vfs_bio.c revision 18291
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.98 1996/09/08 20:44:20 dyson Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#include "opt_bounce.h"
36
37#define VMIO
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/vmmeter.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_prot.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_pageout.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_extern.h>
54#include <sys/buf.h>
55#include <sys/mount.h>
56#include <sys/malloc.h>
57#include <sys/resourcevar.h>
58#include <sys/proc.h>
59
60#include <miscfs/specfs/specdev.h>
61
62static void vfs_update __P((void));
63static struct	proc *updateproc;
64static struct kproc_desc up_kp = {
65	"update",
66	vfs_update,
67	&updateproc
68};
69SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
70
71struct buf *buf;		/* buffer header pool */
72struct swqueue bswlist;
73
74int count_lock_queue __P((void));
75static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
78		vm_offset_t to);
79static void vfs_clean_pages(struct buf * bp);
80static void vfs_setdirty(struct buf *bp);
81static void vfs_vmio_release(struct buf *bp);
82
83int needsbuffer;
84
85/*
86 * Internal update daemon, process 3
87 *	The variable vfs_update_wakeup allows for internal syncs.
88 */
89int vfs_update_wakeup;
90
91
92/*
93 * buffers base kva
94 */
95caddr_t buffers_kva;
96
97/*
98 * bogus page -- for I/O to/from partially complete buffers
99 * this is a temporary solution to the problem, but it is not
100 * really that bad.  it would be better to split the buffer
101 * for input in the case of buffers partially already in memory,
102 * but the code is intricate enough already.
103 */
104vm_page_t bogus_page;
105static vm_offset_t bogus_offset;
106
107static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
108	bufmallocspace, maxbufmallocspace;
109
110static struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
111static struct bqueues bufqueues[BUFFER_QUEUES];
112
113extern int vm_swap_size;
114
115#define BUF_MAXUSE 8
116/*
117#define NO_B_MALLOC
118*/
119
120/*
121 * Initialize buffer headers and related structures.
122 */
123void
124bufinit()
125{
126	struct buf *bp;
127	int i;
128
129	TAILQ_INIT(&bswlist);
130	LIST_INIT(&invalhash);
131
132	/* first, make a null hash table */
133	for (i = 0; i < BUFHSZ; i++)
134		LIST_INIT(&bufhashtbl[i]);
135
136	/* next, make a null set of free lists */
137	for (i = 0; i < BUFFER_QUEUES; i++)
138		TAILQ_INIT(&bufqueues[i]);
139
140	buffers_kva = (caddr_t) kmem_alloc_pageable(buffer_map, MAXBSIZE * nbuf);
141	/* finally, initialize each buffer header and stick on empty q */
142	for (i = 0; i < nbuf; i++) {
143		bp = &buf[i];
144		bzero(bp, sizeof *bp);
145		bp->b_flags = B_INVAL;	/* we're just an empty header */
146		bp->b_dev = NODEV;
147		bp->b_rcred = NOCRED;
148		bp->b_wcred = NOCRED;
149		bp->b_qindex = QUEUE_EMPTY;
150		bp->b_vnbufs.le_next = NOLIST;
151		bp->b_data = buffers_kva + i * MAXBSIZE;
152		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
153		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
154	}
155/*
156 * maxbufspace is currently calculated to support all filesystem blocks
157 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
158 * cache is still the same as it would be for 8K filesystems.  This
159 * keeps the size of the buffer cache "in check" for big block filesystems.
160 */
161	maxbufspace = 2 * (nbuf + 8) * PAGE_SIZE;
162/*
163 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
164 */
165	maxvmiobufspace = 2 * maxbufspace / 3;
166/*
167 * Limit the amount of malloc memory since it is wired permanently into
168 * the kernel space.  Even though this is accounted for in the buffer
169 * allocation, we don't want the malloced region to grow uncontrolled.
170 * The malloc scheme improves memory utilization significantly on average
171 * (small) directories.
172 */
173	maxbufmallocspace = maxbufspace / 20;
174
175	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
176	bogus_page = vm_page_alloc(kernel_object,
177			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
178			VM_ALLOC_NORMAL);
179
180}
181
182/*
183 * remove the buffer from the appropriate free list
184 */
185void
186bremfree(struct buf * bp)
187{
188	int s = splbio();
189
190	if (bp->b_qindex != QUEUE_NONE) {
191		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
192		bp->b_qindex = QUEUE_NONE;
193	} else {
194		panic("bremfree: removing a buffer when not on a queue");
195	}
196	splx(s);
197}
198
199/*
200 * Get a buffer with the specified data.  Look in the cache first.
201 */
202int
203bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
204    struct buf ** bpp)
205{
206	struct buf *bp;
207
208	bp = getblk(vp, blkno, size, 0, 0);
209	*bpp = bp;
210
211	/* if not found in cache, do some I/O */
212	if ((bp->b_flags & B_CACHE) == 0) {
213		if (curproc != NULL)
214			curproc->p_stats->p_ru.ru_inblock++;
215		bp->b_flags |= B_READ;
216		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
217		if (bp->b_rcred == NOCRED) {
218			if (cred != NOCRED)
219				crhold(cred);
220			bp->b_rcred = cred;
221		}
222		vfs_busy_pages(bp, 0);
223		VOP_STRATEGY(bp);
224		return (biowait(bp));
225	}
226	return (0);
227}
228
229/*
230 * Operates like bread, but also starts asynchronous I/O on
231 * read-ahead blocks.
232 */
233int
234breadn(struct vnode * vp, daddr_t blkno, int size,
235    daddr_t * rablkno, int *rabsize,
236    int cnt, struct ucred * cred, struct buf ** bpp)
237{
238	struct buf *bp, *rabp;
239	int i;
240	int rv = 0, readwait = 0;
241
242	*bpp = bp = getblk(vp, blkno, size, 0, 0);
243
244	/* if not found in cache, do some I/O */
245	if ((bp->b_flags & B_CACHE) == 0) {
246		if (curproc != NULL)
247			curproc->p_stats->p_ru.ru_inblock++;
248		bp->b_flags |= B_READ;
249		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
250		if (bp->b_rcred == NOCRED) {
251			if (cred != NOCRED)
252				crhold(cred);
253			bp->b_rcred = cred;
254		}
255		vfs_busy_pages(bp, 0);
256		VOP_STRATEGY(bp);
257		++readwait;
258	}
259	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
260		if (inmem(vp, *rablkno))
261			continue;
262		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
263
264		if ((rabp->b_flags & B_CACHE) == 0) {
265			if (curproc != NULL)
266				curproc->p_stats->p_ru.ru_inblock++;
267			rabp->b_flags |= B_READ | B_ASYNC;
268			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
269			if (rabp->b_rcred == NOCRED) {
270				if (cred != NOCRED)
271					crhold(cred);
272				rabp->b_rcred = cred;
273			}
274			vfs_busy_pages(rabp, 0);
275			VOP_STRATEGY(rabp);
276		} else {
277			brelse(rabp);
278		}
279	}
280
281	if (readwait) {
282		rv = biowait(bp);
283	}
284	return (rv);
285}
286
287/*
288 * Write, release buffer on completion.  (Done by iodone
289 * if async.)
290 */
291int
292bwrite(struct buf * bp)
293{
294	int oldflags = bp->b_flags;
295
296	if (bp->b_flags & B_INVAL) {
297		brelse(bp);
298		return (0);
299	}
300	if (!(bp->b_flags & B_BUSY))
301		panic("bwrite: buffer is not busy???");
302
303	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
304	bp->b_flags |= B_WRITEINPROG;
305
306	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
307		reassignbuf(bp, bp->b_vp);
308	}
309
310	bp->b_vp->v_numoutput++;
311	vfs_busy_pages(bp, 1);
312	if (curproc != NULL)
313		curproc->p_stats->p_ru.ru_oublock++;
314	VOP_STRATEGY(bp);
315
316	/* if ((bp->b_flags & B_ASYNC) == 0) { */
317	if ((oldflags & B_ASYNC) == 0) {
318		int rtval = biowait(bp);
319
320		if (oldflags & B_DELWRI) {
321			reassignbuf(bp, bp->b_vp);
322		}
323		brelse(bp);
324		return (rtval);
325	}
326	return (0);
327}
328
329int
330vn_bwrite(ap)
331	struct vop_bwrite_args *ap;
332{
333	return (bwrite(ap->a_bp));
334}
335
336/*
337 * Delayed write. (Buffer is marked dirty).
338 */
339void
340bdwrite(struct buf * bp)
341{
342
343	if ((bp->b_flags & B_BUSY) == 0) {
344		panic("bdwrite: buffer is not busy");
345	}
346	if (bp->b_flags & B_INVAL) {
347		brelse(bp);
348		return;
349	}
350	if (bp->b_flags & B_TAPE) {
351		bawrite(bp);
352		return;
353	}
354	bp->b_flags &= ~(B_READ|B_RELBUF);
355	if ((bp->b_flags & B_DELWRI) == 0) {
356		bp->b_flags |= B_DONE | B_DELWRI;
357		reassignbuf(bp, bp->b_vp);
358	}
359
360	/*
361	 * This bmap keeps the system from needing to do the bmap later,
362	 * perhaps when the system is attempting to do a sync.  Since it
363	 * is likely that the indirect block -- or whatever other datastructure
364	 * that the filesystem needs is still in memory now, it is a good
365	 * thing to do this.  Note also, that if the pageout daemon is
366	 * requesting a sync -- there might not be enough memory to do
367	 * the bmap then...  So, this is important to do.
368	 */
369	if( bp->b_lblkno == bp->b_blkno) {
370		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
371	}
372
373	/*
374	 * Set the *dirty* buffer range based upon the VM system dirty pages.
375	 */
376	vfs_setdirty(bp);
377
378	/*
379	 * We need to do this here to satisfy the vnode_pager and the
380	 * pageout daemon, so that it thinks that the pages have been
381	 * "cleaned".  Note that since the pages are in a delayed write
382	 * buffer -- the VFS layer "will" see that the pages get written
383	 * out on the next sync, or perhaps the cluster will be completed.
384	 */
385	vfs_clean_pages(bp);
386	bqrelse(bp);
387	return;
388}
389
390/*
391 * Asynchronous write.
392 * Start output on a buffer, but do not wait for it to complete.
393 * The buffer is released when the output completes.
394 */
395void
396bawrite(struct buf * bp)
397{
398	bp->b_flags |= B_ASYNC;
399	(void) VOP_BWRITE(bp);
400}
401
402/*
403 * Ordered write.
404 * Start output on a buffer, but only wait for it to complete if the
405 * output device cannot guarantee ordering in some other way.  Devices
406 * that can perform asynchronous ordered writes will set the B_ASYNC
407 * flag in their strategy routine.
408 * The buffer is released when the output completes.
409 */
410int
411bowrite(struct buf * bp)
412{
413	bp->b_flags |= B_ORDERED;
414	return (VOP_BWRITE(bp));
415}
416
417/*
418 * Release a buffer.
419 */
420void
421brelse(struct buf * bp)
422{
423	int s;
424
425	if (bp->b_flags & B_CLUSTER) {
426		relpbuf(bp);
427		return;
428	}
429	/* anyone need a "free" block? */
430	s = splbio();
431
432	/* anyone need this block? */
433	if (bp->b_flags & B_WANTED) {
434		bp->b_flags &= ~(B_WANTED | B_AGE);
435		wakeup(bp);
436	}
437
438	if (bp->b_flags & B_LOCKED)
439		bp->b_flags &= ~B_ERROR;
440
441	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
442	    (bp->b_bufsize <= 0)) {
443		bp->b_flags |= B_INVAL;
444		bp->b_flags &= ~(B_DELWRI | B_CACHE);
445		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
446			if (bp->b_bufsize)
447				allocbuf(bp, 0);
448			brelvp(bp);
449		}
450	}
451
452	/*
453	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
454	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
455	 * but the VM object is kept around.  The B_NOCACHE flag is used to
456	 * invalidate the pages in the VM object.
457	 */
458	if (bp->b_flags & B_VMIO) {
459		vm_ooffset_t foff;
460		vm_object_t obj;
461		int i, resid;
462		vm_page_t m;
463		struct vnode *vp;
464		int iototal = bp->b_bufsize;
465
466		vp = bp->b_vp;
467		if (!vp)
468			panic("brelse: missing vp");
469
470		if (bp->b_npages) {
471			vm_pindex_t poff;
472			obj = (vm_object_t) vp->v_object;
473			if (vp->v_type == VBLK)
474				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
475			else
476				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
477			poff = OFF_TO_IDX(foff);
478			for (i = 0; i < bp->b_npages; i++) {
479				m = bp->b_pages[i];
480				if (m == bogus_page) {
481					m = vm_page_lookup(obj, poff + i);
482					if (!m) {
483						panic("brelse: page missing\n");
484					}
485					bp->b_pages[i] = m;
486					pmap_qenter(trunc_page(bp->b_data),
487						bp->b_pages, bp->b_npages);
488				}
489				resid = IDX_TO_OFF(m->pindex+1) - foff;
490				if (resid > iototal)
491					resid = iototal;
492				if (resid > 0) {
493					/*
494					 * Don't invalidate the page if the local machine has already
495					 * modified it.  This is the lesser of two evils, and should
496					 * be fixed.
497					 */
498					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
499						vm_page_test_dirty(m);
500						if (m->dirty == 0) {
501							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
502							if (m->valid == 0)
503								vm_page_protect(m, VM_PROT_NONE);
504						}
505					}
506					if (resid >= PAGE_SIZE) {
507						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
508							bp->b_flags |= B_INVAL;
509						}
510					} else {
511						if (!vm_page_is_valid(m,
512							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
513							bp->b_flags |= B_INVAL;
514						}
515					}
516				}
517				foff += resid;
518				iototal -= resid;
519			}
520		}
521		if (bp->b_flags & (B_INVAL | B_RELBUF))
522			vfs_vmio_release(bp);
523	}
524	if (bp->b_qindex != QUEUE_NONE)
525		panic("brelse: free buffer onto another queue???");
526
527	/* enqueue */
528	/* buffers with no memory */
529	if (bp->b_bufsize == 0) {
530		bp->b_qindex = QUEUE_EMPTY;
531		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
532		LIST_REMOVE(bp, b_hash);
533		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
534		bp->b_dev = NODEV;
535		if (needsbuffer) {
536			wakeup(&needsbuffer);
537			needsbuffer=0;
538		}
539		/* buffers with junk contents */
540	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
541		bp->b_qindex = QUEUE_AGE;
542		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
543		LIST_REMOVE(bp, b_hash);
544		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
545		bp->b_dev = NODEV;
546		if (needsbuffer) {
547			wakeup(&needsbuffer);
548			needsbuffer=0;
549		}
550		/* buffers that are locked */
551	} else if (bp->b_flags & B_LOCKED) {
552		bp->b_qindex = QUEUE_LOCKED;
553		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
554		/* buffers with stale but valid contents */
555	} else if (bp->b_flags & B_AGE) {
556		bp->b_qindex = QUEUE_AGE;
557		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
558		if (needsbuffer) {
559			wakeup(&needsbuffer);
560			needsbuffer=0;
561		}
562		/* buffers with valid and quite potentially reuseable contents */
563	} else {
564		bp->b_qindex = QUEUE_LRU;
565		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
566		if (needsbuffer) {
567			wakeup(&needsbuffer);
568			needsbuffer=0;
569		}
570	}
571
572	/* unlock */
573	bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
574	splx(s);
575}
576
577/*
578 * Release a buffer.
579 */
580void
581bqrelse(struct buf * bp)
582{
583	int s;
584
585	s = splbio();
586
587
588	/* anyone need this block? */
589	if (bp->b_flags & B_WANTED) {
590		bp->b_flags &= ~(B_WANTED | B_AGE);
591		wakeup(bp);
592	}
593
594	if (bp->b_qindex != QUEUE_NONE)
595		panic("bqrelse: free buffer onto another queue???");
596
597	if (bp->b_flags & B_LOCKED) {
598		bp->b_flags &= ~B_ERROR;
599		bp->b_qindex = QUEUE_LOCKED;
600		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
601		/* buffers with stale but valid contents */
602	} else {
603		bp->b_qindex = QUEUE_LRU;
604		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
605		if (needsbuffer) {
606			wakeup(&needsbuffer);
607			needsbuffer=0;
608		}
609	}
610
611	/* unlock */
612	bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
613	splx(s);
614}
615
616static void
617vfs_vmio_release(bp)
618	struct buf *bp;
619{
620	int i;
621	vm_page_t m;
622
623	for (i = 0; i < bp->b_npages; i++) {
624		m = bp->b_pages[i];
625		bp->b_pages[i] = NULL;
626		while ((m->flags & PG_BUSY) || (m->busy != 0)) {
627			m->flags |= PG_WANTED;
628			tsleep(m, PVM, "vmiorl", 0);
629		}
630
631		vm_page_unwire(m);
632
633		if (m->wire_count == 0) {
634
635			if (m->flags & PG_WANTED) {
636				m->flags &= ~PG_WANTED;
637				wakeup(m);
638			}
639
640			if (m->valid) {
641				if(m->dirty == 0)
642					vm_page_test_dirty(m);
643				/*
644				 * this keeps pressure off of the process memory
645				 */
646				if ((vm_swap_size == 0) ||
647					(cnt.v_free_count < cnt.v_free_min)) {
648					if ((m->dirty == 0) &&
649						(m->hold_count == 0) &&
650						(m->busy == 0))
651						vm_page_cache(m);
652					else
653						vm_page_deactivate(m);
654				}
655			} else if ((m->hold_count == 0) &&
656				(m->busy == 0)) {
657				vm_page_protect(m, VM_PROT_NONE);
658				vm_page_free(m);
659			}
660		}
661	}
662	bufspace -= bp->b_bufsize;
663	vmiospace -= bp->b_bufsize;
664	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
665	bp->b_npages = 0;
666	bp->b_bufsize = 0;
667	bp->b_flags &= ~B_VMIO;
668	if (bp->b_vp)
669		brelvp(bp);
670}
671
672/*
673 * Check to see if a block is currently memory resident.
674 */
675__inline struct buf *
676gbincore(struct vnode * vp, daddr_t blkno)
677{
678	struct buf *bp;
679	struct bufhashhdr *bh;
680
681	bh = BUFHASH(vp, blkno);
682	bp = bh->lh_first;
683
684	/* Search hash chain */
685	while (bp != NULL) {
686		/* hit */
687		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
688		    (bp->b_flags & B_INVAL) == 0) {
689			break;
690		}
691		bp = bp->b_hash.le_next;
692	}
693	return (bp);
694}
695
696/*
697 * this routine implements clustered async writes for
698 * clearing out B_DELWRI buffers...  This is much better
699 * than the old way of writing only one buffer at a time.
700 */
701int
702vfs_bio_awrite(struct buf * bp)
703{
704	int i;
705	daddr_t lblkno = bp->b_lblkno;
706	struct vnode *vp = bp->b_vp;
707	int s;
708	int ncl;
709	struct buf *bpa;
710	int nwritten;
711
712	s = splbio();
713	/*
714	 * right now we support clustered writing only to regular files
715	 */
716	if ((vp->v_type == VREG) &&
717	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
718	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
719		int size;
720		int maxcl;
721
722		size = vp->v_mount->mnt_stat.f_iosize;
723		maxcl = MAXPHYS / size;
724
725		for (i = 1; i < maxcl; i++) {
726			if ((bpa = gbincore(vp, lblkno + i)) &&
727			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
728			    (B_DELWRI | B_CLUSTEROK)) &&
729			    (bpa->b_bufsize == size)) {
730				if ((bpa->b_blkno == bpa->b_lblkno) ||
731				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
732					break;
733			} else {
734				break;
735			}
736		}
737		ncl = i;
738		/*
739		 * this is a possible cluster write
740		 */
741		if (ncl != 1) {
742			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
743			splx(s);
744			return nwritten;
745		}
746	}
747	bremfree(bp);
748	splx(s);
749	/*
750	 * default (old) behavior, writing out only one block
751	 */
752	bp->b_flags |= B_BUSY | B_ASYNC;
753	nwritten = bp->b_bufsize;
754	(void) VOP_BWRITE(bp);
755	return nwritten;
756}
757
758
759/*
760 * Find a buffer header which is available for use.
761 */
762static struct buf *
763getnewbuf(int slpflag, int slptimeo, int doingvmio)
764{
765	struct buf *bp;
766	int nbyteswritten = 0;
767
768start:
769	if (bufspace >= maxbufspace)
770		goto trytofreespace;
771
772	/* can we constitute a new buffer? */
773	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
774		if (bp->b_qindex != QUEUE_EMPTY)
775			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
776			    bp->b_qindex);
777		bp->b_flags |= B_BUSY;
778		bremfree(bp);
779		goto fillbuf;
780	}
781trytofreespace:
782	/*
783	 * We keep the file I/O from hogging metadata I/O
784	 * This is desirable because file data is cached in the
785	 * VM/Buffer cache even if a buffer is freed.
786	 */
787	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
788		if (bp->b_qindex != QUEUE_AGE)
789			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
790			    bp->b_qindex);
791	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
792		if (bp->b_qindex != QUEUE_LRU)
793			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
794			    bp->b_qindex);
795	}
796	if (!bp) {
797		/* wait for a free buffer of any kind */
798		needsbuffer = 1;
799		tsleep(&needsbuffer,
800			(PRIBIO + 1) | slpflag, "newbuf", slptimeo);
801		return (0);
802	}
803
804	/*
805	 * We are fairly aggressive about freeing VMIO buffers, but since
806	 * the buffering is intact without buffer headers, there is not
807	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
808	 */
809	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
810		if ((bp->b_flags & B_VMIO) == 0 ||
811			(vmiospace < maxvmiobufspace)) {
812			--bp->b_usecount;
813			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
814			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
815				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
816				goto start;
817			}
818			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
819		}
820	}
821
822	/* if we are a delayed write, convert to an async write */
823	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
824		nbyteswritten += vfs_bio_awrite(bp);
825		if (!slpflag && !slptimeo) {
826			return (0);
827		}
828		goto start;
829	}
830
831	if (bp->b_flags & B_WANTED) {
832		bp->b_flags &= ~B_WANTED;
833		wakeup(bp);
834	}
835	bremfree(bp);
836	bp->b_flags |= B_BUSY;
837
838	if (bp->b_flags & B_VMIO)
839		vfs_vmio_release(bp);
840
841	if (bp->b_vp)
842		brelvp(bp);
843
844fillbuf:
845	/* we are not free, nor do we contain interesting data */
846	if (bp->b_rcred != NOCRED) {
847		crfree(bp->b_rcred);
848		bp->b_rcred = NOCRED;
849	}
850	if (bp->b_wcred != NOCRED) {
851		crfree(bp->b_wcred);
852		bp->b_wcred = NOCRED;
853	}
854
855	LIST_REMOVE(bp, b_hash);
856	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
857	if (bp->b_bufsize) {
858		allocbuf(bp, 0);
859	}
860	bp->b_flags = B_BUSY;
861	bp->b_dev = NODEV;
862	bp->b_vp = NULL;
863	bp->b_blkno = bp->b_lblkno = 0;
864	bp->b_iodone = 0;
865	bp->b_error = 0;
866	bp->b_resid = 0;
867	bp->b_bcount = 0;
868	bp->b_npages = 0;
869	bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
870	bp->b_dirtyoff = bp->b_dirtyend = 0;
871	bp->b_validoff = bp->b_validend = 0;
872	bp->b_usecount = 4;
873	if (bufspace >= maxbufspace + nbyteswritten) {
874		bp->b_flags |= B_INVAL;
875		brelse(bp);
876		goto trytofreespace;
877	}
878	return (bp);
879}
880
881/*
882 * Check to see if a block is currently memory resident.
883 */
884struct buf *
885incore(struct vnode * vp, daddr_t blkno)
886{
887	struct buf *bp;
888
889	int s = splbio();
890	bp = gbincore(vp, blkno);
891	splx(s);
892	return (bp);
893}
894
895/*
896 * Returns true if no I/O is needed to access the
897 * associated VM object.  This is like incore except
898 * it also hunts around in the VM system for the data.
899 */
900
901int
902inmem(struct vnode * vp, daddr_t blkno)
903{
904	vm_object_t obj;
905	vm_offset_t toff, tinc;
906	vm_page_t m;
907	vm_ooffset_t off;
908
909	if (incore(vp, blkno))
910		return 1;
911	if (vp->v_mount == NULL)
912		return 0;
913	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
914		return 0;
915
916	obj = vp->v_object;
917	tinc = PAGE_SIZE;
918	if (tinc > vp->v_mount->mnt_stat.f_iosize)
919		tinc = vp->v_mount->mnt_stat.f_iosize;
920	off = blkno * vp->v_mount->mnt_stat.f_iosize;
921
922	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
923
924		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
925		if (!m)
926			return 0;
927		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
928			return 0;
929	}
930	return 1;
931}
932
933/*
934 * now we set the dirty range for the buffer --
935 * for NFS -- if the file is mapped and pages have
936 * been written to, let it know.  We want the
937 * entire range of the buffer to be marked dirty if
938 * any of the pages have been written to for consistancy
939 * with the b_validoff, b_validend set in the nfs write
940 * code, and used by the nfs read code.
941 */
942static void
943vfs_setdirty(struct buf *bp) {
944	int i;
945	vm_object_t object;
946	vm_offset_t boffset, offset;
947	/*
948	 * We qualify the scan for modified pages on whether the
949	 * object has been flushed yet.  The OBJ_WRITEABLE flag
950	 * is not cleared simply by protecting pages off.
951	 */
952	if ((bp->b_flags & B_VMIO) &&
953		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
954		/*
955		 * test the pages to see if they have been modified directly
956		 * by users through the VM system.
957		 */
958		for (i = 0; i < bp->b_npages; i++)
959			vm_page_test_dirty(bp->b_pages[i]);
960
961		/*
962		 * scan forwards for the first page modified
963		 */
964		for (i = 0; i < bp->b_npages; i++) {
965			if (bp->b_pages[i]->dirty) {
966				break;
967			}
968		}
969		boffset = (i << PAGE_SHIFT);
970		if (boffset < bp->b_dirtyoff) {
971			bp->b_dirtyoff = boffset;
972		}
973
974		/*
975		 * scan backwards for the last page modified
976		 */
977		for (i = bp->b_npages - 1; i >= 0; --i) {
978			if (bp->b_pages[i]->dirty) {
979				break;
980			}
981		}
982		boffset = (i + 1);
983		offset = boffset + bp->b_pages[0]->pindex;
984		if (offset >= object->size)
985			boffset = object->size - bp->b_pages[0]->pindex;
986		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
987			bp->b_dirtyend = (boffset << PAGE_SHIFT);
988	}
989}
990
991/*
992 * Get a block given a specified block and offset into a file/device.
993 */
994struct buf *
995getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
996{
997	struct buf *bp;
998	int s;
999	struct bufhashhdr *bh;
1000
1001	s = splbio();
1002loop:
1003	if ((bp = gbincore(vp, blkno))) {
1004		if (bp->b_flags & B_BUSY) {
1005			bp->b_flags |= B_WANTED;
1006			if (bp->b_usecount < BUF_MAXUSE)
1007				++bp->b_usecount;
1008			if (!tsleep(bp,
1009				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
1010				goto loop;
1011
1012			splx(s);
1013			return (struct buf *) NULL;
1014		}
1015		bp->b_flags |= B_BUSY | B_CACHE;
1016		bremfree(bp);
1017
1018		/*
1019		 * check for size inconsistancies (note that they shouldn't happen
1020		 * but do when filesystems don't handle the size changes correctly.)
1021		 * We are conservative on metadata and don't just extend the buffer
1022		 * but write and re-constitute it.
1023		 */
1024
1025		if (bp->b_bcount != size) {
1026			if (bp->b_flags & B_VMIO) {
1027				allocbuf(bp, size);
1028			} else {
1029				bp->b_flags |= B_NOCACHE;
1030				VOP_BWRITE(bp);
1031				goto loop;
1032			}
1033		}
1034
1035		if (bp->b_usecount < BUF_MAXUSE)
1036			++bp->b_usecount;
1037		splx(s);
1038		return (bp);
1039	} else {
1040		vm_object_t obj;
1041		int doingvmio;
1042
1043		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1044			doingvmio = 1;
1045		} else {
1046			doingvmio = 0;
1047		}
1048		if ((bp = getnewbuf(slpflag, slptimeo, doingvmio)) == 0) {
1049			if (slpflag || slptimeo) {
1050				splx(s);
1051				return NULL;
1052			}
1053			goto loop;
1054		}
1055
1056		/*
1057		 * This code is used to make sure that a buffer is not
1058		 * created while the getnewbuf routine is blocked.
1059		 * Normally the vnode is locked so this isn't a problem.
1060		 * VBLK type I/O requests, however, don't lock the vnode.
1061		 */
1062		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1063			bp->b_flags |= B_INVAL;
1064			brelse(bp);
1065			goto loop;
1066		}
1067
1068		/*
1069		 * Insert the buffer into the hash, so that it can
1070		 * be found by incore.
1071		 */
1072		bp->b_blkno = bp->b_lblkno = blkno;
1073		bgetvp(vp, bp);
1074		LIST_REMOVE(bp, b_hash);
1075		bh = BUFHASH(vp, blkno);
1076		LIST_INSERT_HEAD(bh, bp, b_hash);
1077
1078		if (doingvmio) {
1079			bp->b_flags |= (B_VMIO | B_CACHE);
1080#if defined(VFS_BIO_DEBUG)
1081			if (vp->v_type != VREG && vp->v_type != VBLK)
1082				printf("getblk: vmioing file type %d???\n", vp->v_type);
1083#endif
1084		} else {
1085			bp->b_flags &= ~B_VMIO;
1086		}
1087		splx(s);
1088
1089		allocbuf(bp, size);
1090#ifdef	PC98
1091		/*
1092		 * 1024byte/sector support
1093		 */
1094#define B_XXX2 0x8000000
1095		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1096#endif
1097		return (bp);
1098	}
1099}
1100
1101/*
1102 * Get an empty, disassociated buffer of given size.
1103 */
1104struct buf *
1105geteblk(int size)
1106{
1107	struct buf *bp;
1108	int s;
1109
1110	s = splbio();
1111	while ((bp = getnewbuf(0, 0, 0)) == 0);
1112	splx(s);
1113	allocbuf(bp, size);
1114	bp->b_flags |= B_INVAL;
1115	return (bp);
1116}
1117
1118
1119/*
1120 * This code constitutes the buffer memory from either anonymous system
1121 * memory (in the case of non-VMIO operations) or from an associated
1122 * VM object (in the case of VMIO operations).
1123 *
1124 * Note that this code is tricky, and has many complications to resolve
1125 * deadlock or inconsistant data situations.  Tread lightly!!!
1126 *
1127 * Modify the length of a buffer's underlying buffer storage without
1128 * destroying information (unless, of course the buffer is shrinking).
1129 */
1130int
1131allocbuf(struct buf * bp, int size)
1132{
1133
1134	int s;
1135	int newbsize, mbsize;
1136	int i;
1137
1138	if (!(bp->b_flags & B_BUSY))
1139		panic("allocbuf: buffer not busy");
1140
1141	if ((bp->b_flags & B_VMIO) == 0) {
1142		caddr_t origbuf;
1143		int origbufsize;
1144		/*
1145		 * Just get anonymous memory from the kernel
1146		 */
1147		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1148#if !defined(NO_B_MALLOC)
1149		if (bp->b_flags & B_MALLOC)
1150			newbsize = mbsize;
1151		else
1152#endif
1153			newbsize = round_page(size);
1154
1155		if (newbsize < bp->b_bufsize) {
1156#if !defined(NO_B_MALLOC)
1157			/*
1158			 * malloced buffers are not shrunk
1159			 */
1160			if (bp->b_flags & B_MALLOC) {
1161				if (newbsize) {
1162					bp->b_bcount = size;
1163				} else {
1164					free(bp->b_data, M_BIOBUF);
1165					bufspace -= bp->b_bufsize;
1166					bufmallocspace -= bp->b_bufsize;
1167					bp->b_data = (caddr_t) buffers_kva + (bp - buf) * MAXBSIZE;
1168					bp->b_bufsize = 0;
1169					bp->b_bcount = 0;
1170					bp->b_flags &= ~B_MALLOC;
1171				}
1172				return 1;
1173			}
1174#endif
1175			vm_hold_free_pages(
1176			    bp,
1177			    (vm_offset_t) bp->b_data + newbsize,
1178			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1179		} else if (newbsize > bp->b_bufsize) {
1180#if !defined(NO_B_MALLOC)
1181			/*
1182			 * We only use malloced memory on the first allocation.
1183			 * and revert to page-allocated memory when the buffer grows.
1184			 */
1185			if ( (bufmallocspace < maxbufmallocspace) &&
1186				(bp->b_bufsize == 0) &&
1187				(mbsize <= PAGE_SIZE/2)) {
1188
1189				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1190				bp->b_bufsize = mbsize;
1191				bp->b_bcount = size;
1192				bp->b_flags |= B_MALLOC;
1193				bufspace += mbsize;
1194				bufmallocspace += mbsize;
1195				return 1;
1196			}
1197#endif
1198			origbuf = NULL;
1199			origbufsize = 0;
1200#if !defined(NO_B_MALLOC)
1201			/*
1202			 * If the buffer is growing on it's other-than-first allocation,
1203			 * then we revert to the page-allocation scheme.
1204			 */
1205			if (bp->b_flags & B_MALLOC) {
1206				origbuf = bp->b_data;
1207				origbufsize = bp->b_bufsize;
1208				bp->b_data = (caddr_t) buffers_kva + (bp - buf) * MAXBSIZE;
1209				bufspace -= bp->b_bufsize;
1210				bufmallocspace -= bp->b_bufsize;
1211				bp->b_bufsize = 0;
1212				bp->b_flags &= ~B_MALLOC;
1213				newbsize = round_page(newbsize);
1214			}
1215#endif
1216			vm_hold_load_pages(
1217			    bp,
1218			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1219			    (vm_offset_t) bp->b_data + newbsize);
1220#if !defined(NO_B_MALLOC)
1221			if (origbuf) {
1222				bcopy(origbuf, bp->b_data, origbufsize);
1223				free(origbuf, M_BIOBUF);
1224			}
1225#endif
1226		}
1227	} else {
1228		vm_page_t m;
1229		int desiredpages;
1230
1231		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1232		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1233
1234#if !defined(NO_B_MALLOC)
1235		if (bp->b_flags & B_MALLOC)
1236			panic("allocbuf: VMIO buffer can't be malloced");
1237#endif
1238
1239		if (newbsize < bp->b_bufsize) {
1240			if (desiredpages < bp->b_npages) {
1241				for (i = desiredpages; i < bp->b_npages; i++) {
1242					/*
1243					 * the page is not freed here -- it
1244					 * is the responsibility of vnode_pager_setsize
1245					 */
1246					m = bp->b_pages[i];
1247					s = splhigh();
1248					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1249						m->flags |= PG_WANTED;
1250						tsleep(m, PVM, "biodep", 0);
1251					}
1252					splx(s);
1253
1254					bp->b_pages[i] = NULL;
1255					vm_page_unwire(m);
1256				}
1257				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1258				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1259				bp->b_npages = desiredpages;
1260			}
1261		} else if (newbsize > bp->b_bufsize) {
1262			vm_object_t obj;
1263			vm_offset_t tinc, toff;
1264			vm_ooffset_t off;
1265			vm_pindex_t objoff;
1266			int pageindex, curbpnpages;
1267			struct vnode *vp;
1268			int bsize;
1269
1270			vp = bp->b_vp;
1271
1272			if (vp->v_type == VBLK)
1273				bsize = DEV_BSIZE;
1274			else
1275				bsize = vp->v_mount->mnt_stat.f_iosize;
1276
1277			if (bp->b_npages < desiredpages) {
1278				obj = vp->v_object;
1279				tinc = PAGE_SIZE;
1280				if (tinc > bsize)
1281					tinc = bsize;
1282				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1283		doretry:
1284				curbpnpages = bp->b_npages;
1285				bp->b_flags |= B_CACHE;
1286				for (toff = 0; toff < newbsize; toff += tinc) {
1287					int bytesinpage;
1288
1289					pageindex = toff >> PAGE_SHIFT;
1290					objoff = OFF_TO_IDX(off + toff);
1291					if (pageindex < curbpnpages) {
1292
1293						m = bp->b_pages[pageindex];
1294#ifdef VFS_BIO_DIAG
1295						if (m->pindex != objoff)
1296							panic("allocbuf: page changed offset??!!!?");
1297#endif
1298						bytesinpage = tinc;
1299						if (tinc > (newbsize - toff))
1300							bytesinpage = newbsize - toff;
1301						if ((bp->b_flags & B_CACHE) &&
1302							!vm_page_is_valid(m,
1303							(vm_offset_t) ((toff + off) & PAGE_MASK),
1304							bytesinpage)) {
1305							bp->b_flags &= ~B_CACHE;
1306						}
1307						continue;
1308					}
1309					m = vm_page_lookup(obj, objoff);
1310					if (!m) {
1311						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1312						if (!m) {
1313							VM_WAIT;
1314							goto doretry;
1315						}
1316						/*
1317						 * Normally it is unwise to clear PG_BUSY without
1318						 * PAGE_WAKEUP -- but it is okay here, as there is
1319						 * no chance for blocking between here and vm_page_alloc
1320						 */
1321						m->flags &= ~PG_BUSY;
1322						vm_page_wire(m);
1323						bp->b_flags &= ~B_CACHE;
1324					} else if (m->flags & PG_BUSY) {
1325
1326						s = splhigh();
1327						m->flags |= PG_WANTED;
1328						tsleep(m, PVM, "pgtblk", 0);
1329						splx(s);
1330
1331						goto doretry;
1332					} else {
1333						if ((curproc != pageproc) &&
1334							((m->queue - m->pc) == PQ_CACHE) &&
1335						    ((cnt.v_free_count + cnt.v_cache_count) <
1336								(cnt.v_free_min + cnt.v_cache_min))) {
1337							pagedaemon_wakeup();
1338						}
1339						bytesinpage = tinc;
1340						if (tinc > (newbsize - toff))
1341							bytesinpage = newbsize - toff;
1342						if ((bp->b_flags & B_CACHE) &&
1343							!vm_page_is_valid(m,
1344							(vm_offset_t) ((toff + off) & PAGE_MASK),
1345							bytesinpage)) {
1346							bp->b_flags &= ~B_CACHE;
1347						}
1348						vm_page_wire(m);
1349					}
1350					bp->b_pages[pageindex] = m;
1351					curbpnpages = pageindex + 1;
1352				}
1353				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1354				bp->b_npages = curbpnpages;
1355				pmap_qenter((vm_offset_t) bp->b_data,
1356					bp->b_pages, bp->b_npages);
1357				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1358			}
1359		}
1360	}
1361	if (bp->b_flags & B_VMIO)
1362		vmiospace += bp->b_bufsize;
1363	bufspace += (newbsize - bp->b_bufsize);
1364	bp->b_bufsize = newbsize;
1365	bp->b_bcount = size;
1366	return 1;
1367}
1368
1369/*
1370 * Wait for buffer I/O completion, returning error status.
1371 */
1372int
1373biowait(register struct buf * bp)
1374{
1375	int s;
1376
1377	s = splbio();
1378	while ((bp->b_flags & B_DONE) == 0)
1379		tsleep(bp, PRIBIO, "biowait", 0);
1380	splx(s);
1381	if (bp->b_flags & B_EINTR) {
1382		bp->b_flags &= ~B_EINTR;
1383		return (EINTR);
1384	}
1385	if (bp->b_flags & B_ERROR) {
1386		return (bp->b_error ? bp->b_error : EIO);
1387	} else {
1388		return (0);
1389	}
1390}
1391
1392/*
1393 * Finish I/O on a buffer, calling an optional function.
1394 * This is usually called from interrupt level, so process blocking
1395 * is not *a good idea*.
1396 */
1397void
1398biodone(register struct buf * bp)
1399{
1400	int s;
1401
1402	s = splbio();
1403	if (!(bp->b_flags & B_BUSY))
1404		panic("biodone: buffer not busy");
1405
1406	if (bp->b_flags & B_DONE) {
1407		splx(s);
1408		printf("biodone: buffer already done\n");
1409		return;
1410	}
1411	bp->b_flags |= B_DONE;
1412
1413	if ((bp->b_flags & B_READ) == 0) {
1414		vwakeup(bp);
1415	}
1416#ifdef BOUNCE_BUFFERS
1417	if (bp->b_flags & B_BOUNCE)
1418		vm_bounce_free(bp);
1419#endif
1420
1421	/* call optional completion function if requested */
1422	if (bp->b_flags & B_CALL) {
1423		bp->b_flags &= ~B_CALL;
1424		(*bp->b_iodone) (bp);
1425		splx(s);
1426		return;
1427	}
1428	if (bp->b_flags & B_VMIO) {
1429		int i, resid;
1430		vm_ooffset_t foff;
1431		vm_page_t m;
1432		vm_object_t obj;
1433		int iosize;
1434		struct vnode *vp = bp->b_vp;
1435
1436		if (vp->v_type == VBLK)
1437			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1438		else
1439			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1440		obj = vp->v_object;
1441		if (!obj) {
1442			panic("biodone: no object");
1443		}
1444#if defined(VFS_BIO_DEBUG)
1445		if (obj->paging_in_progress < bp->b_npages) {
1446			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1447			    obj->paging_in_progress, bp->b_npages);
1448		}
1449#endif
1450		iosize = bp->b_bufsize;
1451		for (i = 0; i < bp->b_npages; i++) {
1452			int bogusflag = 0;
1453			m = bp->b_pages[i];
1454			if (m == bogus_page) {
1455				bogusflag = 1;
1456				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1457				if (!m) {
1458#if defined(VFS_BIO_DEBUG)
1459					printf("biodone: page disappeared\n");
1460#endif
1461					--obj->paging_in_progress;
1462					continue;
1463				}
1464				bp->b_pages[i] = m;
1465				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1466			}
1467#if defined(VFS_BIO_DEBUG)
1468			if (OFF_TO_IDX(foff) != m->pindex) {
1469				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1470			}
1471#endif
1472			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1473			if (resid > iosize)
1474				resid = iosize;
1475			/*
1476			 * In the write case, the valid and clean bits are
1477			 * already changed correctly, so we only need to do this
1478			 * here in the read case.
1479			 */
1480			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1481				vm_page_set_validclean(m,
1482					(vm_offset_t) (foff & PAGE_MASK), resid);
1483			}
1484
1485			/*
1486			 * when debugging new filesystems or buffer I/O methods, this
1487			 * is the most common error that pops up.  if you see this, you
1488			 * have not set the page busy flag correctly!!!
1489			 */
1490			if (m->busy == 0) {
1491				printf("biodone: page busy < 0, "
1492				    "pindex: %d, foff: 0x(%x,%x), "
1493				    "resid: %d, index: %d\n",
1494				    (int) m->pindex, (int)(foff >> 32),
1495						(int) foff & 0xffffffff, resid, i);
1496				if (vp->v_type != VBLK)
1497					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1498					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1499					    (int) bp->b_lblkno,
1500					    bp->b_flags, bp->b_npages);
1501				else
1502					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1503					    (int) bp->b_lblkno,
1504					    bp->b_flags, bp->b_npages);
1505				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1506				    m->valid, m->dirty, m->wire_count);
1507				panic("biodone: page busy < 0\n");
1508			}
1509			--m->busy;
1510			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1511				m->flags &= ~PG_WANTED;
1512				wakeup(m);
1513			}
1514			--obj->paging_in_progress;
1515			foff += resid;
1516			iosize -= resid;
1517		}
1518		if (obj && obj->paging_in_progress == 0 &&
1519		    (obj->flags & OBJ_PIPWNT)) {
1520			obj->flags &= ~OBJ_PIPWNT;
1521			wakeup(obj);
1522		}
1523	}
1524	/*
1525	 * For asynchronous completions, release the buffer now. The brelse
1526	 * checks for B_WANTED and will do the wakeup there if necessary - so
1527	 * no need to do a wakeup here in the async case.
1528	 */
1529
1530	if (bp->b_flags & B_ASYNC) {
1531		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1532			brelse(bp);
1533		else
1534			bqrelse(bp);
1535	} else {
1536		wakeup(bp);
1537	}
1538	splx(s);
1539}
1540
1541int
1542count_lock_queue()
1543{
1544	int count;
1545	struct buf *bp;
1546
1547	count = 0;
1548	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1549	    bp != NULL;
1550	    bp = TAILQ_NEXT(bp, b_freelist))
1551		count++;
1552	return (count);
1553}
1554
1555int vfs_update_interval = 30;
1556
1557static void
1558vfs_update()
1559{
1560	(void) spl0();		/* XXX redundant?  wrong place? */
1561	while (1) {
1562		tsleep(&vfs_update_wakeup, PUSER, "update",
1563		    hz * vfs_update_interval);
1564		vfs_update_wakeup = 0;
1565		sync(curproc, NULL, NULL);
1566	}
1567}
1568
1569static int
1570sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1571{
1572	int error = sysctl_handle_int(oidp,
1573		oidp->oid_arg1, oidp->oid_arg2, req);
1574	if (!error)
1575		wakeup(&vfs_update_wakeup);
1576	return error;
1577}
1578
1579SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1580	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1581
1582
1583/*
1584 * This routine is called in lieu of iodone in the case of
1585 * incomplete I/O.  This keeps the busy status for pages
1586 * consistant.
1587 */
1588void
1589vfs_unbusy_pages(struct buf * bp)
1590{
1591	int i;
1592
1593	if (bp->b_flags & B_VMIO) {
1594		struct vnode *vp = bp->b_vp;
1595		vm_object_t obj = vp->v_object;
1596		vm_ooffset_t foff;
1597
1598		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1599
1600		for (i = 0; i < bp->b_npages; i++) {
1601			vm_page_t m = bp->b_pages[i];
1602
1603			if (m == bogus_page) {
1604				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1605				if (!m) {
1606					panic("vfs_unbusy_pages: page missing\n");
1607				}
1608				bp->b_pages[i] = m;
1609				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1610			}
1611			--obj->paging_in_progress;
1612			--m->busy;
1613			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1614				m->flags &= ~PG_WANTED;
1615				wakeup(m);
1616			}
1617		}
1618		if (obj->paging_in_progress == 0 &&
1619		    (obj->flags & OBJ_PIPWNT)) {
1620			obj->flags &= ~OBJ_PIPWNT;
1621			wakeup(obj);
1622		}
1623	}
1624}
1625
1626/*
1627 * This routine is called before a device strategy routine.
1628 * It is used to tell the VM system that paging I/O is in
1629 * progress, and treat the pages associated with the buffer
1630 * almost as being PG_BUSY.  Also the object paging_in_progress
1631 * flag is handled to make sure that the object doesn't become
1632 * inconsistant.
1633 */
1634void
1635vfs_busy_pages(struct buf * bp, int clear_modify)
1636{
1637	int i;
1638
1639	if (bp->b_flags & B_VMIO) {
1640		vm_object_t obj = bp->b_vp->v_object;
1641		vm_ooffset_t foff;
1642		int iocount = bp->b_bufsize;
1643
1644		if (bp->b_vp->v_type == VBLK)
1645			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1646		else
1647			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1648		vfs_setdirty(bp);
1649		for (i = 0; i < bp->b_npages; i++) {
1650			vm_page_t m = bp->b_pages[i];
1651			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1652
1653			if (resid > iocount)
1654				resid = iocount;
1655			if ((bp->b_flags & B_CLUSTER) == 0) {
1656				obj->paging_in_progress++;
1657				m->busy++;
1658			}
1659			vm_page_protect(m, VM_PROT_NONE);
1660			if (clear_modify) {
1661				vm_page_set_validclean(m,
1662					(vm_offset_t) (foff & PAGE_MASK), resid);
1663			} else if (bp->b_bcount >= PAGE_SIZE) {
1664				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1665					bp->b_pages[i] = bogus_page;
1666					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1667				}
1668			}
1669			foff += resid;
1670			iocount -= resid;
1671		}
1672	}
1673}
1674
1675/*
1676 * Tell the VM system that the pages associated with this buffer
1677 * are clean.  This is used for delayed writes where the data is
1678 * going to go to disk eventually without additional VM intevention.
1679 */
1680void
1681vfs_clean_pages(struct buf * bp)
1682{
1683	int i;
1684
1685	if (bp->b_flags & B_VMIO) {
1686		vm_ooffset_t foff;
1687		int iocount = bp->b_bufsize;
1688
1689		if (bp->b_vp->v_type == VBLK)
1690			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1691		else
1692			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1693
1694		for (i = 0; i < bp->b_npages; i++) {
1695			vm_page_t m = bp->b_pages[i];
1696			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1697
1698			if (resid > iocount)
1699				resid = iocount;
1700			if (resid > 0) {
1701				vm_page_set_validclean(m,
1702					((vm_offset_t) foff & PAGE_MASK), resid);
1703			}
1704			foff += resid;
1705			iocount -= resid;
1706		}
1707	}
1708}
1709
1710void
1711vfs_bio_clrbuf(struct buf *bp) {
1712	int i;
1713	if( bp->b_flags & B_VMIO) {
1714		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1715			int mask;
1716			mask = 0;
1717			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
1718				mask |= (1 << (i/DEV_BSIZE));
1719			if( bp->b_pages[0]->valid != mask) {
1720				bzero(bp->b_data, bp->b_bufsize);
1721			}
1722			bp->b_pages[0]->valid = mask;
1723			bp->b_resid = 0;
1724			return;
1725		}
1726		for(i=0;i<bp->b_npages;i++) {
1727			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1728				continue;
1729			if( bp->b_pages[i]->valid == 0) {
1730				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
1731					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
1732				}
1733			} else {
1734				int j;
1735				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1736					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1737						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
1738				}
1739			}
1740			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
1741		}
1742		bp->b_resid = 0;
1743	} else {
1744		clrbuf(bp);
1745	}
1746}
1747
1748/*
1749 * vm_hold_load_pages and vm_hold_unload pages get pages into
1750 * a buffers address space.  The pages are anonymous and are
1751 * not associated with a file object.
1752 */
1753void
1754vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1755{
1756	vm_offset_t pg;
1757	vm_page_t p;
1758	int index;
1759
1760	to = round_page(to);
1761	from = round_page(from);
1762	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1763
1764	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1765
1766tryagain:
1767
1768		p = vm_page_alloc(kernel_object, ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
1769		    VM_ALLOC_NORMAL);
1770		if (!p) {
1771			VM_WAIT;
1772			goto tryagain;
1773		}
1774		vm_page_wire(p);
1775		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1776		bp->b_pages[index] = p;
1777		PAGE_WAKEUP(p);
1778	}
1779	bp->b_npages = to >> PAGE_SHIFT;
1780}
1781
1782void
1783vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1784{
1785	vm_offset_t pg;
1786	vm_page_t p;
1787	int index;
1788
1789	from = round_page(from);
1790	to = round_page(to);
1791	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1792
1793	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1794		p = bp->b_pages[index];
1795		if (p && (index < bp->b_npages)) {
1796			if (p->busy) {
1797				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
1798					bp->b_blkno, bp->b_lblkno);
1799			}
1800			bp->b_pages[index] = NULL;
1801			pmap_kremove(pg);
1802			vm_page_unwire(p);
1803			vm_page_free(p);
1804		}
1805	}
1806	bp->b_npages = from >> PAGE_SHIFT;
1807}
1808