hibufspace, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
120	&bufspace, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
122	&maxbdrun, 0, "");
123#if 0
124SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
125	&maxvmiobufspace, 0, "");
126#endif
127SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
128	&vmiospace, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
130	&maxbufmallocspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
132	&bufmallocspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
134	&kvafreespace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
136	&getnewbufcalls, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
138	&getnewbufrestarts, 0, "");
139
140
141static int bufhashmask;
142static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
143struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
144char *buf_wmesg = BUF_WMESG;
145
146extern int vm_swap_size;
147
148#define BUF_MAXUSE		24
149
150#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
151#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
152#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
153#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
154#define VFS_BIO_NEED_KVASPACE	0x10	/* wait for buffer_map space, emerg  */
155
156/*
157 * Buffer hash table code.  Note that the logical block scans linearly, which
158 * gives us some L1 cache locality.
159 */
160
161static __inline
162struct bufhashhdr *
163bufhash(struct vnode *vnp, daddr_t bn)
164{
165	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
166}
167
168/*
169 *	kvaspacewakeup:
170 *
171 *	Called when kva space is potential available for recovery or when
172 *	kva space is recovered in the buffer_map.  This function wakes up
173 *	anyone waiting for buffer_map kva space.  Even though the buffer_map
174 *	is larger then maxbufspace, this situation will typically occur
175 *	when the buffer_map gets fragmented.
176 */
177
178static __inline void
179kvaspacewakeup(void)
180{
181	/*
182	 * If someone is waiting for KVA space, wake them up.  Even
183	 * though we haven't freed the kva space yet, the waiting
184	 * process will be able to now.
185	 */
186	if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
187		needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
188		wakeup(&needsbuffer);
189	}
190}
191
192/*
193 *	numdirtywakeup:
194 *
195 *	If someone is blocked due to there being too many dirty buffers,
196 *	and numdirtybuffers is now reasonable, wake them up.
197 */
198
199static __inline void
200numdirtywakeup(void)
201{
202	if (numdirtybuffers < hidirtybuffers) {
203		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
204			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
205			wakeup(&needsbuffer);
206		}
207	}
208}
209
210/*
211 *	bufspacewakeup:
212 *
213 *	Called when buffer space is potentially available for recovery or when
214 *	buffer space is recovered.  getnewbuf() will block on this flag when
215 *	it is unable to free sufficient buffer space.  Buffer space becomes
216 *	recoverable when bp's get placed back in the queues.
217 */
218
219static __inline void
220bufspacewakeup(void)
221{
222	/*
223	 * If someone is waiting for BUF space, wake them up.  Even
224	 * though we haven't freed the kva space yet, the waiting
225	 * process will be able to now.
226	 */
227	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
228		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
229		wakeup(&needsbuffer);
230	}
231}
232
233/*
234 *	bufcountwakeup:
235 *
236 *	Called when a buffer has been added to one of the free queues to
237 *	account for the buffer and to wakeup anyone waiting for free buffers.
238 *	This typically occurs when large amounts of metadata are being handled
239 *	by the buffer cache ( else buffer space runs out first, usually ).
240 */
241
242static __inline void
243bufcountwakeup(void)
244{
245	++numfreebuffers;
246	if (needsbuffer) {
247		needsbuffer &= ~VFS_BIO_NEED_ANY;
248		if (numfreebuffers >= hifreebuffers)
249			needsbuffer &= ~VFS_BIO_NEED_FREE;
250		wakeup(&needsbuffer);
251	}
252}
253
254/*
255 *	vfs_buf_test_cache:
256 *
257 *	Called when a buffer is extended.  This function clears the B_CACHE
258 *	bit if the newly extended portion of the buffer does not contain
259 *	valid data.
260 */
261static __inline__
262void
263vfs_buf_test_cache(struct buf *bp,
264		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
265		  vm_page_t m)
266{
267	if (bp->b_flags & B_CACHE) {
268		int base = (foff + off) & PAGE_MASK;
269		if (vm_page_is_valid(m, base, size) == 0)
270			bp->b_flags &= ~B_CACHE;
271	}
272}
273
274static __inline__
275void
276bd_wakeup(int dirtybuflevel)
277{
278	if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
279		bd_request = 1;
280		wakeup(&bd_request);
281	}
282}
283
284
285/*
286 * Initialize buffer headers and related structures.
287 */
288
289caddr_t
290bufhashinit(caddr_t vaddr)
291{
292	/* first, make a null hash table */
293	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
294		;
295	bufhashtbl = (void *)vaddr;
296	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
297	--bufhashmask;
298	return(vaddr);
299}
300
301void
302bufinit(void)
303{
304	struct buf *bp;
305	int i;
306
307	TAILQ_INIT(&bswlist);
308	LIST_INIT(&invalhash);
309	simple_lock_init(&buftimelock);
310
311	for (i = 0; i <= bufhashmask; i++)
312		LIST_INIT(&bufhashtbl[i]);
313
314	/* next, make a null set of free lists */
315	for (i = 0; i < BUFFER_QUEUES; i++)
316		TAILQ_INIT(&bufqueues[i]);
317
318	/* finally, initialize each buffer header and stick on empty q */
319	for (i = 0; i < nbuf; i++) {
320		bp = &buf[i];
321		bzero(bp, sizeof *bp);
322		bp->b_flags = B_INVAL;	/* we're just an empty header */
323		bp->b_dev = NODEV;
324		bp->b_rcred = NOCRED;
325		bp->b_wcred = NOCRED;
326		bp->b_qindex = QUEUE_EMPTY;
327		bp->b_xflags = 0;
328		LIST_INIT(&bp->b_dep);
329		BUF_LOCKINIT(bp);
330		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
331		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
332	}
333
334	/*
335	 * maxbufspace is currently calculated to support all filesystem
336	 * blocks to be 8K.  If you happen to use a 16K filesystem, the size
337	 * of the buffer cache is still the same as it would be for 8K
338	 * filesystems.  This keeps the size of the buffer cache "in check"
339	 * for big block filesystems.
340	 *
341	 * maxbufspace is calculated as around 50% of the KVA available in
342	 * the buffer_map ( DFLTSIZE vs BKVASIZE ), I presume to reduce the
343	 * effect of fragmentation.
344	 */
345	maxbufspace = (nbuf + 8) * DFLTBSIZE;
346	if ((hibufspace = maxbufspace - MAXBSIZE * 5) <= MAXBSIZE)
347		hibufspace = 3 * maxbufspace / 4;
348#if 0
349/*
350 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
351 */
352	maxvmiobufspace = 2 * hibufspace / 3;
353#endif
354/*
355 * Limit the amount of malloc memory since it is wired permanently into
356 * the kernel space.  Even though this is accounted for in the buffer
357 * allocation, we don't want the malloced region to grow uncontrolled.
358 * The malloc scheme improves memory utilization significantly on average
359 * (small) directories.
360 */
361	maxbufmallocspace = hibufspace / 20;
362
363/*
364 * Reduce the chance of a deadlock occuring by limiting the number
365 * of delayed-write dirty buffers we allow to stack up.
366 */
367	lodirtybuffers = nbuf / 7 + 10;
368	hidirtybuffers = nbuf / 4 + 20;
369	numdirtybuffers = 0;
370
371/*
372 * Try to keep the number of free buffers in the specified range,
373 * and give the syncer access to an emergency reserve.
374 */
375	lofreebuffers = nbuf / 18 + 5;
376	hifreebuffers = 2 * lofreebuffers;
377	numfreebuffers = nbuf;
378
379/*
380 * Maximum number of async ops initiated per buf_daemon loop.  This is
381 * somewhat of a hack at the moment, we really need to limit ourselves
382 * based on the number of bytes of I/O in-transit that were initiated
383 * from buf_daemon.
384 */
385	if ((maxbdrun = nswbuf / 4) < 4)
386		maxbdrun = 4;
387
388	kvafreespace = 0;
389
390	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
391	bogus_page = vm_page_alloc(kernel_object,
392			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
393			VM_ALLOC_NORMAL);
394
395}
396
397/*
398 * Free the kva allocation for a buffer
399 * Must be called only at splbio or higher,
400 *  as this is the only locking for buffer_map.
401 */
402static void
403bfreekva(struct buf * bp)
404{
405	if (bp->b_kvasize) {
406		vm_map_delete(buffer_map,
407		    (vm_offset_t) bp->b_kvabase,
408		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
409		);
410		bp->b_kvasize = 0;
411		kvaspacewakeup();
412	}
413}
414
415/*
416 *	bremfree:
417 *
418 *	Remove the buffer from the appropriate free list.
419 */
420void
421bremfree(struct buf * bp)
422{
423	int s = splbio();
424	int old_qindex = bp->b_qindex;
425
426	if (bp->b_qindex != QUEUE_NONE) {
427		if (bp->b_qindex == QUEUE_EMPTYKVA) {
428			kvafreespace -= bp->b_kvasize;
429		}
430		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
431		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
432		bp->b_qindex = QUEUE_NONE;
433		runningbufspace += bp->b_bufsize;
434	} else {
435#if !defined(MAX_PERF)
436		if (BUF_REFCNT(bp) <= 1)
437			panic("bremfree: removing a buffer not on a queue");
438#endif
439	}
440
441	/*
442	 * Fixup numfreebuffers count.  If the buffer is invalid or not
443	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
444	 * the buffer was free and we must decrement numfreebuffers.
445	 */
446	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
447		switch(old_qindex) {
448		case QUEUE_DIRTY:
449		case QUEUE_CLEAN:
450		case QUEUE_EMPTY:
451		case QUEUE_EMPTYKVA:
452			--numfreebuffers;
453			break;
454		default:
455			break;
456		}
457	}
458	splx(s);
459}
460
461
462/*
463 * Get a buffer with the specified data.  Look in the cache first.  We
464 * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
465 * is set, the buffer is valid and we do not have to do anything ( see
466 * getblk() ).
467 */
468int
469bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
470    struct buf ** bpp)
471{
472	struct buf *bp;
473
474	bp = getblk(vp, blkno, size, 0, 0);
475	*bpp = bp;
476
477	/* if not found in cache, do some I/O */
478	if ((bp->b_flags & B_CACHE) == 0) {
479		if (curproc != NULL)
480			curproc->p_stats->p_ru.ru_inblock++;
481		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
482		bp->b_flags |= B_READ;
483		bp->b_flags &= ~(B_ERROR | B_INVAL);
484		if (bp->b_rcred == NOCRED) {
485			if (cred != NOCRED)
486				crhold(cred);
487			bp->b_rcred = cred;
488		}
489		vfs_busy_pages(bp, 0);
490		VOP_STRATEGY(vp, bp);
491		return (biowait(bp));
492	}
493	return (0);
494}
495
496/*
497 * Operates like bread, but also starts asynchronous I/O on
498 * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
499 * to initiating I/O . If B_CACHE is set, the buffer is valid
500 * and we do not have to do anything.
501 */
502int
503breadn(struct vnode * vp, daddr_t blkno, int size,
504    daddr_t * rablkno, int *rabsize,
505    int cnt, struct ucred * cred, struct buf ** bpp)
506{
507	struct buf *bp, *rabp;
508	int i;
509	int rv = 0, readwait = 0;
510
511	*bpp = bp = getblk(vp, blkno, size, 0, 0);
512
513	/* if not found in cache, do some I/O */
514	if ((bp->b_flags & B_CACHE) == 0) {
515		if (curproc != NULL)
516			curproc->p_stats->p_ru.ru_inblock++;
517		bp->b_flags |= B_READ;
518		bp->b_flags &= ~(B_ERROR | B_INVAL);
519		if (bp->b_rcred == NOCRED) {
520			if (cred != NOCRED)
521				crhold(cred);
522			bp->b_rcred = cred;
523		}
524		vfs_busy_pages(bp, 0);
525		VOP_STRATEGY(vp, bp);
526		++readwait;
527	}
528
529	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
530		if (inmem(vp, *rablkno))
531			continue;
532		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
533
534		if ((rabp->b_flags & B_CACHE) == 0) {
535			if (curproc != NULL)
536				curproc->p_stats->p_ru.ru_inblock++;
537			rabp->b_flags |= B_READ | B_ASYNC;
538			rabp->b_flags &= ~(B_ERROR | B_INVAL);
539			if (rabp->b_rcred == NOCRED) {
540				if (cred != NOCRED)
541					crhold(cred);
542				rabp->b_rcred = cred;
543			}
544			vfs_busy_pages(rabp, 0);
545			BUF_KERNPROC(rabp);
546			VOP_STRATEGY(vp, rabp);
547		} else {
548			brelse(rabp);
549		}
550	}
551
552	if (readwait) {
553		rv = biowait(bp);
554	}
555	return (rv);
556}
557
558/*
559 * Write, release buffer on completion.  (Done by iodone
560 * if async).  Do not bother writing anything if the buffer
561 * is invalid.
562 *
563 * Note that we set B_CACHE here, indicating that buffer is
564 * fully valid and thus cacheable.  This is true even of NFS
565 * now so we set it generally.  This could be set either here
566 * or in biodone() since the I/O is synchronous.  We put it
567 * here.
568 */
569int
570bwrite(struct buf * bp)
571{
572	int oldflags, s;
573	struct vnode *vp;
574	struct mount *mp;
575
576	if (bp->b_flags & B_INVAL) {
577		brelse(bp);
578		return (0);
579	}
580
581	oldflags = bp->b_flags;
582
583#if !defined(MAX_PERF)
584	if (BUF_REFCNT(bp) == 0)
585		panic("bwrite: buffer is not busy???");
586#endif
587	s = splbio();
588	bundirty(bp);
589
590	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
591	bp->b_flags |= B_WRITEINPROG | B_CACHE;
592
593	bp->b_vp->v_numoutput++;
594	vfs_busy_pages(bp, 1);
595	if (curproc != NULL)
596		curproc->p_stats->p_ru.ru_oublock++;
597	splx(s);
598	if (oldflags & B_ASYNC)
599		BUF_KERNPROC(bp);
600	VOP_STRATEGY(bp->b_vp, bp);
601
602	/*
603	 * Collect statistics on synchronous and asynchronous writes.
604	 * Writes to block devices are charged to their associated
605	 * filesystem (if any).
606	 */
607	if ((vp = bp->b_vp) != NULL) {
608		if (vp->v_type == VBLK)
609			mp = vp->v_specmountpoint;
610		else
611			mp = vp->v_mount;
612		if (mp != NULL) {
613			if ((oldflags & B_ASYNC) == 0)
614				mp->mnt_stat.f_syncwrites++;
615			else
616				mp->mnt_stat.f_asyncwrites++;
617		}
618	}
619
620	if ((oldflags & B_ASYNC) == 0) {
621		int rtval = biowait(bp);
622		brelse(bp);
623		return (rtval);
624	}
625
626	return (0);
627}
628
629/*
630 * Delayed write. (Buffer is marked dirty).  Do not bother writing
631 * anything if the buffer is marked invalid.
632 *
633 * Note that since the buffer must be completely valid, we can safely
634 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
635 * biodone() in order to prevent getblk from writing the buffer
636 * out synchronously.
637 */
638void
639bdwrite(struct buf * bp)
640{
641#if 0
642	struct vnode *vp;
643#endif
644
645#if !defined(MAX_PERF)
646	if (BUF_REFCNT(bp) == 0)
647		panic("bdwrite: buffer is not busy");
648#endif
649
650	if (bp->b_flags & B_INVAL) {
651		brelse(bp);
652		return;
653	}
654	bdirty(bp);
655
656	/*
657	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
658	 * true even of NFS now.
659	 */
660	bp->b_flags |= B_CACHE;
661
662	/*
663	 * This bmap keeps the system from needing to do the bmap later,
664	 * perhaps when the system is attempting to do a sync.  Since it
665	 * is likely that the indirect block -- or whatever other datastructure
666	 * that the filesystem needs is still in memory now, it is a good
667	 * thing to do this.  Note also, that if the pageout daemon is
668	 * requesting a sync -- there might not be enough memory to do
669	 * the bmap then...  So, this is important to do.
670	 */
671	if (bp->b_lblkno == bp->b_blkno) {
672		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
673	}
674
675	/*
676	 * Set the *dirty* buffer range based upon the VM system dirty pages.
677	 */
678	vfs_setdirty(bp);
679
680	/*
681	 * We need to do this here to satisfy the vnode_pager and the
682	 * pageout daemon, so that it thinks that the pages have been
683	 * "cleaned".  Note that since the pages are in a delayed write
684	 * buffer -- the VFS layer "will" see that the pages get written
685	 * out on the next sync, or perhaps the cluster will be completed.
686	 */
687	vfs_clean_pages(bp);
688	bqrelse(bp);
689
690	/*
691	 * Wakeup the buffer flushing daemon if we have saturated the
692	 * buffer cache.
693	 */
694
695	bd_wakeup(hidirtybuffers);
696
697	/*
698	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
699	 * due to the softdep code.
700	 */
701#if 0
702	/*
703	 * XXX The soft dependency code is not prepared to
704	 * have I/O done when a bdwrite is requested. For
705	 * now we just let the write be delayed if it is
706	 * requested by the soft dependency code.
707	 */
708	if ((vp = bp->b_vp) &&
709	    ((vp->v_type == VBLK && vp->v_specmountpoint &&
710		  (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) ||
711		 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP))))
712		return;
713#endif
714}
715
716/*
717 *	bdirty:
718 *
719 *	Turn buffer into delayed write request.  We must clear B_READ and
720 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
721 *	itself to properly update it in the dirty/clean lists.  We mark it
722 *	B_DONE to ensure that any asynchronization of the buffer properly
723 *	clears B_DONE ( else a panic will occur later ).
724 *
725 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
726 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
727 *	should only be called if the buffer is known-good.
728 *
729 *	Since the buffer is not on a queue, we do not update the numfreebuffers
730 *	count.
731 *
732 *	Must be called at splbio().
733 *	The buffer must be on QUEUE_NONE.
734 */
735void
736bdirty(bp)
737	struct buf *bp;
738{
739	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
740	bp->b_flags &= ~(B_READ|B_RELBUF);
741
742	if ((bp->b_flags & B_DELWRI) == 0) {
743		bp->b_flags |= B_DONE | B_DELWRI;
744		reassignbuf(bp, bp->b_vp);
745		++numdirtybuffers;
746		bd_wakeup(hidirtybuffers);
747	}
748}
749
750/*
751 *	bundirty:
752 *
753 *	Clear B_DELWRI for buffer.
754 *
755 *	Since the buffer is not on a queue, we do not update the numfreebuffers
756 *	count.
757 *
758 *	Must be called at splbio().
759 *	The buffer must be on QUEUE_NONE.
760 */
761
762void
763bundirty(bp)
764	struct buf *bp;
765{
766	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
767
768	if (bp->b_flags & B_DELWRI) {
769		bp->b_flags &= ~B_DELWRI;
770		reassignbuf(bp, bp->b_vp);
771		--numdirtybuffers;
772		numdirtywakeup();
773	}
774}
775
776/*
777 *	bawrite:
778 *
779 *	Asynchronous write.  Start output on a buffer, but do not wait for
780 *	it to complete.  The buffer is released when the output completes.
781 *
782 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
783 *	B_INVAL buffers.  Not us.
784 */
785void
786bawrite(struct buf * bp)
787{
788	bp->b_flags |= B_ASYNC;
789	(void) VOP_BWRITE(bp->b_vp, bp);
790}
791
792/*
793 *	bowrite:
794 *
795 *	Ordered write.  Start output on a buffer, and flag it so that the
796 *	device will write it in the order it was queued.  The buffer is
797 *	released when the output completes.  bwrite() ( or the VOP routine
798 *	anyway ) is responsible for handling B_INVAL buffers.
799 */
800int
801bowrite(struct buf * bp)
802{
803	bp->b_flags |= B_ORDERED | B_ASYNC;
804	return (VOP_BWRITE(bp->b_vp, bp));
805}
806
807/*
808 *	bwillwrite:
809 *
810 *	Called prior to the locking of any vnodes when we are expecting to
811 *	write.  We do not want to starve the buffer cache with too many
812 *	dirty buffers so we block here.  By blocking prior to the locking
813 *	of any vnodes we attempt to avoid the situation where a locked vnode
814 *	prevents the various system daemons from flushing related buffers.
815 */
816
817void
818bwillwrite(void)
819{
820	int twenty = (hidirtybuffers - lodirtybuffers) / 5;
821
822	if (numdirtybuffers > hidirtybuffers + twenty) {
823		int s;
824
825		s = splbio();
826		while (numdirtybuffers > hidirtybuffers) {
827			bd_wakeup(hidirtybuffers);
828			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
829			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
830		}
831		splx(s);
832	}
833}
834
835/*
836 *	brelse:
837 *
838 *	Release a busy buffer and, if requested, free its resources.  The
839 *	buffer will be stashed in the appropriate bufqueue[] allowing it
840 *	to be accessed later as a cache entity or reused for other purposes.
841 */
842void
843brelse(struct buf * bp)
844{
845	int s;
846
847	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
848
849#if 0
850	if (bp->b_flags & B_CLUSTER) {
851		relpbuf(bp, NULL);
852		return;
853	}
854#endif
855
856	s = splbio();
857
858	if (bp->b_flags & B_LOCKED)
859		bp->b_flags &= ~B_ERROR;
860
861	if ((bp->b_flags & (B_READ | B_ERROR)) == B_ERROR) {
862		/*
863		 * Failed write, redirty.  Must clear B_ERROR to prevent
864		 * pages from being scrapped.  Note: B_INVAL is ignored
865		 * here but will presumably be dealt with later.
866		 */
867		bp->b_flags &= ~B_ERROR;
868		bdirty(bp);
869	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
870	    (bp->b_bufsize <= 0)) {
871		/*
872		 * Either a failed I/O or we were asked to free or not
873		 * cache the buffer.
874		 */
875		bp->b_flags |= B_INVAL;
876		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
877			(*bioops.io_deallocate)(bp);
878		if (bp->b_flags & B_DELWRI) {
879			--numdirtybuffers;
880			numdirtywakeup();
881		}
882		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
883		if ((bp->b_flags & B_VMIO) == 0) {
884			if (bp->b_bufsize)
885				allocbuf(bp, 0);
886			if (bp->b_vp)
887				brelvp(bp);
888		}
889	}
890
891	/*
892	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
893	 * is called with B_DELWRI set, the underlying pages may wind up
894	 * getting freed causing a previous write (bdwrite()) to get 'lost'
895	 * because pages associated with a B_DELWRI bp are marked clean.
896	 *
897	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
898	 * if B_DELWRI is set.
899	 */
900
901	if (bp->b_flags & B_DELWRI)
902		bp->b_flags &= ~B_RELBUF;
903
904	/*
905	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
906	 * constituted, not even NFS buffers now.  Two flags effect this.  If
907	 * B_INVAL, the struct buf is invalidated but the VM object is kept
908	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
909	 *
910	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
911	 * invalidated.  B_ERROR cannot be set for a failed write unless the
912	 * buffer is also B_INVAL because it hits the re-dirtying code above.
913	 *
914	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
915	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
916	 * the commit state and we cannot afford to lose the buffer.
917	 */
918	if ((bp->b_flags & B_VMIO)
919	    && !(bp->b_vp->v_tag == VT_NFS &&
920		 bp->b_vp->v_type != VBLK &&
921		 (bp->b_flags & B_DELWRI))
922	    ) {
923
924		int i, j, resid;
925		vm_page_t m;
926		off_t foff;
927		vm_pindex_t poff;
928		vm_object_t obj;
929		struct vnode *vp;
930
931		vp = bp->b_vp;
932
933		/*
934		 * Get the base offset and length of the buffer.  Note that
935		 * for block sizes that are less then PAGE_SIZE, the b_data
936		 * base of the buffer does not represent exactly b_offset and
937		 * neither b_offset nor b_size are necessarily page aligned.
938		 * Instead, the starting position of b_offset is:
939		 *
940		 * 	b_data + (b_offset & PAGE_MASK)
941		 *
942		 * block sizes less then DEV_BSIZE (usually 512) are not
943		 * supported due to the page granularity bits (m->valid,
944		 * m->dirty, etc...).
945		 *
946		 * See man buf(9) for more information
947		 */
948
949		resid = bp->b_bufsize;
950		foff = bp->b_offset;
951
952		for (i = 0; i < bp->b_npages; i++) {
953			m = bp->b_pages[i];
954			vm_page_flag_clear(m, PG_ZERO);
955			if (m == bogus_page) {
956
957				obj = (vm_object_t) vp->v_object;
958				poff = OFF_TO_IDX(bp->b_offset);
959
960				for (j = i; j < bp->b_npages; j++) {
961					m = bp->b_pages[j];
962					if (m == bogus_page) {
963						m = vm_page_lookup(obj, poff + j);
964#if !defined(MAX_PERF)
965						if (!m) {
966							panic("brelse: page missing\n");
967						}
968#endif
969						bp->b_pages[j] = m;
970					}
971				}
972
973				if ((bp->b_flags & B_INVAL) == 0) {
974					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
975				}
976			}
977			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
978				int poffset = foff & PAGE_MASK;
979				int presid = resid > (PAGE_SIZE - poffset) ?
980					(PAGE_SIZE - poffset) : resid;
981
982				KASSERT(presid >= 0, ("brelse: extra page"));
983				vm_page_set_invalid(m, poffset, presid);
984			}
985			resid -= PAGE_SIZE - (foff & PAGE_MASK);
986			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
987		}
988
989		if (bp->b_flags & (B_INVAL | B_RELBUF))
990			vfs_vmio_release(bp);
991
992	} else if (bp->b_flags & B_VMIO) {
993
994		if (bp->b_flags & (B_INVAL | B_RELBUF))
995			vfs_vmio_release(bp);
996
997	}
998
999#if !defined(MAX_PERF)
1000	if (bp->b_qindex != QUEUE_NONE)
1001		panic("brelse: free buffer onto another queue???");
1002#endif
1003	if (BUF_REFCNT(bp) > 1) {
1004		/* Temporary panic to verify exclusive locking */
1005		/* This panic goes away when we allow shared refs */
1006		panic("brelse: multiple refs");
1007		/* do not release to free list */
1008		BUF_UNLOCK(bp);
1009		splx(s);
1010		return;
1011	}
1012
1013	/* enqueue */
1014
1015	/* buffers with no memory */
1016	if (bp->b_bufsize == 0) {
1017		bp->b_flags |= B_INVAL;
1018		if (bp->b_kvasize)
1019			bp->b_qindex = QUEUE_EMPTYKVA;
1020		else
1021			bp->b_qindex = QUEUE_EMPTY;
1022		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1023		LIST_REMOVE(bp, b_hash);
1024		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1025		bp->b_dev = NODEV;
1026		kvafreespace += bp->b_kvasize;
1027		if (bp->b_kvasize)
1028			kvaspacewakeup();
1029	/* buffers with junk contents */
1030	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1031		bp->b_flags |= B_INVAL;
1032		bp->b_qindex = QUEUE_CLEAN;
1033		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1034		LIST_REMOVE(bp, b_hash);
1035		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1036		bp->b_dev = NODEV;
1037
1038	/* buffers that are locked */
1039	} else if (bp->b_flags & B_LOCKED) {
1040		bp->b_qindex = QUEUE_LOCKED;
1041		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1042
1043	/* remaining buffers */
1044	} else {
1045		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1046		case B_DELWRI | B_AGE:
1047		    bp->b_qindex = QUEUE_DIRTY;
1048		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1049		    break;
1050		case B_DELWRI:
1051		    bp->b_qindex = QUEUE_DIRTY;
1052		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1053		    break;
1054		case B_AGE:
1055		    bp->b_qindex = QUEUE_CLEAN;
1056		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1057		    break;
1058		default:
1059		    bp->b_qindex = QUEUE_CLEAN;
1060		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1061		    break;
1062		}
1063	}
1064
1065	/*
1066	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1067	 * on the correct queue.
1068	 */
1069	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1070		bp->b_flags &= ~B_DELWRI;
1071		--numdirtybuffers;
1072		numdirtywakeup();
1073	}
1074
1075	runningbufspace -= bp->b_bufsize;
1076
1077	/*
1078	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1079	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1080	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1081	 * if B_INVAL is set ).
1082	 */
1083
1084	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1085		bufcountwakeup();
1086
1087	/*
1088	 * Something we can maybe free.
1089	 */
1090
1091	if (bp->b_bufsize)
1092		bufspacewakeup();
1093
1094	/* unlock */
1095	BUF_UNLOCK(bp);
1096	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1097	splx(s);
1098}
1099
1100/*
1101 * Release a buffer back to the appropriate queue but do not try to free
1102 * it.
1103 *
1104 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1105 * biodone() to requeue an async I/O on completion.  It is also used when
1106 * known good buffers need to be requeued but we think we may need the data
1107 * again soon.
1108 */
1109void
1110bqrelse(struct buf * bp)
1111{
1112	int s;
1113
1114	s = splbio();
1115
1116	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1117
1118#if !defined(MAX_PERF)
1119	if (bp->b_qindex != QUEUE_NONE)
1120		panic("bqrelse: free buffer onto another queue???");
1121#endif
1122	if (BUF_REFCNT(bp) > 1) {
1123		/* do not release to free list */
1124		panic("bqrelse: multiple refs");
1125		BUF_UNLOCK(bp);
1126		splx(s);
1127		return;
1128	}
1129	if (bp->b_flags & B_LOCKED) {
1130		bp->b_flags &= ~B_ERROR;
1131		bp->b_qindex = QUEUE_LOCKED;
1132		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1133		/* buffers with stale but valid contents */
1134	} else if (bp->b_flags & B_DELWRI) {
1135		bp->b_qindex = QUEUE_DIRTY;
1136		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1137	} else {
1138		bp->b_qindex = QUEUE_CLEAN;
1139		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1140	}
1141
1142	runningbufspace -= bp->b_bufsize;
1143
1144	if ((bp->b_flags & B_LOCKED) == 0 &&
1145	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1146		bufcountwakeup();
1147	}
1148
1149	/*
1150	 * Something we can maybe wakeup
1151	 */
1152	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1153		bufspacewakeup();
1154
1155	/* unlock */
1156	BUF_UNLOCK(bp);
1157	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1158	splx(s);
1159}
1160
1161static void
1162vfs_vmio_release(bp)
1163	struct buf *bp;
1164{
1165	int i, s;
1166	vm_page_t m;
1167
1168	s = splvm();
1169	for (i = 0; i < bp->b_npages; i++) {
1170		m = bp->b_pages[i];
1171		bp->b_pages[i] = NULL;
1172		/*
1173		 * In order to keep page LRU ordering consistent, put
1174		 * everything on the inactive queue.
1175		 */
1176		vm_page_unwire(m, 0);
1177		/*
1178		 * We don't mess with busy pages, it is
1179		 * the responsibility of the process that
1180		 * busied the pages to deal with them.
1181		 */
1182		if ((m->flags & PG_BUSY) || (m->busy != 0))
1183			continue;
1184
1185		if (m->wire_count == 0) {
1186			vm_page_flag_clear(m, PG_ZERO);
1187			/*
1188			 * Might as well free the page if we can and it has
1189			 * no valid data.
1190			 */
1191			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1192				vm_page_busy(m);
1193				vm_page_protect(m, VM_PROT_NONE);
1194				vm_page_free(m);
1195			}
1196		}
1197	}
1198	bufspace -= bp->b_bufsize;
1199	vmiospace -= bp->b_bufsize;
1200	runningbufspace -= bp->b_bufsize;
1201	splx(s);
1202	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1203	if (bp->b_bufsize)
1204		bufspacewakeup();
1205	bp->b_npages = 0;
1206	bp->b_bufsize = 0;
1207	bp->b_flags &= ~B_VMIO;
1208	if (bp->b_vp)
1209		brelvp(bp);
1210}
1211
1212/*
1213 * Check to see if a block is currently memory resident.
1214 */
1215struct buf *
1216gbincore(struct vnode * vp, daddr_t blkno)
1217{
1218	struct buf *bp;
1219	struct bufhashhdr *bh;
1220
1221	bh = bufhash(vp, blkno);
1222	bp = bh->lh_first;
1223
1224	/* Search hash chain */
1225	while (bp != NULL) {
1226		/* hit */
1227		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1228		    (bp->b_flags & B_INVAL) == 0) {
1229			break;
1230		}
1231		bp = bp->b_hash.le_next;
1232	}
1233	return (bp);
1234}
1235
1236/*
1237 *	vfs_bio_awrite:
1238 *
1239 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1240 *	This is much better then the old way of writing only one buffer at
1241 *	a time.  Note that we may not be presented with the buffers in the
1242 *	correct order, so we search for the cluster in both directions.
1243 */
1244int
1245vfs_bio_awrite(struct buf * bp)
1246{
1247	int i;
1248	int j;
1249	daddr_t lblkno = bp->b_lblkno;
1250	struct vnode *vp = bp->b_vp;
1251	int s;
1252	int ncl;
1253	struct buf *bpa;
1254	int nwritten;
1255	int size;
1256	int maxcl;
1257
1258	s = splbio();
1259	/*
1260	 * right now we support clustered writing only to regular files.  If
1261	 * we find a clusterable block we could be in the middle of a cluster
1262	 * rather then at the beginning.
1263	 */
1264	if ((vp->v_type == VREG) &&
1265	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1266	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1267
1268		size = vp->v_mount->mnt_stat.f_iosize;
1269		maxcl = MAXPHYS / size;
1270
1271		for (i = 1; i < maxcl; i++) {
1272			if ((bpa = gbincore(vp, lblkno + i)) &&
1273			    BUF_REFCNT(bpa) == 0 &&
1274			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1275			    (B_DELWRI | B_CLUSTEROK)) &&
1276			    (bpa->b_bufsize == size)) {
1277				if ((bpa->b_blkno == bpa->b_lblkno) ||
1278				    (bpa->b_blkno !=
1279				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1280					break;
1281			} else {
1282				break;
1283			}
1284		}
1285		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1286			if ((bpa = gbincore(vp, lblkno - j)) &&
1287			    BUF_REFCNT(bpa) == 0 &&
1288			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1289			    (B_DELWRI | B_CLUSTEROK)) &&
1290			    (bpa->b_bufsize == size)) {
1291				if ((bpa->b_blkno == bpa->b_lblkno) ||
1292				    (bpa->b_blkno !=
1293				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1294					break;
1295			} else {
1296				break;
1297			}
1298		}
1299		--j;
1300		ncl = i + j;
1301		/*
1302		 * this is a possible cluster write
1303		 */
1304		if (ncl != 1) {
1305			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1306			splx(s);
1307			return nwritten;
1308		}
1309	}
1310
1311	BUF_LOCK(bp, LK_EXCLUSIVE);
1312	bremfree(bp);
1313	bp->b_flags |= B_ASYNC;
1314
1315	splx(s);
1316	/*
1317	 * default (old) behavior, writing out only one block
1318	 *
1319	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1320	 */
1321	nwritten = bp->b_bufsize;
1322	(void) VOP_BWRITE(bp->b_vp, bp);
1323
1324	return nwritten;
1325}
1326
1327/*
1328 *	getnewbuf:
1329 *
1330 *	Find and initialize a new buffer header, freeing up existing buffers
1331 *	in the bufqueues as necessary.  The new buffer is returned locked.
1332 *
1333 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1334 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1335 *
1336 *	We block if:
1337 *		We have insufficient buffer headers
1338 *		We have insufficient buffer space
1339 *		buffer_map is too fragmented ( space reservation fails )
1340 *		If we have to flush dirty buffers ( but we try to avoid this )
1341 *
1342 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1343 *	Instead we ask the buf daemon to do it for us.  We attempt to
1344 *	avoid piecemeal wakeups of the pageout daemon.
1345 */
1346
1347static struct buf *
1348getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1349{
1350	struct buf *bp;
1351	struct buf *nbp;
1352	struct buf *dbp;
1353	int outofspace;
1354	int nqindex;
1355	int defrag = 0;
1356
1357	++getnewbufcalls;
1358	--getnewbufrestarts;
1359restart:
1360	++getnewbufrestarts;
1361
1362	/*
1363	 * Calculate whether we are out of buffer space.  This state is
1364	 * recalculated on every restart.  If we are out of space, we
1365	 * have to turn off defragmentation.  Setting defrag to -1 when
1366	 * outofspace is positive means "defrag while freeing buffers".
1367	 * The looping conditional will be muffed up if defrag is left
1368	 * positive when outofspace is positive.
1369	 */
1370
1371	dbp = NULL;
1372	outofspace = 0;
1373	if (bufspace >= hibufspace) {
1374		if ((curproc->p_flag & P_BUFEXHAUST) == 0 ||
1375		    bufspace >= maxbufspace) {
1376			outofspace = 1;
1377			if (defrag > 0)
1378				defrag = -1;
1379		}
1380	}
1381
1382	/*
1383	 * defrag state is semi-persistant.  1 means we are flagged for
1384	 * defragging.  -1 means we actually defragged something.
1385	 */
1386	/* nop */
1387
1388	/*
1389	 * Setup for scan.  If we do not have enough free buffers,
1390	 * we setup a degenerate case that immediately fails.  Note
1391	 * that if we are specially marked process, we are allowed to
1392	 * dip into our reserves.
1393	 *
1394	 * Normally we want to find an EMPTYKVA buffer.  That is, a
1395	 * buffer with kva already allocated.  If there are no EMPTYKVA
1396	 * buffers we back up to the truely EMPTY buffers.  When defragging
1397	 * we do not bother backing up since we have to locate buffers with
1398	 * kva to defrag.  If we are out of space we skip both EMPTY and
1399	 * EMPTYKVA and dig right into the CLEAN queue.
1400	 *
1401	 * In this manner we avoid scanning unnecessary buffers.  It is very
1402	 * important for us to do this because the buffer cache is almost
1403	 * constantly out of space or in need of defragmentation.
1404	 */
1405
1406	if ((curproc->p_flag & P_BUFEXHAUST) == 0 &&
1407	    numfreebuffers < lofreebuffers) {
1408		nqindex = QUEUE_CLEAN;
1409		nbp = NULL;
1410	} else {
1411		nqindex = QUEUE_EMPTYKVA;
1412		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1413		if (nbp == NULL) {
1414			if (defrag <= 0) {
1415				nqindex = QUEUE_EMPTY;
1416				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1417			}
1418		}
1419		if (outofspace || nbp == NULL) {
1420			nqindex = QUEUE_CLEAN;
1421			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1422		}
1423	}
1424
1425	/*
1426	 * Run scan, possibly freeing data and/or kva mappings on the fly
1427	 * depending.
1428	 */
1429
1430	while ((bp = nbp) != NULL) {
1431		int qindex = nqindex;
1432
1433		/*
1434		 * Calculate next bp ( we can only use it if we do not block
1435		 * or do other fancy things ).
1436		 */
1437		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1438			switch(qindex) {
1439			case QUEUE_EMPTY:
1440				nqindex = QUEUE_EMPTYKVA;
1441				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1442					break;
1443				/* fall through */
1444			case QUEUE_EMPTYKVA:
1445				nqindex = QUEUE_CLEAN;
1446				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1447					break;
1448				/* fall through */
1449			case QUEUE_CLEAN:
1450				/*
1451				 * nbp is NULL.
1452				 */
1453				break;
1454			}
1455		}
1456
1457		/*
1458		 * Sanity Checks
1459		 */
1460		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1461
1462		/*
1463		 * Note: we no longer distinguish between VMIO and non-VMIO
1464		 * buffers.
1465		 */
1466
1467		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1468
1469		/*
1470		 * If we are defragging and the buffer isn't useful for fixing
1471		 * that problem we continue.  If we are out of space and the
1472		 * buffer isn't useful for fixing that problem we continue.
1473		 */
1474
1475		if (defrag > 0 && bp->b_kvasize == 0)
1476			continue;
1477		if (outofspace > 0 && bp->b_bufsize == 0)
1478			continue;
1479
1480		/*
1481		 * Start freeing the bp.  This is somewhat involved.  nbp
1482		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1483		 */
1484
1485		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1486			panic("getnewbuf: locked buf");
1487		bremfree(bp);
1488
1489		if (qindex == QUEUE_CLEAN) {
1490			if (bp->b_flags & B_VMIO) {
1491				bp->b_flags &= ~B_ASYNC;
1492				vfs_vmio_release(bp);
1493			}
1494			if (bp->b_vp)
1495				brelvp(bp);
1496		}
1497
1498		/*
1499		 * NOTE:  nbp is now entirely invalid.  We can only restart
1500		 * the scan from this point on.
1501		 *
1502		 * Get the rest of the buffer freed up.  b_kva* is still
1503		 * valid after this operation.
1504		 */
1505
1506		if (bp->b_rcred != NOCRED) {
1507			crfree(bp->b_rcred);
1508			bp->b_rcred = NOCRED;
1509		}
1510		if (bp->b_wcred != NOCRED) {
1511			crfree(bp->b_wcred);
1512			bp->b_wcred = NOCRED;
1513		}
1514		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1515			(*bioops.io_deallocate)(bp);
1516		LIST_REMOVE(bp, b_hash);
1517		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1518
1519		if (bp->b_bufsize)
1520			allocbuf(bp, 0);
1521
1522		bp->b_flags = 0;
1523		bp->b_dev = NODEV;
1524		bp->b_vp = NULL;
1525		bp->b_blkno = bp->b_lblkno = 0;
1526		bp->b_offset = NOOFFSET;
1527		bp->b_iodone = 0;
1528		bp->b_error = 0;
1529		bp->b_resid = 0;
1530		bp->b_bcount = 0;
1531		bp->b_npages = 0;
1532		bp->b_dirtyoff = bp->b_dirtyend = 0;
1533
1534		LIST_INIT(&bp->b_dep);
1535
1536		/*
1537		 * Ok, now that we have a free buffer, if we are defragging
1538		 * we have to recover the kvaspace.  If we are out of space
1539		 * we have to free the buffer (which we just did), but we
1540		 * do not have to recover kva space unless we hit a defrag
1541		 * hicup.  Being able to avoid freeing the kva space leads
1542		 * to a significant reduction in overhead.
1543		 */
1544
1545		if (defrag > 0) {
1546			defrag = -1;
1547			bp->b_flags |= B_INVAL;
1548			bfreekva(bp);
1549			brelse(bp);
1550			goto restart;
1551		}
1552
1553		if (outofspace > 0) {
1554			outofspace = -1;
1555			bp->b_flags |= B_INVAL;
1556			if (defrag < 0)
1557				bfreekva(bp);
1558			brelse(bp);
1559			goto restart;
1560		}
1561
1562		/*
1563		 * We are done
1564		 */
1565		break;
1566	}
1567
1568	/*
1569	 * If we exhausted our list, sleep as appropriate.  We may have to
1570	 * wakeup various daemons and write out some dirty buffers.
1571	 *
1572	 * Generally we are sleeping due to insufficient buffer space.
1573	 */
1574
1575	if (bp == NULL) {
1576		int flags;
1577		char *waitmsg;
1578
1579dosleep:
1580		if (defrag > 0) {
1581			flags = VFS_BIO_NEED_KVASPACE;
1582			waitmsg = "nbufkv";
1583		} else if (outofspace > 0) {
1584			waitmsg = "nbufbs";
1585			flags = VFS_BIO_NEED_BUFSPACE;
1586		} else {
1587			waitmsg = "newbuf";
1588			flags = VFS_BIO_NEED_ANY;
1589		}
1590
1591		/* XXX */
1592
1593		(void) speedup_syncer();
1594		needsbuffer |= flags;
1595		while (needsbuffer & flags) {
1596			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1597			    waitmsg, slptimeo))
1598				return (NULL);
1599		}
1600	} else {
1601		/*
1602		 * We finally have a valid bp.  We aren't quite out of the
1603		 * woods, we still have to reserve kva space.
1604		 */
1605		vm_offset_t addr = 0;
1606
1607		maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1608
1609		if (maxsize != bp->b_kvasize) {
1610			bfreekva(bp);
1611
1612			if (vm_map_findspace(buffer_map,
1613				vm_map_min(buffer_map), maxsize, &addr)) {
1614				/*
1615				 * Uh oh.  Buffer map is to fragmented.  Try
1616				 * to defragment.
1617				 */
1618				if (defrag <= 0) {
1619					defrag = 1;
1620					bp->b_flags |= B_INVAL;
1621					brelse(bp);
1622					goto restart;
1623				}
1624				/*
1625				 * Uh oh.  We couldn't seem to defragment
1626				 */
1627				bp = NULL;
1628				goto dosleep;
1629			}
1630		}
1631		if (addr) {
1632			vm_map_insert(buffer_map, NULL, 0,
1633				addr, addr + maxsize,
1634				VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1635
1636			bp->b_kvabase = (caddr_t) addr;
1637			bp->b_kvasize = maxsize;
1638		}
1639		bp->b_data = bp->b_kvabase;
1640	}
1641	return(bp);
1642}
1643
1644/*
1645 *	waitfreebuffers:
1646 *
1647 *	Wait for sufficient free buffers.  Only called from normal processes.
1648 */
1649
1650static void
1651waitfreebuffers(int slpflag, int slptimeo)
1652{
1653	while (numfreebuffers < hifreebuffers) {
1654		if (numfreebuffers >= hifreebuffers)
1655			break;
1656		needsbuffer |= VFS_BIO_NEED_FREE;
1657		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1658			break;
1659	}
1660}
1661
1662/*
1663 *	buf_daemon:
1664 *
1665 *	buffer flushing daemon.  Buffers are normally flushed by the
1666 *	update daemon but if it cannot keep up this process starts to
1667 *	take the load in an attempt to prevent getnewbuf() from blocking.
1668 */
1669
1670static struct proc *bufdaemonproc;
1671static int bd_interval;
1672static int bd_flushto;
1673
1674static struct kproc_desc buf_kp = {
1675	"bufdaemon",
1676	buf_daemon,
1677	&bufdaemonproc
1678};
1679SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1680
1681static void
1682buf_daemon()
1683{
1684	int s;
1685	/*
1686	 * This process is allowed to take the buffer cache to the limit
1687	 */
1688	curproc->p_flag |= P_BUFEXHAUST;
1689	s = splbio();
1690
1691	bd_interval = 5 * hz;	/* dynamically adjusted */
1692	bd_flushto = hidirtybuffers;	/* dynamically adjusted */
1693
1694	while (TRUE) {
1695		bd_request = 0;
1696
1697		/*
1698		 * Do the flush.  Limit the number of buffers we flush in one
1699		 * go.  The failure condition occurs when processes are writing
1700		 * buffers faster then we can dispose of them.  In this case
1701		 * we may be flushing so often that the previous set of flushes
1702		 * have not had time to complete, causing us to run out of
1703		 * physical buffers and block.
1704		 */
1705		{
1706			int runcount = maxbdrun;
1707
1708			while (numdirtybuffers > bd_flushto && runcount) {
1709				--runcount;
1710				if (flushbufqueues() == 0)
1711					break;
1712			}
1713		}
1714
1715		/*
1716		 * If nobody is requesting anything we sleep
1717		 */
1718		if (bd_request == 0)
1719			tsleep(&bd_request, PVM, "psleep", bd_interval);
1720
1721		/*
1722		 * We calculate how much to add or subtract from bd_flushto
1723		 * and bd_interval based on how far off we are from the
1724		 * optimal number of dirty buffers, which is 20% below the
1725		 * hidirtybuffers mark.  We cannot use hidirtybuffers straight
1726		 * because being right on the mark will cause getnewbuf()
1727		 * to oscillate our wakeup.
1728		 *
1729		 * The larger the error in either direction, the more we adjust
1730		 * bd_flushto and bd_interval.  The time interval is adjusted
1731		 * by 2 seconds per whole-buffer-range of error.  This is an
1732		 * exponential convergence algorithm, with large errors
1733		 * producing large changes and small errors producing small
1734		 * changes.
1735		 */
1736
1737		{
1738			int brange = hidirtybuffers - lodirtybuffers;
1739			int middb = hidirtybuffers - brange / 5;
1740			int deltabuf = middb - numdirtybuffers;
1741
1742			bd_flushto += deltabuf / 20;
1743			bd_interval += deltabuf * (2 * hz) / (brange * 1);
1744		}
1745		if (bd_flushto < lodirtybuffers)
1746			bd_flushto = lodirtybuffers;
1747		if (bd_flushto > hidirtybuffers)
1748			bd_flushto = hidirtybuffers;
1749		if (bd_interval < hz / 10)
1750			bd_interval = hz / 10;
1751		if (bd_interval > 5 * hz)
1752			bd_interval = 5 * hz;
1753	}
1754}
1755
1756/*
1757 *	flushbufqueues:
1758 *
1759 *	Try to flush a buffer in the dirty queue.  We must be careful to
1760 *	free up B_INVAL buffers instead of write them, which NFS is
1761 *	particularly sensitive to.
1762 */
1763
1764static int
1765flushbufqueues(void)
1766{
1767	struct buf *bp;
1768	int r = 0;
1769
1770	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1771
1772	while (bp) {
1773		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1774		if ((bp->b_flags & B_DELWRI) != 0) {
1775			if (bp->b_flags & B_INVAL) {
1776				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1777					panic("flushbufqueues: locked buf");
1778				bremfree(bp);
1779				brelse(bp);
1780				++r;
1781				break;
1782			}
1783			vfs_bio_awrite(bp);
1784			++r;
1785			break;
1786		}
1787		bp = TAILQ_NEXT(bp, b_freelist);
1788	}
1789	return(r);
1790}
1791
1792/*
1793 * Check to see if a block is currently memory resident.
1794 */
1795struct buf *
1796incore(struct vnode * vp, daddr_t blkno)
1797{
1798	struct buf *bp;
1799
1800	int s = splbio();
1801	bp = gbincore(vp, blkno);
1802	splx(s);
1803	return (bp);
1804}
1805
1806/*
1807 * Returns true if no I/O is needed to access the
1808 * associated VM object.  This is like incore except
1809 * it also hunts around in the VM system for the data.
1810 */
1811
1812int
1813inmem(struct vnode * vp, daddr_t blkno)
1814{
1815	vm_object_t obj;
1816	vm_offset_t toff, tinc, size;
1817	vm_page_t m;
1818	vm_ooffset_t off;
1819
1820	if (incore(vp, blkno))
1821		return 1;
1822	if (vp->v_mount == NULL)
1823		return 0;
1824	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1825		return 0;
1826
1827	obj = vp->v_object;
1828	size = PAGE_SIZE;
1829	if (size > vp->v_mount->mnt_stat.f_iosize)
1830		size = vp->v_mount->mnt_stat.f_iosize;
1831	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1832
1833	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1834		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1835		if (!m)
1836			return 0;
1837		tinc = size;
1838		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1839			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1840		if (vm_page_is_valid(m,
1841		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1842			return 0;
1843	}
1844	return 1;
1845}
1846
1847/*
1848 *	vfs_setdirty:
1849 *
1850 *	Sets the dirty range for a buffer based on the status of the dirty
1851 *	bits in the pages comprising the buffer.
1852 *
1853 *	The range is limited to the size of the buffer.
1854 *
1855 *	This routine is primarily used by NFS, but is generalized for the
1856 *	B_VMIO case.
1857 */
1858static void
1859vfs_setdirty(struct buf *bp)
1860{
1861	int i;
1862	vm_object_t object;
1863
1864	/*
1865	 * Degenerate case - empty buffer
1866	 */
1867
1868	if (bp->b_bufsize == 0)
1869		return;
1870
1871	/*
1872	 * We qualify the scan for modified pages on whether the
1873	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1874	 * is not cleared simply by protecting pages off.
1875	 */
1876
1877	if ((bp->b_flags & B_VMIO) == 0)
1878		return;
1879
1880	object = bp->b_pages[0]->object;
1881
1882	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1883		printf("Warning: object %p writeable but not mightbedirty\n", object);
1884	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1885		printf("Warning: object %p mightbedirty but not writeable\n", object);
1886
1887	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1888		vm_offset_t boffset;
1889		vm_offset_t eoffset;
1890
1891		/*
1892		 * test the pages to see if they have been modified directly
1893		 * by users through the VM system.
1894		 */
1895		for (i = 0; i < bp->b_npages; i++) {
1896			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1897			vm_page_test_dirty(bp->b_pages[i]);
1898		}
1899
1900		/*
1901		 * Calculate the encompassing dirty range, boffset and eoffset,
1902		 * (eoffset - boffset) bytes.
1903		 */
1904
1905		for (i = 0; i < bp->b_npages; i++) {
1906			if (bp->b_pages[i]->dirty)
1907				break;
1908		}
1909		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1910
1911		for (i = bp->b_npages - 1; i >= 0; --i) {
1912			if (bp->b_pages[i]->dirty) {
1913				break;
1914			}
1915		}
1916		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1917
1918		/*
1919		 * Fit it to the buffer.
1920		 */
1921
1922		if (eoffset > bp->b_bcount)
1923			eoffset = bp->b_bcount;
1924
1925		/*
1926		 * If we have a good dirty range, merge with the existing
1927		 * dirty range.
1928		 */
1929
1930		if (boffset < eoffset) {
1931			if (bp->b_dirtyoff > boffset)
1932				bp->b_dirtyoff = boffset;
1933			if (bp->b_dirtyend < eoffset)
1934				bp->b_dirtyend = eoffset;
1935		}
1936	}
1937}
1938
1939/*
1940 *	getblk:
1941 *
1942 *	Get a block given a specified block and offset into a file/device.
1943 *	The buffers B_DONE bit will be cleared on return, making it almost
1944 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
1945 *	return.  The caller should clear B_INVAL prior to initiating a
1946 *	READ.
1947 *
1948 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
1949 *	an existing buffer.
1950 *
1951 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
1952 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
1953 *	and then cleared based on the backing VM.  If the previous buffer is
1954 *	non-0-sized but invalid, B_CACHE will be cleared.
1955 *
1956 *	If getblk() must create a new buffer, the new buffer is returned with
1957 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
1958 *	case it is returned with B_INVAL clear and B_CACHE set based on the
1959 *	backing VM.
1960 *
1961 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
1962 *	B_CACHE bit is clear.
1963 *
1964 *	What this means, basically, is that the caller should use B_CACHE to
1965 *	determine whether the buffer is fully valid or not and should clear
1966 *	B_INVAL prior to issuing a read.  If the caller intends to validate
1967 *	the buffer by loading its data area with something, the caller needs
1968 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
1969 *	the caller should set B_CACHE ( as an optimization ), else the caller
1970 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
1971 *	a write attempt or if it was a successfull read.  If the caller
1972 *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
1973 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
1974 */
1975struct buf *
1976getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1977{
1978	struct buf *bp;
1979	int s;
1980	struct bufhashhdr *bh;
1981
1982#if !defined(MAX_PERF)
1983	if (size > MAXBSIZE)
1984		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1985#endif
1986
1987	s = splbio();
1988loop:
1989	/*
1990	 * Block if we are low on buffers.   Certain processes are allowed
1991	 * to completely exhaust the buffer cache.
1992	 */
1993	if (curproc->p_flag & P_BUFEXHAUST) {
1994		if (numfreebuffers == 0) {
1995			needsbuffer |= VFS_BIO_NEED_ANY;
1996			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
1997			    slptimeo);
1998		}
1999	} else if (numfreebuffers < lofreebuffers) {
2000		waitfreebuffers(slpflag, slptimeo);
2001	}
2002
2003	if ((bp = gbincore(vp, blkno))) {
2004		/*
2005		 * Buffer is in-core.  If the buffer is not busy, it must
2006		 * be on a queue.
2007		 */
2008
2009		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2010			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2011			    "getblk", slpflag, slptimeo) == ENOLCK)
2012				goto loop;
2013			splx(s);
2014			return (struct buf *) NULL;
2015		}
2016
2017		/*
2018		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2019		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2020		 * and for a VMIO buffer B_CACHE is adjusted according to the
2021		 * backing VM cache.
2022		 */
2023		if (bp->b_flags & B_INVAL)
2024			bp->b_flags &= ~B_CACHE;
2025		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2026			bp->b_flags |= B_CACHE;
2027		bremfree(bp);
2028
2029		/*
2030		 * check for size inconsistancies for non-VMIO case.
2031		 */
2032
2033		if (bp->b_bcount != size) {
2034			if ((bp->b_flags & B_VMIO) == 0 ||
2035			    (size > bp->b_kvasize)) {
2036				if (bp->b_flags & B_DELWRI) {
2037					bp->b_flags |= B_NOCACHE;
2038					VOP_BWRITE(bp->b_vp, bp);
2039				} else {
2040					if ((bp->b_flags & B_VMIO) &&
2041					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2042						bp->b_flags |= B_RELBUF;
2043						brelse(bp);
2044					} else {
2045						bp->b_flags |= B_NOCACHE;
2046						VOP_BWRITE(bp->b_vp, bp);
2047					}
2048				}
2049				goto loop;
2050			}
2051		}
2052
2053		/*
2054		 * If the size is inconsistant in the VMIO case, we can resize
2055		 * the buffer.  This might lead to B_CACHE getting set or
2056		 * cleared.  If the size has not changed, B_CACHE remains
2057		 * unchanged from its previous state.
2058		 */
2059
2060		if (bp->b_bcount != size)
2061			allocbuf(bp, size);
2062
2063		KASSERT(bp->b_offset != NOOFFSET,
2064		    ("getblk: no buffer offset"));
2065
2066		/*
2067		 * A buffer with B_DELWRI set and B_CACHE clear must
2068		 * be committed before we can return the buffer in
2069		 * order to prevent the caller from issuing a read
2070		 * ( due to B_CACHE not being set ) and overwriting
2071		 * it.
2072		 *
2073		 * Most callers, including NFS and FFS, need this to
2074		 * operate properly either because they assume they
2075		 * can issue a read if B_CACHE is not set, or because
2076		 * ( for example ) an uncached B_DELWRI might loop due
2077		 * to softupdates re-dirtying the buffer.  In the latter
2078		 * case, B_CACHE is set after the first write completes,
2079		 * preventing further loops.
2080		 */
2081
2082		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2083			VOP_BWRITE(bp->b_vp, bp);
2084			goto loop;
2085		}
2086
2087		splx(s);
2088		bp->b_flags &= ~B_DONE;
2089	} else {
2090		/*
2091		 * Buffer is not in-core, create new buffer.  The buffer
2092		 * returned by getnewbuf() is locked.  Note that the returned
2093		 * buffer is also considered valid (not marked B_INVAL).
2094		 */
2095		int bsize, maxsize, vmio;
2096		off_t offset;
2097
2098		if (vp->v_type == VBLK)
2099			bsize = DEV_BSIZE;
2100		else if (vp->v_mountedhere)
2101			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2102		else if (vp->v_mount)
2103			bsize = vp->v_mount->mnt_stat.f_iosize;
2104		else
2105			bsize = size;
2106
2107		offset = (off_t)blkno * bsize;
2108		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
2109		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2110		maxsize = imax(maxsize, bsize);
2111
2112		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2113			if (slpflag || slptimeo) {
2114				splx(s);
2115				return NULL;
2116			}
2117			goto loop;
2118		}
2119
2120		/*
2121		 * This code is used to make sure that a buffer is not
2122		 * created while the getnewbuf routine is blocked.
2123		 * This can be a problem whether the vnode is locked or not.
2124		 * If the buffer is created out from under us, we have to
2125		 * throw away the one we just created.  There is now window
2126		 * race because we are safely running at splbio() from the
2127		 * point of the duplicate buffer creation through to here,
2128		 * and we've locked the buffer.
2129		 */
2130		if (gbincore(vp, blkno)) {
2131			bp->b_flags |= B_INVAL;
2132			brelse(bp);
2133			goto loop;
2134		}
2135
2136		/*
2137		 * Insert the buffer into the hash, so that it can
2138		 * be found by incore.
2139		 */
2140		bp->b_blkno = bp->b_lblkno = blkno;
2141		bp->b_offset = offset;
2142
2143		bgetvp(vp, bp);
2144		LIST_REMOVE(bp, b_hash);
2145		bh = bufhash(vp, blkno);
2146		LIST_INSERT_HEAD(bh, bp, b_hash);
2147
2148		/*
2149		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2150		 * buffer size starts out as 0, B_CACHE will be set by
2151		 * allocbuf() for the VMIO case prior to it testing the
2152		 * backing store for validity.
2153		 */
2154
2155		if (vmio) {
2156			bp->b_flags |= B_VMIO;
2157#if defined(VFS_BIO_DEBUG)
2158			if (vp->v_type != VREG && vp->v_type != VBLK)
2159				printf("getblk: vmioing file type %d???\n", vp->v_type);
2160#endif
2161		} else {
2162			bp->b_flags &= ~B_VMIO;
2163		}
2164
2165		allocbuf(bp, size);
2166
2167		splx(s);
2168		bp->b_flags &= ~B_DONE;
2169	}
2170	return (bp);
2171}
2172
2173/*
2174 * Get an empty, disassociated buffer of given size.  The buffer is initially
2175 * set to B_INVAL.
2176 */
2177struct buf *
2178geteblk(int size)
2179{
2180	struct buf *bp;
2181	int s;
2182
2183	s = splbio();
2184	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
2185	splx(s);
2186	allocbuf(bp, size);
2187	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2188	return (bp);
2189}
2190
2191
2192/*
2193 * This code constitutes the buffer memory from either anonymous system
2194 * memory (in the case of non-VMIO operations) or from an associated
2195 * VM object (in the case of VMIO operations).  This code is able to
2196 * resize a buffer up or down.
2197 *
2198 * Note that this code is tricky, and has many complications to resolve
2199 * deadlock or inconsistant data situations.  Tread lightly!!!
2200 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2201 * the caller.  Calling this code willy nilly can result in the loss of data.
2202 *
2203 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2204 * B_CACHE for the non-VMIO case.
2205 */
2206
2207int
2208allocbuf(struct buf *bp, int size)
2209{
2210	int newbsize, mbsize;
2211	int i;
2212
2213#if !defined(MAX_PERF)
2214	if (BUF_REFCNT(bp) == 0)
2215		panic("allocbuf: buffer not busy");
2216
2217	if (bp->b_kvasize < size)
2218		panic("allocbuf: buffer too small");
2219#endif
2220
2221	if ((bp->b_flags & B_VMIO) == 0) {
2222		caddr_t origbuf;
2223		int origbufsize;
2224		/*
2225		 * Just get anonymous memory from the kernel.  Don't
2226		 * mess with B_CACHE.
2227		 */
2228		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2229#if !defined(NO_B_MALLOC)
2230		if (bp->b_flags & B_MALLOC)
2231			newbsize = mbsize;
2232		else
2233#endif
2234			newbsize = round_page(size);
2235
2236		if (newbsize < bp->b_bufsize) {
2237#if !defined(NO_B_MALLOC)
2238			/*
2239			 * malloced buffers are not shrunk
2240			 */
2241			if (bp->b_flags & B_MALLOC) {
2242				if (newbsize) {
2243					bp->b_bcount = size;
2244				} else {
2245					free(bp->b_data, M_BIOBUF);
2246					bufspace -= bp->b_bufsize;
2247					bufmallocspace -= bp->b_bufsize;
2248					runningbufspace -= bp->b_bufsize;
2249					if (bp->b_bufsize)
2250						bufspacewakeup();
2251					bp->b_data = bp->b_kvabase;
2252					bp->b_bufsize = 0;
2253					bp->b_bcount = 0;
2254					bp->b_flags &= ~B_MALLOC;
2255				}
2256				return 1;
2257			}
2258#endif
2259			vm_hold_free_pages(
2260			    bp,
2261			    (vm_offset_t) bp->b_data + newbsize,
2262			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2263		} else if (newbsize > bp->b_bufsize) {
2264#if !defined(NO_B_MALLOC)
2265			/*
2266			 * We only use malloced memory on the first allocation.
2267			 * and revert to page-allocated memory when the buffer
2268			 * grows.
2269			 */
2270			if ( (bufmallocspace < maxbufmallocspace) &&
2271				(bp->b_bufsize == 0) &&
2272				(mbsize <= PAGE_SIZE/2)) {
2273
2274				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2275				bp->b_bufsize = mbsize;
2276				bp->b_bcount = size;
2277				bp->b_flags |= B_MALLOC;
2278				bufspace += mbsize;
2279				bufmallocspace += mbsize;
2280				runningbufspace += bp->b_bufsize;
2281				return 1;
2282			}
2283#endif
2284			origbuf = NULL;
2285			origbufsize = 0;
2286#if !defined(NO_B_MALLOC)
2287			/*
2288			 * If the buffer is growing on its other-than-first allocation,
2289			 * then we revert to the page-allocation scheme.
2290			 */
2291			if (bp->b_flags & B_MALLOC) {
2292				origbuf = bp->b_data;
2293				origbufsize = bp->b_bufsize;
2294				bp->b_data = bp->b_kvabase;
2295				bufspace -= bp->b_bufsize;
2296				bufmallocspace -= bp->b_bufsize;
2297				runningbufspace -= bp->b_bufsize;
2298				if (bp->b_bufsize)
2299					bufspacewakeup();
2300				bp->b_bufsize = 0;
2301				bp->b_flags &= ~B_MALLOC;
2302				newbsize = round_page(newbsize);
2303			}
2304#endif
2305			vm_hold_load_pages(
2306			    bp,
2307			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2308			    (vm_offset_t) bp->b_data + newbsize);
2309#if !defined(NO_B_MALLOC)
2310			if (origbuf) {
2311				bcopy(origbuf, bp->b_data, origbufsize);
2312				free(origbuf, M_BIOBUF);
2313			}
2314#endif
2315		}
2316	} else {
2317		vm_page_t m;
2318		int desiredpages;
2319
2320		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2321		desiredpages = (size == 0) ? 0 :
2322			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2323
2324#if !defined(NO_B_MALLOC)
2325		if (bp->b_flags & B_MALLOC)
2326			panic("allocbuf: VMIO buffer can't be malloced");
2327#endif
2328		/*
2329		 * Set B_CACHE initially if buffer is 0 length or will become
2330		 * 0-length.
2331		 */
2332		if (size == 0 || bp->b_bufsize == 0)
2333			bp->b_flags |= B_CACHE;
2334
2335		if (newbsize < bp->b_bufsize) {
2336			/*
2337			 * DEV_BSIZE aligned new buffer size is less then the
2338			 * DEV_BSIZE aligned existing buffer size.  Figure out
2339			 * if we have to remove any pages.
2340			 */
2341			if (desiredpages < bp->b_npages) {
2342				for (i = desiredpages; i < bp->b_npages; i++) {
2343					/*
2344					 * the page is not freed here -- it
2345					 * is the responsibility of
2346					 * vnode_pager_setsize
2347					 */
2348					m = bp->b_pages[i];
2349					KASSERT(m != bogus_page,
2350					    ("allocbuf: bogus page found"));
2351					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2352						;
2353
2354					bp->b_pages[i] = NULL;
2355					vm_page_unwire(m, 0);
2356				}
2357				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2358				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2359				bp->b_npages = desiredpages;
2360			}
2361		} else if (size > bp->b_bcount) {
2362			/*
2363			 * We are growing the buffer, possibly in a
2364			 * byte-granular fashion.
2365			 */
2366			struct vnode *vp;
2367			vm_object_t obj;
2368			vm_offset_t toff;
2369			vm_offset_t tinc;
2370
2371			/*
2372			 * Step 1, bring in the VM pages from the object,
2373			 * allocating them if necessary.  We must clear
2374			 * B_CACHE if these pages are not valid for the
2375			 * range covered by the buffer.
2376			 */
2377
2378			vp = bp->b_vp;
2379			obj = vp->v_object;
2380
2381			while (bp->b_npages < desiredpages) {
2382				vm_page_t m;
2383				vm_pindex_t pi;
2384
2385				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2386				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2387					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
2388					if (m == NULL) {
2389						VM_WAIT;
2390						vm_pageout_deficit += desiredpages - bp->b_npages;
2391					} else {
2392						vm_page_wire(m);
2393						vm_page_wakeup(m);
2394						bp->b_flags &= ~B_CACHE;
2395						bp->b_pages[bp->b_npages] = m;
2396						++bp->b_npages;
2397					}
2398					continue;
2399				}
2400
2401				/*
2402				 * We found a page.  If we have to sleep on it,
2403				 * retry because it might have gotten freed out
2404				 * from under us.
2405				 *
2406				 * We can only test PG_BUSY here.  Blocking on
2407				 * m->busy might lead to a deadlock:
2408				 *
2409				 *  vm_fault->getpages->cluster_read->allocbuf
2410				 *
2411				 */
2412
2413				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2414					continue;
2415
2416				/*
2417				 * We have a good page.  Should we wakeup the
2418				 * page daemon?
2419				 */
2420				if ((curproc != pageproc) &&
2421				    ((m->queue - m->pc) == PQ_CACHE) &&
2422				    ((cnt.v_free_count + cnt.v_cache_count) <
2423					(cnt.v_free_min + cnt.v_cache_min))) {
2424					pagedaemon_wakeup();
2425				}
2426				vm_page_flag_clear(m, PG_ZERO);
2427				vm_page_wire(m);
2428				bp->b_pages[bp->b_npages] = m;
2429				++bp->b_npages;
2430			}
2431
2432			/*
2433			 * Step 2.  We've loaded the pages into the buffer,
2434			 * we have to figure out if we can still have B_CACHE
2435			 * set.  Note that B_CACHE is set according to the
2436			 * byte-granular range ( bcount and size ), new the
2437			 * aligned range ( newbsize ).
2438			 *
2439			 * The VM test is against m->valid, which is DEV_BSIZE
2440			 * aligned.  Needless to say, the validity of the data
2441			 * needs to also be DEV_BSIZE aligned.  Note that this
2442			 * fails with NFS if the server or some other client
2443			 * extends the file's EOF.  If our buffer is resized,
2444			 * B_CACHE may remain set! XXX
2445			 */
2446
2447			toff = bp->b_bcount;
2448			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2449
2450			while ((bp->b_flags & B_CACHE) && toff < size) {
2451				vm_pindex_t pi;
2452
2453				if (tinc > (size - toff))
2454					tinc = size - toff;
2455
2456				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2457				    PAGE_SHIFT;
2458
2459				vfs_buf_test_cache(
2460				    bp,
2461				    bp->b_offset,
2462				    toff,
2463				    tinc,
2464				    bp->b_pages[pi]
2465				);
2466				toff += tinc;
2467				tinc = PAGE_SIZE;
2468			}
2469
2470			/*
2471			 * Step 3, fixup the KVM pmap.  Remember that
2472			 * bp->b_data is relative to bp->b_offset, but
2473			 * bp->b_offset may be offset into the first page.
2474			 */
2475
2476			bp->b_data = (caddr_t)
2477			    trunc_page((vm_offset_t)bp->b_data);
2478			pmap_qenter(
2479			    (vm_offset_t)bp->b_data,
2480			    bp->b_pages,
2481			    bp->b_npages
2482			);
2483			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2484			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2485		}
2486	}
2487	if (bp->b_flags & B_VMIO)
2488		vmiospace += (newbsize - bp->b_bufsize);
2489	bufspace += (newbsize - bp->b_bufsize);
2490	runningbufspace += (newbsize - bp->b_bufsize);
2491	if (newbsize < bp->b_bufsize)
2492		bufspacewakeup();
2493	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2494	bp->b_bcount = size;		/* requested buffer size	*/
2495	return 1;
2496}
2497
2498/*
2499 *	biowait:
2500 *
2501 *	Wait for buffer I/O completion, returning error status.  The buffer
2502 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2503 *	error and cleared.
2504 */
2505int
2506biowait(register struct buf * bp)
2507{
2508	int s;
2509
2510	s = splbio();
2511	while ((bp->b_flags & B_DONE) == 0) {
2512#if defined(NO_SCHEDULE_MODS)
2513		tsleep(bp, PRIBIO, "biowait", 0);
2514#else
2515		if (bp->b_flags & B_READ)
2516			tsleep(bp, PRIBIO, "biord", 0);
2517		else
2518			tsleep(bp, PRIBIO, "biowr", 0);
2519#endif
2520	}
2521	splx(s);
2522	if (bp->b_flags & B_EINTR) {
2523		bp->b_flags &= ~B_EINTR;
2524		return (EINTR);
2525	}
2526	if (bp->b_flags & B_ERROR) {
2527		return (bp->b_error ? bp->b_error : EIO);
2528	} else {
2529		return (0);
2530	}
2531}
2532
2533/*
2534 *	biodone:
2535 *
2536 *	Finish I/O on a buffer, optionally calling a completion function.
2537 *	This is usually called from an interrupt so process blocking is
2538 *	not allowed.
2539 *
2540 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2541 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2542 *	assuming B_INVAL is clear.
2543 *
2544 *	For the VMIO case, we set B_CACHE if the op was a read and no
2545 *	read error occured, or if the op was a write.  B_CACHE is never
2546 *	set if the buffer is invalid or otherwise uncacheable.
2547 *
2548 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2549 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2550 *	in the biodone routine.
2551 */
2552void
2553biodone(register struct buf * bp)
2554{
2555	int s;
2556
2557	s = splbio();
2558
2559	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2560	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2561
2562	bp->b_flags |= B_DONE;
2563
2564	if (bp->b_flags & B_FREEBUF) {
2565		brelse(bp);
2566		splx(s);
2567		return;
2568	}
2569
2570	if ((bp->b_flags & B_READ) == 0) {
2571		vwakeup(bp);
2572	}
2573
2574	/* call optional completion function if requested */
2575	if (bp->b_flags & B_CALL) {
2576		bp->b_flags &= ~B_CALL;
2577		(*bp->b_iodone) (bp);
2578		splx(s);
2579		return;
2580	}
2581	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2582		(*bioops.io_complete)(bp);
2583
2584	if (bp->b_flags & B_VMIO) {
2585		int i, resid;
2586		vm_ooffset_t foff;
2587		vm_page_t m;
2588		vm_object_t obj;
2589		int iosize;
2590		struct vnode *vp = bp->b_vp;
2591
2592		obj = vp->v_object;
2593
2594#if defined(VFS_BIO_DEBUG)
2595		if (vp->v_usecount == 0) {
2596			panic("biodone: zero vnode ref count");
2597		}
2598
2599		if (vp->v_object == NULL) {
2600			panic("biodone: missing VM object");
2601		}
2602
2603		if ((vp->v_flag & VOBJBUF) == 0) {
2604			panic("biodone: vnode is not setup for merged cache");
2605		}
2606#endif
2607
2608		foff = bp->b_offset;
2609		KASSERT(bp->b_offset != NOOFFSET,
2610		    ("biodone: no buffer offset"));
2611
2612#if !defined(MAX_PERF)
2613		if (!obj) {
2614			panic("biodone: no object");
2615		}
2616#endif
2617#if defined(VFS_BIO_DEBUG)
2618		if (obj->paging_in_progress < bp->b_npages) {
2619			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2620			    obj->paging_in_progress, bp->b_npages);
2621		}
2622#endif
2623
2624		/*
2625		 * Set B_CACHE if the op was a normal read and no error
2626		 * occured.  B_CACHE is set for writes in the b*write()
2627		 * routines.
2628		 */
2629		iosize = bp->b_bcount;
2630		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2631			bp->b_flags |= B_CACHE;
2632		}
2633
2634		for (i = 0; i < bp->b_npages; i++) {
2635			int bogusflag = 0;
2636			m = bp->b_pages[i];
2637			if (m == bogus_page) {
2638				bogusflag = 1;
2639				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2640				if (!m) {
2641#if defined(VFS_BIO_DEBUG)
2642					printf("biodone: page disappeared\n");
2643#endif
2644					vm_object_pip_subtract(obj, 1);
2645					bp->b_flags &= ~B_CACHE;
2646					continue;
2647				}
2648				bp->b_pages[i] = m;
2649				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2650			}
2651#if defined(VFS_BIO_DEBUG)
2652			if (OFF_TO_IDX(foff) != m->pindex) {
2653				printf(
2654"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2655				    (unsigned long)foff, m->pindex);
2656			}
2657#endif
2658			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2659			if (resid > iosize)
2660				resid = iosize;
2661
2662			/*
2663			 * In the write case, the valid and clean bits are
2664			 * already changed correctly ( see bdwrite() ), so we
2665			 * only need to do this here in the read case.
2666			 */
2667			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2668				vfs_page_set_valid(bp, foff, i, m);
2669			}
2670			vm_page_flag_clear(m, PG_ZERO);
2671
2672			/*
2673			 * when debugging new filesystems or buffer I/O methods, this
2674			 * is the most common error that pops up.  if you see this, you
2675			 * have not set the page busy flag correctly!!!
2676			 */
2677			if (m->busy == 0) {
2678#if !defined(MAX_PERF)
2679				printf("biodone: page busy < 0, "
2680				    "pindex: %d, foff: 0x(%x,%x), "
2681				    "resid: %d, index: %d\n",
2682				    (int) m->pindex, (int)(foff >> 32),
2683						(int) foff & 0xffffffff, resid, i);
2684#endif
2685				if (vp->v_type != VBLK)
2686#if !defined(MAX_PERF)
2687					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2688					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2689					    (int) bp->b_lblkno,
2690					    bp->b_flags, bp->b_npages);
2691				else
2692					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2693					    (int) bp->b_lblkno,
2694					    bp->b_flags, bp->b_npages);
2695				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2696				    m->valid, m->dirty, m->wire_count);
2697#endif
2698				panic("biodone: page busy < 0\n");
2699			}
2700			vm_page_io_finish(m);
2701			vm_object_pip_subtract(obj, 1);
2702			foff += resid;
2703			iosize -= resid;
2704		}
2705		if (obj)
2706			vm_object_pip_wakeupn(obj, 0);
2707	}
2708	/*
2709	 * For asynchronous completions, release the buffer now. The brelse
2710	 * will do a wakeup there if necessary - so no need to do a wakeup
2711	 * here in the async case. The sync case always needs to do a wakeup.
2712	 */
2713
2714	if (bp->b_flags & B_ASYNC) {
2715		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2716			brelse(bp);
2717		else
2718			bqrelse(bp);
2719	} else {
2720		wakeup(bp);
2721	}
2722	splx(s);
2723}
2724
2725/*
2726 * This routine is called in lieu of iodone in the case of
2727 * incomplete I/O.  This keeps the busy status for pages
2728 * consistant.
2729 */
2730void
2731vfs_unbusy_pages(struct buf * bp)
2732{
2733	int i;
2734
2735	if (bp->b_flags & B_VMIO) {
2736		struct vnode *vp = bp->b_vp;
2737		vm_object_t obj = vp->v_object;
2738
2739		for (i = 0; i < bp->b_npages; i++) {
2740			vm_page_t m = bp->b_pages[i];
2741
2742			if (m == bogus_page) {
2743				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2744#if !defined(MAX_PERF)
2745				if (!m) {
2746					panic("vfs_unbusy_pages: page missing\n");
2747				}
2748#endif
2749				bp->b_pages[i] = m;
2750				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2751			}
2752			vm_object_pip_subtract(obj, 1);
2753			vm_page_flag_clear(m, PG_ZERO);
2754			vm_page_io_finish(m);
2755		}
2756		vm_object_pip_wakeupn(obj, 0);
2757	}
2758}
2759
2760/*
2761 * vfs_page_set_valid:
2762 *
2763 *	Set the valid bits in a page based on the supplied offset.   The
2764 *	range is restricted to the buffer's size.
2765 *
2766 *	This routine is typically called after a read completes.
2767 */
2768static void
2769vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2770{
2771	vm_ooffset_t soff, eoff;
2772
2773	/*
2774	 * Start and end offsets in buffer.  eoff - soff may not cross a
2775	 * page boundry or cross the end of the buffer.  The end of the
2776	 * buffer, in this case, is our file EOF, not the allocation size
2777	 * of the buffer.
2778	 */
2779	soff = off;
2780	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2781	if (eoff > bp->b_offset + bp->b_bcount)
2782		eoff = bp->b_offset + bp->b_bcount;
2783
2784	/*
2785	 * Set valid range.  This is typically the entire buffer and thus the
2786	 * entire page.
2787	 */
2788	if (eoff > soff) {
2789		vm_page_set_validclean(
2790		    m,
2791		   (vm_offset_t) (soff & PAGE_MASK),
2792		   (vm_offset_t) (eoff - soff)
2793		);
2794	}
2795}
2796
2797/*
2798 * This routine is called before a device strategy routine.
2799 * It is used to tell the VM system that paging I/O is in
2800 * progress, and treat the pages associated with the buffer
2801 * almost as being PG_BUSY.  Also the object paging_in_progress
2802 * flag is handled to make sure that the object doesn't become
2803 * inconsistant.
2804 *
2805 * Since I/O has not been initiated yet, certain buffer flags
2806 * such as B_ERROR or B_INVAL may be in an inconsistant state
2807 * and should be ignored.
2808 */
2809void
2810vfs_busy_pages(struct buf * bp, int clear_modify)
2811{
2812	int i, bogus;
2813
2814	if (bp->b_flags & B_VMIO) {
2815		struct vnode *vp = bp->b_vp;
2816		vm_object_t obj = vp->v_object;
2817		vm_ooffset_t foff;
2818
2819		foff = bp->b_offset;
2820		KASSERT(bp->b_offset != NOOFFSET,
2821		    ("vfs_busy_pages: no buffer offset"));
2822		vfs_setdirty(bp);
2823
2824retry:
2825		for (i = 0; i < bp->b_npages; i++) {
2826			vm_page_t m = bp->b_pages[i];
2827			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2828				goto retry;
2829		}
2830
2831		bogus = 0;
2832		for (i = 0; i < bp->b_npages; i++) {
2833			vm_page_t m = bp->b_pages[i];
2834
2835			vm_page_flag_clear(m, PG_ZERO);
2836			if ((bp->b_flags & B_CLUSTER) == 0) {
2837				vm_object_pip_add(obj, 1);
2838				vm_page_io_start(m);
2839			}
2840
2841			/*
2842			 * When readying a buffer for a read ( i.e
2843			 * clear_modify == 0 ), it is important to do
2844			 * bogus_page replacement for valid pages in
2845			 * partially instantiated buffers.  Partially
2846			 * instantiated buffers can, in turn, occur when
2847			 * reconstituting a buffer from its VM backing store
2848			 * base.  We only have to do this if B_CACHE is
2849			 * clear ( which causes the I/O to occur in the
2850			 * first place ).  The replacement prevents the read
2851			 * I/O from overwriting potentially dirty VM-backed
2852			 * pages.  XXX bogus page replacement is, uh, bogus.
2853			 * It may not work properly with small-block devices.
2854			 * We need to find a better way.
2855			 */
2856
2857			vm_page_protect(m, VM_PROT_NONE);
2858			if (clear_modify)
2859				vfs_page_set_valid(bp, foff, i, m);
2860			else if (m->valid == VM_PAGE_BITS_ALL &&
2861				(bp->b_flags & B_CACHE) == 0) {
2862				bp->b_pages[i] = bogus_page;
2863				bogus++;
2864			}
2865			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2866		}
2867		if (bogus)
2868			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2869	}
2870}
2871
2872/*
2873 * Tell the VM system that the pages associated with this buffer
2874 * are clean.  This is used for delayed writes where the data is
2875 * going to go to disk eventually without additional VM intevention.
2876 *
2877 * Note that while we only really need to clean through to b_bcount, we
2878 * just go ahead and clean through to b_bufsize.
2879 */
2880static void
2881vfs_clean_pages(struct buf * bp)
2882{
2883	int i;
2884
2885	if (bp->b_flags & B_VMIO) {
2886		vm_ooffset_t foff;
2887
2888		foff = bp->b_offset;
2889		KASSERT(bp->b_offset != NOOFFSET,
2890		    ("vfs_clean_pages: no buffer offset"));
2891		for (i = 0; i < bp->b_npages; i++) {
2892			vm_page_t m = bp->b_pages[i];
2893			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2894			vm_ooffset_t eoff = noff;
2895
2896			if (eoff > bp->b_offset + bp->b_bufsize)
2897				eoff = bp->b_offset + bp->b_bufsize;
2898			vfs_page_set_valid(bp, foff, i, m);
2899			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2900			foff = noff;
2901		}
2902	}
2903}
2904
2905/*
2906 *	vfs_bio_set_validclean:
2907 *
2908 *	Set the range within the buffer to valid and clean.  The range is
2909 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
2910 *	itself may be offset from the beginning of the first page.
2911 */
2912
2913void
2914vfs_bio_set_validclean(struct buf *bp, int base, int size)
2915{
2916	if (bp->b_flags & B_VMIO) {
2917		int i;
2918		int n;
2919
2920		/*
2921		 * Fixup base to be relative to beginning of first page.
2922		 * Set initial n to be the maximum number of bytes in the
2923		 * first page that can be validated.
2924		 */
2925
2926		base += (bp->b_offset & PAGE_MASK);
2927		n = PAGE_SIZE - (base & PAGE_MASK);
2928
2929		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
2930			vm_page_t m = bp->b_pages[i];
2931
2932			if (n > size)
2933				n = size;
2934
2935			vm_page_set_validclean(m, base & PAGE_MASK, n);
2936			base += n;
2937			size -= n;
2938			n = PAGE_SIZE;
2939		}
2940	}
2941}
2942
2943/*
2944 *	vfs_bio_clrbuf:
2945 *
2946 *	clear a buffer.  This routine essentially fakes an I/O, so we need
2947 *	to clear B_ERROR and B_INVAL.
2948 *
2949 *	Note that while we only theoretically need to clear through b_bcount,
2950 *	we go ahead and clear through b_bufsize.
2951 */
2952
2953void
2954vfs_bio_clrbuf(struct buf *bp) {
2955	int i, mask = 0;
2956	caddr_t sa, ea;
2957	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2958		bp->b_flags &= ~(B_INVAL|B_ERROR);
2959		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2960		    (bp->b_offset & PAGE_MASK) == 0) {
2961			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2962			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2963			    ((bp->b_pages[0]->valid & mask) != mask)) {
2964				bzero(bp->b_data, bp->b_bufsize);
2965			}
2966			bp->b_pages[0]->valid |= mask;
2967			bp->b_resid = 0;
2968			return;
2969		}
2970		ea = sa = bp->b_data;
2971		for(i=0;i<bp->b_npages;i++,sa=ea) {
2972			int j = ((u_long)sa & PAGE_MASK) / DEV_BSIZE;
2973			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2974			ea = (caddr_t)ulmin((u_long)ea,
2975				(u_long)bp->b_data + bp->b_bufsize);
2976			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2977			if ((bp->b_pages[i]->valid & mask) == mask)
2978				continue;
2979			if ((bp->b_pages[i]->valid & mask) == 0) {
2980				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2981					bzero(sa, ea - sa);
2982				}
2983			} else {
2984				for (; sa < ea; sa += DEV_BSIZE, j++) {
2985					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2986						(bp->b_pages[i]->valid & (1<<j)) == 0)
2987						bzero(sa, DEV_BSIZE);
2988				}
2989			}
2990			bp->b_pages[i]->valid |= mask;
2991			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2992		}
2993		bp->b_resid = 0;
2994	} else {
2995		clrbuf(bp);
2996	}
2997}
2998
2999/*
3000 * vm_hold_load_pages and vm_hold_unload pages get pages into
3001 * a buffers address space.  The pages are anonymous and are
3002 * not associated with a file object.
3003 */
3004void
3005vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3006{
3007	vm_offset_t pg;
3008	vm_page_t p;
3009	int index;
3010
3011	to = round_page(to);
3012	from = round_page(from);
3013	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3014
3015	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3016
3017tryagain:
3018
3019		p = vm_page_alloc(kernel_object,
3020			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3021		    VM_ALLOC_NORMAL);
3022		if (!p) {
3023			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3024			VM_WAIT;
3025			goto tryagain;
3026		}
3027		vm_page_wire(p);
3028		p->valid = VM_PAGE_BITS_ALL;
3029		vm_page_flag_clear(p, PG_ZERO);
3030		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3031		bp->b_pages[index] = p;
3032		vm_page_wakeup(p);
3033	}
3034	bp->b_npages = index;
3035}
3036
3037void
3038vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3039{
3040	vm_offset_t pg;
3041	vm_page_t p;
3042	int index, newnpages;
3043
3044	from = round_page(from);
3045	to = round_page(to);
3046	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3047
3048	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3049		p = bp->b_pages[index];
3050		if (p && (index < bp->b_npages)) {
3051#if !defined(MAX_PERF)
3052			if (p->busy) {
3053				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3054					bp->b_blkno, bp->b_lblkno);
3055			}
3056#endif
3057			bp->b_pages[index] = NULL;
3058			pmap_kremove(pg);
3059			vm_page_busy(p);
3060			vm_page_unwire(p, 0);
3061			vm_page_free(p);
3062		}
3063	}
3064	bp->b_npages = newnpages;
3065}
3066
3067
3068#include "opt_ddb.h"
3069#ifdef DDB
3070#include <ddb/ddb.h>
3071
3072DB_SHOW_COMMAND(buffer, db_show_buffer)
3073{
3074	/* get args */
3075	struct buf *bp = (struct buf *)addr;
3076
3077	if (!have_addr) {
3078		db_printf("usage: show buffer <addr>\n");
3079		return;
3080	}
3081
3082	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3083	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3084		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3085		  "b_blkno = %d, b_pblkno = %d\n",
3086		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3087		  major(bp->b_dev), minor(bp->b_dev),
3088		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3089	if (bp->b_npages) {
3090		int i;
3091		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3092		for (i = 0; i < bp->b_npages; i++) {
3093			vm_page_t m;
3094			m = bp->b_pages[i];
3095			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3096			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3097			if ((i + 1) < bp->b_npages)
3098				db_printf(",");
3099		}
3100		db_printf("\n");
3101	}
3102}
3103#endif /* DDB */
3104