vfs_bio.c revision 35256
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $Id: vfs_bio.c,v 1.161 1998/04/15 17:46:30 bde Exp $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 */
27
28#include "opt_bounce.h"
29
30#define VMIO
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/sysproto.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/proc.h>
37#include <sys/vnode.h>
38#include <sys/vmmeter.h>
39#include <sys/lock.h>
40#include <miscfs/specfs/specdev.h>
41#include <vm/vm.h>
42#include <vm/vm_param.h>
43#include <vm/vm_prot.h>
44#include <vm/vm_kern.h>
45#include <vm/vm_pageout.h>
46#include <vm/vm_page.h>
47#include <vm/vm_object.h>
48#include <vm/vm_extern.h>
49#include <vm/vm_map.h>
50#include <sys/buf.h>
51#include <sys/mount.h>
52#include <sys/malloc.h>
53#include <sys/resourcevar.h>
54
55static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
56
57struct	bio_ops bioops;		/* I/O operation notification */
58
59#if 0 	/* replaced bu sched_sync */
60static void vfs_update __P((void));
61static struct	proc *updateproc;
62static struct kproc_desc up_kp = {
63	"update",
64	vfs_update,
65	&updateproc
66};
67SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
68#endif
69
70struct buf *buf;		/* buffer header pool */
71struct swqueue bswlist;
72
73static int count_lock_queue __P((void));
74static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
75		vm_offset_t to);
76static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
77		vm_offset_t to);
78static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
79			      vm_offset_t off, vm_offset_t size,
80			      vm_page_t m);
81static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
82			       int pageno, vm_page_t m);
83static void vfs_clean_pages(struct buf * bp);
84static void vfs_setdirty(struct buf *bp);
85static void vfs_vmio_release(struct buf *bp);
86static void flushdirtybuffers(int slpflag, int slptimeo);
87
88int needsbuffer;
89
90/*
91 * Internal update daemon, process 3
92 *	The variable vfs_update_wakeup allows for internal syncs.
93 */
94int vfs_update_wakeup;
95
96
97/*
98 * buffers base kva
99 */
100
101/*
102 * bogus page -- for I/O to/from partially complete buffers
103 * this is a temporary solution to the problem, but it is not
104 * really that bad.  it would be better to split the buffer
105 * for input in the case of buffers partially already in memory,
106 * but the code is intricate enough already.
107 */
108vm_page_t bogus_page;
109static vm_offset_t bogus_offset;
110
111static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
112	bufmallocspace, maxbufmallocspace;
113int numdirtybuffers;
114static int lodirtybuffers, hidirtybuffers;
115static int numfreebuffers, lofreebuffers, hifreebuffers;
116static int kvafreespace;
117
118SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
119	&numdirtybuffers, 0, "");
120SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
121	&lodirtybuffers, 0, "");
122SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
123	&hidirtybuffers, 0, "");
124SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
125	&numfreebuffers, 0, "");
126SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
127	&lofreebuffers, 0, "");
128SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
129	&hifreebuffers, 0, "");
130SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
131	&maxbufspace, 0, "");
132SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
133	&bufspace, 0, "");
134SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
135	&maxvmiobufspace, 0, "");
136SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
137	&vmiospace, 0, "");
138SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
139	&maxbufmallocspace, 0, "");
140SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
141	&bufmallocspace, 0, "");
142SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
143	&kvafreespace, 0, "");
144
145static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
146struct bqueues bufqueues[BUFFER_QUEUES] = {0};
147
148extern int vm_swap_size;
149
150#define BUF_MAXUSE 24
151
152#define VFS_BIO_NEED_ANY 1
153#define VFS_BIO_NEED_LOWLIMIT 2
154#define VFS_BIO_NEED_FREE 4
155
156/*
157 * Initialize buffer headers and related structures.
158 */
159void
160bufinit()
161{
162	struct buf *bp;
163	int i;
164
165	TAILQ_INIT(&bswlist);
166	LIST_INIT(&invalhash);
167
168	/* first, make a null hash table */
169	for (i = 0; i < BUFHSZ; i++)
170		LIST_INIT(&bufhashtbl[i]);
171
172	/* next, make a null set of free lists */
173	for (i = 0; i < BUFFER_QUEUES; i++)
174		TAILQ_INIT(&bufqueues[i]);
175
176	/* finally, initialize each buffer header and stick on empty q */
177	for (i = 0; i < nbuf; i++) {
178		bp = &buf[i];
179		bzero(bp, sizeof *bp);
180		bp->b_flags = B_INVAL;	/* we're just an empty header */
181		bp->b_dev = NODEV;
182		bp->b_rcred = NOCRED;
183		bp->b_wcred = NOCRED;
184		bp->b_qindex = QUEUE_EMPTY;
185		bp->b_vnbufs.le_next = NOLIST;
186		LIST_INIT(&bp->b_dep);
187		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
188		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
189	}
190/*
191 * maxbufspace is currently calculated to support all filesystem blocks
192 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
193 * cache is still the same as it would be for 8K filesystems.  This
194 * keeps the size of the buffer cache "in check" for big block filesystems.
195 */
196	maxbufspace = (nbuf + 8) * DFLTBSIZE;
197/*
198 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
199 */
200	maxvmiobufspace = 2 * maxbufspace / 3;
201/*
202 * Limit the amount of malloc memory since it is wired permanently into
203 * the kernel space.  Even though this is accounted for in the buffer
204 * allocation, we don't want the malloced region to grow uncontrolled.
205 * The malloc scheme improves memory utilization significantly on average
206 * (small) directories.
207 */
208	maxbufmallocspace = maxbufspace / 20;
209
210/*
211 * Remove the probability of deadlock conditions by limiting the
212 * number of dirty buffers.
213 */
214	hidirtybuffers = nbuf / 8 + 20;
215	lodirtybuffers = nbuf / 16 + 10;
216	numdirtybuffers = 0;
217	lofreebuffers = nbuf / 18 + 5;
218	hifreebuffers = 2 * lofreebuffers;
219	numfreebuffers = nbuf;
220	kvafreespace = 0;
221
222	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
223	bogus_page = vm_page_alloc(kernel_object,
224			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
225			VM_ALLOC_NORMAL);
226
227}
228
229/*
230 * Free the kva allocation for a buffer
231 * Must be called only at splbio or higher,
232 *  as this is the only locking for buffer_map.
233 */
234static void
235bfreekva(struct buf * bp)
236{
237	if (bp->b_kvasize == 0)
238		return;
239
240	vm_map_delete(buffer_map,
241		(vm_offset_t) bp->b_kvabase,
242		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
243
244	bp->b_kvasize = 0;
245
246}
247
248/*
249 * remove the buffer from the appropriate free list
250 */
251void
252bremfree(struct buf * bp)
253{
254	int s = splbio();
255
256	if (bp->b_qindex != QUEUE_NONE) {
257		if (bp->b_qindex == QUEUE_EMPTY) {
258			kvafreespace -= bp->b_kvasize;
259		}
260		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
261		bp->b_qindex = QUEUE_NONE;
262	} else {
263#if !defined(MAX_PERF)
264		panic("bremfree: removing a buffer when not on a queue");
265#endif
266	}
267	if ((bp->b_flags & B_INVAL) ||
268		(bp->b_flags & (B_DELWRI|B_LOCKED)) == 0)
269		--numfreebuffers;
270	splx(s);
271}
272
273
274/*
275 * Get a buffer with the specified data.  Look in the cache first.
276 */
277int
278bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
279    struct buf ** bpp)
280{
281	struct buf *bp;
282
283	bp = getblk(vp, blkno, size, 0, 0);
284	*bpp = bp;
285
286	/* if not found in cache, do some I/O */
287	if ((bp->b_flags & B_CACHE) == 0) {
288		if (curproc != NULL)
289			curproc->p_stats->p_ru.ru_inblock++;
290		bp->b_flags |= B_READ;
291		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
292		if (bp->b_rcred == NOCRED) {
293			if (cred != NOCRED)
294				crhold(cred);
295			bp->b_rcred = cred;
296		}
297		vfs_busy_pages(bp, 0);
298		VOP_STRATEGY(bp);
299		return (biowait(bp));
300	}
301	return (0);
302}
303
304/*
305 * Operates like bread, but also starts asynchronous I/O on
306 * read-ahead blocks.
307 */
308int
309breadn(struct vnode * vp, daddr_t blkno, int size,
310    daddr_t * rablkno, int *rabsize,
311    int cnt, struct ucred * cred, struct buf ** bpp)
312{
313	struct buf *bp, *rabp;
314	int i;
315	int rv = 0, readwait = 0;
316
317	*bpp = bp = getblk(vp, blkno, size, 0, 0);
318
319	/* if not found in cache, do some I/O */
320	if ((bp->b_flags & B_CACHE) == 0) {
321		if (curproc != NULL)
322			curproc->p_stats->p_ru.ru_inblock++;
323		bp->b_flags |= B_READ;
324		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
325		if (bp->b_rcred == NOCRED) {
326			if (cred != NOCRED)
327				crhold(cred);
328			bp->b_rcred = cred;
329		}
330		vfs_busy_pages(bp, 0);
331		VOP_STRATEGY(bp);
332		++readwait;
333	}
334	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
335		if (inmem(vp, *rablkno))
336			continue;
337		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
338
339		if ((rabp->b_flags & B_CACHE) == 0) {
340			if (curproc != NULL)
341				curproc->p_stats->p_ru.ru_inblock++;
342			rabp->b_flags |= B_READ | B_ASYNC;
343			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
344			if (rabp->b_rcred == NOCRED) {
345				if (cred != NOCRED)
346					crhold(cred);
347				rabp->b_rcred = cred;
348			}
349			vfs_busy_pages(rabp, 0);
350			VOP_STRATEGY(rabp);
351		} else {
352			brelse(rabp);
353		}
354	}
355
356	if (readwait) {
357		rv = biowait(bp);
358	}
359	return (rv);
360}
361
362/*
363 * Write, release buffer on completion.  (Done by iodone
364 * if async.)
365 */
366int
367bwrite(struct buf * bp)
368{
369	int oldflags;
370	struct vnode *vp;
371	struct mount *mp;
372
373
374	if (bp->b_flags & B_INVAL) {
375		brelse(bp);
376		return (0);
377	}
378
379	oldflags = bp->b_flags;
380
381#if !defined(MAX_PERF)
382	if ((bp->b_flags & B_BUSY) == 0)
383		panic("bwrite: buffer is not busy???");
384#endif
385
386	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
387	bp->b_flags |= B_WRITEINPROG;
388
389	if ((oldflags & B_DELWRI) == B_DELWRI) {
390		--numdirtybuffers;
391		reassignbuf(bp, bp->b_vp);
392	}
393
394	bp->b_vp->v_numoutput++;
395	vfs_busy_pages(bp, 1);
396	if (curproc != NULL)
397		curproc->p_stats->p_ru.ru_oublock++;
398	VOP_STRATEGY(bp);
399
400	/*
401	 * Collect statistics on synchronous and asynchronous writes.
402	 * Writes to block devices are charged to their associated
403	 * filesystem (if any).
404	 */
405	if ((vp = bp->b_vp) != NULL) {
406		if (vp->v_type == VBLK)
407			mp = vp->v_specmountpoint;
408		else
409			mp = vp->v_mount;
410		if (mp != NULL)
411			if ((oldflags & B_ASYNC) == 0)
412				mp->mnt_stat.f_syncwrites++;
413			else
414				mp->mnt_stat.f_asyncwrites++;
415	}
416
417	if ((oldflags & B_ASYNC) == 0) {
418		int rtval = biowait(bp);
419		brelse(bp);
420		return (rtval);
421	}
422	return (0);
423}
424
425__inline void
426vfs_bio_need_satisfy(void) {
427	++numfreebuffers;
428	if (!needsbuffer)
429		return;
430	if (numdirtybuffers < lodirtybuffers) {
431		needsbuffer &= ~(VFS_BIO_NEED_ANY | VFS_BIO_NEED_LOWLIMIT);
432	} else {
433		needsbuffer &= ~VFS_BIO_NEED_ANY;
434	}
435	if (numfreebuffers >= hifreebuffers) {
436		needsbuffer &= ~VFS_BIO_NEED_FREE;
437	}
438	wakeup(&needsbuffer);
439}
440
441/*
442 * Delayed write. (Buffer is marked dirty).
443 */
444void
445bdwrite(struct buf * bp)
446{
447	int s;
448	struct vnode *vp;
449
450#if !defined(MAX_PERF)
451	if ((bp->b_flags & B_BUSY) == 0) {
452		panic("bdwrite: buffer is not busy");
453	}
454#endif
455
456	if (bp->b_flags & B_INVAL) {
457		brelse(bp);
458		return;
459	}
460	if (bp->b_flags & B_TAPE) {
461		bawrite(bp);
462		return;
463	}
464	bp->b_flags &= ~(B_READ|B_RELBUF);
465	if ((bp->b_flags & B_DELWRI) == 0) {
466		bp->b_flags |= B_DONE | B_DELWRI;
467		reassignbuf(bp, bp->b_vp);
468		++numdirtybuffers;
469	}
470
471	/*
472	 * This bmap keeps the system from needing to do the bmap later,
473	 * perhaps when the system is attempting to do a sync.  Since it
474	 * is likely that the indirect block -- or whatever other datastructure
475	 * that the filesystem needs is still in memory now, it is a good
476	 * thing to do this.  Note also, that if the pageout daemon is
477	 * requesting a sync -- there might not be enough memory to do
478	 * the bmap then...  So, this is important to do.
479	 */
480	if (bp->b_lblkno == bp->b_blkno) {
481		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
482	}
483
484	/*
485	 * Set the *dirty* buffer range based upon the VM system dirty pages.
486	 */
487	vfs_setdirty(bp);
488
489	/*
490	 * We need to do this here to satisfy the vnode_pager and the
491	 * pageout daemon, so that it thinks that the pages have been
492	 * "cleaned".  Note that since the pages are in a delayed write
493	 * buffer -- the VFS layer "will" see that the pages get written
494	 * out on the next sync, or perhaps the cluster will be completed.
495	 */
496	vfs_clean_pages(bp);
497	bqrelse(bp);
498
499	/*
500	 * XXX The soft dependency code is not prepared to
501	 * have I/O done when a bdwrite is requested. For
502	 * now we just let the write be delayed if it is
503	 * requested by the soft dependency code.
504	 */
505	if ((vp = bp->b_vp) &&
506	    (vp->v_type == VBLK && vp->v_specmountpoint &&
507	    (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) ||
508	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP)))
509		return;
510
511	if (numdirtybuffers >= hidirtybuffers)
512		flushdirtybuffers(0, 0);
513
514	return;
515}
516
517
518/*
519 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
520 * Check how this compares with vfs_setdirty(); XXX [JRE]
521 */
522void
523bdirty(bp)
524      struct buf *bp;
525{
526	int s;
527
528	bp->b_flags &= ~(B_READ|B_RELBUF); /* XXX ??? check this */
529	if ((bp->b_flags & B_DELWRI) == 0) {
530		bp->b_flags |= B_DONE | B_DELWRI; /* why done? XXX JRE */
531		reassignbuf(bp, bp->b_vp);
532		++numdirtybuffers;
533	}
534}
535
536/*
537 * Asynchronous write.
538 * Start output on a buffer, but do not wait for it to complete.
539 * The buffer is released when the output completes.
540 */
541void
542bawrite(struct buf * bp)
543{
544	bp->b_flags |= B_ASYNC;
545	(void) VOP_BWRITE(bp);
546}
547
548/*
549 * Ordered write.
550 * Start output on a buffer, but only wait for it to complete if the
551 * output device cannot guarantee ordering in some other way.  Devices
552 * that can perform asynchronous ordered writes will set the B_ASYNC
553 * flag in their strategy routine.
554 * The buffer is released when the output completes.
555 */
556int
557bowrite(struct buf * bp)
558{
559	/*
560	 * XXX Add in B_ASYNC once the SCSI
561	 *     layer can deal with ordered
562	 *     writes properly.
563	 */
564	bp->b_flags |= B_ORDERED;
565	return (VOP_BWRITE(bp));
566}
567
568/*
569 * Release a buffer.
570 */
571void
572brelse(struct buf * bp)
573{
574	int s;
575
576	if (bp->b_flags & B_CLUSTER) {
577		relpbuf(bp);
578		return;
579	}
580
581	s = splbio();
582
583	/* anyone need this block? */
584	if (bp->b_flags & B_WANTED) {
585		bp->b_flags &= ~(B_WANTED | B_AGE);
586		wakeup(bp);
587	}
588
589	if (bp->b_flags & B_LOCKED)
590		bp->b_flags &= ~B_ERROR;
591
592	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
593	    (bp->b_bufsize <= 0)) {
594		bp->b_flags |= B_INVAL;
595		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
596			(*bioops.io_deallocate)(bp);
597		if (bp->b_flags & B_DELWRI)
598			--numdirtybuffers;
599		bp->b_flags &= ~(B_DELWRI | B_CACHE);
600		if ((bp->b_flags & B_VMIO) == 0) {
601			if (bp->b_bufsize)
602				allocbuf(bp, 0);
603			if (bp->b_vp)
604				brelvp(bp);
605		}
606	}
607
608	/*
609	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
610	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
611	 * but the VM object is kept around.  The B_NOCACHE flag is used to
612	 * invalidate the pages in the VM object.
613	 *
614	 * If the buffer is a partially filled NFS buffer, keep it
615	 * since invalidating it now will lose informatio.  The valid
616	 * flags in the vm_pages have only DEV_BSIZE resolution but
617	 * the b_validoff, b_validend fields have byte resolution.
618	 * This can avoid unnecessary re-reads of the buffer.
619	 * XXX this seems to cause performance problems.
620	 */
621	if ((bp->b_flags & B_VMIO)
622	    && !(bp->b_vp->v_tag == VT_NFS &&
623		 bp->b_vp->v_type != VBLK &&
624		 (bp->b_flags & B_DELWRI) != 0)
625#ifdef notdef
626	    && (bp->b_vp->v_tag != VT_NFS
627		|| bp->b_vp->v_type == VBLK
628		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
629		|| bp->b_validend == 0
630		|| (bp->b_validoff == 0
631		    && bp->b_validend == bp->b_bufsize))
632#endif
633	    ) {
634
635		int i, j, resid;
636		vm_page_t m;
637		off_t foff;
638		vm_pindex_t poff;
639		vm_object_t obj;
640		struct vnode *vp;
641
642		vp = bp->b_vp;
643
644		resid = bp->b_bufsize;
645		foff = bp->b_offset;
646
647		for (i = 0; i < bp->b_npages; i++) {
648			m = bp->b_pages[i];
649			m->flags &= ~PG_ZERO;
650			if (m == bogus_page) {
651
652				obj = (vm_object_t) vp->v_object;
653				poff = OFF_TO_IDX(bp->b_offset);
654
655				for (j = i; j < bp->b_npages; j++) {
656					m = bp->b_pages[j];
657					if (m == bogus_page) {
658						m = vm_page_lookup(obj, poff + j);
659#if !defined(MAX_PERF)
660						if (!m) {
661							panic("brelse: page missing\n");
662						}
663#endif
664						bp->b_pages[j] = m;
665					}
666				}
667
668				if ((bp->b_flags & B_INVAL) == 0) {
669					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
670				}
671			}
672			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
673				int poffset = foff & PAGE_MASK;
674				int presid = resid > (PAGE_SIZE - poffset) ?
675					(PAGE_SIZE - poffset) : resid;
676				vm_page_set_invalid(m, poffset, presid);
677			}
678			resid -= PAGE_SIZE;
679		}
680
681		if (bp->b_flags & (B_INVAL | B_RELBUF))
682			vfs_vmio_release(bp);
683
684	} else if (bp->b_flags & B_VMIO) {
685
686		if (bp->b_flags & (B_INVAL | B_RELBUF))
687			vfs_vmio_release(bp);
688
689	}
690
691#if !defined(MAX_PERF)
692	if (bp->b_qindex != QUEUE_NONE)
693		panic("brelse: free buffer onto another queue???");
694#endif
695
696	/* enqueue */
697	/* buffers with no memory */
698	if (bp->b_bufsize == 0) {
699		bp->b_flags |= B_INVAL;
700		bp->b_qindex = QUEUE_EMPTY;
701		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
702		LIST_REMOVE(bp, b_hash);
703		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
704		bp->b_dev = NODEV;
705		kvafreespace += bp->b_kvasize;
706
707	/* buffers with junk contents */
708	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
709		bp->b_flags |= B_INVAL;
710		bp->b_qindex = QUEUE_AGE;
711		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
712		LIST_REMOVE(bp, b_hash);
713		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
714		bp->b_dev = NODEV;
715
716	/* buffers that are locked */
717	} else if (bp->b_flags & B_LOCKED) {
718		bp->b_qindex = QUEUE_LOCKED;
719		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
720
721	/* buffers with stale but valid contents */
722	} else if (bp->b_flags & B_AGE) {
723		bp->b_qindex = QUEUE_AGE;
724		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
725
726	/* buffers with valid and quite potentially reuseable contents */
727	} else {
728		bp->b_qindex = QUEUE_LRU;
729		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
730	}
731
732	if ((bp->b_flags & B_INVAL) ||
733		(bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
734		if (bp->b_flags & B_DELWRI) {
735			--numdirtybuffers;
736			bp->b_flags &= ~B_DELWRI;
737		}
738		vfs_bio_need_satisfy();
739	}
740
741	/* unlock */
742	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
743		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
744	splx(s);
745}
746
747/*
748 * Release a buffer.
749 */
750void
751bqrelse(struct buf * bp)
752{
753	int s;
754
755	s = splbio();
756
757	/* anyone need this block? */
758	if (bp->b_flags & B_WANTED) {
759		bp->b_flags &= ~(B_WANTED | B_AGE);
760		wakeup(bp);
761	}
762
763#if !defined(MAX_PERF)
764	if (bp->b_qindex != QUEUE_NONE)
765		panic("bqrelse: free buffer onto another queue???");
766#endif
767
768	if (bp->b_flags & B_LOCKED) {
769		bp->b_flags &= ~B_ERROR;
770		bp->b_qindex = QUEUE_LOCKED;
771		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
772		/* buffers with stale but valid contents */
773	} else {
774		bp->b_qindex = QUEUE_LRU;
775		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
776	}
777
778	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
779		vfs_bio_need_satisfy();
780	}
781
782	/* unlock */
783	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
784		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
785	splx(s);
786}
787
788static void
789vfs_vmio_release(bp)
790	struct buf *bp;
791{
792	int i;
793	vm_page_t m;
794
795	for (i = 0; i < bp->b_npages; i++) {
796		m = bp->b_pages[i];
797		bp->b_pages[i] = NULL;
798		vm_page_unwire(m);
799
800		/*
801		 * We don't mess with busy pages, it is
802		 * the responsibility of the process that
803		 * busied the pages to deal with them.
804		 */
805		if ((m->flags & PG_BUSY) || (m->busy != 0))
806			continue;
807
808		if (m->wire_count == 0) {
809
810			/*
811			 * If this is an async free -- we cannot place
812			 * pages onto the cache queue.  If it is an
813			 * async free, then we don't modify any queues.
814			 * This is probably in error (for perf reasons),
815			 * and we will eventually need to build
816			 * a more complete infrastructure to support I/O
817			 * rundown.
818			 */
819			if ((bp->b_flags & B_ASYNC) == 0) {
820
821			/*
822			 * In the case of sync buffer frees, we can do pretty much
823			 * anything to any of the memory queues.  Specifically,
824			 * the cache queue is okay to be modified.
825			 */
826				if (m->valid) {
827					if(m->dirty == 0)
828						vm_page_test_dirty(m);
829					/*
830					 * this keeps pressure off of the process memory
831					 */
832					if (m->dirty == 0 && m->hold_count == 0)
833						vm_page_cache(m);
834					else
835						vm_page_deactivate(m);
836					m->flags &= ~PG_ZERO;
837				} else if (m->hold_count == 0) {
838					m->flags |= PG_BUSY;
839					vm_page_protect(m, VM_PROT_NONE);
840					vm_page_free(m);
841				}
842			} else {
843				/*
844				 * If async, then at least we clear the
845				 * act_count.
846				 */
847				m->act_count = 0;
848				m->flags &= ~PG_ZERO;
849			}
850		}
851	}
852	bufspace -= bp->b_bufsize;
853	vmiospace -= bp->b_bufsize;
854	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
855	bp->b_npages = 0;
856	bp->b_bufsize = 0;
857	bp->b_flags &= ~B_VMIO;
858	if (bp->b_vp)
859		brelvp(bp);
860}
861
862/*
863 * Check to see if a block is currently memory resident.
864 */
865struct buf *
866gbincore(struct vnode * vp, daddr_t blkno)
867{
868	struct buf *bp;
869	struct bufhashhdr *bh;
870
871	bh = BUFHASH(vp, blkno);
872	bp = bh->lh_first;
873
874	/* Search hash chain */
875	while (bp != NULL) {
876		/* hit */
877		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
878		    (bp->b_flags & B_INVAL) == 0) {
879			break;
880		}
881		bp = bp->b_hash.le_next;
882	}
883	return (bp);
884}
885
886/*
887 * this routine implements clustered async writes for
888 * clearing out B_DELWRI buffers...  This is much better
889 * than the old way of writing only one buffer at a time.
890 */
891int
892vfs_bio_awrite(struct buf * bp)
893{
894	int i;
895	daddr_t lblkno = bp->b_lblkno;
896	struct vnode *vp = bp->b_vp;
897	int s;
898	int ncl;
899	struct buf *bpa;
900	int nwritten;
901	int size;
902	int maxcl;
903
904	s = splbio();
905	/*
906	 * right now we support clustered writing only to regular files
907	 */
908	if ((vp->v_type == VREG) &&
909	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
910	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
911
912		size = vp->v_mount->mnt_stat.f_iosize;
913		maxcl = MAXPHYS / size;
914
915		for (i = 1; i < maxcl; i++) {
916			if ((bpa = gbincore(vp, lblkno + i)) &&
917			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
918			    (B_DELWRI | B_CLUSTEROK)) &&
919			    (bpa->b_bufsize == size)) {
920				if ((bpa->b_blkno == bpa->b_lblkno) ||
921				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
922					break;
923			} else {
924				break;
925			}
926		}
927		ncl = i;
928		/*
929		 * this is a possible cluster write
930		 */
931		if (ncl != 1) {
932			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
933			splx(s);
934			return nwritten;
935		}
936	}
937
938	bremfree(bp);
939	bp->b_flags |= B_BUSY | B_ASYNC;
940
941	splx(s);
942	/*
943	 * default (old) behavior, writing out only one block
944	 */
945	nwritten = bp->b_bufsize;
946	(void) VOP_BWRITE(bp);
947	return nwritten;
948}
949
950
951/*
952 * Find a buffer header which is available for use.
953 */
954static struct buf *
955getnewbuf(struct vnode *vp, daddr_t blkno,
956	int slpflag, int slptimeo, int size, int maxsize)
957{
958	struct buf *bp, *bp1;
959	int nbyteswritten = 0;
960	vm_offset_t addr;
961	static int writerecursion = 0;
962
963start:
964	if (bufspace >= maxbufspace)
965		goto trytofreespace;
966
967	/* can we constitute a new buffer? */
968	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
969#if !defined(MAX_PERF)
970		if (bp->b_qindex != QUEUE_EMPTY)
971			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
972			    bp->b_qindex);
973#endif
974		bp->b_flags |= B_BUSY;
975		bremfree(bp);
976		goto fillbuf;
977	}
978trytofreespace:
979	/*
980	 * We keep the file I/O from hogging metadata I/O
981	 * This is desirable because file data is cached in the
982	 * VM/Buffer cache even if a buffer is freed.
983	 */
984	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
985#if !defined(MAX_PERF)
986		if (bp->b_qindex != QUEUE_AGE)
987			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
988			    bp->b_qindex);
989#endif
990	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
991#if !defined(MAX_PERF)
992		if (bp->b_qindex != QUEUE_LRU)
993			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
994			    bp->b_qindex);
995#endif
996	}
997	if (!bp) {
998		/* wait for a free buffer of any kind */
999		needsbuffer |= VFS_BIO_NEED_ANY;
1000		do
1001			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
1002			    slptimeo);
1003		while (needsbuffer & VFS_BIO_NEED_ANY);
1004		return (0);
1005	}
1006
1007#if defined(DIAGNOSTIC)
1008	if (bp->b_flags & B_BUSY) {
1009		panic("getnewbuf: busy buffer on free list\n");
1010	}
1011#endif
1012
1013	/*
1014	 * We are fairly aggressive about freeing VMIO buffers, but since
1015	 * the buffering is intact without buffer headers, there is not
1016	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
1017	 */
1018	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
1019		if ((bp->b_flags & B_VMIO) == 0 ||
1020			(vmiospace < maxvmiobufspace)) {
1021			--bp->b_usecount;
1022			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
1023			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
1024				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1025				goto start;
1026			}
1027			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1028		}
1029	}
1030
1031
1032	/* if we are a delayed write, convert to an async write */
1033	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
1034
1035		/*
1036		 * If our delayed write is likely to be used soon, then
1037		 * recycle back onto the LRU queue.
1038		 */
1039		if (vp && (bp->b_vp == vp) && (bp->b_qindex == QUEUE_LRU) &&
1040			(bp->b_lblkno >= blkno) && (maxsize > 0)) {
1041
1042			if (bp->b_usecount > 0) {
1043				if (bp->b_lblkno < blkno + (MAXPHYS / maxsize)) {
1044
1045					TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
1046
1047					if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
1048						TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1049						bp->b_usecount--;
1050						goto start;
1051					}
1052					TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1053				}
1054			}
1055		}
1056
1057		/*
1058		 * Certain layered filesystems can recursively re-enter the vfs_bio
1059		 * code, due to delayed writes.  This helps keep the system from
1060		 * deadlocking.
1061		 */
1062		if (writerecursion > 0) {
1063			if (writerecursion > 5) {
1064				bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1065				while (bp) {
1066					if ((bp->b_flags & B_DELWRI) == 0)
1067						break;
1068					bp = TAILQ_NEXT(bp, b_freelist);
1069				}
1070				if (bp == NULL) {
1071					bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1072					while (bp) {
1073						if ((bp->b_flags & B_DELWRI) == 0)
1074							break;
1075						bp = TAILQ_NEXT(bp, b_freelist);
1076					}
1077				}
1078				if (bp == NULL)
1079					panic("getnewbuf: cannot get buffer, infinite recursion failure");
1080			} else {
1081				bremfree(bp);
1082				bp->b_flags |= B_BUSY | B_AGE | B_ASYNC;
1083				nbyteswritten += bp->b_bufsize;
1084				++writerecursion;
1085				VOP_BWRITE(bp);
1086				--writerecursion;
1087				if (!slpflag && !slptimeo) {
1088					return (0);
1089				}
1090				goto start;
1091			}
1092		} else {
1093			++writerecursion;
1094			nbyteswritten += vfs_bio_awrite(bp);
1095			--writerecursion;
1096			if (!slpflag && !slptimeo) {
1097				return (0);
1098			}
1099			goto start;
1100		}
1101	}
1102
1103	if (bp->b_flags & B_WANTED) {
1104		bp->b_flags &= ~B_WANTED;
1105		wakeup(bp);
1106	}
1107	bremfree(bp);
1108	bp->b_flags |= B_BUSY;
1109
1110	if (bp->b_flags & B_VMIO) {
1111		bp->b_flags &= ~B_ASYNC;
1112		vfs_vmio_release(bp);
1113	}
1114
1115	if (bp->b_vp)
1116		brelvp(bp);
1117
1118fillbuf:
1119
1120	/* we are not free, nor do we contain interesting data */
1121	if (bp->b_rcred != NOCRED) {
1122		crfree(bp->b_rcred);
1123		bp->b_rcred = NOCRED;
1124	}
1125	if (bp->b_wcred != NOCRED) {
1126		crfree(bp->b_wcred);
1127		bp->b_wcred = NOCRED;
1128	}
1129	if (LIST_FIRST(&bp->b_dep) != NULL &&
1130	    bioops.io_deallocate)
1131		(*bioops.io_deallocate)(bp);
1132
1133	LIST_REMOVE(bp, b_hash);
1134	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1135	if (bp->b_bufsize) {
1136		allocbuf(bp, 0);
1137	}
1138	bp->b_flags = B_BUSY;
1139	bp->b_dev = NODEV;
1140	bp->b_vp = NULL;
1141	bp->b_blkno = bp->b_lblkno = 0;
1142	bp->b_offset = NOOFFSET;
1143	bp->b_iodone = 0;
1144	bp->b_error = 0;
1145	bp->b_resid = 0;
1146	bp->b_bcount = 0;
1147	bp->b_npages = 0;
1148	bp->b_dirtyoff = bp->b_dirtyend = 0;
1149	bp->b_validoff = bp->b_validend = 0;
1150	bp->b_usecount = 5;
1151	/* Here, not kern_physio.c, is where this should be done*/
1152	LIST_INIT(&bp->b_dep);
1153
1154	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1155
1156	/*
1157	 * we assume that buffer_map is not at address 0
1158	 */
1159	addr = 0;
1160	if (maxsize != bp->b_kvasize) {
1161		bfreekva(bp);
1162
1163findkvaspace:
1164		/*
1165		 * See if we have buffer kva space
1166		 */
1167		if (vm_map_findspace(buffer_map,
1168			vm_map_min(buffer_map), maxsize, &addr)) {
1169			if (kvafreespace > 0) {
1170				int totfree = 0, freed;
1171				do {
1172					freed = 0;
1173					for (bp1 = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1174						bp1 != NULL; bp1 = TAILQ_NEXT(bp1, b_freelist)) {
1175						if (bp1->b_kvasize != 0) {
1176							totfree += bp1->b_kvasize;
1177							freed = bp1->b_kvasize;
1178							bremfree(bp1);
1179							bfreekva(bp1);
1180							brelse(bp1);
1181							break;
1182						}
1183					}
1184				} while (freed);
1185				/*
1186				 * if we found free space, then retry with the same buffer.
1187				 */
1188				if (totfree)
1189					goto findkvaspace;
1190			}
1191			bp->b_flags |= B_INVAL;
1192			brelse(bp);
1193			goto trytofreespace;
1194		}
1195	}
1196
1197	/*
1198	 * See if we are below are allocated minimum
1199	 */
1200	if (bufspace >= (maxbufspace + nbyteswritten)) {
1201		bp->b_flags |= B_INVAL;
1202		brelse(bp);
1203		goto trytofreespace;
1204	}
1205
1206	/*
1207	 * create a map entry for the buffer -- in essence
1208	 * reserving the kva space.
1209	 */
1210	if (addr) {
1211		vm_map_insert(buffer_map, NULL, 0,
1212			addr, addr + maxsize,
1213			VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1214
1215		bp->b_kvabase = (caddr_t) addr;
1216		bp->b_kvasize = maxsize;
1217	}
1218	bp->b_data = bp->b_kvabase;
1219
1220	return (bp);
1221}
1222
1223static void
1224waitfreebuffers(int slpflag, int slptimeo) {
1225	while (numfreebuffers < hifreebuffers) {
1226		flushdirtybuffers(slpflag, slptimeo);
1227		if (numfreebuffers < hifreebuffers)
1228			break;
1229		needsbuffer |= VFS_BIO_NEED_FREE;
1230		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1231			break;
1232	}
1233}
1234
1235static void
1236flushdirtybuffers(int slpflag, int slptimeo) {
1237	int s;
1238	static pid_t flushing = 0;
1239
1240	s = splbio();
1241
1242	if (flushing) {
1243		if (flushing == curproc->p_pid) {
1244			splx(s);
1245			return;
1246		}
1247		while (flushing) {
1248			if (tsleep(&flushing, (PRIBIO + 4)|slpflag, "biofls", slptimeo)) {
1249				splx(s);
1250				return;
1251			}
1252		}
1253	}
1254	flushing = curproc->p_pid;
1255
1256	while (numdirtybuffers > lodirtybuffers) {
1257		struct buf *bp;
1258		needsbuffer |= VFS_BIO_NEED_LOWLIMIT;
1259		bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1260		if (bp == NULL)
1261			bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1262
1263		while (bp && ((bp->b_flags & B_DELWRI) == 0)) {
1264			bp = TAILQ_NEXT(bp, b_freelist);
1265		}
1266
1267		if (bp) {
1268			vfs_bio_awrite(bp);
1269			continue;
1270		}
1271		break;
1272	}
1273
1274	flushing = 0;
1275	wakeup(&flushing);
1276	splx(s);
1277}
1278
1279/*
1280 * Check to see if a block is currently memory resident.
1281 */
1282struct buf *
1283incore(struct vnode * vp, daddr_t blkno)
1284{
1285	struct buf *bp;
1286
1287	int s = splbio();
1288	bp = gbincore(vp, blkno);
1289	splx(s);
1290	return (bp);
1291}
1292
1293/*
1294 * Returns true if no I/O is needed to access the
1295 * associated VM object.  This is like incore except
1296 * it also hunts around in the VM system for the data.
1297 */
1298
1299int
1300inmem(struct vnode * vp, daddr_t blkno)
1301{
1302	vm_object_t obj;
1303	vm_offset_t toff, tinc;
1304	vm_page_t m;
1305	vm_ooffset_t off;
1306
1307	if (incore(vp, blkno))
1308		return 1;
1309	if (vp->v_mount == NULL)
1310		return 0;
1311	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1312		return 0;
1313
1314	obj = vp->v_object;
1315	tinc = PAGE_SIZE;
1316	if (tinc > vp->v_mount->mnt_stat.f_iosize)
1317		tinc = vp->v_mount->mnt_stat.f_iosize;
1318	off = blkno * vp->v_mount->mnt_stat.f_iosize;
1319
1320	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1321
1322		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1323		if (!m)
1324			return 0;
1325		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
1326			return 0;
1327	}
1328	return 1;
1329}
1330
1331/*
1332 * now we set the dirty range for the buffer --
1333 * for NFS -- if the file is mapped and pages have
1334 * been written to, let it know.  We want the
1335 * entire range of the buffer to be marked dirty if
1336 * any of the pages have been written to for consistancy
1337 * with the b_validoff, b_validend set in the nfs write
1338 * code, and used by the nfs read code.
1339 */
1340static void
1341vfs_setdirty(struct buf *bp) {
1342	int i;
1343	vm_object_t object;
1344	vm_offset_t boffset, offset;
1345	/*
1346	 * We qualify the scan for modified pages on whether the
1347	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1348	 * is not cleared simply by protecting pages off.
1349	 */
1350	if ((bp->b_flags & B_VMIO) &&
1351		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1352		/*
1353		 * test the pages to see if they have been modified directly
1354		 * by users through the VM system.
1355		 */
1356		for (i = 0; i < bp->b_npages; i++) {
1357			bp->b_pages[i]->flags &= ~PG_ZERO;
1358			vm_page_test_dirty(bp->b_pages[i]);
1359		}
1360
1361		/*
1362		 * scan forwards for the first page modified
1363		 */
1364		for (i = 0; i < bp->b_npages; i++) {
1365			if (bp->b_pages[i]->dirty) {
1366				break;
1367			}
1368		}
1369		boffset = (i << PAGE_SHIFT);
1370		if (boffset < bp->b_dirtyoff) {
1371			bp->b_dirtyoff = boffset;
1372		}
1373
1374		/*
1375		 * scan backwards for the last page modified
1376		 */
1377		for (i = bp->b_npages - 1; i >= 0; --i) {
1378			if (bp->b_pages[i]->dirty) {
1379				break;
1380			}
1381		}
1382		boffset = (i + 1);
1383		offset = boffset + bp->b_pages[0]->pindex;
1384		if (offset >= object->size)
1385			boffset = object->size - bp->b_pages[0]->pindex;
1386		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
1387			bp->b_dirtyend = (boffset << PAGE_SHIFT);
1388	}
1389}
1390
1391/*
1392 * Get a block given a specified block and offset into a file/device.
1393 */
1394struct buf *
1395getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1396{
1397	struct buf *bp;
1398	int i, s;
1399	struct bufhashhdr *bh;
1400	int maxsize;
1401	int generation;
1402	int checksize;
1403
1404	if (vp->v_mount) {
1405		maxsize = vp->v_mount->mnt_stat.f_iosize;
1406		/*
1407		 * This happens on mount points.
1408		 */
1409		if (maxsize < size)
1410			maxsize = size;
1411	} else {
1412		maxsize = size;
1413	}
1414
1415#if !defined(MAX_PERF)
1416	if (size > MAXBSIZE)
1417		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1418#endif
1419
1420	s = splbio();
1421loop:
1422	if (numfreebuffers < lofreebuffers) {
1423		waitfreebuffers(slpflag, slptimeo);
1424	}
1425
1426	if ((bp = gbincore(vp, blkno))) {
1427loop1:
1428		if (bp->b_flags & B_BUSY) {
1429
1430			bp->b_flags |= B_WANTED;
1431			if (bp->b_usecount < BUF_MAXUSE)
1432				++bp->b_usecount;
1433
1434			if (!tsleep(bp,
1435				(PRIBIO + 4) | slpflag, "getblk", slptimeo)) {
1436				goto loop;
1437			}
1438
1439			splx(s);
1440			return (struct buf *) NULL;
1441		}
1442		bp->b_flags |= B_BUSY | B_CACHE;
1443		bremfree(bp);
1444
1445		/*
1446		 * check for size inconsistancies (note that they shouldn't
1447		 * happen but do when filesystems don't handle the size changes
1448		 * correctly.) We are conservative on metadata and don't just
1449		 * extend the buffer but write (if needed) and re-constitute it.
1450		 */
1451
1452		if (bp->b_bcount != size) {
1453			if ((bp->b_flags & B_VMIO) && (size <= bp->b_kvasize)) {
1454				allocbuf(bp, size);
1455			} else {
1456				if (bp->b_flags & B_DELWRI) {
1457					bp->b_flags |= B_NOCACHE;
1458					VOP_BWRITE(bp);
1459				} else {
1460					if (bp->b_flags & B_VMIO) {
1461						bp->b_flags |= B_RELBUF;
1462						brelse(bp);
1463					} else {
1464						bp->b_flags |= B_NOCACHE;
1465						VOP_BWRITE(bp);
1466					}
1467				}
1468				goto loop;
1469			}
1470		}
1471
1472#ifdef DIAGNOSTIC
1473		if (bp->b_offset == NOOFFSET)
1474			panic("getblk: no buffer offset");
1475#endif
1476
1477		/*
1478		 * Check that the constituted buffer really deserves for the
1479		 * B_CACHE bit to be set.  B_VMIO type buffers might not
1480		 * contain fully valid pages.  Normal (old-style) buffers
1481		 * should be fully valid.
1482		 */
1483		if (bp->b_flags & B_VMIO) {
1484			checksize = bp->b_bufsize;
1485			for (i = 0; i < bp->b_npages; i++) {
1486				int resid;
1487				int poffset;
1488				poffset = bp->b_offset & PAGE_MASK;
1489				resid = (checksize > (PAGE_SIZE - poffset)) ?
1490					(PAGE_SIZE - poffset) : checksize;
1491				if (!vm_page_is_valid(bp->b_pages[i], poffset, resid)) {
1492					bp->b_flags &= ~(B_CACHE | B_DONE);
1493					break;
1494				}
1495				checksize -= resid;
1496			}
1497		}
1498
1499		if (bp->b_usecount < BUF_MAXUSE)
1500			++bp->b_usecount;
1501		splx(s);
1502		return (bp);
1503	} else {
1504		vm_object_t obj;
1505
1506		if ((bp = getnewbuf(vp, blkno,
1507			slpflag, slptimeo, size, maxsize)) == 0) {
1508			if (slpflag || slptimeo) {
1509				splx(s);
1510				return NULL;
1511			}
1512			goto loop;
1513		}
1514
1515		/*
1516		 * This code is used to make sure that a buffer is not
1517		 * created while the getnewbuf routine is blocked.
1518		 * Normally the vnode is locked so this isn't a problem.
1519		 * VBLK type I/O requests, however, don't lock the vnode.
1520		 */
1521		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1522			bp->b_flags |= B_INVAL;
1523			brelse(bp);
1524			goto loop;
1525		}
1526
1527		/*
1528		 * Insert the buffer into the hash, so that it can
1529		 * be found by incore.
1530		 */
1531		bp->b_blkno = bp->b_lblkno = blkno;
1532
1533		if (vp->v_type != VBLK)
1534			bp->b_offset = (off_t) blkno * maxsize;
1535		else
1536			bp->b_offset = (off_t) blkno * DEV_BSIZE;
1537
1538		bgetvp(vp, bp);
1539		LIST_REMOVE(bp, b_hash);
1540		bh = BUFHASH(vp, blkno);
1541		LIST_INSERT_HEAD(bh, bp, b_hash);
1542
1543		if ((obj = vp->v_object) && (vp->v_flag & VOBJBUF)) {
1544			bp->b_flags |= (B_VMIO | B_CACHE);
1545#if defined(VFS_BIO_DEBUG)
1546			if (vp->v_type != VREG && vp->v_type != VBLK)
1547				printf("getblk: vmioing file type %d???\n", vp->v_type);
1548#endif
1549		} else {
1550			bp->b_flags &= ~B_VMIO;
1551		}
1552
1553		allocbuf(bp, size);
1554
1555		splx(s);
1556		return (bp);
1557	}
1558}
1559
1560/*
1561 * Get an empty, disassociated buffer of given size.
1562 */
1563struct buf *
1564geteblk(int size)
1565{
1566	struct buf *bp;
1567	int s;
1568
1569	s = splbio();
1570	while ((bp = getnewbuf(0, (daddr_t) 0, 0, 0, size, MAXBSIZE)) == 0);
1571	splx(s);
1572	allocbuf(bp, size);
1573	bp->b_flags |= B_INVAL;
1574	return (bp);
1575}
1576
1577
1578/*
1579 * This code constitutes the buffer memory from either anonymous system
1580 * memory (in the case of non-VMIO operations) or from an associated
1581 * VM object (in the case of VMIO operations).
1582 *
1583 * Note that this code is tricky, and has many complications to resolve
1584 * deadlock or inconsistant data situations.  Tread lightly!!!
1585 *
1586 * Modify the length of a buffer's underlying buffer storage without
1587 * destroying information (unless, of course the buffer is shrinking).
1588 */
1589int
1590allocbuf(struct buf * bp, int size)
1591{
1592
1593	int s;
1594	int newbsize, mbsize;
1595	int i;
1596
1597#if !defined(MAX_PERF)
1598	if (!(bp->b_flags & B_BUSY))
1599		panic("allocbuf: buffer not busy");
1600
1601	if (bp->b_kvasize < size)
1602		panic("allocbuf: buffer too small");
1603#endif
1604
1605	if ((bp->b_flags & B_VMIO) == 0) {
1606		caddr_t origbuf;
1607		int origbufsize;
1608		/*
1609		 * Just get anonymous memory from the kernel
1610		 */
1611		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1612#if !defined(NO_B_MALLOC)
1613		if (bp->b_flags & B_MALLOC)
1614			newbsize = mbsize;
1615		else
1616#endif
1617			newbsize = round_page(size);
1618
1619		if (newbsize < bp->b_bufsize) {
1620#if !defined(NO_B_MALLOC)
1621			/*
1622			 * malloced buffers are not shrunk
1623			 */
1624			if (bp->b_flags & B_MALLOC) {
1625				if (newbsize) {
1626					bp->b_bcount = size;
1627				} else {
1628					free(bp->b_data, M_BIOBUF);
1629					bufspace -= bp->b_bufsize;
1630					bufmallocspace -= bp->b_bufsize;
1631					bp->b_data = bp->b_kvabase;
1632					bp->b_bufsize = 0;
1633					bp->b_bcount = 0;
1634					bp->b_flags &= ~B_MALLOC;
1635				}
1636				return 1;
1637			}
1638#endif
1639			vm_hold_free_pages(
1640			    bp,
1641			    (vm_offset_t) bp->b_data + newbsize,
1642			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1643		} else if (newbsize > bp->b_bufsize) {
1644#if !defined(NO_B_MALLOC)
1645			/*
1646			 * We only use malloced memory on the first allocation.
1647			 * and revert to page-allocated memory when the buffer grows.
1648			 */
1649			if ( (bufmallocspace < maxbufmallocspace) &&
1650				(bp->b_bufsize == 0) &&
1651				(mbsize <= PAGE_SIZE/2)) {
1652
1653				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1654				bp->b_bufsize = mbsize;
1655				bp->b_bcount = size;
1656				bp->b_flags |= B_MALLOC;
1657				bufspace += mbsize;
1658				bufmallocspace += mbsize;
1659				return 1;
1660			}
1661#endif
1662			origbuf = NULL;
1663			origbufsize = 0;
1664#if !defined(NO_B_MALLOC)
1665			/*
1666			 * If the buffer is growing on its other-than-first allocation,
1667			 * then we revert to the page-allocation scheme.
1668			 */
1669			if (bp->b_flags & B_MALLOC) {
1670				origbuf = bp->b_data;
1671				origbufsize = bp->b_bufsize;
1672				bp->b_data = bp->b_kvabase;
1673				bufspace -= bp->b_bufsize;
1674				bufmallocspace -= bp->b_bufsize;
1675				bp->b_bufsize = 0;
1676				bp->b_flags &= ~B_MALLOC;
1677				newbsize = round_page(newbsize);
1678			}
1679#endif
1680			vm_hold_load_pages(
1681			    bp,
1682			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1683			    (vm_offset_t) bp->b_data + newbsize);
1684#if !defined(NO_B_MALLOC)
1685			if (origbuf) {
1686				bcopy(origbuf, bp->b_data, origbufsize);
1687				free(origbuf, M_BIOBUF);
1688			}
1689#endif
1690		}
1691	} else {
1692		vm_page_t m;
1693		int desiredpages;
1694
1695		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1696		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1697
1698#if !defined(NO_B_MALLOC)
1699		if (bp->b_flags & B_MALLOC)
1700			panic("allocbuf: VMIO buffer can't be malloced");
1701#endif
1702
1703		if (newbsize < bp->b_bufsize) {
1704			if (desiredpages < bp->b_npages) {
1705				for (i = desiredpages; i < bp->b_npages; i++) {
1706					/*
1707					 * the page is not freed here -- it
1708					 * is the responsibility of vnode_pager_setsize
1709					 */
1710					m = bp->b_pages[i];
1711#if defined(DIAGNOSTIC)
1712					if (m == bogus_page)
1713						panic("allocbuf: bogus page found");
1714#endif
1715					vm_page_sleep(m, "biodep", &m->busy);
1716
1717					bp->b_pages[i] = NULL;
1718					vm_page_unwire(m);
1719				}
1720				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1721				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1722				bp->b_npages = desiredpages;
1723			}
1724		} else if (newbsize > bp->b_bufsize) {
1725			vm_object_t obj;
1726			vm_offset_t tinc, toff;
1727			vm_ooffset_t off;
1728			vm_pindex_t objoff;
1729			int pageindex, curbpnpages;
1730			struct vnode *vp;
1731			int bsize;
1732			int orig_validoff = bp->b_validoff;
1733			int orig_validend = bp->b_validend;
1734
1735			vp = bp->b_vp;
1736
1737			if (vp->v_type == VBLK)
1738				bsize = DEV_BSIZE;
1739			else
1740				bsize = vp->v_mount->mnt_stat.f_iosize;
1741
1742			if (bp->b_npages < desiredpages) {
1743				obj = vp->v_object;
1744				tinc = PAGE_SIZE;
1745				if (tinc > bsize)
1746					tinc = bsize;
1747
1748				off = bp->b_offset;
1749#ifdef DIAGNOSTIC
1750				if (bp->b_offset == NOOFFSET)
1751					panic("allocbuf: no buffer offset");
1752#endif
1753
1754				curbpnpages = bp->b_npages;
1755		doretry:
1756				bp->b_validoff = orig_validoff;
1757				bp->b_validend = orig_validend;
1758				bp->b_flags |= B_CACHE;
1759				for (toff = 0; toff < newbsize; toff += tinc) {
1760					int bytesinpage;
1761
1762					pageindex = toff >> PAGE_SHIFT;
1763					objoff = OFF_TO_IDX(off + toff);
1764					if (pageindex < curbpnpages) {
1765
1766						m = bp->b_pages[pageindex];
1767#ifdef VFS_BIO_DIAG
1768						if (m->pindex != objoff)
1769							panic("allocbuf: page changed offset??!!!?");
1770#endif
1771						bytesinpage = tinc;
1772						if (tinc > (newbsize - toff))
1773							bytesinpage = newbsize - toff;
1774						if (bp->b_flags & B_CACHE)
1775							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1776						continue;
1777					}
1778					m = vm_page_lookup(obj, objoff);
1779					if (!m) {
1780						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1781						if (!m) {
1782							VM_WAIT;
1783							vm_pageout_deficit += (desiredpages - bp->b_npages);
1784							goto doretry;
1785						}
1786
1787						vm_page_wire(m);
1788						m->flags &= ~PG_BUSY;
1789						bp->b_flags &= ~B_CACHE;
1790
1791					} else if (m->flags & PG_BUSY) {
1792						s = splvm();
1793						if (m->flags & PG_BUSY) {
1794							m->flags |= PG_WANTED;
1795							tsleep(m, PVM, "pgtblk", 0);
1796						}
1797						splx(s);
1798						goto doretry;
1799					} else {
1800						if ((curproc != pageproc) &&
1801							((m->queue - m->pc) == PQ_CACHE) &&
1802						    ((cnt.v_free_count + cnt.v_cache_count) <
1803								(cnt.v_free_min + cnt.v_cache_min))) {
1804							pagedaemon_wakeup();
1805						}
1806						bytesinpage = tinc;
1807						if (tinc > (newbsize - toff))
1808							bytesinpage = newbsize - toff;
1809						if (bp->b_flags & B_CACHE)
1810							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1811						m->flags &= ~PG_ZERO;
1812						vm_page_wire(m);
1813					}
1814					bp->b_pages[pageindex] = m;
1815					curbpnpages = pageindex + 1;
1816				}
1817				if (vp->v_tag == VT_NFS &&
1818				    vp->v_type != VBLK) {
1819					if (bp->b_dirtyend > 0) {
1820						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
1821						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
1822					}
1823					if (bp->b_validend == 0)
1824						bp->b_flags &= ~B_CACHE;
1825				}
1826				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1827				bp->b_npages = curbpnpages;
1828				pmap_qenter((vm_offset_t) bp->b_data,
1829					bp->b_pages, bp->b_npages);
1830				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1831			}
1832		}
1833	}
1834	if (bp->b_flags & B_VMIO)
1835		vmiospace += (newbsize - bp->b_bufsize);
1836	bufspace += (newbsize - bp->b_bufsize);
1837	bp->b_bufsize = newbsize;
1838	bp->b_bcount = size;
1839	return 1;
1840}
1841
1842/*
1843 * Wait for buffer I/O completion, returning error status.
1844 */
1845int
1846biowait(register struct buf * bp)
1847{
1848	int s;
1849
1850	s = splbio();
1851	while ((bp->b_flags & B_DONE) == 0)
1852#if defined(NO_SCHEDULE_MODS)
1853		tsleep(bp, PRIBIO, "biowait", 0);
1854#else
1855		if (bp->b_flags & B_READ)
1856			tsleep(bp, PRIBIO, "biord", 0);
1857		else
1858			tsleep(bp, PRIBIO, "biowr", 0);
1859#endif
1860	splx(s);
1861	if (bp->b_flags & B_EINTR) {
1862		bp->b_flags &= ~B_EINTR;
1863		return (EINTR);
1864	}
1865	if (bp->b_flags & B_ERROR) {
1866		return (bp->b_error ? bp->b_error : EIO);
1867	} else {
1868		return (0);
1869	}
1870}
1871
1872/*
1873 * Finish I/O on a buffer, calling an optional function.
1874 * This is usually called from interrupt level, so process blocking
1875 * is not *a good idea*.
1876 */
1877void
1878biodone(register struct buf * bp)
1879{
1880	int s;
1881
1882	s = splbio();
1883
1884#if !defined(MAX_PERF)
1885	if (!(bp->b_flags & B_BUSY))
1886		panic("biodone: buffer not busy");
1887#endif
1888
1889	if (bp->b_flags & B_DONE) {
1890		splx(s);
1891#if !defined(MAX_PERF)
1892		printf("biodone: buffer already done\n");
1893#endif
1894		return;
1895	}
1896	bp->b_flags |= B_DONE;
1897
1898	if ((bp->b_flags & B_READ) == 0) {
1899		vwakeup(bp);
1900	}
1901
1902#ifdef BOUNCE_BUFFERS
1903	if (bp->b_flags & B_BOUNCE) {
1904		vm_bounce_free(bp);
1905	}
1906#endif
1907
1908	/* call optional completion function if requested */
1909	if (bp->b_flags & B_CALL) {
1910		bp->b_flags &= ~B_CALL;
1911		(*bp->b_iodone) (bp);
1912		splx(s);
1913		return;
1914	}
1915	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1916		(*bioops.io_complete)(bp);
1917
1918	if (bp->b_flags & B_VMIO) {
1919		int i, resid;
1920		vm_ooffset_t foff;
1921		vm_page_t m;
1922		vm_object_t obj;
1923		int iosize;
1924		struct vnode *vp = bp->b_vp;
1925
1926		obj = vp->v_object;
1927
1928#if defined(VFS_BIO_DEBUG)
1929		if (vp->v_usecount == 0) {
1930			panic("biodone: zero vnode ref count");
1931		}
1932
1933		if (vp->v_object == NULL) {
1934			panic("biodone: missing VM object");
1935		}
1936
1937		if ((vp->v_flag & VOBJBUF) == 0) {
1938			panic("biodone: vnode is not setup for merged cache");
1939		}
1940#endif
1941
1942		foff = bp->b_offset;
1943#ifdef DIAGNOSTIC
1944		if (bp->b_offset == NOOFFSET)
1945			panic("biodone: no buffer offset");
1946#endif
1947
1948#if !defined(MAX_PERF)
1949		if (!obj) {
1950			panic("biodone: no object");
1951		}
1952#endif
1953#if defined(VFS_BIO_DEBUG)
1954		if (obj->paging_in_progress < bp->b_npages) {
1955			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1956			    obj->paging_in_progress, bp->b_npages);
1957		}
1958#endif
1959		iosize = bp->b_bufsize;
1960		for (i = 0; i < bp->b_npages; i++) {
1961			int bogusflag = 0;
1962			m = bp->b_pages[i];
1963			if (m == bogus_page) {
1964				bogusflag = 1;
1965				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1966				if (!m) {
1967#if defined(VFS_BIO_DEBUG)
1968					printf("biodone: page disappeared\n");
1969#endif
1970					--obj->paging_in_progress;
1971					continue;
1972				}
1973				bp->b_pages[i] = m;
1974				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1975			}
1976#if defined(VFS_BIO_DEBUG)
1977			if (OFF_TO_IDX(foff) != m->pindex) {
1978				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1979			}
1980#endif
1981			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1982			if (resid > iosize)
1983				resid = iosize;
1984
1985			/*
1986			 * In the write case, the valid and clean bits are
1987			 * already changed correctly, so we only need to do this
1988			 * here in the read case.
1989			 */
1990			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1991				vfs_page_set_valid(bp, foff, i, m);
1992			}
1993			m->flags &= ~PG_ZERO;
1994
1995			/*
1996			 * when debugging new filesystems or buffer I/O methods, this
1997			 * is the most common error that pops up.  if you see this, you
1998			 * have not set the page busy flag correctly!!!
1999			 */
2000			if (m->busy == 0) {
2001#if !defined(MAX_PERF)
2002				printf("biodone: page busy < 0, "
2003				    "pindex: %d, foff: 0x(%x,%x), "
2004				    "resid: %d, index: %d\n",
2005				    (int) m->pindex, (int)(foff >> 32),
2006						(int) foff & 0xffffffff, resid, i);
2007#endif
2008				if (vp->v_type != VBLK)
2009#if !defined(MAX_PERF)
2010					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2011					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2012					    (int) bp->b_lblkno,
2013					    bp->b_flags, bp->b_npages);
2014				else
2015					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2016					    (int) bp->b_lblkno,
2017					    bp->b_flags, bp->b_npages);
2018				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2019				    m->valid, m->dirty, m->wire_count);
2020#endif
2021				panic("biodone: page busy < 0\n");
2022			}
2023			PAGE_BWAKEUP(m);
2024			--obj->paging_in_progress;
2025			foff += resid;
2026			iosize -= resid;
2027		}
2028		if (obj &&
2029			(obj->paging_in_progress == 0) &&
2030		    (obj->flags & OBJ_PIPWNT)) {
2031			obj->flags &= ~OBJ_PIPWNT;
2032			wakeup(obj);
2033		}
2034	}
2035	/*
2036	 * For asynchronous completions, release the buffer now. The brelse
2037	 * checks for B_WANTED and will do the wakeup there if necessary - so
2038	 * no need to do a wakeup here in the async case.
2039	 */
2040
2041	if (bp->b_flags & B_ASYNC) {
2042		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2043			brelse(bp);
2044		else
2045			bqrelse(bp);
2046	} else {
2047		bp->b_flags &= ~B_WANTED;
2048		wakeup(bp);
2049	}
2050	splx(s);
2051}
2052
2053static int
2054count_lock_queue()
2055{
2056	int count;
2057	struct buf *bp;
2058
2059	count = 0;
2060	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
2061	    bp != NULL;
2062	    bp = TAILQ_NEXT(bp, b_freelist))
2063		count++;
2064	return (count);
2065}
2066
2067#if 0	/* not with kirks code */
2068static int vfs_update_interval = 30;
2069
2070static void
2071vfs_update()
2072{
2073	while (1) {
2074		tsleep(&vfs_update_wakeup, PUSER, "update",
2075		    hz * vfs_update_interval);
2076		vfs_update_wakeup = 0;
2077		sync(curproc, NULL);
2078	}
2079}
2080
2081static int
2082sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
2083{
2084	int error = sysctl_handle_int(oidp,
2085		oidp->oid_arg1, oidp->oid_arg2, req);
2086	if (!error)
2087		wakeup(&vfs_update_wakeup);
2088	return error;
2089}
2090
2091SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
2092	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
2093
2094#endif
2095
2096
2097/*
2098 * This routine is called in lieu of iodone in the case of
2099 * incomplete I/O.  This keeps the busy status for pages
2100 * consistant.
2101 */
2102void
2103vfs_unbusy_pages(struct buf * bp)
2104{
2105	int i;
2106
2107	if (bp->b_flags & B_VMIO) {
2108		struct vnode *vp = bp->b_vp;
2109		vm_object_t obj = vp->v_object;
2110
2111		for (i = 0; i < bp->b_npages; i++) {
2112			vm_page_t m = bp->b_pages[i];
2113
2114			if (m == bogus_page) {
2115				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2116#if !defined(MAX_PERF)
2117				if (!m) {
2118					panic("vfs_unbusy_pages: page missing\n");
2119				}
2120#endif
2121				bp->b_pages[i] = m;
2122				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
2123			}
2124			--obj->paging_in_progress;
2125			m->flags &= ~PG_ZERO;
2126			PAGE_BWAKEUP(m);
2127		}
2128		if (obj->paging_in_progress == 0 &&
2129		    (obj->flags & OBJ_PIPWNT)) {
2130			obj->flags &= ~OBJ_PIPWNT;
2131			wakeup(obj);
2132		}
2133	}
2134}
2135
2136/*
2137 * Set NFS' b_validoff and b_validend fields from the valid bits
2138 * of a page.  If the consumer is not NFS, and the page is not
2139 * valid for the entire range, clear the B_CACHE flag to force
2140 * the consumer to re-read the page.
2141 */
2142static void
2143vfs_buf_set_valid(struct buf *bp,
2144		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
2145		  vm_page_t m)
2146{
2147	if (bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK) {
2148		vm_offset_t svalid, evalid;
2149		int validbits = m->valid;
2150
2151		/*
2152		 * This only bothers with the first valid range in the
2153		 * page.
2154		 */
2155		svalid = off;
2156		while (validbits && !(validbits & 1)) {
2157			svalid += DEV_BSIZE;
2158			validbits >>= 1;
2159		}
2160		evalid = svalid;
2161		while (validbits & 1) {
2162			evalid += DEV_BSIZE;
2163			validbits >>= 1;
2164		}
2165		/*
2166		 * Make sure this range is contiguous with the range
2167		 * built up from previous pages.  If not, then we will
2168		 * just use the range from the previous pages.
2169		 */
2170		if (svalid == bp->b_validend) {
2171			bp->b_validoff = min(bp->b_validoff, svalid);
2172			bp->b_validend = max(bp->b_validend, evalid);
2173		}
2174	} else if (!vm_page_is_valid(m,
2175				     (vm_offset_t) ((foff + off) & PAGE_MASK),
2176				     size)) {
2177		bp->b_flags &= ~B_CACHE;
2178	}
2179}
2180
2181/*
2182 * Set the valid bits in a page, taking care of the b_validoff,
2183 * b_validend fields which NFS uses to optimise small reads.  Off is
2184 * the offset within the file and pageno is the page index within the buf.
2185 */
2186static void
2187vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2188{
2189	struct vnode *vp = bp->b_vp;
2190	vm_ooffset_t soff, eoff;
2191
2192	soff = off;
2193	eoff = off + min(PAGE_SIZE, bp->b_bufsize);
2194	if (vp->v_tag == VT_NFS && vp->v_type != VBLK) {
2195		vm_ooffset_t sv, ev;
2196		vm_page_set_invalid(m,
2197		    (vm_offset_t) (soff & PAGE_MASK),
2198		    (vm_offset_t) (eoff - soff));
2199		off = off - pageno * PAGE_SIZE;
2200		sv = off + ((bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1));
2201		ev = off + ((bp->b_validend + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1));
2202		soff = max(sv, soff);
2203		eoff = min(ev, eoff);
2204	}
2205	if (eoff > soff)
2206		vm_page_set_validclean(m,
2207	       (vm_offset_t) (soff & PAGE_MASK),
2208	       (vm_offset_t) (eoff - soff));
2209}
2210
2211/*
2212 * This routine is called before a device strategy routine.
2213 * It is used to tell the VM system that paging I/O is in
2214 * progress, and treat the pages associated with the buffer
2215 * almost as being PG_BUSY.  Also the object paging_in_progress
2216 * flag is handled to make sure that the object doesn't become
2217 * inconsistant.
2218 */
2219void
2220vfs_busy_pages(struct buf * bp, int clear_modify)
2221{
2222	int i,s;
2223
2224	if (bp->b_flags & B_VMIO) {
2225		struct vnode *vp = bp->b_vp;
2226		vm_object_t obj = vp->v_object;
2227		vm_ooffset_t foff;
2228
2229		foff = bp->b_offset;
2230#ifdef DIAGNOSTIC
2231		if (bp->b_offset == NOOFFSET)
2232			panic("vfs_busy_pages: no buffer offset");
2233#endif
2234
2235		vfs_setdirty(bp);
2236
2237retry:
2238		for (i = 0; i < bp->b_npages; i++) {
2239			vm_page_t m = bp->b_pages[i];
2240			if (vm_page_sleep(m, "vbpage", NULL))
2241				goto retry;
2242		}
2243
2244		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2245			vm_page_t m = bp->b_pages[i];
2246
2247			m->flags &= ~PG_ZERO;
2248			if ((bp->b_flags & B_CLUSTER) == 0) {
2249				obj->paging_in_progress++;
2250				m->busy++;
2251			}
2252
2253			vm_page_protect(m, VM_PROT_NONE);
2254			if (clear_modify)
2255				vfs_page_set_valid(bp, foff, i, m);
2256			else if (bp->b_bcount >= PAGE_SIZE) {
2257				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
2258					bp->b_pages[i] = bogus_page;
2259					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
2260				}
2261			}
2262		}
2263	}
2264}
2265
2266/*
2267 * Tell the VM system that the pages associated with this buffer
2268 * are clean.  This is used for delayed writes where the data is
2269 * going to go to disk eventually without additional VM intevention.
2270 */
2271void
2272vfs_clean_pages(struct buf * bp)
2273{
2274	int i;
2275
2276	if (bp->b_flags & B_VMIO) {
2277		struct vnode *vp = bp->b_vp;
2278		vm_ooffset_t foff;
2279		foff = bp->b_offset;
2280
2281#ifdef DIAGNOSTIC
2282		if (bp->b_offset == NOOFFSET)
2283			panic("vfs_clean_pages: no buffer offset");
2284#endif
2285
2286		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2287			vm_page_t m = bp->b_pages[i];
2288			vfs_page_set_valid(bp, foff, i, m);
2289		}
2290	}
2291}
2292
2293void
2294vfs_bio_clrbuf(struct buf *bp) {
2295	int i;
2296	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2297		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
2298			int mask;
2299			mask = 0;
2300			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
2301				mask |= (1 << (i/DEV_BSIZE));
2302			if(((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2303				(bp->b_pages[0]->valid != mask)) {
2304				bzero(bp->b_data, bp->b_bufsize);
2305			}
2306			bp->b_pages[0]->valid = mask;
2307			bp->b_resid = 0;
2308			return;
2309		}
2310		for(i=0;i<bp->b_npages;i++) {
2311			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
2312				continue;
2313			if( bp->b_pages[i]->valid == 0) {
2314				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2315					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
2316				}
2317			} else {
2318				int j;
2319				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
2320					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2321						(bp->b_pages[i]->valid & (1<<j)) == 0)
2322						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
2323				}
2324			}
2325			bp->b_pages[i]->valid = VM_PAGE_BITS_ALL;
2326			bp->b_pages[i]->flags &= ~PG_ZERO;
2327		}
2328		bp->b_resid = 0;
2329	} else {
2330		clrbuf(bp);
2331	}
2332}
2333
2334/*
2335 * vm_hold_load_pages and vm_hold_unload pages get pages into
2336 * a buffers address space.  The pages are anonymous and are
2337 * not associated with a file object.
2338 */
2339void
2340vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2341{
2342	vm_offset_t pg;
2343	vm_page_t p;
2344	int index;
2345
2346	to = round_page(to);
2347	from = round_page(from);
2348	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2349
2350	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2351
2352tryagain:
2353
2354		p = vm_page_alloc(kernel_object,
2355			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
2356		    VM_ALLOC_NORMAL);
2357		if (!p) {
2358			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
2359			VM_WAIT;
2360			goto tryagain;
2361		}
2362		vm_page_wire(p);
2363		p->valid = VM_PAGE_BITS_ALL;
2364		p->flags &= ~PG_ZERO;
2365		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
2366		bp->b_pages[index] = p;
2367		PAGE_WAKEUP(p);
2368	}
2369	bp->b_npages = index;
2370}
2371
2372void
2373vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2374{
2375	vm_offset_t pg;
2376	vm_page_t p;
2377	int index, newnpages;
2378
2379	from = round_page(from);
2380	to = round_page(to);
2381	newnpages = index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2382
2383	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2384		p = bp->b_pages[index];
2385		if (p && (index < bp->b_npages)) {
2386#if !defined(MAX_PERF)
2387			if (p->busy) {
2388				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2389					bp->b_blkno, bp->b_lblkno);
2390			}
2391#endif
2392			bp->b_pages[index] = NULL;
2393			pmap_kremove(pg);
2394			p->flags |= PG_BUSY;
2395			vm_page_unwire(p);
2396			vm_page_free(p);
2397		}
2398	}
2399	bp->b_npages = newnpages;
2400}
2401
2402
2403#include "opt_ddb.h"
2404#ifdef DDB
2405#include <ddb/ddb.h>
2406
2407DB_SHOW_COMMAND(buffer, db_show_buffer)
2408{
2409	/* get args */
2410	struct buf *bp = (struct buf *)addr;
2411
2412	if (!have_addr) {
2413		db_printf("usage: show buffer <addr>\n");
2414		return;
2415	}
2416
2417	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2418		  bp->b_flags, "\20\40bounce\37cluster\36vmio\35ram\34ordered"
2419		  "\33paging\32xxx\31writeinprog\30wanted\27relbuf\26tape"
2420		  "\25read\24raw\23phys\22clusterok\21malloc\20nocache"
2421		  "\17locked\16inval\15gathered\14error\13eintr\12done\11dirty"
2422		  "\10delwri\7call\6cache\5busy\4bad\3async\2needcommit\1age");
2423	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2424		  "b_resid = %ld\nb_dev = 0x%x, b_data = %p, "
2425		  "b_blkno = %d, b_pblkno = %d\n",
2426		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2427		  bp->b_dev, bp->b_data, bp->b_blkno, bp->b_pblkno);
2428	if (bp->b_npages) {
2429		int i;
2430		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
2431		for (i = 0; i < bp->b_npages; i++) {
2432			vm_page_t m;
2433			m = bp->b_pages[i];
2434			db_printf("(0x%x, 0x%x, 0x%x)", m->object, m->pindex,
2435				VM_PAGE_TO_PHYS(m));
2436			if ((i + 1) < bp->b_npages)
2437				db_printf(",");
2438		}
2439		db_printf("\n");
2440	}
2441}
2442#endif /* DDB */
2443