vfs_bio.c revision 288299
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * Copyright (c) 2013 The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed by Konstantin Belousov
8 * under sponsorship from the FreeBSD Foundation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32/*
33 * this file contains a new buffer I/O scheme implementing a coherent
34 * VM object and buffer cache scheme.  Pains have been taken to make
35 * sure that the performance degradation associated with schemes such
36 * as this is not realized.
37 *
38 * Author:  John S. Dyson
39 * Significant help during the development and debugging phases
40 * had been provided by David Greenman, also of the FreeBSD core team.
41 *
42 * see man buf(9) for more info.
43 */
44
45#include <sys/cdefs.h>
46__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 288299 2015-09-27 05:16:06Z jeff $");
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/conf.h>
52#include <sys/buf.h>
53#include <sys/devicestat.h>
54#include <sys/eventhandler.h>
55#include <sys/fail.h>
56#include <sys/limits.h>
57#include <sys/lock.h>
58#include <sys/malloc.h>
59#include <sys/mount.h>
60#include <sys/mutex.h>
61#include <sys/kernel.h>
62#include <sys/kthread.h>
63#include <sys/proc.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sysctl.h>
67#include <sys/sysproto.h>
68#include <sys/vmem.h>
69#include <sys/vmmeter.h>
70#include <sys/vnode.h>
71#include <sys/watchdog.h>
72#include <geom/geom.h>
73#include <vm/vm.h>
74#include <vm/vm_param.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_pageout.h>
77#include <vm/vm_page.h>
78#include <vm/vm_object.h>
79#include <vm/vm_extern.h>
80#include <vm/vm_map.h>
81#include <vm/swap_pager.h>
82#include "opt_compat.h"
83#include "opt_swap.h"
84
85static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
86
87struct	bio_ops bioops;		/* I/O operation notification */
88
89struct	buf_ops buf_ops_bio = {
90	.bop_name	=	"buf_ops_bio",
91	.bop_write	=	bufwrite,
92	.bop_strategy	=	bufstrategy,
93	.bop_sync	=	bufsync,
94	.bop_bdflush	=	bufbdflush,
95};
96
97static struct buf *buf;		/* buffer header pool */
98extern struct buf *swbuf;	/* Swap buffer header pool. */
99caddr_t unmapped_buf;
100
101/* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
102struct proc *bufdaemonproc;
103
104static int inmem(struct vnode *vp, daddr_t blkno);
105static void vm_hold_free_pages(struct buf *bp, int newbsize);
106static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
107		vm_offset_t to);
108static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
109static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
110		vm_page_t m);
111static void vfs_clean_pages_dirty_buf(struct buf *bp);
112static void vfs_setdirty_locked_object(struct buf *bp);
113static void vfs_vmio_invalidate(struct buf *bp);
114static void vfs_vmio_truncate(struct buf *bp, int npages);
115static void vfs_vmio_extend(struct buf *bp, int npages, int size);
116static int vfs_bio_clcheck(struct vnode *vp, int size,
117		daddr_t lblkno, daddr_t blkno);
118static int buf_flush(struct vnode *vp, int);
119static int flushbufqueues(struct vnode *, int, int);
120static void buf_daemon(void);
121static void bremfreel(struct buf *bp);
122static __inline void bd_wakeup(void);
123static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
124#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
125    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
126static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
127#endif
128
129int vmiodirenable = TRUE;
130SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
131    "Use the VM system for directory writes");
132long runningbufspace;
133SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
134    "Amount of presently outstanding async buffer io");
135static long bufspace;
136#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
137    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
138SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
139    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
140#else
141SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
142    "Physical memory used for buffers");
143#endif
144static long bufkvaspace;
145SYSCTL_LONG(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace, 0,
146    "Kernel virtual memory used for buffers");
147static long maxbufspace;
148SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
149    "Maximum allowed value of bufspace (including buf_daemon)");
150static long bufmallocspace;
151SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
152    "Amount of malloced memory for buffers");
153static long maxbufmallocspace;
154SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
155    "Maximum amount of malloced memory for buffers");
156static long lobufspace;
157SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
158    "Minimum amount of buffers we want to have");
159long hibufspace;
160SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
161    "Maximum allowed value of bufspace (excluding buf_daemon)");
162static int bufreusecnt;
163SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
164    "Number of times we have reused a buffer");
165static int buffreekvacnt;
166SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
167    "Number of times we have freed the KVA space from some buffer");
168static int bufdefragcnt;
169SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
170    "Number of times we have had to repeat buffer allocation to defragment");
171static long lorunningspace;
172SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
173    CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
174    "Minimum preferred space used for in-progress I/O");
175static long hirunningspace;
176SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
177    CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
178    "Maximum amount of space to use for in-progress I/O");
179int dirtybufferflushes;
180SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
181    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
182int bdwriteskip;
183SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
184    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
185int altbufferflushes;
186SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
187    0, "Number of fsync flushes to limit dirty buffers");
188static int recursiveflushes;
189SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
190    0, "Number of flushes skipped due to being recursive");
191static int numdirtybuffers;
192SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
193    "Number of buffers that are dirty (has unwritten changes) at the moment");
194static int lodirtybuffers;
195SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
196    "How many buffers we want to have free before bufdaemon can sleep");
197static int hidirtybuffers;
198SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
199    "When the number of dirty buffers is considered severe");
200int dirtybufthresh;
201SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
202    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
203static int numfreebuffers;
204SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
205    "Number of free buffers");
206static int lofreebuffers;
207SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
208   "XXX Unused");
209static int hifreebuffers;
210SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
211   "XXX Complicatedly unused");
212static int getnewbufcalls;
213SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
214   "Number of calls to getnewbuf");
215static int getnewbufrestarts;
216SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
217    "Number of times getnewbuf has had to restart a buffer aquisition");
218static int mappingrestarts;
219SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
220    "Number of times getblk has had to restart a buffer mapping for "
221    "unmapped buffer");
222static int flushbufqtarget = 100;
223SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
224    "Amount of work to do in flushbufqueues when helping bufdaemon");
225static long notbufdflushes;
226SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes, 0,
227    "Number of dirty buffer flushes done by the bufdaemon helpers");
228static long barrierwrites;
229SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
230    "Number of barrier writes");
231SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
232    &unmapped_buf_allowed, 0,
233    "Permit the use of the unmapped i/o");
234
235/*
236 * Lock for the non-dirty bufqueues
237 */
238static struct mtx_padalign bqclean;
239
240/*
241 * Lock for the dirty queue.
242 */
243static struct mtx_padalign bqdirty;
244
245/*
246 * This lock synchronizes access to bd_request.
247 */
248static struct mtx_padalign bdlock;
249
250/*
251 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
252 * waitrunningbufspace().
253 */
254static struct mtx_padalign rbreqlock;
255
256/*
257 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
258 */
259static struct rwlock_padalign nblock;
260
261/*
262 * Lock that protects bdirtywait.
263 */
264static struct mtx_padalign bdirtylock;
265
266/*
267 * Wakeup point for bufdaemon, as well as indicator of whether it is already
268 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
269 * is idling.
270 */
271static int bd_request;
272
273/*
274 * Request for the buf daemon to write more buffers than is indicated by
275 * lodirtybuf.  This may be necessary to push out excess dependencies or
276 * defragment the address space where a simple count of the number of dirty
277 * buffers is insufficient to characterize the demand for flushing them.
278 */
279static int bd_speedupreq;
280
281/*
282 * bogus page -- for I/O to/from partially complete buffers
283 * this is a temporary solution to the problem, but it is not
284 * really that bad.  it would be better to split the buffer
285 * for input in the case of buffers partially already in memory,
286 * but the code is intricate enough already.
287 */
288vm_page_t bogus_page;
289
290/*
291 * Synchronization (sleep/wakeup) variable for active buffer space requests.
292 * Set when wait starts, cleared prior to wakeup().
293 * Used in runningbufwakeup() and waitrunningbufspace().
294 */
295static int runningbufreq;
296
297/*
298 * Synchronization (sleep/wakeup) variable for buffer requests.
299 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
300 * by and/or.
301 * Used in numdirtywakeup(), bufspacewakeup(), bufcountadd(), bwillwrite(),
302 * getnewbuf(), and getblk().
303 */
304static volatile int needsbuffer;
305
306/*
307 * Synchronization for bwillwrite() waiters.
308 */
309static int bdirtywait;
310
311/*
312 * Definitions for the buffer free lists.
313 */
314#define BUFFER_QUEUES	4	/* number of free buffer queues */
315
316#define QUEUE_NONE	0	/* on no queue */
317#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
318#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
319#define QUEUE_EMPTY	3	/* empty buffer headers */
320#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
321
322/* Queues for free buffers with various properties */
323static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
324#ifdef INVARIANTS
325static int bq_len[BUFFER_QUEUES];
326#endif
327
328/*
329 * Single global constant for BUF_WMESG, to avoid getting multiple references.
330 * buf_wmesg is referred from macros.
331 */
332const char *buf_wmesg = BUF_WMESG;
333
334#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
335#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
336#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
337
338static int
339sysctl_runningspace(SYSCTL_HANDLER_ARGS)
340{
341	long value;
342	int error;
343
344	value = *(long *)arg1;
345	error = sysctl_handle_long(oidp, &value, 0, req);
346	if (error != 0 || req->newptr == NULL)
347		return (error);
348	mtx_lock(&rbreqlock);
349	if (arg1 == &hirunningspace) {
350		if (value < lorunningspace)
351			error = EINVAL;
352		else
353			hirunningspace = value;
354	} else {
355		KASSERT(arg1 == &lorunningspace,
356		    ("%s: unknown arg1", __func__));
357		if (value > hirunningspace)
358			error = EINVAL;
359		else
360			lorunningspace = value;
361	}
362	mtx_unlock(&rbreqlock);
363	return (error);
364}
365
366#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
367    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
368static int
369sysctl_bufspace(SYSCTL_HANDLER_ARGS)
370{
371	long lvalue;
372	int ivalue;
373
374	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
375		return (sysctl_handle_long(oidp, arg1, arg2, req));
376	lvalue = *(long *)arg1;
377	if (lvalue > INT_MAX)
378		/* On overflow, still write out a long to trigger ENOMEM. */
379		return (sysctl_handle_long(oidp, &lvalue, 0, req));
380	ivalue = lvalue;
381	return (sysctl_handle_int(oidp, &ivalue, 0, req));
382}
383#endif
384
385/*
386 *	bqlock:
387 *
388 *	Return the appropriate queue lock based on the index.
389 */
390static inline struct mtx *
391bqlock(int qindex)
392{
393
394	if (qindex == QUEUE_DIRTY)
395		return (struct mtx *)(&bqdirty);
396	return (struct mtx *)(&bqclean);
397}
398
399/*
400 *	bdirtywakeup:
401 *
402 *	Wakeup any bwillwrite() waiters.
403 */
404static void
405bdirtywakeup(void)
406{
407	mtx_lock(&bdirtylock);
408	if (bdirtywait) {
409		bdirtywait = 0;
410		wakeup(&bdirtywait);
411	}
412	mtx_unlock(&bdirtylock);
413}
414
415/*
416 *	bdirtysub:
417 *
418 *	Decrement the numdirtybuffers count by one and wakeup any
419 *	threads blocked in bwillwrite().
420 */
421static void
422bdirtysub(void)
423{
424
425	if (atomic_fetchadd_int(&numdirtybuffers, -1) ==
426	    (lodirtybuffers + hidirtybuffers) / 2)
427		bdirtywakeup();
428}
429
430/*
431 *	bdirtyadd:
432 *
433 *	Increment the numdirtybuffers count by one and wakeup the buf
434 *	daemon if needed.
435 */
436static void
437bdirtyadd(void)
438{
439
440	/*
441	 * Only do the wakeup once as we cross the boundary.  The
442	 * buf daemon will keep running until the condition clears.
443	 */
444	if (atomic_fetchadd_int(&numdirtybuffers, 1) ==
445	    (lodirtybuffers + hidirtybuffers) / 2)
446		bd_wakeup();
447}
448
449/*
450 *	bufspacewakeup:
451 *
452 *	Called when buffer space is potentially available for recovery.
453 *	getnewbuf() will block on this flag when it is unable to free
454 *	sufficient buffer space.  Buffer space becomes recoverable when
455 *	bp's get placed back in the queues.
456 */
457static __inline void
458bufspacewakeup(void)
459{
460	int need_wakeup, on;
461
462	/*
463	 * If someone is waiting for bufspace, wake them up.  Even
464	 * though we may not have freed the kva space yet, the waiting
465	 * process will be able to now.
466	 */
467	rw_rlock(&nblock);
468	for (;;) {
469		need_wakeup = 0;
470		on = needsbuffer;
471		if ((on & VFS_BIO_NEED_BUFSPACE) == 0)
472			break;
473		need_wakeup = 1;
474		if (atomic_cmpset_rel_int(&needsbuffer, on,
475		    on & ~VFS_BIO_NEED_BUFSPACE))
476			break;
477	}
478	if (need_wakeup)
479		wakeup(__DEVOLATILE(void *, &needsbuffer));
480	rw_runlock(&nblock);
481}
482
483/*
484 *	bufspaceadjust:
485 *
486 *	Adjust the reported bufspace for a KVA managed buffer, possibly
487 * 	waking any waiters.
488 */
489static void
490bufspaceadjust(struct buf *bp, int bufsize)
491{
492	int diff;
493
494	KASSERT((bp->b_flags & B_MALLOC) == 0,
495	    ("bufspaceadjust: malloc buf %p", bp));
496	diff = bufsize - bp->b_bufsize;
497	if (diff < 0) {
498		atomic_subtract_long(&bufspace, -diff);
499		bufspacewakeup();
500	} else
501		atomic_add_long(&bufspace, diff);
502	bp->b_bufsize = bufsize;
503}
504
505/*
506 *	bufmallocadjust:
507 *
508 *	Adjust the reported bufspace for a malloc managed buffer, possibly
509 *	waking any waiters.
510 */
511static void
512bufmallocadjust(struct buf *bp, int bufsize)
513{
514	int diff;
515
516	KASSERT((bp->b_flags & B_MALLOC) != 0,
517	    ("bufmallocadjust: non-malloc buf %p", bp));
518	diff = bufsize - bp->b_bufsize;
519	if (diff < 0) {
520		atomic_subtract_long(&bufmallocspace, -diff);
521		bufspacewakeup();
522	} else
523		atomic_add_long(&bufmallocspace, diff);
524	bp->b_bufsize = bufsize;
525}
526
527/*
528 *	runningwakeup:
529 *
530 *	Wake up processes that are waiting on asynchronous writes to fall
531 *	below lorunningspace.
532 */
533static void
534runningwakeup(void)
535{
536
537	mtx_lock(&rbreqlock);
538	if (runningbufreq) {
539		runningbufreq = 0;
540		wakeup(&runningbufreq);
541	}
542	mtx_unlock(&rbreqlock);
543}
544
545/*
546 *	runningbufwakeup:
547 *
548 *	Decrement the outstanding write count according.
549 */
550void
551runningbufwakeup(struct buf *bp)
552{
553	long space, bspace;
554
555	bspace = bp->b_runningbufspace;
556	if (bspace == 0)
557		return;
558	space = atomic_fetchadd_long(&runningbufspace, -bspace);
559	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
560	    space, bspace));
561	bp->b_runningbufspace = 0;
562	/*
563	 * Only acquire the lock and wakeup on the transition from exceeding
564	 * the threshold to falling below it.
565	 */
566	if (space < lorunningspace)
567		return;
568	if (space - bspace > lorunningspace)
569		return;
570	runningwakeup();
571}
572
573/*
574 *	bufcountadd:
575 *
576 *	Called when a buffer has been added to one of the free queues to
577 *	account for the buffer and to wakeup anyone waiting for free buffers.
578 *	This typically occurs when large amounts of metadata are being handled
579 *	by the buffer cache ( else buffer space runs out first, usually ).
580 */
581static __inline void
582bufcountadd(struct buf *bp)
583{
584	int mask, need_wakeup, old, on;
585
586	KASSERT((bp->b_flags & B_INFREECNT) == 0,
587	    ("buf %p already counted as free", bp));
588	bp->b_flags |= B_INFREECNT;
589	old = atomic_fetchadd_int(&numfreebuffers, 1);
590	KASSERT(old >= 0 && old < nbuf,
591	    ("numfreebuffers climbed to %d", old + 1));
592	mask = VFS_BIO_NEED_ANY;
593	if (numfreebuffers >= hifreebuffers)
594		mask |= VFS_BIO_NEED_FREE;
595	rw_rlock(&nblock);
596	for (;;) {
597		need_wakeup = 0;
598		on = needsbuffer;
599		if (on == 0)
600			break;
601		need_wakeup = 1;
602		if (atomic_cmpset_rel_int(&needsbuffer, on, on & ~mask))
603			break;
604	}
605	if (need_wakeup)
606		wakeup(__DEVOLATILE(void *, &needsbuffer));
607	rw_runlock(&nblock);
608}
609
610/*
611 *	bufcountsub:
612 *
613 *	Decrement the numfreebuffers count as needed.
614 */
615static void
616bufcountsub(struct buf *bp)
617{
618	int old;
619
620	/*
621	 * Fixup numfreebuffers count.  If the buffer is invalid or not
622	 * delayed-write, the buffer was free and we must decrement
623	 * numfreebuffers.
624	 */
625	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
626		KASSERT((bp->b_flags & B_INFREECNT) != 0,
627		    ("buf %p not counted in numfreebuffers", bp));
628		bp->b_flags &= ~B_INFREECNT;
629		old = atomic_fetchadd_int(&numfreebuffers, -1);
630		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
631	}
632}
633
634/*
635 *	waitrunningbufspace()
636 *
637 *	runningbufspace is a measure of the amount of I/O currently
638 *	running.  This routine is used in async-write situations to
639 *	prevent creating huge backups of pending writes to a device.
640 *	Only asynchronous writes are governed by this function.
641 *
642 *	This does NOT turn an async write into a sync write.  It waits
643 *	for earlier writes to complete and generally returns before the
644 *	caller's write has reached the device.
645 */
646void
647waitrunningbufspace(void)
648{
649
650	mtx_lock(&rbreqlock);
651	while (runningbufspace > hirunningspace) {
652		runningbufreq = 1;
653		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
654	}
655	mtx_unlock(&rbreqlock);
656}
657
658
659/*
660 *	vfs_buf_test_cache:
661 *
662 *	Called when a buffer is extended.  This function clears the B_CACHE
663 *	bit if the newly extended portion of the buffer does not contain
664 *	valid data.
665 */
666static __inline void
667vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
668    vm_offset_t size, vm_page_t m)
669{
670
671	VM_OBJECT_ASSERT_LOCKED(m->object);
672	if (bp->b_flags & B_CACHE) {
673		int base = (foff + off) & PAGE_MASK;
674		if (vm_page_is_valid(m, base, size) == 0)
675			bp->b_flags &= ~B_CACHE;
676	}
677}
678
679/* Wake up the buffer daemon if necessary */
680static __inline void
681bd_wakeup(void)
682{
683
684	mtx_lock(&bdlock);
685	if (bd_request == 0) {
686		bd_request = 1;
687		wakeup(&bd_request);
688	}
689	mtx_unlock(&bdlock);
690}
691
692/*
693 * bd_speedup - speedup the buffer cache flushing code
694 */
695void
696bd_speedup(void)
697{
698	int needwake;
699
700	mtx_lock(&bdlock);
701	needwake = 0;
702	if (bd_speedupreq == 0 || bd_request == 0)
703		needwake = 1;
704	bd_speedupreq = 1;
705	bd_request = 1;
706	if (needwake)
707		wakeup(&bd_request);
708	mtx_unlock(&bdlock);
709}
710
711#ifndef NSWBUF_MIN
712#define	NSWBUF_MIN	16
713#endif
714
715#ifdef __i386__
716#define	TRANSIENT_DENOM	5
717#else
718#define	TRANSIENT_DENOM 10
719#endif
720
721/*
722 * Calculating buffer cache scaling values and reserve space for buffer
723 * headers.  This is called during low level kernel initialization and
724 * may be called more then once.  We CANNOT write to the memory area
725 * being reserved at this time.
726 */
727caddr_t
728kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
729{
730	int tuned_nbuf;
731	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
732
733	/*
734	 * physmem_est is in pages.  Convert it to kilobytes (assumes
735	 * PAGE_SIZE is >= 1K)
736	 */
737	physmem_est = physmem_est * (PAGE_SIZE / 1024);
738
739	/*
740	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
741	 * For the first 64MB of ram nominally allocate sufficient buffers to
742	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
743	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
744	 * the buffer cache we limit the eventual kva reservation to
745	 * maxbcache bytes.
746	 *
747	 * factor represents the 1/4 x ram conversion.
748	 */
749	if (nbuf == 0) {
750		int factor = 4 * BKVASIZE / 1024;
751
752		nbuf = 50;
753		if (physmem_est > 4096)
754			nbuf += min((physmem_est - 4096) / factor,
755			    65536 / factor);
756		if (physmem_est > 65536)
757			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
758			    32 * 1024 * 1024 / (factor * 5));
759
760		if (maxbcache && nbuf > maxbcache / BKVASIZE)
761			nbuf = maxbcache / BKVASIZE;
762		tuned_nbuf = 1;
763	} else
764		tuned_nbuf = 0;
765
766	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
767	maxbuf = (LONG_MAX / 3) / BKVASIZE;
768	if (nbuf > maxbuf) {
769		if (!tuned_nbuf)
770			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
771			    maxbuf);
772		nbuf = maxbuf;
773	}
774
775	/*
776	 * Ideal allocation size for the transient bio submap is 10%
777	 * of the maximal space buffer map.  This roughly corresponds
778	 * to the amount of the buffer mapped for typical UFS load.
779	 *
780	 * Clip the buffer map to reserve space for the transient
781	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
782	 * maximum buffer map extent on the platform.
783	 *
784	 * The fall-back to the maxbuf in case of maxbcache unset,
785	 * allows to not trim the buffer KVA for the architectures
786	 * with ample KVA space.
787	 */
788	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
789		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
790		buf_sz = (long)nbuf * BKVASIZE;
791		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
792		    (TRANSIENT_DENOM - 1)) {
793			/*
794			 * There is more KVA than memory.  Do not
795			 * adjust buffer map size, and assign the rest
796			 * of maxbuf to transient map.
797			 */
798			biotmap_sz = maxbuf_sz - buf_sz;
799		} else {
800			/*
801			 * Buffer map spans all KVA we could afford on
802			 * this platform.  Give 10% (20% on i386) of
803			 * the buffer map to the transient bio map.
804			 */
805			biotmap_sz = buf_sz / TRANSIENT_DENOM;
806			buf_sz -= biotmap_sz;
807		}
808		if (biotmap_sz / INT_MAX > MAXPHYS)
809			bio_transient_maxcnt = INT_MAX;
810		else
811			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
812		/*
813		 * Artifically limit to 1024 simultaneous in-flight I/Os
814		 * using the transient mapping.
815		 */
816		if (bio_transient_maxcnt > 1024)
817			bio_transient_maxcnt = 1024;
818		if (tuned_nbuf)
819			nbuf = buf_sz / BKVASIZE;
820	}
821
822	/*
823	 * swbufs are used as temporary holders for I/O, such as paging I/O.
824	 * We have no less then 16 and no more then 256.
825	 */
826	nswbuf = min(nbuf / 4, 256);
827	TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf);
828	if (nswbuf < NSWBUF_MIN)
829		nswbuf = NSWBUF_MIN;
830
831	/*
832	 * Reserve space for the buffer cache buffers
833	 */
834	swbuf = (void *)v;
835	v = (caddr_t)(swbuf + nswbuf);
836	buf = (void *)v;
837	v = (caddr_t)(buf + nbuf);
838
839	return(v);
840}
841
842/* Initialize the buffer subsystem.  Called before use of any buffers. */
843void
844bufinit(void)
845{
846	struct buf *bp;
847	int i;
848
849	CTASSERT(MAXBCACHEBUF >= MAXBSIZE);
850	mtx_init(&bqclean, "bufq clean lock", NULL, MTX_DEF);
851	mtx_init(&bqdirty, "bufq dirty lock", NULL, MTX_DEF);
852	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
853	rw_init(&nblock, "needsbuffer lock");
854	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
855	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
856
857	/* next, make a null set of free lists */
858	for (i = 0; i < BUFFER_QUEUES; i++)
859		TAILQ_INIT(&bufqueues[i]);
860
861	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
862
863	/* finally, initialize each buffer header and stick on empty q */
864	for (i = 0; i < nbuf; i++) {
865		bp = &buf[i];
866		bzero(bp, sizeof *bp);
867		bp->b_flags = B_INVAL | B_INFREECNT;
868		bp->b_rcred = NOCRED;
869		bp->b_wcred = NOCRED;
870		bp->b_qindex = QUEUE_EMPTY;
871		bp->b_xflags = 0;
872		bp->b_data = bp->b_kvabase = unmapped_buf;
873		LIST_INIT(&bp->b_dep);
874		BUF_LOCKINIT(bp);
875		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
876#ifdef INVARIANTS
877		bq_len[QUEUE_EMPTY]++;
878#endif
879	}
880
881	/*
882	 * maxbufspace is the absolute maximum amount of buffer space we are
883	 * allowed to reserve in KVM and in real terms.  The absolute maximum
884	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
885	 * used by most other processes.  The differential is required to
886	 * ensure that buf_daemon is able to run when other processes might
887	 * be blocked waiting for buffer space.
888	 *
889	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
890	 * this may result in KVM fragmentation which is not handled optimally
891	 * by the system.
892	 */
893	maxbufspace = (long)nbuf * BKVASIZE;
894	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBCACHEBUF * 10);
895	lobufspace = hibufspace - MAXBCACHEBUF;
896
897	/*
898	 * Note: The 16 MiB upper limit for hirunningspace was chosen
899	 * arbitrarily and may need further tuning. It corresponds to
900	 * 128 outstanding write IO requests (if IO size is 128 KiB),
901	 * which fits with many RAID controllers' tagged queuing limits.
902	 * The lower 1 MiB limit is the historical upper limit for
903	 * hirunningspace.
904	 */
905	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBCACHEBUF),
906	    16 * 1024 * 1024), 1024 * 1024);
907	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBCACHEBUF);
908
909/*
910 * Limit the amount of malloc memory since it is wired permanently into
911 * the kernel space.  Even though this is accounted for in the buffer
912 * allocation, we don't want the malloced region to grow uncontrolled.
913 * The malloc scheme improves memory utilization significantly on average
914 * (small) directories.
915 */
916	maxbufmallocspace = hibufspace / 20;
917
918/*
919 * Reduce the chance of a deadlock occuring by limiting the number
920 * of delayed-write dirty buffers we allow to stack up.
921 */
922	hidirtybuffers = nbuf / 4 + 20;
923	dirtybufthresh = hidirtybuffers * 9 / 10;
924	numdirtybuffers = 0;
925/*
926 * To support extreme low-memory systems, make sure hidirtybuffers cannot
927 * eat up all available buffer space.  This occurs when our minimum cannot
928 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
929 * BKVASIZE'd buffers.
930 */
931	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
932		hidirtybuffers >>= 1;
933	}
934	lodirtybuffers = hidirtybuffers / 2;
935
936/*
937 * Try to keep the number of free buffers in the specified range,
938 * and give special processes (e.g. like buf_daemon) access to an
939 * emergency reserve.
940 */
941	lofreebuffers = nbuf / 18 + 5;
942	hifreebuffers = 2 * lofreebuffers;
943	numfreebuffers = nbuf;
944
945	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
946	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
947}
948
949#ifdef INVARIANTS
950static inline void
951vfs_buf_check_mapped(struct buf *bp)
952{
953
954	KASSERT(bp->b_kvabase != unmapped_buf,
955	    ("mapped buf: b_kvabase was not updated %p", bp));
956	KASSERT(bp->b_data != unmapped_buf,
957	    ("mapped buf: b_data was not updated %p", bp));
958	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
959	    MAXPHYS, ("b_data + b_offset unmapped %p", bp));
960}
961
962static inline void
963vfs_buf_check_unmapped(struct buf *bp)
964{
965
966	KASSERT(bp->b_data == unmapped_buf,
967	    ("unmapped buf: corrupted b_data %p", bp));
968}
969
970#define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
971#define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
972#else
973#define	BUF_CHECK_MAPPED(bp) do {} while (0)
974#define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
975#endif
976
977static int
978isbufbusy(struct buf *bp)
979{
980	if (((bp->b_flags & (B_INVAL | B_PERSISTENT)) == 0 &&
981	    BUF_ISLOCKED(bp)) ||
982	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
983		return (1);
984	return (0);
985}
986
987/*
988 * Shutdown the system cleanly to prepare for reboot, halt, or power off.
989 */
990void
991bufshutdown(int show_busybufs)
992{
993	static int first_buf_printf = 1;
994	struct buf *bp;
995	int iter, nbusy, pbusy;
996#ifndef PREEMPTION
997	int subiter;
998#endif
999
1000	/*
1001	 * Sync filesystems for shutdown
1002	 */
1003	wdog_kern_pat(WD_LASTVAL);
1004	sys_sync(curthread, NULL);
1005
1006	/*
1007	 * With soft updates, some buffers that are
1008	 * written will be remarked as dirty until other
1009	 * buffers are written.
1010	 */
1011	for (iter = pbusy = 0; iter < 20; iter++) {
1012		nbusy = 0;
1013		for (bp = &buf[nbuf]; --bp >= buf; )
1014			if (isbufbusy(bp))
1015				nbusy++;
1016		if (nbusy == 0) {
1017			if (first_buf_printf)
1018				printf("All buffers synced.");
1019			break;
1020		}
1021		if (first_buf_printf) {
1022			printf("Syncing disks, buffers remaining... ");
1023			first_buf_printf = 0;
1024		}
1025		printf("%d ", nbusy);
1026		if (nbusy < pbusy)
1027			iter = 0;
1028		pbusy = nbusy;
1029
1030		wdog_kern_pat(WD_LASTVAL);
1031		sys_sync(curthread, NULL);
1032
1033#ifdef PREEMPTION
1034		/*
1035		 * Drop Giant and spin for a while to allow
1036		 * interrupt threads to run.
1037		 */
1038		DROP_GIANT();
1039		DELAY(50000 * iter);
1040		PICKUP_GIANT();
1041#else
1042		/*
1043		 * Drop Giant and context switch several times to
1044		 * allow interrupt threads to run.
1045		 */
1046		DROP_GIANT();
1047		for (subiter = 0; subiter < 50 * iter; subiter++) {
1048			thread_lock(curthread);
1049			mi_switch(SW_VOL, NULL);
1050			thread_unlock(curthread);
1051			DELAY(1000);
1052		}
1053		PICKUP_GIANT();
1054#endif
1055	}
1056	printf("\n");
1057	/*
1058	 * Count only busy local buffers to prevent forcing
1059	 * a fsck if we're just a client of a wedged NFS server
1060	 */
1061	nbusy = 0;
1062	for (bp = &buf[nbuf]; --bp >= buf; ) {
1063		if (isbufbusy(bp)) {
1064#if 0
1065/* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1066			if (bp->b_dev == NULL) {
1067				TAILQ_REMOVE(&mountlist,
1068				    bp->b_vp->v_mount, mnt_list);
1069				continue;
1070			}
1071#endif
1072			nbusy++;
1073			if (show_busybufs > 0) {
1074				printf(
1075	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1076				    nbusy, bp, bp->b_vp, bp->b_flags,
1077				    (intmax_t)bp->b_blkno,
1078				    (intmax_t)bp->b_lblkno);
1079				BUF_LOCKPRINTINFO(bp);
1080				if (show_busybufs > 1)
1081					vn_printf(bp->b_vp,
1082					    "vnode content: ");
1083			}
1084		}
1085	}
1086	if (nbusy) {
1087		/*
1088		 * Failed to sync all blocks. Indicate this and don't
1089		 * unmount filesystems (thus forcing an fsck on reboot).
1090		 */
1091		printf("Giving up on %d buffers\n", nbusy);
1092		DELAY(5000000);	/* 5 seconds */
1093	} else {
1094		if (!first_buf_printf)
1095			printf("Final sync complete\n");
1096		/*
1097		 * Unmount filesystems
1098		 */
1099		if (panicstr == 0)
1100			vfs_unmountall();
1101	}
1102	swapoff_all();
1103	DELAY(100000);		/* wait for console output to finish */
1104}
1105
1106static void
1107bpmap_qenter(struct buf *bp)
1108{
1109
1110	BUF_CHECK_MAPPED(bp);
1111
1112	/*
1113	 * bp->b_data is relative to bp->b_offset, but
1114	 * bp->b_offset may be offset into the first page.
1115	 */
1116	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1117	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1118	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1119	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1120}
1121
1122/*
1123 *	binsfree:
1124 *
1125 *	Insert the buffer into the appropriate free list.
1126 */
1127static void
1128binsfree(struct buf *bp, int qindex)
1129{
1130	struct mtx *olock, *nlock;
1131
1132	BUF_ASSERT_XLOCKED(bp);
1133
1134	nlock = bqlock(qindex);
1135	/* Handle delayed bremfree() processing. */
1136	if (bp->b_flags & B_REMFREE) {
1137		olock = bqlock(bp->b_qindex);
1138		mtx_lock(olock);
1139		bremfreel(bp);
1140		if (olock != nlock) {
1141			mtx_unlock(olock);
1142			mtx_lock(nlock);
1143		}
1144	} else
1145		mtx_lock(nlock);
1146
1147	if (bp->b_qindex != QUEUE_NONE)
1148		panic("binsfree: free buffer onto another queue???");
1149
1150	bp->b_qindex = qindex;
1151	if (bp->b_flags & B_AGE)
1152		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1153	else
1154		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1155#ifdef INVARIANTS
1156	bq_len[bp->b_qindex]++;
1157#endif
1158	mtx_unlock(nlock);
1159
1160	/*
1161	 * Something we can maybe free or reuse.
1162	 */
1163	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1164		bufspacewakeup();
1165
1166	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1167		bufcountadd(bp);
1168}
1169
1170/*
1171 *	bremfree:
1172 *
1173 *	Mark the buffer for removal from the appropriate free list.
1174 *
1175 */
1176void
1177bremfree(struct buf *bp)
1178{
1179
1180	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1181	KASSERT((bp->b_flags & B_REMFREE) == 0,
1182	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1183	KASSERT(bp->b_qindex != QUEUE_NONE,
1184	    ("bremfree: buffer %p not on a queue.", bp));
1185	BUF_ASSERT_XLOCKED(bp);
1186
1187	bp->b_flags |= B_REMFREE;
1188	bufcountsub(bp);
1189}
1190
1191/*
1192 *	bremfreef:
1193 *
1194 *	Force an immediate removal from a free list.  Used only in nfs when
1195 *	it abuses the b_freelist pointer.
1196 */
1197void
1198bremfreef(struct buf *bp)
1199{
1200	struct mtx *qlock;
1201
1202	qlock = bqlock(bp->b_qindex);
1203	mtx_lock(qlock);
1204	bremfreel(bp);
1205	mtx_unlock(qlock);
1206}
1207
1208/*
1209 *	bremfreel:
1210 *
1211 *	Removes a buffer from the free list, must be called with the
1212 *	correct qlock held.
1213 */
1214static void
1215bremfreel(struct buf *bp)
1216{
1217
1218	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
1219	    bp, bp->b_vp, bp->b_flags);
1220	KASSERT(bp->b_qindex != QUEUE_NONE,
1221	    ("bremfreel: buffer %p not on a queue.", bp));
1222	BUF_ASSERT_XLOCKED(bp);
1223	mtx_assert(bqlock(bp->b_qindex), MA_OWNED);
1224
1225	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
1226#ifdef INVARIANTS
1227	KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
1228	    bp->b_qindex));
1229	bq_len[bp->b_qindex]--;
1230#endif
1231	bp->b_qindex = QUEUE_NONE;
1232	/*
1233	 * If this was a delayed bremfree() we only need to remove the buffer
1234	 * from the queue and return the stats are already done.
1235	 */
1236	if (bp->b_flags & B_REMFREE) {
1237		bp->b_flags &= ~B_REMFREE;
1238		return;
1239	}
1240	bufcountsub(bp);
1241}
1242
1243/*
1244 *	bufkvafree:
1245 *
1246 *	Free the kva allocation for a buffer.
1247 *
1248 */
1249static void
1250bufkvafree(struct buf *bp)
1251{
1252
1253#ifdef INVARIANTS
1254	if (bp->b_kvasize == 0) {
1255		KASSERT(bp->b_kvabase == unmapped_buf &&
1256		    bp->b_data == unmapped_buf,
1257		    ("Leaked KVA space on %p", bp));
1258	} else if (buf_mapped(bp))
1259		BUF_CHECK_MAPPED(bp);
1260	else
1261		BUF_CHECK_UNMAPPED(bp);
1262#endif
1263	if (bp->b_kvasize == 0)
1264		return;
1265
1266	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
1267	atomic_subtract_long(&bufkvaspace, bp->b_kvasize);
1268	atomic_add_int(&buffreekvacnt, 1);
1269	bp->b_data = bp->b_kvabase = unmapped_buf;
1270	bp->b_kvasize = 0;
1271}
1272
1273/*
1274 *	bufkvaalloc:
1275 *
1276 *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
1277 */
1278static int
1279bufkvaalloc(struct buf *bp, int maxsize, int gbflags)
1280{
1281	vm_offset_t addr;
1282	int error;
1283
1284	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
1285	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
1286
1287	bufkvafree(bp);
1288
1289	addr = 0;
1290	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
1291	if (error != 0) {
1292		/*
1293		 * Buffer map is too fragmented.  Request the caller
1294		 * to defragment the map.
1295		 */
1296		atomic_add_int(&bufdefragcnt, 1);
1297		return (error);
1298	}
1299	bp->b_kvabase = (caddr_t)addr;
1300	bp->b_kvasize = maxsize;
1301	atomic_add_long(&bufkvaspace, bp->b_kvasize);
1302	if ((gbflags & GB_UNMAPPED) != 0) {
1303		bp->b_data = unmapped_buf;
1304		BUF_CHECK_UNMAPPED(bp);
1305	} else {
1306		bp->b_data = bp->b_kvabase;
1307		BUF_CHECK_MAPPED(bp);
1308	}
1309	return (0);
1310}
1311
1312/*
1313 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
1314 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
1315 * the buffer is valid and we do not have to do anything.
1316 */
1317void
1318breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
1319    int cnt, struct ucred * cred)
1320{
1321	struct buf *rabp;
1322	int i;
1323
1324	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
1325		if (inmem(vp, *rablkno))
1326			continue;
1327		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
1328
1329		if ((rabp->b_flags & B_CACHE) == 0) {
1330			if (!TD_IS_IDLETHREAD(curthread))
1331				curthread->td_ru.ru_inblock++;
1332			rabp->b_flags |= B_ASYNC;
1333			rabp->b_flags &= ~B_INVAL;
1334			rabp->b_ioflags &= ~BIO_ERROR;
1335			rabp->b_iocmd = BIO_READ;
1336			if (rabp->b_rcred == NOCRED && cred != NOCRED)
1337				rabp->b_rcred = crhold(cred);
1338			vfs_busy_pages(rabp, 0);
1339			BUF_KERNPROC(rabp);
1340			rabp->b_iooffset = dbtob(rabp->b_blkno);
1341			bstrategy(rabp);
1342		} else {
1343			brelse(rabp);
1344		}
1345	}
1346}
1347
1348/*
1349 * Entry point for bread() and breadn() via #defines in sys/buf.h.
1350 *
1351 * Get a buffer with the specified data.  Look in the cache first.  We
1352 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
1353 * is set, the buffer is valid and we do not have to do anything, see
1354 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
1355 */
1356int
1357breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
1358    int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
1359{
1360	struct buf *bp;
1361	int rv = 0, readwait = 0;
1362
1363	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
1364	/*
1365	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
1366	 */
1367	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
1368	if (bp == NULL)
1369		return (EBUSY);
1370
1371	/* if not found in cache, do some I/O */
1372	if ((bp->b_flags & B_CACHE) == 0) {
1373		if (!TD_IS_IDLETHREAD(curthread))
1374			curthread->td_ru.ru_inblock++;
1375		bp->b_iocmd = BIO_READ;
1376		bp->b_flags &= ~B_INVAL;
1377		bp->b_ioflags &= ~BIO_ERROR;
1378		if (bp->b_rcred == NOCRED && cred != NOCRED)
1379			bp->b_rcred = crhold(cred);
1380		vfs_busy_pages(bp, 0);
1381		bp->b_iooffset = dbtob(bp->b_blkno);
1382		bstrategy(bp);
1383		++readwait;
1384	}
1385
1386	breada(vp, rablkno, rabsize, cnt, cred);
1387
1388	if (readwait) {
1389		rv = bufwait(bp);
1390	}
1391	return (rv);
1392}
1393
1394/*
1395 * Write, release buffer on completion.  (Done by iodone
1396 * if async).  Do not bother writing anything if the buffer
1397 * is invalid.
1398 *
1399 * Note that we set B_CACHE here, indicating that buffer is
1400 * fully valid and thus cacheable.  This is true even of NFS
1401 * now so we set it generally.  This could be set either here
1402 * or in biodone() since the I/O is synchronous.  We put it
1403 * here.
1404 */
1405int
1406bufwrite(struct buf *bp)
1407{
1408	int oldflags;
1409	struct vnode *vp;
1410	long space;
1411	int vp_md;
1412
1413	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1414	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
1415		bp->b_flags |= B_INVAL | B_RELBUF;
1416		bp->b_flags &= ~B_CACHE;
1417		brelse(bp);
1418		return (ENXIO);
1419	}
1420	if (bp->b_flags & B_INVAL) {
1421		brelse(bp);
1422		return (0);
1423	}
1424
1425	if (bp->b_flags & B_BARRIER)
1426		barrierwrites++;
1427
1428	oldflags = bp->b_flags;
1429
1430	BUF_ASSERT_HELD(bp);
1431
1432	if (bp->b_pin_count > 0)
1433		bunpin_wait(bp);
1434
1435	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
1436	    ("FFS background buffer should not get here %p", bp));
1437
1438	vp = bp->b_vp;
1439	if (vp)
1440		vp_md = vp->v_vflag & VV_MD;
1441	else
1442		vp_md = 0;
1443
1444	/*
1445	 * Mark the buffer clean.  Increment the bufobj write count
1446	 * before bundirty() call, to prevent other thread from seeing
1447	 * empty dirty list and zero counter for writes in progress,
1448	 * falsely indicating that the bufobj is clean.
1449	 */
1450	bufobj_wref(bp->b_bufobj);
1451	bundirty(bp);
1452
1453	bp->b_flags &= ~B_DONE;
1454	bp->b_ioflags &= ~BIO_ERROR;
1455	bp->b_flags |= B_CACHE;
1456	bp->b_iocmd = BIO_WRITE;
1457
1458	vfs_busy_pages(bp, 1);
1459
1460	/*
1461	 * Normal bwrites pipeline writes
1462	 */
1463	bp->b_runningbufspace = bp->b_bufsize;
1464	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
1465
1466	if (!TD_IS_IDLETHREAD(curthread))
1467		curthread->td_ru.ru_oublock++;
1468	if (oldflags & B_ASYNC)
1469		BUF_KERNPROC(bp);
1470	bp->b_iooffset = dbtob(bp->b_blkno);
1471	bstrategy(bp);
1472
1473	if ((oldflags & B_ASYNC) == 0) {
1474		int rtval = bufwait(bp);
1475		brelse(bp);
1476		return (rtval);
1477	} else if (space > hirunningspace) {
1478		/*
1479		 * don't allow the async write to saturate the I/O
1480		 * system.  We will not deadlock here because
1481		 * we are blocking waiting for I/O that is already in-progress
1482		 * to complete. We do not block here if it is the update
1483		 * or syncer daemon trying to clean up as that can lead
1484		 * to deadlock.
1485		 */
1486		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
1487			waitrunningbufspace();
1488	}
1489
1490	return (0);
1491}
1492
1493void
1494bufbdflush(struct bufobj *bo, struct buf *bp)
1495{
1496	struct buf *nbp;
1497
1498	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1499		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
1500		altbufferflushes++;
1501	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1502		BO_LOCK(bo);
1503		/*
1504		 * Try to find a buffer to flush.
1505		 */
1506		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1507			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1508			    BUF_LOCK(nbp,
1509				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
1510				continue;
1511			if (bp == nbp)
1512				panic("bdwrite: found ourselves");
1513			BO_UNLOCK(bo);
1514			/* Don't countdeps with the bo lock held. */
1515			if (buf_countdeps(nbp, 0)) {
1516				BO_LOCK(bo);
1517				BUF_UNLOCK(nbp);
1518				continue;
1519			}
1520			if (nbp->b_flags & B_CLUSTEROK) {
1521				vfs_bio_awrite(nbp);
1522			} else {
1523				bremfree(nbp);
1524				bawrite(nbp);
1525			}
1526			dirtybufferflushes++;
1527			break;
1528		}
1529		if (nbp == NULL)
1530			BO_UNLOCK(bo);
1531	}
1532}
1533
1534/*
1535 * Delayed write. (Buffer is marked dirty).  Do not bother writing
1536 * anything if the buffer is marked invalid.
1537 *
1538 * Note that since the buffer must be completely valid, we can safely
1539 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1540 * biodone() in order to prevent getblk from writing the buffer
1541 * out synchronously.
1542 */
1543void
1544bdwrite(struct buf *bp)
1545{
1546	struct thread *td = curthread;
1547	struct vnode *vp;
1548	struct bufobj *bo;
1549
1550	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1551	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1552	KASSERT((bp->b_flags & B_BARRIER) == 0,
1553	    ("Barrier request in delayed write %p", bp));
1554	BUF_ASSERT_HELD(bp);
1555
1556	if (bp->b_flags & B_INVAL) {
1557		brelse(bp);
1558		return;
1559	}
1560
1561	/*
1562	 * If we have too many dirty buffers, don't create any more.
1563	 * If we are wildly over our limit, then force a complete
1564	 * cleanup. Otherwise, just keep the situation from getting
1565	 * out of control. Note that we have to avoid a recursive
1566	 * disaster and not try to clean up after our own cleanup!
1567	 */
1568	vp = bp->b_vp;
1569	bo = bp->b_bufobj;
1570	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1571		td->td_pflags |= TDP_INBDFLUSH;
1572		BO_BDFLUSH(bo, bp);
1573		td->td_pflags &= ~TDP_INBDFLUSH;
1574	} else
1575		recursiveflushes++;
1576
1577	bdirty(bp);
1578	/*
1579	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1580	 * true even of NFS now.
1581	 */
1582	bp->b_flags |= B_CACHE;
1583
1584	/*
1585	 * This bmap keeps the system from needing to do the bmap later,
1586	 * perhaps when the system is attempting to do a sync.  Since it
1587	 * is likely that the indirect block -- or whatever other datastructure
1588	 * that the filesystem needs is still in memory now, it is a good
1589	 * thing to do this.  Note also, that if the pageout daemon is
1590	 * requesting a sync -- there might not be enough memory to do
1591	 * the bmap then...  So, this is important to do.
1592	 */
1593	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1594		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1595	}
1596
1597	/*
1598	 * Set the *dirty* buffer range based upon the VM system dirty
1599	 * pages.
1600	 *
1601	 * Mark the buffer pages as clean.  We need to do this here to
1602	 * satisfy the vnode_pager and the pageout daemon, so that it
1603	 * thinks that the pages have been "cleaned".  Note that since
1604	 * the pages are in a delayed write buffer -- the VFS layer
1605	 * "will" see that the pages get written out on the next sync,
1606	 * or perhaps the cluster will be completed.
1607	 */
1608	vfs_clean_pages_dirty_buf(bp);
1609	bqrelse(bp);
1610
1611	/*
1612	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1613	 * due to the softdep code.
1614	 */
1615}
1616
1617/*
1618 *	bdirty:
1619 *
1620 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1621 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1622 *	itself to properly update it in the dirty/clean lists.  We mark it
1623 *	B_DONE to ensure that any asynchronization of the buffer properly
1624 *	clears B_DONE ( else a panic will occur later ).
1625 *
1626 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1627 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1628 *	should only be called if the buffer is known-good.
1629 *
1630 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1631 *	count.
1632 *
1633 *	The buffer must be on QUEUE_NONE.
1634 */
1635void
1636bdirty(struct buf *bp)
1637{
1638
1639	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1640	    bp, bp->b_vp, bp->b_flags);
1641	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1642	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1643	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1644	BUF_ASSERT_HELD(bp);
1645	bp->b_flags &= ~(B_RELBUF);
1646	bp->b_iocmd = BIO_WRITE;
1647
1648	if ((bp->b_flags & B_DELWRI) == 0) {
1649		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1650		reassignbuf(bp);
1651		bdirtyadd();
1652	}
1653}
1654
1655/*
1656 *	bundirty:
1657 *
1658 *	Clear B_DELWRI for buffer.
1659 *
1660 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1661 *	count.
1662 *
1663 *	The buffer must be on QUEUE_NONE.
1664 */
1665
1666void
1667bundirty(struct buf *bp)
1668{
1669
1670	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1671	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1672	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1673	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1674	BUF_ASSERT_HELD(bp);
1675
1676	if (bp->b_flags & B_DELWRI) {
1677		bp->b_flags &= ~B_DELWRI;
1678		reassignbuf(bp);
1679		bdirtysub();
1680	}
1681	/*
1682	 * Since it is now being written, we can clear its deferred write flag.
1683	 */
1684	bp->b_flags &= ~B_DEFERRED;
1685}
1686
1687/*
1688 *	bawrite:
1689 *
1690 *	Asynchronous write.  Start output on a buffer, but do not wait for
1691 *	it to complete.  The buffer is released when the output completes.
1692 *
1693 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1694 *	B_INVAL buffers.  Not us.
1695 */
1696void
1697bawrite(struct buf *bp)
1698{
1699
1700	bp->b_flags |= B_ASYNC;
1701	(void) bwrite(bp);
1702}
1703
1704/*
1705 *	babarrierwrite:
1706 *
1707 *	Asynchronous barrier write.  Start output on a buffer, but do not
1708 *	wait for it to complete.  Place a write barrier after this write so
1709 *	that this buffer and all buffers written before it are committed to
1710 *	the disk before any buffers written after this write are committed
1711 *	to the disk.  The buffer is released when the output completes.
1712 */
1713void
1714babarrierwrite(struct buf *bp)
1715{
1716
1717	bp->b_flags |= B_ASYNC | B_BARRIER;
1718	(void) bwrite(bp);
1719}
1720
1721/*
1722 *	bbarrierwrite:
1723 *
1724 *	Synchronous barrier write.  Start output on a buffer and wait for
1725 *	it to complete.  Place a write barrier after this write so that
1726 *	this buffer and all buffers written before it are committed to
1727 *	the disk before any buffers written after this write are committed
1728 *	to the disk.  The buffer is released when the output completes.
1729 */
1730int
1731bbarrierwrite(struct buf *bp)
1732{
1733
1734	bp->b_flags |= B_BARRIER;
1735	return (bwrite(bp));
1736}
1737
1738/*
1739 *	bwillwrite:
1740 *
1741 *	Called prior to the locking of any vnodes when we are expecting to
1742 *	write.  We do not want to starve the buffer cache with too many
1743 *	dirty buffers so we block here.  By blocking prior to the locking
1744 *	of any vnodes we attempt to avoid the situation where a locked vnode
1745 *	prevents the various system daemons from flushing related buffers.
1746 */
1747void
1748bwillwrite(void)
1749{
1750
1751	if (numdirtybuffers >= hidirtybuffers) {
1752		mtx_lock(&bdirtylock);
1753		while (numdirtybuffers >= hidirtybuffers) {
1754			bdirtywait = 1;
1755			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
1756			    "flswai", 0);
1757		}
1758		mtx_unlock(&bdirtylock);
1759	}
1760}
1761
1762/*
1763 * Return true if we have too many dirty buffers.
1764 */
1765int
1766buf_dirty_count_severe(void)
1767{
1768
1769	return(numdirtybuffers >= hidirtybuffers);
1770}
1771
1772/*
1773 *	brelse:
1774 *
1775 *	Release a busy buffer and, if requested, free its resources.  The
1776 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1777 *	to be accessed later as a cache entity or reused for other purposes.
1778 */
1779void
1780brelse(struct buf *bp)
1781{
1782	int qindex;
1783
1784	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1785	    bp, bp->b_vp, bp->b_flags);
1786	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1787	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1788
1789	if (BUF_LOCKRECURSED(bp)) {
1790		/*
1791		 * Do not process, in particular, do not handle the
1792		 * B_INVAL/B_RELBUF and do not release to free list.
1793		 */
1794		BUF_UNLOCK(bp);
1795		return;
1796	}
1797
1798	if (bp->b_flags & B_MANAGED) {
1799		bqrelse(bp);
1800		return;
1801	}
1802
1803	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
1804		BO_LOCK(bp->b_bufobj);
1805		bp->b_vflags &= ~BV_BKGRDERR;
1806		BO_UNLOCK(bp->b_bufobj);
1807		bdirty(bp);
1808	}
1809	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1810	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1811		/*
1812		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1813		 * pages from being scrapped.  If the error is anything
1814		 * other than an I/O error (EIO), assume that retrying
1815		 * is futile.
1816		 */
1817		bp->b_ioflags &= ~BIO_ERROR;
1818		bdirty(bp);
1819	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1820	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1821		/*
1822		 * Either a failed I/O or we were asked to free or not
1823		 * cache the buffer.
1824		 */
1825		bp->b_flags |= B_INVAL;
1826		if (!LIST_EMPTY(&bp->b_dep))
1827			buf_deallocate(bp);
1828		if (bp->b_flags & B_DELWRI)
1829			bdirtysub();
1830		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1831		if ((bp->b_flags & B_VMIO) == 0) {
1832			allocbuf(bp, 0);
1833			if (bp->b_vp)
1834				brelvp(bp);
1835		}
1836	}
1837
1838	/*
1839	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
1840	 * is called with B_DELWRI set, the underlying pages may wind up
1841	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1842	 * because pages associated with a B_DELWRI bp are marked clean.
1843	 *
1844	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
1845	 * if B_DELWRI is set.
1846	 */
1847	if (bp->b_flags & B_DELWRI)
1848		bp->b_flags &= ~B_RELBUF;
1849
1850	/*
1851	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1852	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1853	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1854	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1855	 *
1856	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1857	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1858	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1859	 *
1860	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1861	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1862	 * the commit state and we cannot afford to lose the buffer. If the
1863	 * buffer has a background write in progress, we need to keep it
1864	 * around to prevent it from being reconstituted and starting a second
1865	 * background write.
1866	 */
1867	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
1868	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
1869	    !(bp->b_vp->v_mount != NULL &&
1870	    (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1871	    !vn_isdisk(bp->b_vp, NULL) && (bp->b_flags & B_DELWRI))) {
1872		vfs_vmio_invalidate(bp);
1873		allocbuf(bp, 0);
1874	}
1875
1876	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1877		allocbuf(bp, 0);
1878		if (bp->b_vp != NULL)
1879			brelvp(bp);
1880	}
1881
1882	/*
1883	 * If the buffer has junk contents signal it and eventually
1884	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1885	 * doesn't find it.
1886	 */
1887	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1888	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1889		bp->b_flags |= B_INVAL;
1890	if (bp->b_flags & B_INVAL) {
1891		if (bp->b_flags & B_DELWRI)
1892			bundirty(bp);
1893		if (bp->b_vp)
1894			brelvp(bp);
1895	}
1896
1897	/* buffers with no memory */
1898	if (bp->b_bufsize == 0) {
1899		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1900		if (bp->b_vflags & BV_BKGRDINPROG)
1901			panic("losing buffer 1");
1902		bufkvafree(bp);
1903		qindex = QUEUE_EMPTY;
1904		bp->b_flags |= B_AGE;
1905	/* buffers with junk contents */
1906	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1907	    (bp->b_ioflags & BIO_ERROR)) {
1908		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1909		if (bp->b_vflags & BV_BKGRDINPROG)
1910			panic("losing buffer 2");
1911		qindex = QUEUE_CLEAN;
1912		bp->b_flags |= B_AGE;
1913	/* remaining buffers */
1914	} else if (bp->b_flags & B_DELWRI)
1915		qindex = QUEUE_DIRTY;
1916	else
1917		qindex = QUEUE_CLEAN;
1918
1919	binsfree(bp, qindex);
1920
1921	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1922	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1923		panic("brelse: not dirty");
1924	/* unlock */
1925	BUF_UNLOCK(bp);
1926}
1927
1928/*
1929 * Release a buffer back to the appropriate queue but do not try to free
1930 * it.  The buffer is expected to be used again soon.
1931 *
1932 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1933 * biodone() to requeue an async I/O on completion.  It is also used when
1934 * known good buffers need to be requeued but we think we may need the data
1935 * again soon.
1936 *
1937 * XXX we should be able to leave the B_RELBUF hint set on completion.
1938 */
1939void
1940bqrelse(struct buf *bp)
1941{
1942	int qindex;
1943
1944	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1945	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1946	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1947
1948	if (BUF_LOCKRECURSED(bp)) {
1949		/* do not release to free list */
1950		BUF_UNLOCK(bp);
1951		return;
1952	}
1953	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1954
1955	if (bp->b_flags & B_MANAGED) {
1956		if (bp->b_flags & B_REMFREE)
1957			bremfreef(bp);
1958		goto out;
1959	}
1960
1961	/* buffers with stale but valid contents */
1962	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
1963	    BV_BKGRDERR)) == BV_BKGRDERR) {
1964		BO_LOCK(bp->b_bufobj);
1965		bp->b_vflags &= ~BV_BKGRDERR;
1966		BO_UNLOCK(bp->b_bufobj);
1967		qindex = QUEUE_DIRTY;
1968	} else {
1969		if ((bp->b_flags & B_DELWRI) == 0 &&
1970		    (bp->b_xflags & BX_VNDIRTY))
1971			panic("bqrelse: not dirty");
1972		qindex = QUEUE_CLEAN;
1973	}
1974	binsfree(bp, qindex);
1975
1976out:
1977	/* unlock */
1978	BUF_UNLOCK(bp);
1979}
1980
1981/*
1982 * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
1983 * restore bogus pages.
1984 */
1985static void
1986vfs_vmio_iodone(struct buf *bp)
1987{
1988	vm_ooffset_t foff;
1989	vm_page_t m;
1990	vm_object_t obj;
1991	struct vnode *vp;
1992	int bogus, i, iosize;
1993
1994	obj = bp->b_bufobj->bo_object;
1995	KASSERT(obj->paging_in_progress >= bp->b_npages,
1996	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
1997	    obj->paging_in_progress, bp->b_npages));
1998
1999	vp = bp->b_vp;
2000	KASSERT(vp->v_holdcnt > 0,
2001	    ("vfs_vmio_iodone: vnode %p has zero hold count", vp));
2002	KASSERT(vp->v_object != NULL,
2003	    ("vfs_vmio_iodone: vnode %p has no vm_object", vp));
2004
2005	foff = bp->b_offset;
2006	KASSERT(bp->b_offset != NOOFFSET,
2007	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2008
2009	bogus = 0;
2010	iosize = bp->b_bcount - bp->b_resid;
2011	VM_OBJECT_WLOCK(obj);
2012	for (i = 0; i < bp->b_npages; i++) {
2013		int resid;
2014
2015		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2016		if (resid > iosize)
2017			resid = iosize;
2018
2019		/*
2020		 * cleanup bogus pages, restoring the originals
2021		 */
2022		m = bp->b_pages[i];
2023		if (m == bogus_page) {
2024			bogus = 1;
2025			m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2026			if (m == NULL)
2027				panic("biodone: page disappeared!");
2028			bp->b_pages[i] = m;
2029		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2030			/*
2031			 * In the write case, the valid and clean bits are
2032			 * already changed correctly ( see bdwrite() ), so we
2033			 * only need to do this here in the read case.
2034			 */
2035			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2036			    resid)) == 0, ("vfs_vmio_iodone: page %p "
2037			    "has unexpected dirty bits", m));
2038			vfs_page_set_valid(bp, foff, m);
2039		}
2040		KASSERT(OFF_TO_IDX(foff) == m->pindex,
2041		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2042		    (intmax_t)foff, (uintmax_t)m->pindex));
2043
2044		vm_page_sunbusy(m);
2045		vm_object_pip_subtract(obj, 1);
2046		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2047		iosize -= resid;
2048	}
2049	vm_object_pip_wakeupn(obj, 0);
2050	VM_OBJECT_WUNLOCK(obj);
2051	if (bogus && buf_mapped(bp)) {
2052		BUF_CHECK_MAPPED(bp);
2053		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2054		    bp->b_pages, bp->b_npages);
2055	}
2056}
2057
2058/*
2059 * Unwire a page held by a buf and place it on the appropriate vm queue.
2060 */
2061static void
2062vfs_vmio_unwire(struct buf *bp, vm_page_t m)
2063{
2064	bool freed;
2065
2066	vm_page_lock(m);
2067	if (vm_page_unwire(m, PQ_NONE)) {
2068		/*
2069		 * Determine if the page should be freed before adding
2070		 * it to the inactive queue.
2071		 */
2072		if (m->valid == 0) {
2073			freed = !vm_page_busied(m);
2074			if (freed)
2075				vm_page_free(m);
2076		} else if ((bp->b_flags & B_DIRECT) != 0)
2077			freed = vm_page_try_to_free(m);
2078		else
2079			freed = false;
2080		if (!freed) {
2081			/*
2082			 * In order to maintain LRU page ordering, put
2083			 * the page at the tail of the inactive queue.
2084			 */
2085			vm_page_deactivate(m);
2086		}
2087	}
2088	vm_page_unlock(m);
2089}
2090
2091/*
2092 * Perform page invalidation when a buffer is released.  The fully invalid
2093 * pages will be reclaimed later in vfs_vmio_truncate().
2094 */
2095static void
2096vfs_vmio_invalidate(struct buf *bp)
2097{
2098	vm_object_t obj;
2099	vm_page_t m;
2100	int i, resid, poffset, presid;
2101
2102	if (buf_mapped(bp)) {
2103		BUF_CHECK_MAPPED(bp);
2104		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
2105	} else
2106		BUF_CHECK_UNMAPPED(bp);
2107	/*
2108	 * Get the base offset and length of the buffer.  Note that
2109	 * in the VMIO case if the buffer block size is not
2110	 * page-aligned then b_data pointer may not be page-aligned.
2111	 * But our b_pages[] array *IS* page aligned.
2112	 *
2113	 * block sizes less then DEV_BSIZE (usually 512) are not
2114	 * supported due to the page granularity bits (m->valid,
2115	 * m->dirty, etc...).
2116	 *
2117	 * See man buf(9) for more information
2118	 */
2119	obj = bp->b_bufobj->bo_object;
2120	resid = bp->b_bufsize;
2121	poffset = bp->b_offset & PAGE_MASK;
2122	VM_OBJECT_WLOCK(obj);
2123	for (i = 0; i < bp->b_npages; i++) {
2124		m = bp->b_pages[i];
2125		if (m == bogus_page)
2126			panic("vfs_vmio_invalidate: Unexpected bogus page.");
2127		bp->b_pages[i] = NULL;
2128
2129		presid = resid > (PAGE_SIZE - poffset) ?
2130		    (PAGE_SIZE - poffset) : resid;
2131		KASSERT(presid >= 0, ("brelse: extra page"));
2132		while (vm_page_xbusied(m)) {
2133			vm_page_lock(m);
2134			VM_OBJECT_WUNLOCK(obj);
2135			vm_page_busy_sleep(m, "mbncsh");
2136			VM_OBJECT_WLOCK(obj);
2137		}
2138		if (pmap_page_wired_mappings(m) == 0)
2139			vm_page_set_invalid(m, poffset, presid);
2140		vfs_vmio_unwire(bp, m);
2141		resid -= presid;
2142		poffset = 0;
2143	}
2144	VM_OBJECT_WUNLOCK(obj);
2145	bp->b_npages = 0;
2146}
2147
2148/*
2149 * Page-granular truncation of an existing VMIO buffer.
2150 */
2151static void
2152vfs_vmio_truncate(struct buf *bp, int desiredpages)
2153{
2154	vm_object_t obj;
2155	vm_page_t m;
2156	int i;
2157
2158	if (bp->b_npages == desiredpages)
2159		return;
2160
2161	if (buf_mapped(bp)) {
2162		BUF_CHECK_MAPPED(bp);
2163		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
2164		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
2165	} else
2166		BUF_CHECK_UNMAPPED(bp);
2167	obj = bp->b_bufobj->bo_object;
2168	if (obj != NULL)
2169		VM_OBJECT_WLOCK(obj);
2170	for (i = desiredpages; i < bp->b_npages; i++) {
2171		m = bp->b_pages[i];
2172		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
2173		bp->b_pages[i] = NULL;
2174		vfs_vmio_unwire(bp, m);
2175	}
2176	if (obj != NULL)
2177		VM_OBJECT_WUNLOCK(obj);
2178	bp->b_npages = desiredpages;
2179}
2180
2181/*
2182 * Byte granular extension of VMIO buffers.
2183 */
2184static void
2185vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
2186{
2187	/*
2188	 * We are growing the buffer, possibly in a
2189	 * byte-granular fashion.
2190	 */
2191	vm_object_t obj;
2192	vm_offset_t toff;
2193	vm_offset_t tinc;
2194	vm_page_t m;
2195
2196	/*
2197	 * Step 1, bring in the VM pages from the object, allocating
2198	 * them if necessary.  We must clear B_CACHE if these pages
2199	 * are not valid for the range covered by the buffer.
2200	 */
2201	obj = bp->b_bufobj->bo_object;
2202	VM_OBJECT_WLOCK(obj);
2203	while (bp->b_npages < desiredpages) {
2204		/*
2205		 * We must allocate system pages since blocking
2206		 * here could interfere with paging I/O, no
2207		 * matter which process we are.
2208		 *
2209		 * Only exclusive busy can be tested here.
2210		 * Blocking on shared busy might lead to
2211		 * deadlocks once allocbuf() is called after
2212		 * pages are vfs_busy_pages().
2213		 */
2214		m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) + bp->b_npages,
2215		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2216		    VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY |
2217		    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
2218		if (m->valid == 0)
2219			bp->b_flags &= ~B_CACHE;
2220		bp->b_pages[bp->b_npages] = m;
2221		++bp->b_npages;
2222	}
2223
2224	/*
2225	 * Step 2.  We've loaded the pages into the buffer,
2226	 * we have to figure out if we can still have B_CACHE
2227	 * set.  Note that B_CACHE is set according to the
2228	 * byte-granular range ( bcount and size ), not the
2229	 * aligned range ( newbsize ).
2230	 *
2231	 * The VM test is against m->valid, which is DEV_BSIZE
2232	 * aligned.  Needless to say, the validity of the data
2233	 * needs to also be DEV_BSIZE aligned.  Note that this
2234	 * fails with NFS if the server or some other client
2235	 * extends the file's EOF.  If our buffer is resized,
2236	 * B_CACHE may remain set! XXX
2237	 */
2238	toff = bp->b_bcount;
2239	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2240	while ((bp->b_flags & B_CACHE) && toff < size) {
2241		vm_pindex_t pi;
2242
2243		if (tinc > (size - toff))
2244			tinc = size - toff;
2245		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
2246		m = bp->b_pages[pi];
2247		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
2248		toff += tinc;
2249		tinc = PAGE_SIZE;
2250	}
2251	VM_OBJECT_WUNLOCK(obj);
2252
2253	/*
2254	 * Step 3, fixup the KVA pmap.
2255	 */
2256	if (buf_mapped(bp))
2257		bpmap_qenter(bp);
2258	else
2259		BUF_CHECK_UNMAPPED(bp);
2260}
2261
2262/*
2263 * Check to see if a block at a particular lbn is available for a clustered
2264 * write.
2265 */
2266static int
2267vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
2268{
2269	struct buf *bpa;
2270	int match;
2271
2272	match = 0;
2273
2274	/* If the buf isn't in core skip it */
2275	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
2276		return (0);
2277
2278	/* If the buf is busy we don't want to wait for it */
2279	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2280		return (0);
2281
2282	/* Only cluster with valid clusterable delayed write buffers */
2283	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
2284	    (B_DELWRI | B_CLUSTEROK))
2285		goto done;
2286
2287	if (bpa->b_bufsize != size)
2288		goto done;
2289
2290	/*
2291	 * Check to see if it is in the expected place on disk and that the
2292	 * block has been mapped.
2293	 */
2294	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
2295		match = 1;
2296done:
2297	BUF_UNLOCK(bpa);
2298	return (match);
2299}
2300
2301/*
2302 *	vfs_bio_awrite:
2303 *
2304 *	Implement clustered async writes for clearing out B_DELWRI buffers.
2305 *	This is much better then the old way of writing only one buffer at
2306 *	a time.  Note that we may not be presented with the buffers in the
2307 *	correct order, so we search for the cluster in both directions.
2308 */
2309int
2310vfs_bio_awrite(struct buf *bp)
2311{
2312	struct bufobj *bo;
2313	int i;
2314	int j;
2315	daddr_t lblkno = bp->b_lblkno;
2316	struct vnode *vp = bp->b_vp;
2317	int ncl;
2318	int nwritten;
2319	int size;
2320	int maxcl;
2321	int gbflags;
2322
2323	bo = &vp->v_bufobj;
2324	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
2325	/*
2326	 * right now we support clustered writing only to regular files.  If
2327	 * we find a clusterable block we could be in the middle of a cluster
2328	 * rather then at the beginning.
2329	 */
2330	if ((vp->v_type == VREG) &&
2331	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
2332	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
2333
2334		size = vp->v_mount->mnt_stat.f_iosize;
2335		maxcl = MAXPHYS / size;
2336
2337		BO_RLOCK(bo);
2338		for (i = 1; i < maxcl; i++)
2339			if (vfs_bio_clcheck(vp, size, lblkno + i,
2340			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
2341				break;
2342
2343		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
2344			if (vfs_bio_clcheck(vp, size, lblkno - j,
2345			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
2346				break;
2347		BO_RUNLOCK(bo);
2348		--j;
2349		ncl = i + j;
2350		/*
2351		 * this is a possible cluster write
2352		 */
2353		if (ncl != 1) {
2354			BUF_UNLOCK(bp);
2355			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
2356			    gbflags);
2357			return (nwritten);
2358		}
2359	}
2360	bremfree(bp);
2361	bp->b_flags |= B_ASYNC;
2362	/*
2363	 * default (old) behavior, writing out only one block
2364	 *
2365	 * XXX returns b_bufsize instead of b_bcount for nwritten?
2366	 */
2367	nwritten = bp->b_bufsize;
2368	(void) bwrite(bp);
2369
2370	return (nwritten);
2371}
2372
2373/*
2374 * Ask the bufdaemon for help, or act as bufdaemon itself, when a
2375 * locked vnode is supplied.
2376 */
2377static void
2378getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo,
2379    int defrag)
2380{
2381	struct thread *td;
2382	char *waitmsg;
2383	int error, fl, flags, norunbuf;
2384
2385	mtx_assert(&bqclean, MA_OWNED);
2386
2387	if (defrag) {
2388		flags = VFS_BIO_NEED_BUFSPACE;
2389		waitmsg = "nbufkv";
2390	} else if (bufspace >= hibufspace) {
2391		waitmsg = "nbufbs";
2392		flags = VFS_BIO_NEED_BUFSPACE;
2393	} else {
2394		waitmsg = "newbuf";
2395		flags = VFS_BIO_NEED_ANY;
2396	}
2397	atomic_set_int(&needsbuffer, flags);
2398	mtx_unlock(&bqclean);
2399
2400	bd_speedup();	/* heeeelp */
2401	if ((gbflags & GB_NOWAIT_BD) != 0)
2402		return;
2403
2404	td = curthread;
2405	rw_wlock(&nblock);
2406	while ((needsbuffer & flags) != 0) {
2407		if (vp != NULL && vp->v_type != VCHR &&
2408		    (td->td_pflags & TDP_BUFNEED) == 0) {
2409			rw_wunlock(&nblock);
2410			/*
2411			 * getblk() is called with a vnode locked, and
2412			 * some majority of the dirty buffers may as
2413			 * well belong to the vnode.  Flushing the
2414			 * buffers there would make a progress that
2415			 * cannot be achieved by the buf_daemon, that
2416			 * cannot lock the vnode.
2417			 */
2418			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2419			    (td->td_pflags & TDP_NORUNNINGBUF);
2420
2421			/*
2422			 * Play bufdaemon.  The getnewbuf() function
2423			 * may be called while the thread owns lock
2424			 * for another dirty buffer for the same
2425			 * vnode, which makes it impossible to use
2426			 * VOP_FSYNC() there, due to the buffer lock
2427			 * recursion.
2428			 */
2429			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2430			fl = buf_flush(vp, flushbufqtarget);
2431			td->td_pflags &= norunbuf;
2432			rw_wlock(&nblock);
2433			if (fl != 0)
2434				continue;
2435			if ((needsbuffer & flags) == 0)
2436				break;
2437		}
2438		error = rw_sleep(__DEVOLATILE(void *, &needsbuffer), &nblock,
2439		    (PRIBIO + 4) | slpflag, waitmsg, slptimeo);
2440		if (error != 0)
2441			break;
2442	}
2443	rw_wunlock(&nblock);
2444}
2445
2446static void
2447getnewbuf_reuse_bp(struct buf *bp, int qindex)
2448{
2449
2450	CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
2451	    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
2452	     bp->b_kvasize, bp->b_bufsize, qindex);
2453	mtx_assert(&bqclean, MA_NOTOWNED);
2454
2455	/*
2456	 * Note: we no longer distinguish between VMIO and non-VMIO
2457	 * buffers.
2458	 */
2459	KASSERT((bp->b_flags & B_DELWRI) == 0,
2460	    ("delwri buffer %p found in queue %d", bp, qindex));
2461
2462	/*
2463	 * When recycling a clean buffer we have to truncate it and
2464	 * release the vnode.
2465	 */
2466	if (qindex == QUEUE_CLEAN) {
2467		allocbuf(bp, 0);
2468		if (bp->b_vp != NULL)
2469			brelvp(bp);
2470	}
2471
2472	/*
2473	 * Get the rest of the buffer freed up.  b_kva* is still valid
2474	 * after this operation.
2475	 */
2476	if (bp->b_rcred != NOCRED) {
2477		crfree(bp->b_rcred);
2478		bp->b_rcred = NOCRED;
2479	}
2480	if (bp->b_wcred != NOCRED) {
2481		crfree(bp->b_wcred);
2482		bp->b_wcred = NOCRED;
2483	}
2484	if (!LIST_EMPTY(&bp->b_dep))
2485		buf_deallocate(bp);
2486	if (bp->b_vflags & BV_BKGRDINPROG)
2487		panic("losing buffer 3");
2488	KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p.  qindex: %d",
2489	    bp, bp->b_vp, qindex));
2490	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
2491	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
2492	KASSERT(bp->b_npages == 0,
2493	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
2494
2495	bp->b_flags = 0;
2496	bp->b_ioflags = 0;
2497	bp->b_xflags = 0;
2498	KASSERT((bp->b_flags & B_INFREECNT) == 0,
2499	    ("buf %p still counted as free?", bp));
2500	bp->b_vflags = 0;
2501	bp->b_vp = NULL;
2502	bp->b_blkno = bp->b_lblkno = 0;
2503	bp->b_offset = NOOFFSET;
2504	bp->b_iodone = 0;
2505	bp->b_error = 0;
2506	bp->b_resid = 0;
2507	bp->b_bcount = 0;
2508	bp->b_npages = 0;
2509	bp->b_dirtyoff = bp->b_dirtyend = 0;
2510	bp->b_bufobj = NULL;
2511	bp->b_pin_count = 0;
2512	bp->b_data = bp->b_kvabase;
2513	bp->b_fsprivate1 = NULL;
2514	bp->b_fsprivate2 = NULL;
2515	bp->b_fsprivate3 = NULL;
2516
2517	LIST_INIT(&bp->b_dep);
2518}
2519
2520static struct buf *
2521getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata)
2522{
2523	struct buf *bp, *nbp;
2524	int nqindex, qindex, pass;
2525
2526	KASSERT(!unmapped || !defrag, ("both unmapped and defrag"));
2527
2528	pass = 0;
2529restart:
2530	if (pass != 0)
2531		atomic_add_int(&getnewbufrestarts, 1);
2532
2533	nbp = NULL;
2534	mtx_lock(&bqclean);
2535	/*
2536	 * If we're not defragging or low on bufspace attempt to make a new
2537	 * buf from a header.
2538	 */
2539	if (defrag == 0 && bufspace + maxsize < hibufspace) {
2540		nqindex = QUEUE_EMPTY;
2541		nbp = TAILQ_FIRST(&bufqueues[nqindex]);
2542	}
2543	/*
2544	 * All available buffers might be clean or we need to start recycling.
2545	 */
2546	if (nbp == NULL) {
2547		nqindex = QUEUE_CLEAN;
2548		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2549	}
2550
2551	/*
2552	 * Run scan, possibly freeing data and/or kva mappings on the fly
2553	 * depending.
2554	 */
2555	while ((bp = nbp) != NULL) {
2556		qindex = nqindex;
2557
2558		/*
2559		 * Calculate next bp (we can only use it if we do not
2560		 * release the bqlock)
2561		 */
2562		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
2563			switch (qindex) {
2564			case QUEUE_EMPTY:
2565				nqindex = QUEUE_CLEAN;
2566				nbp = TAILQ_FIRST(&bufqueues[nqindex]);
2567				if (nbp != NULL)
2568					break;
2569				/* FALLTHROUGH */
2570			case QUEUE_CLEAN:
2571				if (metadata && pass == 0) {
2572					pass = 1;
2573					nqindex = QUEUE_EMPTY;
2574					nbp = TAILQ_FIRST(&bufqueues[nqindex]);
2575				}
2576				/*
2577				 * nbp is NULL.
2578				 */
2579				break;
2580			}
2581		}
2582		/*
2583		 * If we are defragging then we need a buffer with
2584		 * b_kvasize != 0.  This situation occurs when we
2585		 * have many unmapped bufs.
2586		 */
2587		if (defrag && bp->b_kvasize == 0)
2588			continue;
2589
2590		/*
2591		 * Start freeing the bp.  This is somewhat involved.  nbp
2592		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
2593		 */
2594		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2595			continue;
2596		/*
2597		 * BKGRDINPROG can only be set with the buf and bufobj
2598		 * locks both held.  We tolerate a race to clear it here.
2599		 */
2600		if (bp->b_vflags & BV_BKGRDINPROG) {
2601			BUF_UNLOCK(bp);
2602			continue;
2603		}
2604
2605		/*
2606		 * Requeue the background write buffer with error.
2607		 */
2608		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
2609			bremfreel(bp);
2610			mtx_unlock(&bqclean);
2611			bqrelse(bp);
2612			continue;
2613		}
2614
2615		KASSERT(bp->b_qindex == qindex,
2616		    ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2617
2618		bremfreel(bp);
2619		mtx_unlock(&bqclean);
2620
2621		/*
2622		 * NOTE:  nbp is now entirely invalid.  We can only restart
2623		 * the scan from this point on.
2624		 */
2625		getnewbuf_reuse_bp(bp, qindex);
2626		mtx_assert(&bqclean, MA_NOTOWNED);
2627
2628		/*
2629		 * If we are defragging then free the buffer.
2630		 */
2631		if (defrag) {
2632			bp->b_flags |= B_INVAL;
2633			brelse(bp);
2634			defrag = 0;
2635			goto restart;
2636		}
2637
2638		/*
2639		 * Notify any waiters for the buffer lock about
2640		 * identity change by freeing the buffer.
2641		 */
2642		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2643			bp->b_flags |= B_INVAL;
2644			brelse(bp);
2645			goto restart;
2646		}
2647
2648		if (metadata)
2649			break;
2650
2651		/*
2652		 * If we are overcomitted then recover the buffer and its
2653		 * KVM space.  This occurs in rare situations when multiple
2654		 * processes are blocked in getnewbuf() or allocbuf().
2655		 */
2656		if (bufspace >= hibufspace && bp->b_kvasize != 0) {
2657			bp->b_flags |= B_INVAL;
2658			brelse(bp);
2659			goto restart;
2660		}
2661		break;
2662	}
2663	return (bp);
2664}
2665
2666/*
2667 *	getnewbuf:
2668 *
2669 *	Find and initialize a new buffer header, freeing up existing buffers
2670 *	in the bufqueues as necessary.  The new buffer is returned locked.
2671 *
2672 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
2673 *	buffer away, the caller must set B_INVAL prior to calling brelse().
2674 *
2675 *	We block if:
2676 *		We have insufficient buffer headers
2677 *		We have insufficient buffer space
2678 *		buffer_arena is too fragmented ( space reservation fails )
2679 *		If we have to flush dirty buffers ( but we try to avoid this )
2680 */
2681static struct buf *
2682getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
2683    int gbflags)
2684{
2685	struct buf *bp;
2686	int defrag, metadata;
2687
2688	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2689	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2690	if (!unmapped_buf_allowed)
2691		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2692
2693	defrag = 0;
2694	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
2695	    vp->v_type == VCHR)
2696		metadata = 1;
2697	else
2698		metadata = 0;
2699	/*
2700	 * We can't afford to block since we might be holding a vnode lock,
2701	 * which may prevent system daemons from running.  We deal with
2702	 * low-memory situations by proactively returning memory and running
2703	 * async I/O rather then sync I/O.
2704	 */
2705	atomic_add_int(&getnewbufcalls, 1);
2706restart:
2707	bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED |
2708	    GB_KVAALLOC)) == GB_UNMAPPED, metadata);
2709	if (bp != NULL)
2710		defrag = 0;
2711
2712	/*
2713	 * If we exhausted our list, sleep as appropriate.  We may have to
2714	 * wakeup various daemons and write out some dirty buffers.
2715	 *
2716	 * Generally we are sleeping due to insufficient buffer space.
2717	 */
2718	if (bp == NULL) {
2719		mtx_assert(&bqclean, MA_OWNED);
2720		getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag);
2721		mtx_assert(&bqclean, MA_NOTOWNED);
2722	} else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) {
2723		mtx_assert(&bqclean, MA_NOTOWNED);
2724
2725		bufkvafree(bp);
2726		atomic_add_int(&bufreusecnt, 1);
2727	} else {
2728		mtx_assert(&bqclean, MA_NOTOWNED);
2729
2730		/*
2731		 * We finally have a valid bp.  We aren't quite out of the
2732		 * woods, we still have to reserve kva space. In order to
2733		 * keep fragmentation sane we only allocate kva in BKVASIZE
2734		 * chunks.
2735		 */
2736		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2737
2738		if (maxsize != bp->b_kvasize &&
2739		    bufkvaalloc(bp, maxsize, gbflags)) {
2740			defrag = 1;
2741			bp->b_flags |= B_INVAL;
2742			brelse(bp);
2743			goto restart;
2744		} else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) ==
2745		    (GB_UNMAPPED | GB_KVAALLOC)) {
2746			bp->b_data = unmapped_buf;
2747			BUF_CHECK_UNMAPPED(bp);
2748		}
2749		atomic_add_int(&bufreusecnt, 1);
2750	}
2751	return (bp);
2752}
2753
2754/*
2755 *	buf_daemon:
2756 *
2757 *	buffer flushing daemon.  Buffers are normally flushed by the
2758 *	update daemon but if it cannot keep up this process starts to
2759 *	take the load in an attempt to prevent getnewbuf() from blocking.
2760 */
2761
2762static struct kproc_desc buf_kp = {
2763	"bufdaemon",
2764	buf_daemon,
2765	&bufdaemonproc
2766};
2767SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2768
2769static int
2770buf_flush(struct vnode *vp, int target)
2771{
2772	int flushed;
2773
2774	flushed = flushbufqueues(vp, target, 0);
2775	if (flushed == 0) {
2776		/*
2777		 * Could not find any buffers without rollback
2778		 * dependencies, so just write the first one
2779		 * in the hopes of eventually making progress.
2780		 */
2781		if (vp != NULL && target > 2)
2782			target /= 2;
2783		flushbufqueues(vp, target, 1);
2784	}
2785	return (flushed);
2786}
2787
2788static void
2789buf_daemon()
2790{
2791	int lodirty;
2792
2793	/*
2794	 * This process needs to be suspended prior to shutdown sync.
2795	 */
2796	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2797	    SHUTDOWN_PRI_LAST);
2798
2799	/*
2800	 * This process is allowed to take the buffer cache to the limit
2801	 */
2802	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2803	mtx_lock(&bdlock);
2804	for (;;) {
2805		bd_request = 0;
2806		mtx_unlock(&bdlock);
2807
2808		kproc_suspend_check(bufdaemonproc);
2809		lodirty = lodirtybuffers;
2810		if (bd_speedupreq) {
2811			lodirty = numdirtybuffers / 2;
2812			bd_speedupreq = 0;
2813		}
2814		/*
2815		 * Do the flush.  Limit the amount of in-transit I/O we
2816		 * allow to build up, otherwise we would completely saturate
2817		 * the I/O system.
2818		 */
2819		while (numdirtybuffers > lodirty) {
2820			if (buf_flush(NULL, numdirtybuffers - lodirty) == 0)
2821				break;
2822			kern_yield(PRI_USER);
2823		}
2824
2825		/*
2826		 * Only clear bd_request if we have reached our low water
2827		 * mark.  The buf_daemon normally waits 1 second and
2828		 * then incrementally flushes any dirty buffers that have
2829		 * built up, within reason.
2830		 *
2831		 * If we were unable to hit our low water mark and couldn't
2832		 * find any flushable buffers, we sleep for a short period
2833		 * to avoid endless loops on unlockable buffers.
2834		 */
2835		mtx_lock(&bdlock);
2836		if (numdirtybuffers <= lodirtybuffers) {
2837			/*
2838			 * We reached our low water mark, reset the
2839			 * request and sleep until we are needed again.
2840			 * The sleep is just so the suspend code works.
2841			 */
2842			bd_request = 0;
2843			/*
2844			 * Do an extra wakeup in case dirty threshold
2845			 * changed via sysctl and the explicit transition
2846			 * out of shortfall was missed.
2847			 */
2848			bdirtywakeup();
2849			if (runningbufspace <= lorunningspace)
2850				runningwakeup();
2851			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2852		} else {
2853			/*
2854			 * We couldn't find any flushable dirty buffers but
2855			 * still have too many dirty buffers, we
2856			 * have to sleep and try again.  (rare)
2857			 */
2858			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2859		}
2860	}
2861}
2862
2863/*
2864 *	flushbufqueues:
2865 *
2866 *	Try to flush a buffer in the dirty queue.  We must be careful to
2867 *	free up B_INVAL buffers instead of write them, which NFS is
2868 *	particularly sensitive to.
2869 */
2870static int flushwithdeps = 0;
2871SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2872    0, "Number of buffers flushed with dependecies that require rollbacks");
2873
2874static int
2875flushbufqueues(struct vnode *lvp, int target, int flushdeps)
2876{
2877	struct buf *sentinel;
2878	struct vnode *vp;
2879	struct mount *mp;
2880	struct buf *bp;
2881	int hasdeps;
2882	int flushed;
2883	int queue;
2884	int error;
2885	bool unlock;
2886
2887	flushed = 0;
2888	queue = QUEUE_DIRTY;
2889	bp = NULL;
2890	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2891	sentinel->b_qindex = QUEUE_SENTINEL;
2892	mtx_lock(&bqdirty);
2893	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2894	mtx_unlock(&bqdirty);
2895	while (flushed != target) {
2896		maybe_yield();
2897		mtx_lock(&bqdirty);
2898		bp = TAILQ_NEXT(sentinel, b_freelist);
2899		if (bp != NULL) {
2900			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2901			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2902			    b_freelist);
2903		} else {
2904			mtx_unlock(&bqdirty);
2905			break;
2906		}
2907		/*
2908		 * Skip sentinels inserted by other invocations of the
2909		 * flushbufqueues(), taking care to not reorder them.
2910		 *
2911		 * Only flush the buffers that belong to the
2912		 * vnode locked by the curthread.
2913		 */
2914		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
2915		    bp->b_vp != lvp)) {
2916			mtx_unlock(&bqdirty);
2917 			continue;
2918		}
2919		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
2920		mtx_unlock(&bqdirty);
2921		if (error != 0)
2922			continue;
2923		if (bp->b_pin_count > 0) {
2924			BUF_UNLOCK(bp);
2925			continue;
2926		}
2927		/*
2928		 * BKGRDINPROG can only be set with the buf and bufobj
2929		 * locks both held.  We tolerate a race to clear it here.
2930		 */
2931		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2932		    (bp->b_flags & B_DELWRI) == 0) {
2933			BUF_UNLOCK(bp);
2934			continue;
2935		}
2936		if (bp->b_flags & B_INVAL) {
2937			bremfreef(bp);
2938			brelse(bp);
2939			flushed++;
2940			continue;
2941		}
2942
2943		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2944			if (flushdeps == 0) {
2945				BUF_UNLOCK(bp);
2946				continue;
2947			}
2948			hasdeps = 1;
2949		} else
2950			hasdeps = 0;
2951		/*
2952		 * We must hold the lock on a vnode before writing
2953		 * one of its buffers. Otherwise we may confuse, or
2954		 * in the case of a snapshot vnode, deadlock the
2955		 * system.
2956		 *
2957		 * The lock order here is the reverse of the normal
2958		 * of vnode followed by buf lock.  This is ok because
2959		 * the NOWAIT will prevent deadlock.
2960		 */
2961		vp = bp->b_vp;
2962		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2963			BUF_UNLOCK(bp);
2964			continue;
2965		}
2966		if (lvp == NULL) {
2967			unlock = true;
2968			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
2969		} else {
2970			ASSERT_VOP_LOCKED(vp, "getbuf");
2971			unlock = false;
2972			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
2973			    vn_lock(vp, LK_TRYUPGRADE);
2974		}
2975		if (error == 0) {
2976			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2977			    bp, bp->b_vp, bp->b_flags);
2978			if (curproc == bufdaemonproc) {
2979				vfs_bio_awrite(bp);
2980			} else {
2981				bremfree(bp);
2982				bwrite(bp);
2983				notbufdflushes++;
2984			}
2985			vn_finished_write(mp);
2986			if (unlock)
2987				VOP_UNLOCK(vp, 0);
2988			flushwithdeps += hasdeps;
2989			flushed++;
2990
2991			/*
2992			 * Sleeping on runningbufspace while holding
2993			 * vnode lock leads to deadlock.
2994			 */
2995			if (curproc == bufdaemonproc &&
2996			    runningbufspace > hirunningspace)
2997				waitrunningbufspace();
2998			continue;
2999		}
3000		vn_finished_write(mp);
3001		BUF_UNLOCK(bp);
3002	}
3003	mtx_lock(&bqdirty);
3004	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
3005	mtx_unlock(&bqdirty);
3006	free(sentinel, M_TEMP);
3007	return (flushed);
3008}
3009
3010/*
3011 * Check to see if a block is currently memory resident.
3012 */
3013struct buf *
3014incore(struct bufobj *bo, daddr_t blkno)
3015{
3016	struct buf *bp;
3017
3018	BO_RLOCK(bo);
3019	bp = gbincore(bo, blkno);
3020	BO_RUNLOCK(bo);
3021	return (bp);
3022}
3023
3024/*
3025 * Returns true if no I/O is needed to access the
3026 * associated VM object.  This is like incore except
3027 * it also hunts around in the VM system for the data.
3028 */
3029
3030static int
3031inmem(struct vnode * vp, daddr_t blkno)
3032{
3033	vm_object_t obj;
3034	vm_offset_t toff, tinc, size;
3035	vm_page_t m;
3036	vm_ooffset_t off;
3037
3038	ASSERT_VOP_LOCKED(vp, "inmem");
3039
3040	if (incore(&vp->v_bufobj, blkno))
3041		return 1;
3042	if (vp->v_mount == NULL)
3043		return 0;
3044	obj = vp->v_object;
3045	if (obj == NULL)
3046		return (0);
3047
3048	size = PAGE_SIZE;
3049	if (size > vp->v_mount->mnt_stat.f_iosize)
3050		size = vp->v_mount->mnt_stat.f_iosize;
3051	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3052
3053	VM_OBJECT_RLOCK(obj);
3054	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3055		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
3056		if (!m)
3057			goto notinmem;
3058		tinc = size;
3059		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3060			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3061		if (vm_page_is_valid(m,
3062		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
3063			goto notinmem;
3064	}
3065	VM_OBJECT_RUNLOCK(obj);
3066	return 1;
3067
3068notinmem:
3069	VM_OBJECT_RUNLOCK(obj);
3070	return (0);
3071}
3072
3073/*
3074 * Set the dirty range for a buffer based on the status of the dirty
3075 * bits in the pages comprising the buffer.  The range is limited
3076 * to the size of the buffer.
3077 *
3078 * Tell the VM system that the pages associated with this buffer
3079 * are clean.  This is used for delayed writes where the data is
3080 * going to go to disk eventually without additional VM intevention.
3081 *
3082 * Note that while we only really need to clean through to b_bcount, we
3083 * just go ahead and clean through to b_bufsize.
3084 */
3085static void
3086vfs_clean_pages_dirty_buf(struct buf *bp)
3087{
3088	vm_ooffset_t foff, noff, eoff;
3089	vm_page_t m;
3090	int i;
3091
3092	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3093		return;
3094
3095	foff = bp->b_offset;
3096	KASSERT(bp->b_offset != NOOFFSET,
3097	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3098
3099	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3100	vfs_drain_busy_pages(bp);
3101	vfs_setdirty_locked_object(bp);
3102	for (i = 0; i < bp->b_npages; i++) {
3103		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3104		eoff = noff;
3105		if (eoff > bp->b_offset + bp->b_bufsize)
3106			eoff = bp->b_offset + bp->b_bufsize;
3107		m = bp->b_pages[i];
3108		vfs_page_set_validclean(bp, foff, m);
3109		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3110		foff = noff;
3111	}
3112	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3113}
3114
3115static void
3116vfs_setdirty_locked_object(struct buf *bp)
3117{
3118	vm_object_t object;
3119	int i;
3120
3121	object = bp->b_bufobj->bo_object;
3122	VM_OBJECT_ASSERT_WLOCKED(object);
3123
3124	/*
3125	 * We qualify the scan for modified pages on whether the
3126	 * object has been flushed yet.
3127	 */
3128	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
3129		vm_offset_t boffset;
3130		vm_offset_t eoffset;
3131
3132		/*
3133		 * test the pages to see if they have been modified directly
3134		 * by users through the VM system.
3135		 */
3136		for (i = 0; i < bp->b_npages; i++)
3137			vm_page_test_dirty(bp->b_pages[i]);
3138
3139		/*
3140		 * Calculate the encompassing dirty range, boffset and eoffset,
3141		 * (eoffset - boffset) bytes.
3142		 */
3143
3144		for (i = 0; i < bp->b_npages; i++) {
3145			if (bp->b_pages[i]->dirty)
3146				break;
3147		}
3148		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3149
3150		for (i = bp->b_npages - 1; i >= 0; --i) {
3151			if (bp->b_pages[i]->dirty) {
3152				break;
3153			}
3154		}
3155		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3156
3157		/*
3158		 * Fit it to the buffer.
3159		 */
3160
3161		if (eoffset > bp->b_bcount)
3162			eoffset = bp->b_bcount;
3163
3164		/*
3165		 * If we have a good dirty range, merge with the existing
3166		 * dirty range.
3167		 */
3168
3169		if (boffset < eoffset) {
3170			if (bp->b_dirtyoff > boffset)
3171				bp->b_dirtyoff = boffset;
3172			if (bp->b_dirtyend < eoffset)
3173				bp->b_dirtyend = eoffset;
3174		}
3175	}
3176}
3177
3178/*
3179 * Allocate the KVA mapping for an existing buffer.
3180 * If an unmapped buffer is provided but a mapped buffer is requested, take
3181 * also care to properly setup mappings between pages and KVA.
3182 */
3183static void
3184bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3185{
3186	struct buf *scratch_bp;
3187	int bsize, maxsize, need_mapping, need_kva;
3188	off_t offset;
3189
3190	need_mapping = bp->b_data == unmapped_buf &&
3191	    (gbflags & GB_UNMAPPED) == 0;
3192	need_kva = bp->b_kvabase == unmapped_buf &&
3193	    bp->b_data == unmapped_buf &&
3194	    (gbflags & GB_KVAALLOC) != 0;
3195	if (!need_mapping && !need_kva)
3196		return;
3197
3198	BUF_CHECK_UNMAPPED(bp);
3199
3200	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3201		/*
3202		 * Buffer is not mapped, but the KVA was already
3203		 * reserved at the time of the instantiation.  Use the
3204		 * allocated space.
3205		 */
3206		goto has_addr;
3207	}
3208
3209	/*
3210	 * Calculate the amount of the address space we would reserve
3211	 * if the buffer was mapped.
3212	 */
3213	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3214	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3215	offset = blkno * bsize;
3216	maxsize = size + (offset & PAGE_MASK);
3217	maxsize = imax(maxsize, bsize);
3218
3219mapping_loop:
3220	if (bufkvaalloc(bp, maxsize, gbflags)) {
3221		/*
3222		 * Request defragmentation. getnewbuf() returns us the
3223		 * allocated space by the scratch buffer KVA.
3224		 */
3225		scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags |
3226		    (GB_UNMAPPED | GB_KVAALLOC));
3227		if (scratch_bp == NULL) {
3228			if ((gbflags & GB_NOWAIT_BD) != 0) {
3229				/*
3230				 * XXXKIB: defragmentation cannot
3231				 * succeed, not sure what else to do.
3232				 */
3233				panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3234			}
3235			atomic_add_int(&mappingrestarts, 1);
3236			goto mapping_loop;
3237		}
3238		KASSERT(scratch_bp->b_kvabase != unmapped_buf,
3239		    ("scratch bp has no KVA %p", scratch_bp));
3240		/* Grab pointers. */
3241		bp->b_kvabase = scratch_bp->b_kvabase;
3242		bp->b_kvasize = scratch_bp->b_kvasize;
3243		bp->b_data = scratch_bp->b_data;
3244
3245		/* Get rid of the scratch buffer. */
3246		scratch_bp->b_kvasize = 0;
3247		scratch_bp->b_flags |= B_INVAL;
3248		scratch_bp->b_data = scratch_bp->b_kvabase = unmapped_buf;
3249		brelse(scratch_bp);
3250	}
3251has_addr:
3252	if (need_mapping) {
3253		/* b_offset is handled by bpmap_qenter. */
3254		bp->b_data = bp->b_kvabase;
3255		BUF_CHECK_MAPPED(bp);
3256		bpmap_qenter(bp);
3257	}
3258}
3259
3260/*
3261 *	getblk:
3262 *
3263 *	Get a block given a specified block and offset into a file/device.
3264 *	The buffers B_DONE bit will be cleared on return, making it almost
3265 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3266 *	return.  The caller should clear B_INVAL prior to initiating a
3267 *	READ.
3268 *
3269 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3270 *	an existing buffer.
3271 *
3272 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3273 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3274 *	and then cleared based on the backing VM.  If the previous buffer is
3275 *	non-0-sized but invalid, B_CACHE will be cleared.
3276 *
3277 *	If getblk() must create a new buffer, the new buffer is returned with
3278 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3279 *	case it is returned with B_INVAL clear and B_CACHE set based on the
3280 *	backing VM.
3281 *
3282 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3283 *	B_CACHE bit is clear.
3284 *
3285 *	What this means, basically, is that the caller should use B_CACHE to
3286 *	determine whether the buffer is fully valid or not and should clear
3287 *	B_INVAL prior to issuing a read.  If the caller intends to validate
3288 *	the buffer by loading its data area with something, the caller needs
3289 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3290 *	the caller should set B_CACHE ( as an optimization ), else the caller
3291 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3292 *	a write attempt or if it was a successfull read.  If the caller
3293 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3294 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3295 */
3296struct buf *
3297getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3298    int flags)
3299{
3300	struct buf *bp;
3301	struct bufobj *bo;
3302	int bsize, error, maxsize, vmio;
3303	off_t offset;
3304
3305	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3306	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3307	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3308	ASSERT_VOP_LOCKED(vp, "getblk");
3309	if (size > MAXBCACHEBUF)
3310		panic("getblk: size(%d) > MAXBCACHEBUF(%d)\n", size,
3311		    MAXBCACHEBUF);
3312	if (!unmapped_buf_allowed)
3313		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3314
3315	bo = &vp->v_bufobj;
3316loop:
3317	BO_RLOCK(bo);
3318	bp = gbincore(bo, blkno);
3319	if (bp != NULL) {
3320		int lockflags;
3321		/*
3322		 * Buffer is in-core.  If the buffer is not busy nor managed,
3323		 * it must be on a queue.
3324		 */
3325		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3326
3327		if (flags & GB_LOCK_NOWAIT)
3328			lockflags |= LK_NOWAIT;
3329
3330		error = BUF_TIMELOCK(bp, lockflags,
3331		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3332
3333		/*
3334		 * If we slept and got the lock we have to restart in case
3335		 * the buffer changed identities.
3336		 */
3337		if (error == ENOLCK)
3338			goto loop;
3339		/* We timed out or were interrupted. */
3340		else if (error)
3341			return (NULL);
3342		/* If recursed, assume caller knows the rules. */
3343		else if (BUF_LOCKRECURSED(bp))
3344			goto end;
3345
3346		/*
3347		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3348		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3349		 * and for a VMIO buffer B_CACHE is adjusted according to the
3350		 * backing VM cache.
3351		 */
3352		if (bp->b_flags & B_INVAL)
3353			bp->b_flags &= ~B_CACHE;
3354		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3355			bp->b_flags |= B_CACHE;
3356		if (bp->b_flags & B_MANAGED)
3357			MPASS(bp->b_qindex == QUEUE_NONE);
3358		else
3359			bremfree(bp);
3360
3361		/*
3362		 * check for size inconsistencies for non-VMIO case.
3363		 */
3364		if (bp->b_bcount != size) {
3365			if ((bp->b_flags & B_VMIO) == 0 ||
3366			    (size > bp->b_kvasize)) {
3367				if (bp->b_flags & B_DELWRI) {
3368					/*
3369					 * If buffer is pinned and caller does
3370					 * not want sleep  waiting for it to be
3371					 * unpinned, bail out
3372					 * */
3373					if (bp->b_pin_count > 0) {
3374						if (flags & GB_LOCK_NOWAIT) {
3375							bqrelse(bp);
3376							return (NULL);
3377						} else {
3378							bunpin_wait(bp);
3379						}
3380					}
3381					bp->b_flags |= B_NOCACHE;
3382					bwrite(bp);
3383				} else {
3384					if (LIST_EMPTY(&bp->b_dep)) {
3385						bp->b_flags |= B_RELBUF;
3386						brelse(bp);
3387					} else {
3388						bp->b_flags |= B_NOCACHE;
3389						bwrite(bp);
3390					}
3391				}
3392				goto loop;
3393			}
3394		}
3395
3396		/*
3397		 * Handle the case of unmapped buffer which should
3398		 * become mapped, or the buffer for which KVA
3399		 * reservation is requested.
3400		 */
3401		bp_unmapped_get_kva(bp, blkno, size, flags);
3402
3403		/*
3404		 * If the size is inconsistant in the VMIO case, we can resize
3405		 * the buffer.  This might lead to B_CACHE getting set or
3406		 * cleared.  If the size has not changed, B_CACHE remains
3407		 * unchanged from its previous state.
3408		 */
3409		allocbuf(bp, size);
3410
3411		KASSERT(bp->b_offset != NOOFFSET,
3412		    ("getblk: no buffer offset"));
3413
3414		/*
3415		 * A buffer with B_DELWRI set and B_CACHE clear must
3416		 * be committed before we can return the buffer in
3417		 * order to prevent the caller from issuing a read
3418		 * ( due to B_CACHE not being set ) and overwriting
3419		 * it.
3420		 *
3421		 * Most callers, including NFS and FFS, need this to
3422		 * operate properly either because they assume they
3423		 * can issue a read if B_CACHE is not set, or because
3424		 * ( for example ) an uncached B_DELWRI might loop due
3425		 * to softupdates re-dirtying the buffer.  In the latter
3426		 * case, B_CACHE is set after the first write completes,
3427		 * preventing further loops.
3428		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3429		 * above while extending the buffer, we cannot allow the
3430		 * buffer to remain with B_CACHE set after the write
3431		 * completes or it will represent a corrupt state.  To
3432		 * deal with this we set B_NOCACHE to scrap the buffer
3433		 * after the write.
3434		 *
3435		 * We might be able to do something fancy, like setting
3436		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3437		 * so the below call doesn't set B_CACHE, but that gets real
3438		 * confusing.  This is much easier.
3439		 */
3440
3441		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3442			bp->b_flags |= B_NOCACHE;
3443			bwrite(bp);
3444			goto loop;
3445		}
3446		bp->b_flags &= ~B_DONE;
3447	} else {
3448		/*
3449		 * Buffer is not in-core, create new buffer.  The buffer
3450		 * returned by getnewbuf() is locked.  Note that the returned
3451		 * buffer is also considered valid (not marked B_INVAL).
3452		 */
3453		BO_RUNLOCK(bo);
3454		/*
3455		 * If the user does not want us to create the buffer, bail out
3456		 * here.
3457		 */
3458		if (flags & GB_NOCREAT)
3459			return NULL;
3460		if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread))
3461			return NULL;
3462
3463		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
3464		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3465		offset = blkno * bsize;
3466		vmio = vp->v_object != NULL;
3467		if (vmio) {
3468			maxsize = size + (offset & PAGE_MASK);
3469		} else {
3470			maxsize = size;
3471			/* Do not allow non-VMIO notmapped buffers. */
3472			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3473		}
3474		maxsize = imax(maxsize, bsize);
3475
3476		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
3477		if (bp == NULL) {
3478			if (slpflag || slptimeo)
3479				return NULL;
3480			goto loop;
3481		}
3482
3483		/*
3484		 * This code is used to make sure that a buffer is not
3485		 * created while the getnewbuf routine is blocked.
3486		 * This can be a problem whether the vnode is locked or not.
3487		 * If the buffer is created out from under us, we have to
3488		 * throw away the one we just created.
3489		 *
3490		 * Note: this must occur before we associate the buffer
3491		 * with the vp especially considering limitations in
3492		 * the splay tree implementation when dealing with duplicate
3493		 * lblkno's.
3494		 */
3495		BO_LOCK(bo);
3496		if (gbincore(bo, blkno)) {
3497			BO_UNLOCK(bo);
3498			bp->b_flags |= B_INVAL;
3499			brelse(bp);
3500			goto loop;
3501		}
3502
3503		/*
3504		 * Insert the buffer into the hash, so that it can
3505		 * be found by incore.
3506		 */
3507		bp->b_blkno = bp->b_lblkno = blkno;
3508		bp->b_offset = offset;
3509		bgetvp(vp, bp);
3510		BO_UNLOCK(bo);
3511
3512		/*
3513		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
3514		 * buffer size starts out as 0, B_CACHE will be set by
3515		 * allocbuf() for the VMIO case prior to it testing the
3516		 * backing store for validity.
3517		 */
3518
3519		if (vmio) {
3520			bp->b_flags |= B_VMIO;
3521			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
3522			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
3523			    bp, vp->v_object, bp->b_bufobj->bo_object));
3524		} else {
3525			bp->b_flags &= ~B_VMIO;
3526			KASSERT(bp->b_bufobj->bo_object == NULL,
3527			    ("ARGH! has b_bufobj->bo_object %p %p\n",
3528			    bp, bp->b_bufobj->bo_object));
3529			BUF_CHECK_MAPPED(bp);
3530		}
3531
3532		allocbuf(bp, size);
3533		bp->b_flags &= ~B_DONE;
3534	}
3535	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
3536	BUF_ASSERT_HELD(bp);
3537end:
3538	KASSERT(bp->b_bufobj == bo,
3539	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3540	return (bp);
3541}
3542
3543/*
3544 * Get an empty, disassociated buffer of given size.  The buffer is initially
3545 * set to B_INVAL.
3546 */
3547struct buf *
3548geteblk(int size, int flags)
3549{
3550	struct buf *bp;
3551	int maxsize;
3552
3553	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3554	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
3555		if ((flags & GB_NOWAIT_BD) &&
3556		    (curthread->td_pflags & TDP_BUFNEED) != 0)
3557			return (NULL);
3558	}
3559	allocbuf(bp, size);
3560	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3561	BUF_ASSERT_HELD(bp);
3562	return (bp);
3563}
3564
3565/*
3566 * Truncate the backing store for a non-vmio buffer.
3567 */
3568static void
3569vfs_nonvmio_truncate(struct buf *bp, int newbsize)
3570{
3571
3572	if (bp->b_flags & B_MALLOC) {
3573		/*
3574		 * malloced buffers are not shrunk
3575		 */
3576		if (newbsize == 0) {
3577			bufmallocadjust(bp, 0);
3578			free(bp->b_data, M_BIOBUF);
3579			bp->b_data = bp->b_kvabase;
3580			bp->b_flags &= ~B_MALLOC;
3581		}
3582		return;
3583	}
3584	vm_hold_free_pages(bp, newbsize);
3585	bufspaceadjust(bp, newbsize);
3586}
3587
3588/*
3589 * Extend the backing for a non-VMIO buffer.
3590 */
3591static void
3592vfs_nonvmio_extend(struct buf *bp, int newbsize)
3593{
3594	caddr_t origbuf;
3595	int origbufsize;
3596
3597	/*
3598	 * We only use malloced memory on the first allocation.
3599	 * and revert to page-allocated memory when the buffer
3600	 * grows.
3601	 *
3602	 * There is a potential smp race here that could lead
3603	 * to bufmallocspace slightly passing the max.  It
3604	 * is probably extremely rare and not worth worrying
3605	 * over.
3606	 */
3607	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
3608	    bufmallocspace < maxbufmallocspace) {
3609		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
3610		bp->b_flags |= B_MALLOC;
3611		bufmallocadjust(bp, newbsize);
3612		return;
3613	}
3614
3615	/*
3616	 * If the buffer is growing on its other-than-first
3617	 * allocation then we revert to the page-allocation
3618	 * scheme.
3619	 */
3620	origbuf = NULL;
3621	origbufsize = 0;
3622	if (bp->b_flags & B_MALLOC) {
3623		origbuf = bp->b_data;
3624		origbufsize = bp->b_bufsize;
3625		bp->b_data = bp->b_kvabase;
3626		bufmallocadjust(bp, 0);
3627		bp->b_flags &= ~B_MALLOC;
3628		newbsize = round_page(newbsize);
3629	}
3630	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
3631	    (vm_offset_t) bp->b_data + newbsize);
3632	if (origbuf != NULL) {
3633		bcopy(origbuf, bp->b_data, origbufsize);
3634		free(origbuf, M_BIOBUF);
3635	}
3636	bufspaceadjust(bp, newbsize);
3637}
3638
3639/*
3640 * This code constitutes the buffer memory from either anonymous system
3641 * memory (in the case of non-VMIO operations) or from an associated
3642 * VM object (in the case of VMIO operations).  This code is able to
3643 * resize a buffer up or down.
3644 *
3645 * Note that this code is tricky, and has many complications to resolve
3646 * deadlock or inconsistant data situations.  Tread lightly!!!
3647 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3648 * the caller.  Calling this code willy nilly can result in the loss of data.
3649 *
3650 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3651 * B_CACHE for the non-VMIO case.
3652 */
3653int
3654allocbuf(struct buf *bp, int size)
3655{
3656	int newbsize;
3657
3658	BUF_ASSERT_HELD(bp);
3659
3660	if (bp->b_bcount == size)
3661		return (1);
3662
3663	if (bp->b_kvasize != 0 && bp->b_kvasize < size)
3664		panic("allocbuf: buffer too small");
3665
3666	newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3667	if ((bp->b_flags & B_VMIO) == 0) {
3668		if ((bp->b_flags & B_MALLOC) == 0)
3669			newbsize = round_page(newbsize);
3670		/*
3671		 * Just get anonymous memory from the kernel.  Don't
3672		 * mess with B_CACHE.
3673		 */
3674		if (newbsize < bp->b_bufsize)
3675			vfs_nonvmio_truncate(bp, newbsize);
3676		else if (newbsize > bp->b_bufsize)
3677			vfs_nonvmio_extend(bp, newbsize);
3678	} else {
3679		int desiredpages;
3680
3681		desiredpages = (size == 0) ? 0 :
3682		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3683
3684		if (bp->b_flags & B_MALLOC)
3685			panic("allocbuf: VMIO buffer can't be malloced");
3686		/*
3687		 * Set B_CACHE initially if buffer is 0 length or will become
3688		 * 0-length.
3689		 */
3690		if (size == 0 || bp->b_bufsize == 0)
3691			bp->b_flags |= B_CACHE;
3692
3693		if (newbsize < bp->b_bufsize)
3694			vfs_vmio_truncate(bp, desiredpages);
3695		/* XXX This looks as if it should be newbsize > b_bufsize */
3696		else if (size > bp->b_bcount)
3697			vfs_vmio_extend(bp, desiredpages, size);
3698		bufspaceadjust(bp, newbsize);
3699	}
3700	bp->b_bcount = size;		/* requested buffer size. */
3701	return (1);
3702}
3703
3704extern int inflight_transient_maps;
3705
3706void
3707biodone(struct bio *bp)
3708{
3709	struct mtx *mtxp;
3710	void (*done)(struct bio *);
3711	vm_offset_t start, end;
3712
3713	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
3714		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
3715		bp->bio_flags |= BIO_UNMAPPED;
3716		start = trunc_page((vm_offset_t)bp->bio_data);
3717		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
3718		bp->bio_data = unmapped_buf;
3719		pmap_qremove(start, OFF_TO_IDX(end - start));
3720		vmem_free(transient_arena, start, end - start);
3721		atomic_add_int(&inflight_transient_maps, -1);
3722	}
3723	done = bp->bio_done;
3724	if (done == NULL) {
3725		mtxp = mtx_pool_find(mtxpool_sleep, bp);
3726		mtx_lock(mtxp);
3727		bp->bio_flags |= BIO_DONE;
3728		wakeup(bp);
3729		mtx_unlock(mtxp);
3730	} else {
3731		bp->bio_flags |= BIO_DONE;
3732		done(bp);
3733	}
3734}
3735
3736/*
3737 * Wait for a BIO to finish.
3738 */
3739int
3740biowait(struct bio *bp, const char *wchan)
3741{
3742	struct mtx *mtxp;
3743
3744	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3745	mtx_lock(mtxp);
3746	while ((bp->bio_flags & BIO_DONE) == 0)
3747		msleep(bp, mtxp, PRIBIO, wchan, 0);
3748	mtx_unlock(mtxp);
3749	if (bp->bio_error != 0)
3750		return (bp->bio_error);
3751	if (!(bp->bio_flags & BIO_ERROR))
3752		return (0);
3753	return (EIO);
3754}
3755
3756void
3757biofinish(struct bio *bp, struct devstat *stat, int error)
3758{
3759
3760	if (error) {
3761		bp->bio_error = error;
3762		bp->bio_flags |= BIO_ERROR;
3763	}
3764	if (stat != NULL)
3765		devstat_end_transaction_bio(stat, bp);
3766	biodone(bp);
3767}
3768
3769/*
3770 *	bufwait:
3771 *
3772 *	Wait for buffer I/O completion, returning error status.  The buffer
3773 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3774 *	error and cleared.
3775 */
3776int
3777bufwait(struct buf *bp)
3778{
3779	if (bp->b_iocmd == BIO_READ)
3780		bwait(bp, PRIBIO, "biord");
3781	else
3782		bwait(bp, PRIBIO, "biowr");
3783	if (bp->b_flags & B_EINTR) {
3784		bp->b_flags &= ~B_EINTR;
3785		return (EINTR);
3786	}
3787	if (bp->b_ioflags & BIO_ERROR) {
3788		return (bp->b_error ? bp->b_error : EIO);
3789	} else {
3790		return (0);
3791	}
3792}
3793
3794/*
3795 *	bufdone:
3796 *
3797 *	Finish I/O on a buffer, optionally calling a completion function.
3798 *	This is usually called from an interrupt so process blocking is
3799 *	not allowed.
3800 *
3801 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3802 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3803 *	assuming B_INVAL is clear.
3804 *
3805 *	For the VMIO case, we set B_CACHE if the op was a read and no
3806 *	read error occured, or if the op was a write.  B_CACHE is never
3807 *	set if the buffer is invalid or otherwise uncacheable.
3808 *
3809 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3810 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3811 *	in the biodone routine.
3812 */
3813void
3814bufdone(struct buf *bp)
3815{
3816	struct bufobj *dropobj;
3817	void    (*biodone)(struct buf *);
3818
3819	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3820	dropobj = NULL;
3821
3822	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3823	BUF_ASSERT_HELD(bp);
3824
3825	runningbufwakeup(bp);
3826	if (bp->b_iocmd == BIO_WRITE)
3827		dropobj = bp->b_bufobj;
3828	/* call optional completion function if requested */
3829	if (bp->b_iodone != NULL) {
3830		biodone = bp->b_iodone;
3831		bp->b_iodone = NULL;
3832		(*biodone) (bp);
3833		if (dropobj)
3834			bufobj_wdrop(dropobj);
3835		return;
3836	}
3837
3838	bufdone_finish(bp);
3839
3840	if (dropobj)
3841		bufobj_wdrop(dropobj);
3842}
3843
3844void
3845bufdone_finish(struct buf *bp)
3846{
3847	BUF_ASSERT_HELD(bp);
3848
3849	if (!LIST_EMPTY(&bp->b_dep))
3850		buf_complete(bp);
3851
3852	if (bp->b_flags & B_VMIO) {
3853		/*
3854		 * Set B_CACHE if the op was a normal read and no error
3855		 * occured.  B_CACHE is set for writes in the b*write()
3856		 * routines.
3857		 */
3858		if (bp->b_iocmd == BIO_READ &&
3859		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3860		    !(bp->b_ioflags & BIO_ERROR))
3861			bp->b_flags |= B_CACHE;
3862		vfs_vmio_iodone(bp);
3863	}
3864
3865	/*
3866	 * For asynchronous completions, release the buffer now. The brelse
3867	 * will do a wakeup there if necessary - so no need to do a wakeup
3868	 * here in the async case. The sync case always needs to do a wakeup.
3869	 */
3870	if (bp->b_flags & B_ASYNC) {
3871		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
3872		    (bp->b_ioflags & BIO_ERROR))
3873			brelse(bp);
3874		else
3875			bqrelse(bp);
3876	} else
3877		bdone(bp);
3878}
3879
3880/*
3881 * This routine is called in lieu of iodone in the case of
3882 * incomplete I/O.  This keeps the busy status for pages
3883 * consistant.
3884 */
3885void
3886vfs_unbusy_pages(struct buf *bp)
3887{
3888	int i;
3889	vm_object_t obj;
3890	vm_page_t m;
3891
3892	runningbufwakeup(bp);
3893	if (!(bp->b_flags & B_VMIO))
3894		return;
3895
3896	obj = bp->b_bufobj->bo_object;
3897	VM_OBJECT_WLOCK(obj);
3898	for (i = 0; i < bp->b_npages; i++) {
3899		m = bp->b_pages[i];
3900		if (m == bogus_page) {
3901			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3902			if (!m)
3903				panic("vfs_unbusy_pages: page missing\n");
3904			bp->b_pages[i] = m;
3905			if (buf_mapped(bp)) {
3906				BUF_CHECK_MAPPED(bp);
3907				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3908				    bp->b_pages, bp->b_npages);
3909			} else
3910				BUF_CHECK_UNMAPPED(bp);
3911		}
3912		vm_object_pip_subtract(obj, 1);
3913		vm_page_sunbusy(m);
3914	}
3915	vm_object_pip_wakeupn(obj, 0);
3916	VM_OBJECT_WUNLOCK(obj);
3917}
3918
3919/*
3920 * vfs_page_set_valid:
3921 *
3922 *	Set the valid bits in a page based on the supplied offset.   The
3923 *	range is restricted to the buffer's size.
3924 *
3925 *	This routine is typically called after a read completes.
3926 */
3927static void
3928vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3929{
3930	vm_ooffset_t eoff;
3931
3932	/*
3933	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3934	 * page boundary and eoff is not greater than the end of the buffer.
3935	 * The end of the buffer, in this case, is our file EOF, not the
3936	 * allocation size of the buffer.
3937	 */
3938	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3939	if (eoff > bp->b_offset + bp->b_bcount)
3940		eoff = bp->b_offset + bp->b_bcount;
3941
3942	/*
3943	 * Set valid range.  This is typically the entire buffer and thus the
3944	 * entire page.
3945	 */
3946	if (eoff > off)
3947		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
3948}
3949
3950/*
3951 * vfs_page_set_validclean:
3952 *
3953 *	Set the valid bits and clear the dirty bits in a page based on the
3954 *	supplied offset.   The range is restricted to the buffer's size.
3955 */
3956static void
3957vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3958{
3959	vm_ooffset_t soff, eoff;
3960
3961	/*
3962	 * Start and end offsets in buffer.  eoff - soff may not cross a
3963	 * page boundry or cross the end of the buffer.  The end of the
3964	 * buffer, in this case, is our file EOF, not the allocation size
3965	 * of the buffer.
3966	 */
3967	soff = off;
3968	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3969	if (eoff > bp->b_offset + bp->b_bcount)
3970		eoff = bp->b_offset + bp->b_bcount;
3971
3972	/*
3973	 * Set valid range.  This is typically the entire buffer and thus the
3974	 * entire page.
3975	 */
3976	if (eoff > soff) {
3977		vm_page_set_validclean(
3978		    m,
3979		   (vm_offset_t) (soff & PAGE_MASK),
3980		   (vm_offset_t) (eoff - soff)
3981		);
3982	}
3983}
3984
3985/*
3986 * Ensure that all buffer pages are not exclusive busied.  If any page is
3987 * exclusive busy, drain it.
3988 */
3989void
3990vfs_drain_busy_pages(struct buf *bp)
3991{
3992	vm_page_t m;
3993	int i, last_busied;
3994
3995	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
3996	last_busied = 0;
3997	for (i = 0; i < bp->b_npages; i++) {
3998		m = bp->b_pages[i];
3999		if (vm_page_xbusied(m)) {
4000			for (; last_busied < i; last_busied++)
4001				vm_page_sbusy(bp->b_pages[last_busied]);
4002			while (vm_page_xbusied(m)) {
4003				vm_page_lock(m);
4004				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4005				vm_page_busy_sleep(m, "vbpage");
4006				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4007			}
4008		}
4009	}
4010	for (i = 0; i < last_busied; i++)
4011		vm_page_sunbusy(bp->b_pages[i]);
4012}
4013
4014/*
4015 * This routine is called before a device strategy routine.
4016 * It is used to tell the VM system that paging I/O is in
4017 * progress, and treat the pages associated with the buffer
4018 * almost as being exclusive busy.  Also the object paging_in_progress
4019 * flag is handled to make sure that the object doesn't become
4020 * inconsistant.
4021 *
4022 * Since I/O has not been initiated yet, certain buffer flags
4023 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
4024 * and should be ignored.
4025 */
4026void
4027vfs_busy_pages(struct buf *bp, int clear_modify)
4028{
4029	int i, bogus;
4030	vm_object_t obj;
4031	vm_ooffset_t foff;
4032	vm_page_t m;
4033
4034	if (!(bp->b_flags & B_VMIO))
4035		return;
4036
4037	obj = bp->b_bufobj->bo_object;
4038	foff = bp->b_offset;
4039	KASSERT(bp->b_offset != NOOFFSET,
4040	    ("vfs_busy_pages: no buffer offset"));
4041	VM_OBJECT_WLOCK(obj);
4042	vfs_drain_busy_pages(bp);
4043	if (bp->b_bufsize != 0)
4044		vfs_setdirty_locked_object(bp);
4045	bogus = 0;
4046	for (i = 0; i < bp->b_npages; i++) {
4047		m = bp->b_pages[i];
4048
4049		if ((bp->b_flags & B_CLUSTER) == 0) {
4050			vm_object_pip_add(obj, 1);
4051			vm_page_sbusy(m);
4052		}
4053		/*
4054		 * When readying a buffer for a read ( i.e
4055		 * clear_modify == 0 ), it is important to do
4056		 * bogus_page replacement for valid pages in
4057		 * partially instantiated buffers.  Partially
4058		 * instantiated buffers can, in turn, occur when
4059		 * reconstituting a buffer from its VM backing store
4060		 * base.  We only have to do this if B_CACHE is
4061		 * clear ( which causes the I/O to occur in the
4062		 * first place ).  The replacement prevents the read
4063		 * I/O from overwriting potentially dirty VM-backed
4064		 * pages.  XXX bogus page replacement is, uh, bogus.
4065		 * It may not work properly with small-block devices.
4066		 * We need to find a better way.
4067		 */
4068		if (clear_modify) {
4069			pmap_remove_write(m);
4070			vfs_page_set_validclean(bp, foff, m);
4071		} else if (m->valid == VM_PAGE_BITS_ALL &&
4072		    (bp->b_flags & B_CACHE) == 0) {
4073			bp->b_pages[i] = bogus_page;
4074			bogus++;
4075		}
4076		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4077	}
4078	VM_OBJECT_WUNLOCK(obj);
4079	if (bogus && buf_mapped(bp)) {
4080		BUF_CHECK_MAPPED(bp);
4081		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4082		    bp->b_pages, bp->b_npages);
4083	}
4084}
4085
4086/*
4087 *	vfs_bio_set_valid:
4088 *
4089 *	Set the range within the buffer to valid.  The range is
4090 *	relative to the beginning of the buffer, b_offset.  Note that
4091 *	b_offset itself may be offset from the beginning of the first
4092 *	page.
4093 */
4094void
4095vfs_bio_set_valid(struct buf *bp, int base, int size)
4096{
4097	int i, n;
4098	vm_page_t m;
4099
4100	if (!(bp->b_flags & B_VMIO))
4101		return;
4102
4103	/*
4104	 * Fixup base to be relative to beginning of first page.
4105	 * Set initial n to be the maximum number of bytes in the
4106	 * first page that can be validated.
4107	 */
4108	base += (bp->b_offset & PAGE_MASK);
4109	n = PAGE_SIZE - (base & PAGE_MASK);
4110
4111	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4112	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4113		m = bp->b_pages[i];
4114		if (n > size)
4115			n = size;
4116		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4117		base += n;
4118		size -= n;
4119		n = PAGE_SIZE;
4120	}
4121	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4122}
4123
4124/*
4125 *	vfs_bio_clrbuf:
4126 *
4127 *	If the specified buffer is a non-VMIO buffer, clear the entire
4128 *	buffer.  If the specified buffer is a VMIO buffer, clear and
4129 *	validate only the previously invalid portions of the buffer.
4130 *	This routine essentially fakes an I/O, so we need to clear
4131 *	BIO_ERROR and B_INVAL.
4132 *
4133 *	Note that while we only theoretically need to clear through b_bcount,
4134 *	we go ahead and clear through b_bufsize.
4135 */
4136void
4137vfs_bio_clrbuf(struct buf *bp)
4138{
4139	int i, j, mask, sa, ea, slide;
4140
4141	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4142		clrbuf(bp);
4143		return;
4144	}
4145	bp->b_flags &= ~B_INVAL;
4146	bp->b_ioflags &= ~BIO_ERROR;
4147	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4148	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4149	    (bp->b_offset & PAGE_MASK) == 0) {
4150		if (bp->b_pages[0] == bogus_page)
4151			goto unlock;
4152		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4153		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4154		if ((bp->b_pages[0]->valid & mask) == mask)
4155			goto unlock;
4156		if ((bp->b_pages[0]->valid & mask) == 0) {
4157			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4158			bp->b_pages[0]->valid |= mask;
4159			goto unlock;
4160		}
4161	}
4162	sa = bp->b_offset & PAGE_MASK;
4163	slide = 0;
4164	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4165		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4166		ea = slide & PAGE_MASK;
4167		if (ea == 0)
4168			ea = PAGE_SIZE;
4169		if (bp->b_pages[i] == bogus_page)
4170			continue;
4171		j = sa / DEV_BSIZE;
4172		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4173		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4174		if ((bp->b_pages[i]->valid & mask) == mask)
4175			continue;
4176		if ((bp->b_pages[i]->valid & mask) == 0)
4177			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4178		else {
4179			for (; sa < ea; sa += DEV_BSIZE, j++) {
4180				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4181					pmap_zero_page_area(bp->b_pages[i],
4182					    sa, DEV_BSIZE);
4183				}
4184			}
4185		}
4186		bp->b_pages[i]->valid |= mask;
4187	}
4188unlock:
4189	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4190	bp->b_resid = 0;
4191}
4192
4193void
4194vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4195{
4196	vm_page_t m;
4197	int i, n;
4198
4199	if (buf_mapped(bp)) {
4200		BUF_CHECK_MAPPED(bp);
4201		bzero(bp->b_data + base, size);
4202	} else {
4203		BUF_CHECK_UNMAPPED(bp);
4204		n = PAGE_SIZE - (base & PAGE_MASK);
4205		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4206			m = bp->b_pages[i];
4207			if (n > size)
4208				n = size;
4209			pmap_zero_page_area(m, base & PAGE_MASK, n);
4210			base += n;
4211			size -= n;
4212			n = PAGE_SIZE;
4213		}
4214	}
4215}
4216
4217/*
4218 * vm_hold_load_pages and vm_hold_free_pages get pages into
4219 * a buffers address space.  The pages are anonymous and are
4220 * not associated with a file object.
4221 */
4222static void
4223vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4224{
4225	vm_offset_t pg;
4226	vm_page_t p;
4227	int index;
4228
4229	BUF_CHECK_MAPPED(bp);
4230
4231	to = round_page(to);
4232	from = round_page(from);
4233	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4234
4235	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4236tryagain:
4237		/*
4238		 * note: must allocate system pages since blocking here
4239		 * could interfere with paging I/O, no matter which
4240		 * process we are.
4241		 */
4242		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4243		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
4244		if (p == NULL) {
4245			VM_WAIT;
4246			goto tryagain;
4247		}
4248		pmap_qenter(pg, &p, 1);
4249		bp->b_pages[index] = p;
4250	}
4251	bp->b_npages = index;
4252}
4253
4254/* Return pages associated with this buf to the vm system */
4255static void
4256vm_hold_free_pages(struct buf *bp, int newbsize)
4257{
4258	vm_offset_t from;
4259	vm_page_t p;
4260	int index, newnpages;
4261
4262	BUF_CHECK_MAPPED(bp);
4263
4264	from = round_page((vm_offset_t)bp->b_data + newbsize);
4265	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4266	if (bp->b_npages > newnpages)
4267		pmap_qremove(from, bp->b_npages - newnpages);
4268	for (index = newnpages; index < bp->b_npages; index++) {
4269		p = bp->b_pages[index];
4270		bp->b_pages[index] = NULL;
4271		if (vm_page_sbusied(p))
4272			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
4273			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
4274		p->wire_count--;
4275		vm_page_free(p);
4276		atomic_subtract_int(&vm_cnt.v_wire_count, 1);
4277	}
4278	bp->b_npages = newnpages;
4279}
4280
4281/*
4282 * Map an IO request into kernel virtual address space.
4283 *
4284 * All requests are (re)mapped into kernel VA space.
4285 * Notice that we use b_bufsize for the size of the buffer
4286 * to be mapped.  b_bcount might be modified by the driver.
4287 *
4288 * Note that even if the caller determines that the address space should
4289 * be valid, a race or a smaller-file mapped into a larger space may
4290 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4291 * check the return value.
4292 *
4293 * This function only works with pager buffers.
4294 */
4295int
4296vmapbuf(struct buf *bp, int mapbuf)
4297{
4298	vm_prot_t prot;
4299	int pidx;
4300
4301	if (bp->b_bufsize < 0)
4302		return (-1);
4303	prot = VM_PROT_READ;
4304	if (bp->b_iocmd == BIO_READ)
4305		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4306	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4307	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4308	    btoc(MAXPHYS))) < 0)
4309		return (-1);
4310	bp->b_npages = pidx;
4311	bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4312	if (mapbuf || !unmapped_buf_allowed) {
4313		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
4314		bp->b_data = bp->b_kvabase + bp->b_offset;
4315	} else
4316		bp->b_data = unmapped_buf;
4317	return(0);
4318}
4319
4320/*
4321 * Free the io map PTEs associated with this IO operation.
4322 * We also invalidate the TLB entries and restore the original b_addr.
4323 *
4324 * This function only works with pager buffers.
4325 */
4326void
4327vunmapbuf(struct buf *bp)
4328{
4329	int npages;
4330
4331	npages = bp->b_npages;
4332	if (buf_mapped(bp))
4333		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4334	vm_page_unhold_pages(bp->b_pages, npages);
4335
4336	bp->b_data = unmapped_buf;
4337}
4338
4339void
4340bdone(struct buf *bp)
4341{
4342	struct mtx *mtxp;
4343
4344	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4345	mtx_lock(mtxp);
4346	bp->b_flags |= B_DONE;
4347	wakeup(bp);
4348	mtx_unlock(mtxp);
4349}
4350
4351void
4352bwait(struct buf *bp, u_char pri, const char *wchan)
4353{
4354	struct mtx *mtxp;
4355
4356	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4357	mtx_lock(mtxp);
4358	while ((bp->b_flags & B_DONE) == 0)
4359		msleep(bp, mtxp, pri, wchan, 0);
4360	mtx_unlock(mtxp);
4361}
4362
4363int
4364bufsync(struct bufobj *bo, int waitfor)
4365{
4366
4367	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
4368}
4369
4370void
4371bufstrategy(struct bufobj *bo, struct buf *bp)
4372{
4373	int i = 0;
4374	struct vnode *vp;
4375
4376	vp = bp->b_vp;
4377	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4378	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4379	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4380	i = VOP_STRATEGY(vp, bp);
4381	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4382}
4383
4384void
4385bufobj_wrefl(struct bufobj *bo)
4386{
4387
4388	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4389	ASSERT_BO_WLOCKED(bo);
4390	bo->bo_numoutput++;
4391}
4392
4393void
4394bufobj_wref(struct bufobj *bo)
4395{
4396
4397	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4398	BO_LOCK(bo);
4399	bo->bo_numoutput++;
4400	BO_UNLOCK(bo);
4401}
4402
4403void
4404bufobj_wdrop(struct bufobj *bo)
4405{
4406
4407	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4408	BO_LOCK(bo);
4409	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4410	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4411		bo->bo_flag &= ~BO_WWAIT;
4412		wakeup(&bo->bo_numoutput);
4413	}
4414	BO_UNLOCK(bo);
4415}
4416
4417int
4418bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4419{
4420	int error;
4421
4422	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4423	ASSERT_BO_WLOCKED(bo);
4424	error = 0;
4425	while (bo->bo_numoutput) {
4426		bo->bo_flag |= BO_WWAIT;
4427		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
4428		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4429		if (error)
4430			break;
4431	}
4432	return (error);
4433}
4434
4435void
4436bpin(struct buf *bp)
4437{
4438	struct mtx *mtxp;
4439
4440	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4441	mtx_lock(mtxp);
4442	bp->b_pin_count++;
4443	mtx_unlock(mtxp);
4444}
4445
4446void
4447bunpin(struct buf *bp)
4448{
4449	struct mtx *mtxp;
4450
4451	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4452	mtx_lock(mtxp);
4453	if (--bp->b_pin_count == 0)
4454		wakeup(bp);
4455	mtx_unlock(mtxp);
4456}
4457
4458void
4459bunpin_wait(struct buf *bp)
4460{
4461	struct mtx *mtxp;
4462
4463	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4464	mtx_lock(mtxp);
4465	while (bp->b_pin_count > 0)
4466		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4467	mtx_unlock(mtxp);
4468}
4469
4470/*
4471 * Set bio_data or bio_ma for struct bio from the struct buf.
4472 */
4473void
4474bdata2bio(struct buf *bp, struct bio *bip)
4475{
4476
4477	if (!buf_mapped(bp)) {
4478		KASSERT(unmapped_buf_allowed, ("unmapped"));
4479		bip->bio_ma = bp->b_pages;
4480		bip->bio_ma_n = bp->b_npages;
4481		bip->bio_data = unmapped_buf;
4482		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
4483		bip->bio_flags |= BIO_UNMAPPED;
4484		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
4485		    PAGE_SIZE == bp->b_npages,
4486		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
4487		    (long long)bip->bio_length, bip->bio_ma_n));
4488	} else {
4489		bip->bio_data = bp->b_data;
4490		bip->bio_ma = NULL;
4491	}
4492}
4493
4494#include "opt_ddb.h"
4495#ifdef DDB
4496#include <ddb/ddb.h>
4497
4498/* DDB command to show buffer data */
4499DB_SHOW_COMMAND(buffer, db_show_buffer)
4500{
4501	/* get args */
4502	struct buf *bp = (struct buf *)addr;
4503
4504	if (!have_addr) {
4505		db_printf("usage: show buffer <addr>\n");
4506		return;
4507	}
4508
4509	db_printf("buf at %p\n", bp);
4510	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4511	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4512	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4513	db_printf(
4514	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4515	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4516	    "b_dep = %p\n",
4517	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4518	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4519	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4520	db_printf("b_kvabase = %p, b_kvasize = %d\n",
4521	    bp->b_kvabase, bp->b_kvasize);
4522	if (bp->b_npages) {
4523		int i;
4524		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4525		for (i = 0; i < bp->b_npages; i++) {
4526			vm_page_t m;
4527			m = bp->b_pages[i];
4528			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4529			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4530			if ((i + 1) < bp->b_npages)
4531				db_printf(",");
4532		}
4533		db_printf("\n");
4534	}
4535	db_printf(" ");
4536	BUF_LOCKPRINTINFO(bp);
4537}
4538
4539DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4540{
4541	struct buf *bp;
4542	int i;
4543
4544	for (i = 0; i < nbuf; i++) {
4545		bp = &buf[i];
4546		if (BUF_ISLOCKED(bp)) {
4547			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4548			db_printf("\n");
4549		}
4550	}
4551}
4552
4553DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4554{
4555	struct vnode *vp;
4556	struct buf *bp;
4557
4558	if (!have_addr) {
4559		db_printf("usage: show vnodebufs <addr>\n");
4560		return;
4561	}
4562	vp = (struct vnode *)addr;
4563	db_printf("Clean buffers:\n");
4564	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4565		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4566		db_printf("\n");
4567	}
4568	db_printf("Dirty buffers:\n");
4569	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4570		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4571		db_printf("\n");
4572	}
4573}
4574
4575DB_COMMAND(countfreebufs, db_coundfreebufs)
4576{
4577	struct buf *bp;
4578	int i, used = 0, nfree = 0;
4579
4580	if (have_addr) {
4581		db_printf("usage: countfreebufs\n");
4582		return;
4583	}
4584
4585	for (i = 0; i < nbuf; i++) {
4586		bp = &buf[i];
4587		if ((bp->b_flags & B_INFREECNT) != 0)
4588			nfree++;
4589		else
4590			used++;
4591	}
4592
4593	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4594	    nfree + used);
4595	db_printf("numfreebuffers is %d\n", numfreebuffers);
4596}
4597#endif /* DDB */
4598