vfs_bio.c revision 177687
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 177687 2008-03-28 12:30:12Z attilio $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/limits.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mount.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/proc.h>
59#include <sys/resourcevar.h>
60#include <sys/sysctl.h>
61#include <sys/vmmeter.h>
62#include <sys/vnode.h>
63#include <geom/geom.h>
64#include <vm/vm.h>
65#include <vm/vm_param.h>
66#include <vm/vm_kern.h>
67#include <vm/vm_pageout.h>
68#include <vm/vm_page.h>
69#include <vm/vm_object.h>
70#include <vm/vm_extern.h>
71#include <vm/vm_map.h>
72#include "opt_directio.h"
73#include "opt_swap.h"
74
75static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
76
77struct	bio_ops bioops;		/* I/O operation notification */
78
79struct	buf_ops buf_ops_bio = {
80	.bop_name	=	"buf_ops_bio",
81	.bop_write	=	bufwrite,
82	.bop_strategy	=	bufstrategy,
83	.bop_sync	=	bufsync,
84	.bop_bdflush	=	bufbdflush,
85};
86
87/*
88 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
89 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
90 */
91struct buf *buf;		/* buffer header pool */
92
93static struct proc *bufdaemonproc;
94
95static int inmem(struct vnode *vp, daddr_t blkno);
96static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
99		vm_offset_t to);
100static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
101		vm_page_t m);
102static void vfs_clean_pages(struct buf *bp);
103static void vfs_setdirty(struct buf *bp);
104static void vfs_setdirty_locked_object(struct buf *bp);
105static void vfs_vmio_release(struct buf *bp);
106static int vfs_bio_clcheck(struct vnode *vp, int size,
107		daddr_t lblkno, daddr_t blkno);
108static int flushbufqueues(int, int);
109static void buf_daemon(void);
110static void bremfreel(struct buf *bp);
111
112int vmiodirenable = TRUE;
113SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
114    "Use the VM system for directory writes");
115int runningbufspace;
116SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
117    "Amount of presently outstanding async buffer io");
118static int bufspace;
119SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
120    "KVA memory used for bufs");
121static int maxbufspace;
122SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
123    "Maximum allowed value of bufspace (including buf_daemon)");
124static int bufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
126    "Amount of malloced memory for buffers");
127static int maxbufmallocspace;
128SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
129    "Maximum amount of malloced memory for buffers");
130static int lobufspace;
131SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
132    "Minimum amount of buffers we want to have");
133int hibufspace;
134SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
135    "Maximum allowed value of bufspace (excluding buf_daemon)");
136static int bufreusecnt;
137SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
138    "Number of times we have reused a buffer");
139static int buffreekvacnt;
140SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
141    "Number of times we have freed the KVA space from some buffer");
142static int bufdefragcnt;
143SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
144    "Number of times we have had to repeat buffer allocation to defragment");
145static int lorunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
147    "Minimum preferred space used for in-progress I/O");
148static int hirunningspace;
149SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
150    "Maximum amount of space to use for in-progress I/O");
151int dirtybufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
153    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
154int bdwriteskip;
155SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
156    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
157int altbufferflushes;
158SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
159    0, "Number of fsync flushes to limit dirty buffers");
160static int recursiveflushes;
161SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
162    0, "Number of flushes skipped due to being recursive");
163static int numdirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
165    "Number of buffers that are dirty (has unwritten changes) at the moment");
166static int lodirtybuffers;
167SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
168    "How many buffers we want to have free before bufdaemon can sleep");
169static int hidirtybuffers;
170SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
171    "When the number of dirty buffers is considered severe");
172int dirtybufthresh;
173SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
174    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
175static int numfreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
177    "Number of free buffers");
178static int lofreebuffers;
179SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
180   "XXX Unused");
181static int hifreebuffers;
182SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
183   "XXX Complicatedly unused");
184static int getnewbufcalls;
185SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
186   "Number of calls to getnewbuf");
187static int getnewbufrestarts;
188SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
189    "Number of times getnewbuf has had to restart a buffer aquisition");
190
191/*
192 * Wakeup point for bufdaemon, as well as indicator of whether it is already
193 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
194 * is idling.
195 */
196static int bd_request;
197
198/*
199 * This lock synchronizes access to bd_request.
200 */
201static struct mtx bdlock;
202
203/*
204 * bogus page -- for I/O to/from partially complete buffers
205 * this is a temporary solution to the problem, but it is not
206 * really that bad.  it would be better to split the buffer
207 * for input in the case of buffers partially already in memory,
208 * but the code is intricate enough already.
209 */
210vm_page_t bogus_page;
211
212/*
213 * Synchronization (sleep/wakeup) variable for active buffer space requests.
214 * Set when wait starts, cleared prior to wakeup().
215 * Used in runningbufwakeup() and waitrunningbufspace().
216 */
217static int runningbufreq;
218
219/*
220 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
221 * waitrunningbufspace().
222 */
223static struct mtx rbreqlock;
224
225/*
226 * Synchronization (sleep/wakeup) variable for buffer requests.
227 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
228 * by and/or.
229 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
230 * getnewbuf(), and getblk().
231 */
232static int needsbuffer;
233
234/*
235 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
236 */
237static struct mtx nblock;
238
239/*
240 * Definitions for the buffer free lists.
241 */
242#define BUFFER_QUEUES	6	/* number of free buffer queues */
243
244#define QUEUE_NONE	0	/* on no queue */
245#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
246#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
247#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
248#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
249#define QUEUE_EMPTY	5	/* empty buffer headers */
250
251/* Queues for free buffers with various properties */
252static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
253
254/* Lock for the bufqueues */
255static struct mtx bqlock;
256
257/*
258 * Single global constant for BUF_WMESG, to avoid getting multiple references.
259 * buf_wmesg is referred from macros.
260 */
261const char *buf_wmesg = BUF_WMESG;
262
263#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
264#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
265#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
266#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
267
268#ifdef DIRECTIO
269extern void ffs_rawread_setup(void);
270#endif /* DIRECTIO */
271/*
272 *	numdirtywakeup:
273 *
274 *	If someone is blocked due to there being too many dirty buffers,
275 *	and numdirtybuffers is now reasonable, wake them up.
276 */
277
278static __inline void
279numdirtywakeup(int level)
280{
281
282	if (numdirtybuffers <= level) {
283		mtx_lock(&nblock);
284		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
285			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
286			wakeup(&needsbuffer);
287		}
288		mtx_unlock(&nblock);
289	}
290}
291
292/*
293 *	bufspacewakeup:
294 *
295 *	Called when buffer space is potentially available for recovery.
296 *	getnewbuf() will block on this flag when it is unable to free
297 *	sufficient buffer space.  Buffer space becomes recoverable when
298 *	bp's get placed back in the queues.
299 */
300
301static __inline void
302bufspacewakeup(void)
303{
304
305	/*
306	 * If someone is waiting for BUF space, wake them up.  Even
307	 * though we haven't freed the kva space yet, the waiting
308	 * process will be able to now.
309	 */
310	mtx_lock(&nblock);
311	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
312		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
313		wakeup(&needsbuffer);
314	}
315	mtx_unlock(&nblock);
316}
317
318/*
319 * runningbufwakeup() - in-progress I/O accounting.
320 *
321 */
322void
323runningbufwakeup(struct buf *bp)
324{
325
326	if (bp->b_runningbufspace) {
327		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
328		bp->b_runningbufspace = 0;
329		mtx_lock(&rbreqlock);
330		if (runningbufreq && runningbufspace <= lorunningspace) {
331			runningbufreq = 0;
332			wakeup(&runningbufreq);
333		}
334		mtx_unlock(&rbreqlock);
335	}
336}
337
338/*
339 *	bufcountwakeup:
340 *
341 *	Called when a buffer has been added to one of the free queues to
342 *	account for the buffer and to wakeup anyone waiting for free buffers.
343 *	This typically occurs when large amounts of metadata are being handled
344 *	by the buffer cache ( else buffer space runs out first, usually ).
345 */
346
347static __inline void
348bufcountwakeup(void)
349{
350
351	atomic_add_int(&numfreebuffers, 1);
352	mtx_lock(&nblock);
353	if (needsbuffer) {
354		needsbuffer &= ~VFS_BIO_NEED_ANY;
355		if (numfreebuffers >= hifreebuffers)
356			needsbuffer &= ~VFS_BIO_NEED_FREE;
357		wakeup(&needsbuffer);
358	}
359	mtx_unlock(&nblock);
360}
361
362/*
363 *	waitrunningbufspace()
364 *
365 *	runningbufspace is a measure of the amount of I/O currently
366 *	running.  This routine is used in async-write situations to
367 *	prevent creating huge backups of pending writes to a device.
368 *	Only asynchronous writes are governed by this function.
369 *
370 *	Reads will adjust runningbufspace, but will not block based on it.
371 *	The read load has a side effect of reducing the allowed write load.
372 *
373 *	This does NOT turn an async write into a sync write.  It waits
374 *	for earlier writes to complete and generally returns before the
375 *	caller's write has reached the device.
376 */
377void
378waitrunningbufspace(void)
379{
380
381	mtx_lock(&rbreqlock);
382	while (runningbufspace > hirunningspace) {
383		++runningbufreq;
384		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
385	}
386	mtx_unlock(&rbreqlock);
387}
388
389
390/*
391 *	vfs_buf_test_cache:
392 *
393 *	Called when a buffer is extended.  This function clears the B_CACHE
394 *	bit if the newly extended portion of the buffer does not contain
395 *	valid data.
396 */
397static __inline
398void
399vfs_buf_test_cache(struct buf *bp,
400		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
401		  vm_page_t m)
402{
403
404	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
405	if (bp->b_flags & B_CACHE) {
406		int base = (foff + off) & PAGE_MASK;
407		if (vm_page_is_valid(m, base, size) == 0)
408			bp->b_flags &= ~B_CACHE;
409	}
410}
411
412/* Wake up the buffer daemon if necessary */
413static __inline
414void
415bd_wakeup(int dirtybuflevel)
416{
417
418	mtx_lock(&bdlock);
419	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
420		bd_request = 1;
421		wakeup(&bd_request);
422	}
423	mtx_unlock(&bdlock);
424}
425
426/*
427 * bd_speedup - speedup the buffer cache flushing code
428 */
429
430static __inline
431void
432bd_speedup(void)
433{
434
435	bd_wakeup(1);
436}
437
438/*
439 * Calculating buffer cache scaling values and reserve space for buffer
440 * headers.  This is called during low level kernel initialization and
441 * may be called more then once.  We CANNOT write to the memory area
442 * being reserved at this time.
443 */
444caddr_t
445kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
446{
447	int maxbuf;
448
449	/*
450	 * physmem_est is in pages.  Convert it to kilobytes (assumes
451	 * PAGE_SIZE is >= 1K)
452	 */
453	physmem_est = physmem_est * (PAGE_SIZE / 1024);
454
455	/*
456	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
457	 * For the first 64MB of ram nominally allocate sufficient buffers to
458	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
459	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
460	 * the buffer cache we limit the eventual kva reservation to
461	 * maxbcache bytes.
462	 *
463	 * factor represents the 1/4 x ram conversion.
464	 */
465	if (nbuf == 0) {
466		int factor = 4 * BKVASIZE / 1024;
467
468		nbuf = 50;
469		if (physmem_est > 4096)
470			nbuf += min((physmem_est - 4096) / factor,
471			    65536 / factor);
472		if (physmem_est > 65536)
473			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
474
475		if (maxbcache && nbuf > maxbcache / BKVASIZE)
476			nbuf = maxbcache / BKVASIZE;
477
478		/* XXX Avoid integer overflows later on with maxbufspace. */
479		maxbuf = (INT_MAX / 3) / BKVASIZE;
480		if (nbuf > maxbuf)
481			nbuf = maxbuf;
482	}
483
484#if 0
485	/*
486	 * Do not allow the buffer_map to be more then 1/2 the size of the
487	 * kernel_map.
488	 */
489	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
490	    (BKVASIZE * 2)) {
491		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
492		    (BKVASIZE * 2);
493		printf("Warning: nbufs capped at %d\n", nbuf);
494	}
495#endif
496
497	/*
498	 * swbufs are used as temporary holders for I/O, such as paging I/O.
499	 * We have no less then 16 and no more then 256.
500	 */
501	nswbuf = max(min(nbuf/4, 256), 16);
502#ifdef NSWBUF_MIN
503	if (nswbuf < NSWBUF_MIN)
504		nswbuf = NSWBUF_MIN;
505#endif
506#ifdef DIRECTIO
507	ffs_rawread_setup();
508#endif
509
510	/*
511	 * Reserve space for the buffer cache buffers
512	 */
513	swbuf = (void *)v;
514	v = (caddr_t)(swbuf + nswbuf);
515	buf = (void *)v;
516	v = (caddr_t)(buf + nbuf);
517
518	return(v);
519}
520
521/* Initialize the buffer subsystem.  Called before use of any buffers. */
522void
523bufinit(void)
524{
525	struct buf *bp;
526	int i;
527
528	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
529	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
530	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
531	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
532
533	/* next, make a null set of free lists */
534	for (i = 0; i < BUFFER_QUEUES; i++)
535		TAILQ_INIT(&bufqueues[i]);
536
537	/* finally, initialize each buffer header and stick on empty q */
538	for (i = 0; i < nbuf; i++) {
539		bp = &buf[i];
540		bzero(bp, sizeof *bp);
541		bp->b_flags = B_INVAL;	/* we're just an empty header */
542		bp->b_rcred = NOCRED;
543		bp->b_wcred = NOCRED;
544		bp->b_qindex = QUEUE_EMPTY;
545		bp->b_vflags = 0;
546		bp->b_xflags = 0;
547		LIST_INIT(&bp->b_dep);
548		BUF_LOCKINIT(bp);
549		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
550	}
551
552	/*
553	 * maxbufspace is the absolute maximum amount of buffer space we are
554	 * allowed to reserve in KVM and in real terms.  The absolute maximum
555	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
556	 * used by most other processes.  The differential is required to
557	 * ensure that buf_daemon is able to run when other processes might
558	 * be blocked waiting for buffer space.
559	 *
560	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
561	 * this may result in KVM fragmentation which is not handled optimally
562	 * by the system.
563	 */
564	maxbufspace = nbuf * BKVASIZE;
565	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
566	lobufspace = hibufspace - MAXBSIZE;
567
568	lorunningspace = 512 * 1024;
569	hirunningspace = 1024 * 1024;
570
571/*
572 * Limit the amount of malloc memory since it is wired permanently into
573 * the kernel space.  Even though this is accounted for in the buffer
574 * allocation, we don't want the malloced region to grow uncontrolled.
575 * The malloc scheme improves memory utilization significantly on average
576 * (small) directories.
577 */
578	maxbufmallocspace = hibufspace / 20;
579
580/*
581 * Reduce the chance of a deadlock occuring by limiting the number
582 * of delayed-write dirty buffers we allow to stack up.
583 */
584	hidirtybuffers = nbuf / 4 + 20;
585	dirtybufthresh = hidirtybuffers * 9 / 10;
586	numdirtybuffers = 0;
587/*
588 * To support extreme low-memory systems, make sure hidirtybuffers cannot
589 * eat up all available buffer space.  This occurs when our minimum cannot
590 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
591 * BKVASIZE'd (8K) buffers.
592 */
593	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
594		hidirtybuffers >>= 1;
595	}
596	lodirtybuffers = hidirtybuffers / 2;
597
598/*
599 * Try to keep the number of free buffers in the specified range,
600 * and give special processes (e.g. like buf_daemon) access to an
601 * emergency reserve.
602 */
603	lofreebuffers = nbuf / 18 + 5;
604	hifreebuffers = 2 * lofreebuffers;
605	numfreebuffers = nbuf;
606
607/*
608 * Maximum number of async ops initiated per buf_daemon loop.  This is
609 * somewhat of a hack at the moment, we really need to limit ourselves
610 * based on the number of bytes of I/O in-transit that were initiated
611 * from buf_daemon.
612 */
613
614	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
615	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
616}
617
618/*
619 * bfreekva() - free the kva allocation for a buffer.
620 *
621 *	Since this call frees up buffer space, we call bufspacewakeup().
622 */
623static void
624bfreekva(struct buf *bp)
625{
626
627	if (bp->b_kvasize) {
628		atomic_add_int(&buffreekvacnt, 1);
629		atomic_subtract_int(&bufspace, bp->b_kvasize);
630		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
631		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
632		bp->b_kvasize = 0;
633		bufspacewakeup();
634	}
635}
636
637/*
638 *	bremfree:
639 *
640 *	Mark the buffer for removal from the appropriate free list in brelse.
641 *
642 */
643void
644bremfree(struct buf *bp)
645{
646
647	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
648	KASSERT((bp->b_flags & B_REMFREE) == 0,
649	    ("bremfree: buffer %p already marked for delayed removal.", bp));
650	KASSERT(bp->b_qindex != QUEUE_NONE,
651	    ("bremfree: buffer %p not on a queue.", bp));
652	BUF_ASSERT_HELD(bp);
653
654	bp->b_flags |= B_REMFREE;
655	/* Fixup numfreebuffers count.  */
656	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
657		atomic_subtract_int(&numfreebuffers, 1);
658}
659
660/*
661 *	bremfreef:
662 *
663 *	Force an immediate removal from a free list.  Used only in nfs when
664 *	it abuses the b_freelist pointer.
665 */
666void
667bremfreef(struct buf *bp)
668{
669	mtx_lock(&bqlock);
670	bremfreel(bp);
671	mtx_unlock(&bqlock);
672}
673
674/*
675 *	bremfreel:
676 *
677 *	Removes a buffer from the free list, must be called with the
678 *	bqlock held.
679 */
680static void
681bremfreel(struct buf *bp)
682{
683	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
684	    bp, bp->b_vp, bp->b_flags);
685	KASSERT(bp->b_qindex != QUEUE_NONE,
686	    ("bremfreel: buffer %p not on a queue.", bp));
687	BUF_ASSERT_HELD(bp);
688	mtx_assert(&bqlock, MA_OWNED);
689
690	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
691	bp->b_qindex = QUEUE_NONE;
692	/*
693	 * If this was a delayed bremfree() we only need to remove the buffer
694	 * from the queue and return the stats are already done.
695	 */
696	if (bp->b_flags & B_REMFREE) {
697		bp->b_flags &= ~B_REMFREE;
698		return;
699	}
700	/*
701	 * Fixup numfreebuffers count.  If the buffer is invalid or not
702	 * delayed-write, the buffer was free and we must decrement
703	 * numfreebuffers.
704	 */
705	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
706		atomic_subtract_int(&numfreebuffers, 1);
707}
708
709
710/*
711 * Get a buffer with the specified data.  Look in the cache first.  We
712 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
713 * is set, the buffer is valid and we do not have to do anything ( see
714 * getblk() ).  This is really just a special case of breadn().
715 */
716int
717bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
718    struct buf **bpp)
719{
720
721	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
722}
723
724/*
725 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
726 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
727 * the buffer is valid and we do not have to do anything.
728 */
729void
730breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
731    int cnt, struct ucred * cred)
732{
733	struct buf *rabp;
734	int i;
735
736	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
737		if (inmem(vp, *rablkno))
738			continue;
739		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
740
741		if ((rabp->b_flags & B_CACHE) == 0) {
742			if (!TD_IS_IDLETHREAD(curthread))
743				curthread->td_ru.ru_inblock++;
744			rabp->b_flags |= B_ASYNC;
745			rabp->b_flags &= ~B_INVAL;
746			rabp->b_ioflags &= ~BIO_ERROR;
747			rabp->b_iocmd = BIO_READ;
748			if (rabp->b_rcred == NOCRED && cred != NOCRED)
749				rabp->b_rcred = crhold(cred);
750			vfs_busy_pages(rabp, 0);
751			BUF_KERNPROC(rabp);
752			rabp->b_iooffset = dbtob(rabp->b_blkno);
753			bstrategy(rabp);
754		} else {
755			brelse(rabp);
756		}
757	}
758}
759
760/*
761 * Operates like bread, but also starts asynchronous I/O on
762 * read-ahead blocks.
763 */
764int
765breadn(struct vnode * vp, daddr_t blkno, int size,
766    daddr_t * rablkno, int *rabsize,
767    int cnt, struct ucred * cred, struct buf **bpp)
768{
769	struct buf *bp;
770	int rv = 0, readwait = 0;
771
772	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
773	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
774
775	/* if not found in cache, do some I/O */
776	if ((bp->b_flags & B_CACHE) == 0) {
777		if (!TD_IS_IDLETHREAD(curthread))
778			curthread->td_ru.ru_inblock++;
779		bp->b_iocmd = BIO_READ;
780		bp->b_flags &= ~B_INVAL;
781		bp->b_ioflags &= ~BIO_ERROR;
782		if (bp->b_rcred == NOCRED && cred != NOCRED)
783			bp->b_rcred = crhold(cred);
784		vfs_busy_pages(bp, 0);
785		bp->b_iooffset = dbtob(bp->b_blkno);
786		bstrategy(bp);
787		++readwait;
788	}
789
790	breada(vp, rablkno, rabsize, cnt, cred);
791
792	if (readwait) {
793		rv = bufwait(bp);
794	}
795	return (rv);
796}
797
798/*
799 * Write, release buffer on completion.  (Done by iodone
800 * if async).  Do not bother writing anything if the buffer
801 * is invalid.
802 *
803 * Note that we set B_CACHE here, indicating that buffer is
804 * fully valid and thus cacheable.  This is true even of NFS
805 * now so we set it generally.  This could be set either here
806 * or in biodone() since the I/O is synchronous.  We put it
807 * here.
808 */
809int
810bufwrite(struct buf *bp)
811{
812	int oldflags;
813	struct vnode *vp;
814	int vp_md;
815
816	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
817	if (bp->b_flags & B_INVAL) {
818		brelse(bp);
819		return (0);
820	}
821
822	oldflags = bp->b_flags;
823
824	BUF_ASSERT_HELD(bp);
825
826	if (bp->b_pin_count > 0)
827		bunpin_wait(bp);
828
829	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
830	    ("FFS background buffer should not get here %p", bp));
831
832	vp = bp->b_vp;
833	if (vp)
834		vp_md = vp->v_vflag & VV_MD;
835	else
836		vp_md = 0;
837
838	/* Mark the buffer clean */
839	bundirty(bp);
840
841	bp->b_flags &= ~B_DONE;
842	bp->b_ioflags &= ~BIO_ERROR;
843	bp->b_flags |= B_CACHE;
844	bp->b_iocmd = BIO_WRITE;
845
846	bufobj_wref(bp->b_bufobj);
847	vfs_busy_pages(bp, 1);
848
849	/*
850	 * Normal bwrites pipeline writes
851	 */
852	bp->b_runningbufspace = bp->b_bufsize;
853	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
854
855	if (!TD_IS_IDLETHREAD(curthread))
856		curthread->td_ru.ru_oublock++;
857	if (oldflags & B_ASYNC)
858		BUF_KERNPROC(bp);
859	bp->b_iooffset = dbtob(bp->b_blkno);
860	bstrategy(bp);
861
862	if ((oldflags & B_ASYNC) == 0) {
863		int rtval = bufwait(bp);
864		brelse(bp);
865		return (rtval);
866	} else {
867		/*
868		 * don't allow the async write to saturate the I/O
869		 * system.  We will not deadlock here because
870		 * we are blocking waiting for I/O that is already in-progress
871		 * to complete. We do not block here if it is the update
872		 * or syncer daemon trying to clean up as that can lead
873		 * to deadlock.
874		 */
875		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
876			waitrunningbufspace();
877	}
878
879	return (0);
880}
881
882void
883bufbdflush(struct bufobj *bo, struct buf *bp)
884{
885	struct buf *nbp;
886
887	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
888		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
889		altbufferflushes++;
890	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
891		BO_LOCK(bo);
892		/*
893		 * Try to find a buffer to flush.
894		 */
895		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
896			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
897			    BUF_LOCK(nbp,
898				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
899				continue;
900			if (bp == nbp)
901				panic("bdwrite: found ourselves");
902			BO_UNLOCK(bo);
903			/* Don't countdeps with the bo lock held. */
904			if (buf_countdeps(nbp, 0)) {
905				BO_LOCK(bo);
906				BUF_UNLOCK(nbp);
907				continue;
908			}
909			if (nbp->b_flags & B_CLUSTEROK) {
910				vfs_bio_awrite(nbp);
911			} else {
912				bremfree(nbp);
913				bawrite(nbp);
914			}
915			dirtybufferflushes++;
916			break;
917		}
918		if (nbp == NULL)
919			BO_UNLOCK(bo);
920	}
921}
922
923/*
924 * Delayed write. (Buffer is marked dirty).  Do not bother writing
925 * anything if the buffer is marked invalid.
926 *
927 * Note that since the buffer must be completely valid, we can safely
928 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
929 * biodone() in order to prevent getblk from writing the buffer
930 * out synchronously.
931 */
932void
933bdwrite(struct buf *bp)
934{
935	struct thread *td = curthread;
936	struct vnode *vp;
937	struct bufobj *bo;
938
939	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
940	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
941	BUF_ASSERT_HELD(bp);
942
943	if (bp->b_flags & B_INVAL) {
944		brelse(bp);
945		return;
946	}
947
948	/*
949	 * If we have too many dirty buffers, don't create any more.
950	 * If we are wildly over our limit, then force a complete
951	 * cleanup. Otherwise, just keep the situation from getting
952	 * out of control. Note that we have to avoid a recursive
953	 * disaster and not try to clean up after our own cleanup!
954	 */
955	vp = bp->b_vp;
956	bo = bp->b_bufobj;
957	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
958		td->td_pflags |= TDP_INBDFLUSH;
959		BO_BDFLUSH(bo, bp);
960		td->td_pflags &= ~TDP_INBDFLUSH;
961	} else
962		recursiveflushes++;
963
964	bdirty(bp);
965	/*
966	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
967	 * true even of NFS now.
968	 */
969	bp->b_flags |= B_CACHE;
970
971	/*
972	 * This bmap keeps the system from needing to do the bmap later,
973	 * perhaps when the system is attempting to do a sync.  Since it
974	 * is likely that the indirect block -- or whatever other datastructure
975	 * that the filesystem needs is still in memory now, it is a good
976	 * thing to do this.  Note also, that if the pageout daemon is
977	 * requesting a sync -- there might not be enough memory to do
978	 * the bmap then...  So, this is important to do.
979	 */
980	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
981		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
982	}
983
984	/*
985	 * Set the *dirty* buffer range based upon the VM system dirty pages.
986	 */
987	vfs_setdirty(bp);
988
989	/*
990	 * We need to do this here to satisfy the vnode_pager and the
991	 * pageout daemon, so that it thinks that the pages have been
992	 * "cleaned".  Note that since the pages are in a delayed write
993	 * buffer -- the VFS layer "will" see that the pages get written
994	 * out on the next sync, or perhaps the cluster will be completed.
995	 */
996	vfs_clean_pages(bp);
997	bqrelse(bp);
998
999	/*
1000	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1001	 * buffers (midpoint between our recovery point and our stall
1002	 * point).
1003	 */
1004	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1005
1006	/*
1007	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1008	 * due to the softdep code.
1009	 */
1010}
1011
1012/*
1013 *	bdirty:
1014 *
1015 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1016 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1017 *	itself to properly update it in the dirty/clean lists.  We mark it
1018 *	B_DONE to ensure that any asynchronization of the buffer properly
1019 *	clears B_DONE ( else a panic will occur later ).
1020 *
1021 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1022 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1023 *	should only be called if the buffer is known-good.
1024 *
1025 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1026 *	count.
1027 *
1028 *	The buffer must be on QUEUE_NONE.
1029 */
1030void
1031bdirty(struct buf *bp)
1032{
1033
1034	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1035	    bp, bp->b_vp, bp->b_flags);
1036	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1037	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1038	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1039	BUF_ASSERT_HELD(bp);
1040	bp->b_flags &= ~(B_RELBUF);
1041	bp->b_iocmd = BIO_WRITE;
1042
1043	if ((bp->b_flags & B_DELWRI) == 0) {
1044		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1045		reassignbuf(bp);
1046		atomic_add_int(&numdirtybuffers, 1);
1047		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1048	}
1049}
1050
1051/*
1052 *	bundirty:
1053 *
1054 *	Clear B_DELWRI for buffer.
1055 *
1056 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1057 *	count.
1058 *
1059 *	The buffer must be on QUEUE_NONE.
1060 */
1061
1062void
1063bundirty(struct buf *bp)
1064{
1065
1066	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1067	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1068	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1069	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1070	BUF_ASSERT_HELD(bp);
1071
1072	if (bp->b_flags & B_DELWRI) {
1073		bp->b_flags &= ~B_DELWRI;
1074		reassignbuf(bp);
1075		atomic_subtract_int(&numdirtybuffers, 1);
1076		numdirtywakeup(lodirtybuffers);
1077	}
1078	/*
1079	 * Since it is now being written, we can clear its deferred write flag.
1080	 */
1081	bp->b_flags &= ~B_DEFERRED;
1082}
1083
1084/*
1085 *	bawrite:
1086 *
1087 *	Asynchronous write.  Start output on a buffer, but do not wait for
1088 *	it to complete.  The buffer is released when the output completes.
1089 *
1090 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1091 *	B_INVAL buffers.  Not us.
1092 */
1093void
1094bawrite(struct buf *bp)
1095{
1096
1097	bp->b_flags |= B_ASYNC;
1098	(void) bwrite(bp);
1099}
1100
1101/*
1102 *	bwillwrite:
1103 *
1104 *	Called prior to the locking of any vnodes when we are expecting to
1105 *	write.  We do not want to starve the buffer cache with too many
1106 *	dirty buffers so we block here.  By blocking prior to the locking
1107 *	of any vnodes we attempt to avoid the situation where a locked vnode
1108 *	prevents the various system daemons from flushing related buffers.
1109 */
1110
1111void
1112bwillwrite(void)
1113{
1114
1115	if (numdirtybuffers >= hidirtybuffers) {
1116		mtx_lock(&nblock);
1117		while (numdirtybuffers >= hidirtybuffers) {
1118			bd_wakeup(1);
1119			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1120			msleep(&needsbuffer, &nblock,
1121			    (PRIBIO + 4), "flswai", 0);
1122		}
1123		mtx_unlock(&nblock);
1124	}
1125}
1126
1127/*
1128 * Return true if we have too many dirty buffers.
1129 */
1130int
1131buf_dirty_count_severe(void)
1132{
1133
1134	return(numdirtybuffers >= hidirtybuffers);
1135}
1136
1137/*
1138 *	brelse:
1139 *
1140 *	Release a busy buffer and, if requested, free its resources.  The
1141 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1142 *	to be accessed later as a cache entity or reused for other purposes.
1143 */
1144void
1145brelse(struct buf *bp)
1146{
1147	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1148	    bp, bp->b_vp, bp->b_flags);
1149	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1150	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1151
1152	if (bp->b_flags & B_MANAGED) {
1153		bqrelse(bp);
1154		return;
1155	}
1156
1157	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1158	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1159		/*
1160		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1161		 * pages from being scrapped.  If the error is anything
1162		 * other than an I/O error (EIO), assume that retryingi
1163		 * is futile.
1164		 */
1165		bp->b_ioflags &= ~BIO_ERROR;
1166		bdirty(bp);
1167	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1168	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1169		/*
1170		 * Either a failed I/O or we were asked to free or not
1171		 * cache the buffer.
1172		 */
1173		bp->b_flags |= B_INVAL;
1174		if (!LIST_EMPTY(&bp->b_dep))
1175			buf_deallocate(bp);
1176		if (bp->b_flags & B_DELWRI) {
1177			atomic_subtract_int(&numdirtybuffers, 1);
1178			numdirtywakeup(lodirtybuffers);
1179		}
1180		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1181		if ((bp->b_flags & B_VMIO) == 0) {
1182			if (bp->b_bufsize)
1183				allocbuf(bp, 0);
1184			if (bp->b_vp)
1185				brelvp(bp);
1186		}
1187	}
1188
1189	/*
1190	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1191	 * is called with B_DELWRI set, the underlying pages may wind up
1192	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1193	 * because pages associated with a B_DELWRI bp are marked clean.
1194	 *
1195	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1196	 * if B_DELWRI is set.
1197	 *
1198	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1199	 * on pages to return pages to the VM page queues.
1200	 */
1201	if (bp->b_flags & B_DELWRI)
1202		bp->b_flags &= ~B_RELBUF;
1203	else if (vm_page_count_severe()) {
1204		/*
1205		 * The locking of the BO_LOCK is not necessary since
1206		 * BKGRDINPROG cannot be set while we hold the buf
1207		 * lock, it can only be cleared if it is already
1208		 * pending.
1209		 */
1210		if (bp->b_vp) {
1211			if (!(bp->b_vflags & BV_BKGRDINPROG))
1212				bp->b_flags |= B_RELBUF;
1213		} else
1214			bp->b_flags |= B_RELBUF;
1215	}
1216
1217	/*
1218	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1219	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1220	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1221	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1222	 *
1223	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1224	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1225	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1226	 *
1227	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1228	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1229	 * the commit state and we cannot afford to lose the buffer. If the
1230	 * buffer has a background write in progress, we need to keep it
1231	 * around to prevent it from being reconstituted and starting a second
1232	 * background write.
1233	 */
1234	if ((bp->b_flags & B_VMIO)
1235	    && !(bp->b_vp->v_mount != NULL &&
1236		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1237		 !vn_isdisk(bp->b_vp, NULL) &&
1238		 (bp->b_flags & B_DELWRI))
1239	    ) {
1240
1241		int i, j, resid;
1242		vm_page_t m;
1243		off_t foff;
1244		vm_pindex_t poff;
1245		vm_object_t obj;
1246
1247		obj = bp->b_bufobj->bo_object;
1248
1249		/*
1250		 * Get the base offset and length of the buffer.  Note that
1251		 * in the VMIO case if the buffer block size is not
1252		 * page-aligned then b_data pointer may not be page-aligned.
1253		 * But our b_pages[] array *IS* page aligned.
1254		 *
1255		 * block sizes less then DEV_BSIZE (usually 512) are not
1256		 * supported due to the page granularity bits (m->valid,
1257		 * m->dirty, etc...).
1258		 *
1259		 * See man buf(9) for more information
1260		 */
1261		resid = bp->b_bufsize;
1262		foff = bp->b_offset;
1263		VM_OBJECT_LOCK(obj);
1264		for (i = 0; i < bp->b_npages; i++) {
1265			int had_bogus = 0;
1266
1267			m = bp->b_pages[i];
1268
1269			/*
1270			 * If we hit a bogus page, fixup *all* the bogus pages
1271			 * now.
1272			 */
1273			if (m == bogus_page) {
1274				poff = OFF_TO_IDX(bp->b_offset);
1275				had_bogus = 1;
1276
1277				for (j = i; j < bp->b_npages; j++) {
1278					vm_page_t mtmp;
1279					mtmp = bp->b_pages[j];
1280					if (mtmp == bogus_page) {
1281						mtmp = vm_page_lookup(obj, poff + j);
1282						if (!mtmp) {
1283							panic("brelse: page missing\n");
1284						}
1285						bp->b_pages[j] = mtmp;
1286					}
1287				}
1288
1289				if ((bp->b_flags & B_INVAL) == 0) {
1290					pmap_qenter(
1291					    trunc_page((vm_offset_t)bp->b_data),
1292					    bp->b_pages, bp->b_npages);
1293				}
1294				m = bp->b_pages[i];
1295			}
1296			if ((bp->b_flags & B_NOCACHE) ||
1297			    (bp->b_ioflags & BIO_ERROR)) {
1298				int poffset = foff & PAGE_MASK;
1299				int presid = resid > (PAGE_SIZE - poffset) ?
1300					(PAGE_SIZE - poffset) : resid;
1301
1302				KASSERT(presid >= 0, ("brelse: extra page"));
1303				vm_page_lock_queues();
1304				vm_page_set_invalid(m, poffset, presid);
1305				vm_page_unlock_queues();
1306				if (had_bogus)
1307					printf("avoided corruption bug in bogus_page/brelse code\n");
1308			}
1309			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1310			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1311		}
1312		VM_OBJECT_UNLOCK(obj);
1313		if (bp->b_flags & (B_INVAL | B_RELBUF))
1314			vfs_vmio_release(bp);
1315
1316	} else if (bp->b_flags & B_VMIO) {
1317
1318		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1319			vfs_vmio_release(bp);
1320		}
1321
1322	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1323		if (bp->b_bufsize != 0)
1324			allocbuf(bp, 0);
1325		if (bp->b_vp != NULL)
1326			brelvp(bp);
1327	}
1328
1329	if (BUF_LOCKRECURSED(bp)) {
1330		/* do not release to free list */
1331		BUF_UNLOCK(bp);
1332		return;
1333	}
1334
1335	/* enqueue */
1336	mtx_lock(&bqlock);
1337	/* Handle delayed bremfree() processing. */
1338	if (bp->b_flags & B_REMFREE)
1339		bremfreel(bp);
1340	if (bp->b_qindex != QUEUE_NONE)
1341		panic("brelse: free buffer onto another queue???");
1342
1343	/* buffers with no memory */
1344	if (bp->b_bufsize == 0) {
1345		bp->b_flags |= B_INVAL;
1346		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1347		if (bp->b_vflags & BV_BKGRDINPROG)
1348			panic("losing buffer 1");
1349		if (bp->b_kvasize) {
1350			bp->b_qindex = QUEUE_EMPTYKVA;
1351		} else {
1352			bp->b_qindex = QUEUE_EMPTY;
1353		}
1354		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1355	/* buffers with junk contents */
1356	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1357	    (bp->b_ioflags & BIO_ERROR)) {
1358		bp->b_flags |= B_INVAL;
1359		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1360		if (bp->b_vflags & BV_BKGRDINPROG)
1361			panic("losing buffer 2");
1362		bp->b_qindex = QUEUE_CLEAN;
1363		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1364	/* remaining buffers */
1365	} else {
1366		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1367		    (B_DELWRI|B_NEEDSGIANT))
1368			bp->b_qindex = QUEUE_DIRTY_GIANT;
1369		if (bp->b_flags & B_DELWRI)
1370			bp->b_qindex = QUEUE_DIRTY;
1371		else
1372			bp->b_qindex = QUEUE_CLEAN;
1373		if (bp->b_flags & B_AGE)
1374			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1375		else
1376			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1377	}
1378	mtx_unlock(&bqlock);
1379
1380	/*
1381	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1382	 * placed the buffer on the correct queue.  We must also disassociate
1383	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1384	 * find it.
1385	 */
1386	if (bp->b_flags & B_INVAL) {
1387		if (bp->b_flags & B_DELWRI)
1388			bundirty(bp);
1389		if (bp->b_vp)
1390			brelvp(bp);
1391	}
1392
1393	/*
1394	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1395	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1396	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1397	 * if B_INVAL is set ).
1398	 */
1399
1400	if (!(bp->b_flags & B_DELWRI))
1401		bufcountwakeup();
1402
1403	/*
1404	 * Something we can maybe free or reuse
1405	 */
1406	if (bp->b_bufsize || bp->b_kvasize)
1407		bufspacewakeup();
1408
1409	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1410	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1411		panic("brelse: not dirty");
1412	/* unlock */
1413	BUF_UNLOCK(bp);
1414}
1415
1416/*
1417 * Release a buffer back to the appropriate queue but do not try to free
1418 * it.  The buffer is expected to be used again soon.
1419 *
1420 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1421 * biodone() to requeue an async I/O on completion.  It is also used when
1422 * known good buffers need to be requeued but we think we may need the data
1423 * again soon.
1424 *
1425 * XXX we should be able to leave the B_RELBUF hint set on completion.
1426 */
1427void
1428bqrelse(struct buf *bp)
1429{
1430	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1431	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1432	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1433
1434	if (BUF_LOCKRECURSED(bp)) {
1435		/* do not release to free list */
1436		BUF_UNLOCK(bp);
1437		return;
1438	}
1439
1440	if (bp->b_flags & B_MANAGED) {
1441		if (bp->b_flags & B_REMFREE) {
1442			mtx_lock(&bqlock);
1443			bremfreel(bp);
1444			mtx_unlock(&bqlock);
1445		}
1446		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1447		BUF_UNLOCK(bp);
1448		return;
1449	}
1450
1451	mtx_lock(&bqlock);
1452	/* Handle delayed bremfree() processing. */
1453	if (bp->b_flags & B_REMFREE)
1454		bremfreel(bp);
1455	if (bp->b_qindex != QUEUE_NONE)
1456		panic("bqrelse: free buffer onto another queue???");
1457	/* buffers with stale but valid contents */
1458	if (bp->b_flags & B_DELWRI) {
1459		if (bp->b_flags & B_NEEDSGIANT)
1460			bp->b_qindex = QUEUE_DIRTY_GIANT;
1461		else
1462			bp->b_qindex = QUEUE_DIRTY;
1463		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1464	} else {
1465		/*
1466		 * The locking of the BO_LOCK for checking of the
1467		 * BV_BKGRDINPROG is not necessary since the
1468		 * BV_BKGRDINPROG cannot be set while we hold the buf
1469		 * lock, it can only be cleared if it is already
1470		 * pending.
1471		 */
1472		if (!vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1473			bp->b_qindex = QUEUE_CLEAN;
1474			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1475			    b_freelist);
1476		} else {
1477			/*
1478			 * We are too low on memory, we have to try to free
1479			 * the buffer (most importantly: the wired pages
1480			 * making up its backing store) *now*.
1481			 */
1482			mtx_unlock(&bqlock);
1483			brelse(bp);
1484			return;
1485		}
1486	}
1487	mtx_unlock(&bqlock);
1488
1489	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1490		bufcountwakeup();
1491
1492	/*
1493	 * Something we can maybe free or reuse.
1494	 */
1495	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1496		bufspacewakeup();
1497
1498	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1499	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1500		panic("bqrelse: not dirty");
1501	/* unlock */
1502	BUF_UNLOCK(bp);
1503}
1504
1505/* Give pages used by the bp back to the VM system (where possible) */
1506static void
1507vfs_vmio_release(struct buf *bp)
1508{
1509	int i;
1510	vm_page_t m;
1511
1512	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1513	vm_page_lock_queues();
1514	for (i = 0; i < bp->b_npages; i++) {
1515		m = bp->b_pages[i];
1516		bp->b_pages[i] = NULL;
1517		/*
1518		 * In order to keep page LRU ordering consistent, put
1519		 * everything on the inactive queue.
1520		 */
1521		vm_page_unwire(m, 0);
1522		/*
1523		 * We don't mess with busy pages, it is
1524		 * the responsibility of the process that
1525		 * busied the pages to deal with them.
1526		 */
1527		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1528			continue;
1529
1530		if (m->wire_count == 0) {
1531			/*
1532			 * Might as well free the page if we can and it has
1533			 * no valid data.  We also free the page if the
1534			 * buffer was used for direct I/O
1535			 */
1536			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1537			    m->hold_count == 0) {
1538				vm_page_free(m);
1539			} else if (bp->b_flags & B_DIRECT) {
1540				vm_page_try_to_free(m);
1541			} else if (vm_page_count_severe()) {
1542				vm_page_try_to_cache(m);
1543			}
1544		}
1545	}
1546	vm_page_unlock_queues();
1547	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1548	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1549
1550	if (bp->b_bufsize) {
1551		bufspacewakeup();
1552		bp->b_bufsize = 0;
1553	}
1554	bp->b_npages = 0;
1555	bp->b_flags &= ~B_VMIO;
1556	if (bp->b_vp)
1557		brelvp(bp);
1558}
1559
1560/*
1561 * Check to see if a block at a particular lbn is available for a clustered
1562 * write.
1563 */
1564static int
1565vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1566{
1567	struct buf *bpa;
1568	int match;
1569
1570	match = 0;
1571
1572	/* If the buf isn't in core skip it */
1573	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1574		return (0);
1575
1576	/* If the buf is busy we don't want to wait for it */
1577	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1578		return (0);
1579
1580	/* Only cluster with valid clusterable delayed write buffers */
1581	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1582	    (B_DELWRI | B_CLUSTEROK))
1583		goto done;
1584
1585	if (bpa->b_bufsize != size)
1586		goto done;
1587
1588	/*
1589	 * Check to see if it is in the expected place on disk and that the
1590	 * block has been mapped.
1591	 */
1592	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1593		match = 1;
1594done:
1595	BUF_UNLOCK(bpa);
1596	return (match);
1597}
1598
1599/*
1600 *	vfs_bio_awrite:
1601 *
1602 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1603 *	This is much better then the old way of writing only one buffer at
1604 *	a time.  Note that we may not be presented with the buffers in the
1605 *	correct order, so we search for the cluster in both directions.
1606 */
1607int
1608vfs_bio_awrite(struct buf *bp)
1609{
1610	struct bufobj *bo;
1611	int i;
1612	int j;
1613	daddr_t lblkno = bp->b_lblkno;
1614	struct vnode *vp = bp->b_vp;
1615	int ncl;
1616	int nwritten;
1617	int size;
1618	int maxcl;
1619
1620	bo = &vp->v_bufobj;
1621	/*
1622	 * right now we support clustered writing only to regular files.  If
1623	 * we find a clusterable block we could be in the middle of a cluster
1624	 * rather then at the beginning.
1625	 */
1626	if ((vp->v_type == VREG) &&
1627	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1628	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1629
1630		size = vp->v_mount->mnt_stat.f_iosize;
1631		maxcl = MAXPHYS / size;
1632
1633		BO_LOCK(bo);
1634		for (i = 1; i < maxcl; i++)
1635			if (vfs_bio_clcheck(vp, size, lblkno + i,
1636			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1637				break;
1638
1639		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1640			if (vfs_bio_clcheck(vp, size, lblkno - j,
1641			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1642				break;
1643		BO_UNLOCK(bo);
1644		--j;
1645		ncl = i + j;
1646		/*
1647		 * this is a possible cluster write
1648		 */
1649		if (ncl != 1) {
1650			BUF_UNLOCK(bp);
1651			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1652			return nwritten;
1653		}
1654	}
1655	bremfree(bp);
1656	bp->b_flags |= B_ASYNC;
1657	/*
1658	 * default (old) behavior, writing out only one block
1659	 *
1660	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1661	 */
1662	nwritten = bp->b_bufsize;
1663	(void) bwrite(bp);
1664
1665	return nwritten;
1666}
1667
1668/*
1669 *	getnewbuf:
1670 *
1671 *	Find and initialize a new buffer header, freeing up existing buffers
1672 *	in the bufqueues as necessary.  The new buffer is returned locked.
1673 *
1674 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1675 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1676 *
1677 *	We block if:
1678 *		We have insufficient buffer headers
1679 *		We have insufficient buffer space
1680 *		buffer_map is too fragmented ( space reservation fails )
1681 *		If we have to flush dirty buffers ( but we try to avoid this )
1682 *
1683 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1684 *	Instead we ask the buf daemon to do it for us.  We attempt to
1685 *	avoid piecemeal wakeups of the pageout daemon.
1686 */
1687
1688static struct buf *
1689getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1690{
1691	struct buf *bp;
1692	struct buf *nbp;
1693	int defrag = 0;
1694	int nqindex;
1695	static int flushingbufs;
1696
1697	/*
1698	 * We can't afford to block since we might be holding a vnode lock,
1699	 * which may prevent system daemons from running.  We deal with
1700	 * low-memory situations by proactively returning memory and running
1701	 * async I/O rather then sync I/O.
1702	 */
1703
1704	atomic_add_int(&getnewbufcalls, 1);
1705	atomic_subtract_int(&getnewbufrestarts, 1);
1706restart:
1707	atomic_add_int(&getnewbufrestarts, 1);
1708
1709	/*
1710	 * Setup for scan.  If we do not have enough free buffers,
1711	 * we setup a degenerate case that immediately fails.  Note
1712	 * that if we are specially marked process, we are allowed to
1713	 * dip into our reserves.
1714	 *
1715	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1716	 *
1717	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1718	 * However, there are a number of cases (defragging, reusing, ...)
1719	 * where we cannot backup.
1720	 */
1721	mtx_lock(&bqlock);
1722	nqindex = QUEUE_EMPTYKVA;
1723	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1724
1725	if (nbp == NULL) {
1726		/*
1727		 * If no EMPTYKVA buffers and we are either
1728		 * defragging or reusing, locate a CLEAN buffer
1729		 * to free or reuse.  If bufspace useage is low
1730		 * skip this step so we can allocate a new buffer.
1731		 */
1732		if (defrag || bufspace >= lobufspace) {
1733			nqindex = QUEUE_CLEAN;
1734			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1735		}
1736
1737		/*
1738		 * If we could not find or were not allowed to reuse a
1739		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1740		 * buffer.  We can only use an EMPTY buffer if allocating
1741		 * its KVA would not otherwise run us out of buffer space.
1742		 */
1743		if (nbp == NULL && defrag == 0 &&
1744		    bufspace + maxsize < hibufspace) {
1745			nqindex = QUEUE_EMPTY;
1746			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1747		}
1748	}
1749
1750	/*
1751	 * Run scan, possibly freeing data and/or kva mappings on the fly
1752	 * depending.
1753	 */
1754
1755	while ((bp = nbp) != NULL) {
1756		int qindex = nqindex;
1757
1758		/*
1759		 * Calculate next bp ( we can only use it if we do not block
1760		 * or do other fancy things ).
1761		 */
1762		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1763			switch(qindex) {
1764			case QUEUE_EMPTY:
1765				nqindex = QUEUE_EMPTYKVA;
1766				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1767					break;
1768				/* FALLTHROUGH */
1769			case QUEUE_EMPTYKVA:
1770				nqindex = QUEUE_CLEAN;
1771				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1772					break;
1773				/* FALLTHROUGH */
1774			case QUEUE_CLEAN:
1775				/*
1776				 * nbp is NULL.
1777				 */
1778				break;
1779			}
1780		}
1781		/*
1782		 * If we are defragging then we need a buffer with
1783		 * b_kvasize != 0.  XXX this situation should no longer
1784		 * occur, if defrag is non-zero the buffer's b_kvasize
1785		 * should also be non-zero at this point.  XXX
1786		 */
1787		if (defrag && bp->b_kvasize == 0) {
1788			printf("Warning: defrag empty buffer %p\n", bp);
1789			continue;
1790		}
1791
1792		/*
1793		 * Start freeing the bp.  This is somewhat involved.  nbp
1794		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1795		 */
1796		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1797			continue;
1798		if (bp->b_vp) {
1799			BO_LOCK(bp->b_bufobj);
1800			if (bp->b_vflags & BV_BKGRDINPROG) {
1801				BO_UNLOCK(bp->b_bufobj);
1802				BUF_UNLOCK(bp);
1803				continue;
1804			}
1805			BO_UNLOCK(bp->b_bufobj);
1806		}
1807		CTR6(KTR_BUF,
1808		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1809		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1810		    bp->b_kvasize, bp->b_bufsize, qindex);
1811
1812		/*
1813		 * Sanity Checks
1814		 */
1815		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1816
1817		/*
1818		 * Note: we no longer distinguish between VMIO and non-VMIO
1819		 * buffers.
1820		 */
1821
1822		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1823
1824		bremfreel(bp);
1825		mtx_unlock(&bqlock);
1826
1827		if (qindex == QUEUE_CLEAN) {
1828			if (bp->b_flags & B_VMIO) {
1829				bp->b_flags &= ~B_ASYNC;
1830				vfs_vmio_release(bp);
1831			}
1832			if (bp->b_vp)
1833				brelvp(bp);
1834		}
1835
1836		/*
1837		 * NOTE:  nbp is now entirely invalid.  We can only restart
1838		 * the scan from this point on.
1839		 *
1840		 * Get the rest of the buffer freed up.  b_kva* is still
1841		 * valid after this operation.
1842		 */
1843
1844		if (bp->b_rcred != NOCRED) {
1845			crfree(bp->b_rcred);
1846			bp->b_rcred = NOCRED;
1847		}
1848		if (bp->b_wcred != NOCRED) {
1849			crfree(bp->b_wcred);
1850			bp->b_wcred = NOCRED;
1851		}
1852		if (!LIST_EMPTY(&bp->b_dep))
1853			buf_deallocate(bp);
1854		if (bp->b_vflags & BV_BKGRDINPROG)
1855			panic("losing buffer 3");
1856		KASSERT(bp->b_vp == NULL,
1857		    ("bp: %p still has vnode %p.  qindex: %d",
1858		    bp, bp->b_vp, qindex));
1859		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1860		   ("bp: %p still on a buffer list. xflags %X",
1861		    bp, bp->b_xflags));
1862
1863		if (bp->b_bufsize)
1864			allocbuf(bp, 0);
1865
1866		bp->b_flags = 0;
1867		bp->b_ioflags = 0;
1868		bp->b_xflags = 0;
1869		bp->b_vflags = 0;
1870		bp->b_vp = NULL;
1871		bp->b_blkno = bp->b_lblkno = 0;
1872		bp->b_offset = NOOFFSET;
1873		bp->b_iodone = 0;
1874		bp->b_error = 0;
1875		bp->b_resid = 0;
1876		bp->b_bcount = 0;
1877		bp->b_npages = 0;
1878		bp->b_dirtyoff = bp->b_dirtyend = 0;
1879		bp->b_bufobj = NULL;
1880		bp->b_pin_count = 0;
1881		bp->b_fsprivate1 = NULL;
1882		bp->b_fsprivate2 = NULL;
1883		bp->b_fsprivate3 = NULL;
1884
1885		LIST_INIT(&bp->b_dep);
1886
1887		/*
1888		 * If we are defragging then free the buffer.
1889		 */
1890		if (defrag) {
1891			bp->b_flags |= B_INVAL;
1892			bfreekva(bp);
1893			brelse(bp);
1894			defrag = 0;
1895			goto restart;
1896		}
1897
1898		/*
1899		 * Notify any waiters for the buffer lock about
1900		 * identity change by freeing the buffer.
1901		 */
1902		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1903			bp->b_flags |= B_INVAL;
1904			bfreekva(bp);
1905			brelse(bp);
1906			goto restart;
1907		}
1908
1909		/*
1910		 * If we are overcomitted then recover the buffer and its
1911		 * KVM space.  This occurs in rare situations when multiple
1912		 * processes are blocked in getnewbuf() or allocbuf().
1913		 */
1914		if (bufspace >= hibufspace)
1915			flushingbufs = 1;
1916		if (flushingbufs && bp->b_kvasize != 0) {
1917			bp->b_flags |= B_INVAL;
1918			bfreekva(bp);
1919			brelse(bp);
1920			goto restart;
1921		}
1922		if (bufspace < lobufspace)
1923			flushingbufs = 0;
1924		break;
1925	}
1926
1927	/*
1928	 * If we exhausted our list, sleep as appropriate.  We may have to
1929	 * wakeup various daemons and write out some dirty buffers.
1930	 *
1931	 * Generally we are sleeping due to insufficient buffer space.
1932	 */
1933
1934	if (bp == NULL) {
1935		int flags;
1936		char *waitmsg;
1937
1938		if (defrag) {
1939			flags = VFS_BIO_NEED_BUFSPACE;
1940			waitmsg = "nbufkv";
1941		} else if (bufspace >= hibufspace) {
1942			waitmsg = "nbufbs";
1943			flags = VFS_BIO_NEED_BUFSPACE;
1944		} else {
1945			waitmsg = "newbuf";
1946			flags = VFS_BIO_NEED_ANY;
1947		}
1948		mtx_lock(&nblock);
1949		needsbuffer |= flags;
1950		mtx_unlock(&nblock);
1951		mtx_unlock(&bqlock);
1952
1953		bd_speedup();	/* heeeelp */
1954
1955		mtx_lock(&nblock);
1956		while (needsbuffer & flags) {
1957			if (msleep(&needsbuffer, &nblock,
1958			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1959				mtx_unlock(&nblock);
1960				return (NULL);
1961			}
1962		}
1963		mtx_unlock(&nblock);
1964	} else {
1965		/*
1966		 * We finally have a valid bp.  We aren't quite out of the
1967		 * woods, we still have to reserve kva space.  In order
1968		 * to keep fragmentation sane we only allocate kva in
1969		 * BKVASIZE chunks.
1970		 */
1971		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1972
1973		if (maxsize != bp->b_kvasize) {
1974			vm_offset_t addr = 0;
1975
1976			bfreekva(bp);
1977
1978			vm_map_lock(buffer_map);
1979			if (vm_map_findspace(buffer_map,
1980				vm_map_min(buffer_map), maxsize, &addr)) {
1981				/*
1982				 * Uh oh.  Buffer map is to fragmented.  We
1983				 * must defragment the map.
1984				 */
1985				atomic_add_int(&bufdefragcnt, 1);
1986				vm_map_unlock(buffer_map);
1987				defrag = 1;
1988				bp->b_flags |= B_INVAL;
1989				brelse(bp);
1990				goto restart;
1991			}
1992			if (addr) {
1993				vm_map_insert(buffer_map, NULL, 0,
1994					addr, addr + maxsize,
1995					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1996
1997				bp->b_kvabase = (caddr_t) addr;
1998				bp->b_kvasize = maxsize;
1999				atomic_add_int(&bufspace, bp->b_kvasize);
2000				atomic_add_int(&bufreusecnt, 1);
2001			}
2002			vm_map_unlock(buffer_map);
2003		}
2004		bp->b_saveaddr = bp->b_kvabase;
2005		bp->b_data = bp->b_saveaddr;
2006	}
2007	return(bp);
2008}
2009
2010/*
2011 *	buf_daemon:
2012 *
2013 *	buffer flushing daemon.  Buffers are normally flushed by the
2014 *	update daemon but if it cannot keep up this process starts to
2015 *	take the load in an attempt to prevent getnewbuf() from blocking.
2016 */
2017
2018static struct kproc_desc buf_kp = {
2019	"bufdaemon",
2020	buf_daemon,
2021	&bufdaemonproc
2022};
2023SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2024
2025static void
2026buf_daemon()
2027{
2028
2029	/*
2030	 * This process needs to be suspended prior to shutdown sync.
2031	 */
2032	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2033	    SHUTDOWN_PRI_LAST);
2034
2035	/*
2036	 * This process is allowed to take the buffer cache to the limit
2037	 */
2038	curthread->td_pflags |= TDP_NORUNNINGBUF;
2039	mtx_lock(&bdlock);
2040	for (;;) {
2041		bd_request = 0;
2042		mtx_unlock(&bdlock);
2043
2044		kproc_suspend_check(bufdaemonproc);
2045
2046		/*
2047		 * Do the flush.  Limit the amount of in-transit I/O we
2048		 * allow to build up, otherwise we would completely saturate
2049		 * the I/O system.  Wakeup any waiting processes before we
2050		 * normally would so they can run in parallel with our drain.
2051		 */
2052		while (numdirtybuffers > lodirtybuffers) {
2053			int flushed;
2054
2055			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2056			/* The list empty check here is slightly racy */
2057			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2058				mtx_lock(&Giant);
2059				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2060				mtx_unlock(&Giant);
2061			}
2062			if (flushed == 0) {
2063				/*
2064				 * Could not find any buffers without rollback
2065				 * dependencies, so just write the first one
2066				 * in the hopes of eventually making progress.
2067				 */
2068				flushbufqueues(QUEUE_DIRTY, 1);
2069				if (!TAILQ_EMPTY(
2070				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2071					mtx_lock(&Giant);
2072					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2073					mtx_unlock(&Giant);
2074				}
2075				break;
2076			}
2077			uio_yield();
2078		}
2079
2080		/*
2081		 * Only clear bd_request if we have reached our low water
2082		 * mark.  The buf_daemon normally waits 1 second and
2083		 * then incrementally flushes any dirty buffers that have
2084		 * built up, within reason.
2085		 *
2086		 * If we were unable to hit our low water mark and couldn't
2087		 * find any flushable buffers, we sleep half a second.
2088		 * Otherwise we loop immediately.
2089		 */
2090		mtx_lock(&bdlock);
2091		if (numdirtybuffers <= lodirtybuffers) {
2092			/*
2093			 * We reached our low water mark, reset the
2094			 * request and sleep until we are needed again.
2095			 * The sleep is just so the suspend code works.
2096			 */
2097			bd_request = 0;
2098			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2099		} else {
2100			/*
2101			 * We couldn't find any flushable dirty buffers but
2102			 * still have too many dirty buffers, we
2103			 * have to sleep and try again.  (rare)
2104			 */
2105			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2106		}
2107	}
2108}
2109
2110/*
2111 *	flushbufqueues:
2112 *
2113 *	Try to flush a buffer in the dirty queue.  We must be careful to
2114 *	free up B_INVAL buffers instead of write them, which NFS is
2115 *	particularly sensitive to.
2116 */
2117static int flushwithdeps = 0;
2118SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2119    0, "Number of buffers flushed with dependecies that require rollbacks");
2120
2121static int
2122flushbufqueues(int queue, int flushdeps)
2123{
2124	struct buf sentinel;
2125	struct vnode *vp;
2126	struct mount *mp;
2127	struct buf *bp;
2128	int hasdeps;
2129	int flushed;
2130	int target;
2131
2132	target = numdirtybuffers - lodirtybuffers;
2133	if (flushdeps && target > 2)
2134		target /= 2;
2135	flushed = 0;
2136	bp = NULL;
2137	mtx_lock(&bqlock);
2138	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2139	while (flushed != target) {
2140		bp = TAILQ_FIRST(&bufqueues[queue]);
2141		if (bp == &sentinel)
2142			break;
2143		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2144		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2145
2146		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2147			continue;
2148		if (bp->b_pin_count > 0) {
2149			BUF_UNLOCK(bp);
2150			continue;
2151		}
2152		BO_LOCK(bp->b_bufobj);
2153		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2154		    (bp->b_flags & B_DELWRI) == 0) {
2155			BO_UNLOCK(bp->b_bufobj);
2156			BUF_UNLOCK(bp);
2157			continue;
2158		}
2159		BO_UNLOCK(bp->b_bufobj);
2160		if (bp->b_flags & B_INVAL) {
2161			bremfreel(bp);
2162			mtx_unlock(&bqlock);
2163			brelse(bp);
2164			flushed++;
2165			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2166			mtx_lock(&bqlock);
2167			continue;
2168		}
2169
2170		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2171			if (flushdeps == 0) {
2172				BUF_UNLOCK(bp);
2173				continue;
2174			}
2175			hasdeps = 1;
2176		} else
2177			hasdeps = 0;
2178		/*
2179		 * We must hold the lock on a vnode before writing
2180		 * one of its buffers. Otherwise we may confuse, or
2181		 * in the case of a snapshot vnode, deadlock the
2182		 * system.
2183		 *
2184		 * The lock order here is the reverse of the normal
2185		 * of vnode followed by buf lock.  This is ok because
2186		 * the NOWAIT will prevent deadlock.
2187		 */
2188		vp = bp->b_vp;
2189		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2190			BUF_UNLOCK(bp);
2191			continue;
2192		}
2193		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2194			mtx_unlock(&bqlock);
2195			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2196			    bp, bp->b_vp, bp->b_flags);
2197			vfs_bio_awrite(bp);
2198			vn_finished_write(mp);
2199			VOP_UNLOCK(vp, 0);
2200			flushwithdeps += hasdeps;
2201			flushed++;
2202			waitrunningbufspace();
2203			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2204			mtx_lock(&bqlock);
2205			continue;
2206		}
2207		vn_finished_write(mp);
2208		BUF_UNLOCK(bp);
2209	}
2210	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2211	mtx_unlock(&bqlock);
2212	return (flushed);
2213}
2214
2215/*
2216 * Check to see if a block is currently memory resident.
2217 */
2218struct buf *
2219incore(struct bufobj *bo, daddr_t blkno)
2220{
2221	struct buf *bp;
2222
2223	BO_LOCK(bo);
2224	bp = gbincore(bo, blkno);
2225	BO_UNLOCK(bo);
2226	return (bp);
2227}
2228
2229/*
2230 * Returns true if no I/O is needed to access the
2231 * associated VM object.  This is like incore except
2232 * it also hunts around in the VM system for the data.
2233 */
2234
2235static int
2236inmem(struct vnode * vp, daddr_t blkno)
2237{
2238	vm_object_t obj;
2239	vm_offset_t toff, tinc, size;
2240	vm_page_t m;
2241	vm_ooffset_t off;
2242
2243	ASSERT_VOP_LOCKED(vp, "inmem");
2244
2245	if (incore(&vp->v_bufobj, blkno))
2246		return 1;
2247	if (vp->v_mount == NULL)
2248		return 0;
2249	obj = vp->v_object;
2250	if (obj == NULL)
2251		return (0);
2252
2253	size = PAGE_SIZE;
2254	if (size > vp->v_mount->mnt_stat.f_iosize)
2255		size = vp->v_mount->mnt_stat.f_iosize;
2256	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2257
2258	VM_OBJECT_LOCK(obj);
2259	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2260		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2261		if (!m)
2262			goto notinmem;
2263		tinc = size;
2264		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2265			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2266		if (vm_page_is_valid(m,
2267		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2268			goto notinmem;
2269	}
2270	VM_OBJECT_UNLOCK(obj);
2271	return 1;
2272
2273notinmem:
2274	VM_OBJECT_UNLOCK(obj);
2275	return (0);
2276}
2277
2278/*
2279 *	vfs_setdirty:
2280 *
2281 *	Sets the dirty range for a buffer based on the status of the dirty
2282 *	bits in the pages comprising the buffer.
2283 *
2284 *	The range is limited to the size of the buffer.
2285 *
2286 *	This routine is primarily used by NFS, but is generalized for the
2287 *	B_VMIO case.
2288 */
2289static void
2290vfs_setdirty(struct buf *bp)
2291{
2292
2293	/*
2294	 * Degenerate case - empty buffer
2295	 */
2296
2297	if (bp->b_bufsize == 0)
2298		return;
2299
2300	/*
2301	 * We qualify the scan for modified pages on whether the
2302	 * object has been flushed yet.
2303	 */
2304
2305	if ((bp->b_flags & B_VMIO) == 0)
2306		return;
2307
2308	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2309	vfs_setdirty_locked_object(bp);
2310	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2311}
2312
2313static void
2314vfs_setdirty_locked_object(struct buf *bp)
2315{
2316	vm_object_t object;
2317	int i;
2318
2319	object = bp->b_bufobj->bo_object;
2320	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2321	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2322		vm_offset_t boffset;
2323		vm_offset_t eoffset;
2324
2325		vm_page_lock_queues();
2326		/*
2327		 * test the pages to see if they have been modified directly
2328		 * by users through the VM system.
2329		 */
2330		for (i = 0; i < bp->b_npages; i++)
2331			vm_page_test_dirty(bp->b_pages[i]);
2332
2333		/*
2334		 * Calculate the encompassing dirty range, boffset and eoffset,
2335		 * (eoffset - boffset) bytes.
2336		 */
2337
2338		for (i = 0; i < bp->b_npages; i++) {
2339			if (bp->b_pages[i]->dirty)
2340				break;
2341		}
2342		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2343
2344		for (i = bp->b_npages - 1; i >= 0; --i) {
2345			if (bp->b_pages[i]->dirty) {
2346				break;
2347			}
2348		}
2349		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2350
2351		vm_page_unlock_queues();
2352		/*
2353		 * Fit it to the buffer.
2354		 */
2355
2356		if (eoffset > bp->b_bcount)
2357			eoffset = bp->b_bcount;
2358
2359		/*
2360		 * If we have a good dirty range, merge with the existing
2361		 * dirty range.
2362		 */
2363
2364		if (boffset < eoffset) {
2365			if (bp->b_dirtyoff > boffset)
2366				bp->b_dirtyoff = boffset;
2367			if (bp->b_dirtyend < eoffset)
2368				bp->b_dirtyend = eoffset;
2369		}
2370	}
2371}
2372
2373/*
2374 *	getblk:
2375 *
2376 *	Get a block given a specified block and offset into a file/device.
2377 *	The buffers B_DONE bit will be cleared on return, making it almost
2378 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2379 *	return.  The caller should clear B_INVAL prior to initiating a
2380 *	READ.
2381 *
2382 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2383 *	an existing buffer.
2384 *
2385 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2386 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2387 *	and then cleared based on the backing VM.  If the previous buffer is
2388 *	non-0-sized but invalid, B_CACHE will be cleared.
2389 *
2390 *	If getblk() must create a new buffer, the new buffer is returned with
2391 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2392 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2393 *	backing VM.
2394 *
2395 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2396 *	B_CACHE bit is clear.
2397 *
2398 *	What this means, basically, is that the caller should use B_CACHE to
2399 *	determine whether the buffer is fully valid or not and should clear
2400 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2401 *	the buffer by loading its data area with something, the caller needs
2402 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2403 *	the caller should set B_CACHE ( as an optimization ), else the caller
2404 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2405 *	a write attempt or if it was a successfull read.  If the caller
2406 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2407 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2408 */
2409struct buf *
2410getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2411    int flags)
2412{
2413	struct buf *bp;
2414	struct bufobj *bo;
2415	int error;
2416
2417	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2418	ASSERT_VOP_LOCKED(vp, "getblk");
2419	if (size > MAXBSIZE)
2420		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2421
2422	bo = &vp->v_bufobj;
2423loop:
2424	/*
2425	 * Block if we are low on buffers.   Certain processes are allowed
2426	 * to completely exhaust the buffer cache.
2427         *
2428         * If this check ever becomes a bottleneck it may be better to
2429         * move it into the else, when gbincore() fails.  At the moment
2430         * it isn't a problem.
2431	 *
2432	 * XXX remove if 0 sections (clean this up after its proven)
2433         */
2434	if (numfreebuffers == 0) {
2435		if (TD_IS_IDLETHREAD(curthread))
2436			return NULL;
2437		mtx_lock(&nblock);
2438		needsbuffer |= VFS_BIO_NEED_ANY;
2439		mtx_unlock(&nblock);
2440	}
2441
2442	BO_LOCK(bo);
2443	bp = gbincore(bo, blkno);
2444	if (bp != NULL) {
2445		int lockflags;
2446		/*
2447		 * Buffer is in-core.  If the buffer is not busy, it must
2448		 * be on a queue.
2449		 */
2450		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2451
2452		if (flags & GB_LOCK_NOWAIT)
2453			lockflags |= LK_NOWAIT;
2454
2455		error = BUF_TIMELOCK(bp, lockflags,
2456		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2457
2458		/*
2459		 * If we slept and got the lock we have to restart in case
2460		 * the buffer changed identities.
2461		 */
2462		if (error == ENOLCK)
2463			goto loop;
2464		/* We timed out or were interrupted. */
2465		else if (error)
2466			return (NULL);
2467
2468		/*
2469		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2470		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2471		 * and for a VMIO buffer B_CACHE is adjusted according to the
2472		 * backing VM cache.
2473		 */
2474		if (bp->b_flags & B_INVAL)
2475			bp->b_flags &= ~B_CACHE;
2476		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2477			bp->b_flags |= B_CACHE;
2478		bremfree(bp);
2479
2480		/*
2481		 * check for size inconsistancies for non-VMIO case.
2482		 */
2483
2484		if (bp->b_bcount != size) {
2485			if ((bp->b_flags & B_VMIO) == 0 ||
2486			    (size > bp->b_kvasize)) {
2487				if (bp->b_flags & B_DELWRI) {
2488					/*
2489					 * If buffer is pinned and caller does
2490					 * not want sleep  waiting for it to be
2491					 * unpinned, bail out
2492					 * */
2493					if (bp->b_pin_count > 0) {
2494						if (flags & GB_LOCK_NOWAIT) {
2495							bqrelse(bp);
2496							return (NULL);
2497						} else {
2498							bunpin_wait(bp);
2499						}
2500					}
2501					bp->b_flags |= B_NOCACHE;
2502					bwrite(bp);
2503				} else {
2504					if (LIST_EMPTY(&bp->b_dep)) {
2505						bp->b_flags |= B_RELBUF;
2506						brelse(bp);
2507					} else {
2508						bp->b_flags |= B_NOCACHE;
2509						bwrite(bp);
2510					}
2511				}
2512				goto loop;
2513			}
2514		}
2515
2516		/*
2517		 * If the size is inconsistant in the VMIO case, we can resize
2518		 * the buffer.  This might lead to B_CACHE getting set or
2519		 * cleared.  If the size has not changed, B_CACHE remains
2520		 * unchanged from its previous state.
2521		 */
2522
2523		if (bp->b_bcount != size)
2524			allocbuf(bp, size);
2525
2526		KASSERT(bp->b_offset != NOOFFSET,
2527		    ("getblk: no buffer offset"));
2528
2529		/*
2530		 * A buffer with B_DELWRI set and B_CACHE clear must
2531		 * be committed before we can return the buffer in
2532		 * order to prevent the caller from issuing a read
2533		 * ( due to B_CACHE not being set ) and overwriting
2534		 * it.
2535		 *
2536		 * Most callers, including NFS and FFS, need this to
2537		 * operate properly either because they assume they
2538		 * can issue a read if B_CACHE is not set, or because
2539		 * ( for example ) an uncached B_DELWRI might loop due
2540		 * to softupdates re-dirtying the buffer.  In the latter
2541		 * case, B_CACHE is set after the first write completes,
2542		 * preventing further loops.
2543		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2544		 * above while extending the buffer, we cannot allow the
2545		 * buffer to remain with B_CACHE set after the write
2546		 * completes or it will represent a corrupt state.  To
2547		 * deal with this we set B_NOCACHE to scrap the buffer
2548		 * after the write.
2549		 *
2550		 * We might be able to do something fancy, like setting
2551		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2552		 * so the below call doesn't set B_CACHE, but that gets real
2553		 * confusing.  This is much easier.
2554		 */
2555
2556		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2557			bp->b_flags |= B_NOCACHE;
2558			bwrite(bp);
2559			goto loop;
2560		}
2561		bp->b_flags &= ~B_DONE;
2562	} else {
2563		int bsize, maxsize, vmio;
2564		off_t offset;
2565
2566		/*
2567		 * Buffer is not in-core, create new buffer.  The buffer
2568		 * returned by getnewbuf() is locked.  Note that the returned
2569		 * buffer is also considered valid (not marked B_INVAL).
2570		 */
2571		BO_UNLOCK(bo);
2572		/*
2573		 * If the user does not want us to create the buffer, bail out
2574		 * here.
2575		 */
2576		if (flags & GB_NOCREAT)
2577			return NULL;
2578		bsize = bo->bo_bsize;
2579		offset = blkno * bsize;
2580		vmio = vp->v_object != NULL;
2581		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2582		maxsize = imax(maxsize, bsize);
2583
2584		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2585		if (bp == NULL) {
2586			if (slpflag || slptimeo)
2587				return NULL;
2588			goto loop;
2589		}
2590
2591		/*
2592		 * This code is used to make sure that a buffer is not
2593		 * created while the getnewbuf routine is blocked.
2594		 * This can be a problem whether the vnode is locked or not.
2595		 * If the buffer is created out from under us, we have to
2596		 * throw away the one we just created.
2597		 *
2598		 * Note: this must occur before we associate the buffer
2599		 * with the vp especially considering limitations in
2600		 * the splay tree implementation when dealing with duplicate
2601		 * lblkno's.
2602		 */
2603		BO_LOCK(bo);
2604		if (gbincore(bo, blkno)) {
2605			BO_UNLOCK(bo);
2606			bp->b_flags |= B_INVAL;
2607			brelse(bp);
2608			goto loop;
2609		}
2610
2611		/*
2612		 * Insert the buffer into the hash, so that it can
2613		 * be found by incore.
2614		 */
2615		bp->b_blkno = bp->b_lblkno = blkno;
2616		bp->b_offset = offset;
2617		bgetvp(vp, bp);
2618		BO_UNLOCK(bo);
2619
2620		/*
2621		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2622		 * buffer size starts out as 0, B_CACHE will be set by
2623		 * allocbuf() for the VMIO case prior to it testing the
2624		 * backing store for validity.
2625		 */
2626
2627		if (vmio) {
2628			bp->b_flags |= B_VMIO;
2629#if defined(VFS_BIO_DEBUG)
2630			if (vn_canvmio(vp) != TRUE)
2631				printf("getblk: VMIO on vnode type %d\n",
2632					vp->v_type);
2633#endif
2634			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2635			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2636			    bp, vp->v_object, bp->b_bufobj->bo_object));
2637		} else {
2638			bp->b_flags &= ~B_VMIO;
2639			KASSERT(bp->b_bufobj->bo_object == NULL,
2640			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2641			    bp, bp->b_bufobj->bo_object));
2642		}
2643
2644		allocbuf(bp, size);
2645		bp->b_flags &= ~B_DONE;
2646	}
2647	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2648	BUF_ASSERT_HELD(bp);
2649	KASSERT(bp->b_bufobj == bo,
2650	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2651	return (bp);
2652}
2653
2654/*
2655 * Get an empty, disassociated buffer of given size.  The buffer is initially
2656 * set to B_INVAL.
2657 */
2658struct buf *
2659geteblk(int size)
2660{
2661	struct buf *bp;
2662	int maxsize;
2663
2664	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2665	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2666		continue;
2667	allocbuf(bp, size);
2668	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2669	BUF_ASSERT_HELD(bp);
2670	return (bp);
2671}
2672
2673
2674/*
2675 * This code constitutes the buffer memory from either anonymous system
2676 * memory (in the case of non-VMIO operations) or from an associated
2677 * VM object (in the case of VMIO operations).  This code is able to
2678 * resize a buffer up or down.
2679 *
2680 * Note that this code is tricky, and has many complications to resolve
2681 * deadlock or inconsistant data situations.  Tread lightly!!!
2682 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2683 * the caller.  Calling this code willy nilly can result in the loss of data.
2684 *
2685 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2686 * B_CACHE for the non-VMIO case.
2687 */
2688
2689int
2690allocbuf(struct buf *bp, int size)
2691{
2692	int newbsize, mbsize;
2693	int i;
2694
2695	BUF_ASSERT_HELD(bp);
2696
2697	if (bp->b_kvasize < size)
2698		panic("allocbuf: buffer too small");
2699
2700	if ((bp->b_flags & B_VMIO) == 0) {
2701		caddr_t origbuf;
2702		int origbufsize;
2703		/*
2704		 * Just get anonymous memory from the kernel.  Don't
2705		 * mess with B_CACHE.
2706		 */
2707		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2708		if (bp->b_flags & B_MALLOC)
2709			newbsize = mbsize;
2710		else
2711			newbsize = round_page(size);
2712
2713		if (newbsize < bp->b_bufsize) {
2714			/*
2715			 * malloced buffers are not shrunk
2716			 */
2717			if (bp->b_flags & B_MALLOC) {
2718				if (newbsize) {
2719					bp->b_bcount = size;
2720				} else {
2721					free(bp->b_data, M_BIOBUF);
2722					if (bp->b_bufsize) {
2723						atomic_subtract_int(
2724						    &bufmallocspace,
2725						    bp->b_bufsize);
2726						bufspacewakeup();
2727						bp->b_bufsize = 0;
2728					}
2729					bp->b_saveaddr = bp->b_kvabase;
2730					bp->b_data = bp->b_saveaddr;
2731					bp->b_bcount = 0;
2732					bp->b_flags &= ~B_MALLOC;
2733				}
2734				return 1;
2735			}
2736			vm_hold_free_pages(
2737			    bp,
2738			    (vm_offset_t) bp->b_data + newbsize,
2739			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2740		} else if (newbsize > bp->b_bufsize) {
2741			/*
2742			 * We only use malloced memory on the first allocation.
2743			 * and revert to page-allocated memory when the buffer
2744			 * grows.
2745			 */
2746			/*
2747			 * There is a potential smp race here that could lead
2748			 * to bufmallocspace slightly passing the max.  It
2749			 * is probably extremely rare and not worth worrying
2750			 * over.
2751			 */
2752			if ( (bufmallocspace < maxbufmallocspace) &&
2753				(bp->b_bufsize == 0) &&
2754				(mbsize <= PAGE_SIZE/2)) {
2755
2756				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2757				bp->b_bufsize = mbsize;
2758				bp->b_bcount = size;
2759				bp->b_flags |= B_MALLOC;
2760				atomic_add_int(&bufmallocspace, mbsize);
2761				return 1;
2762			}
2763			origbuf = NULL;
2764			origbufsize = 0;
2765			/*
2766			 * If the buffer is growing on its other-than-first allocation,
2767			 * then we revert to the page-allocation scheme.
2768			 */
2769			if (bp->b_flags & B_MALLOC) {
2770				origbuf = bp->b_data;
2771				origbufsize = bp->b_bufsize;
2772				bp->b_data = bp->b_kvabase;
2773				if (bp->b_bufsize) {
2774					atomic_subtract_int(&bufmallocspace,
2775					    bp->b_bufsize);
2776					bufspacewakeup();
2777					bp->b_bufsize = 0;
2778				}
2779				bp->b_flags &= ~B_MALLOC;
2780				newbsize = round_page(newbsize);
2781			}
2782			vm_hold_load_pages(
2783			    bp,
2784			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2785			    (vm_offset_t) bp->b_data + newbsize);
2786			if (origbuf) {
2787				bcopy(origbuf, bp->b_data, origbufsize);
2788				free(origbuf, M_BIOBUF);
2789			}
2790		}
2791	} else {
2792		int desiredpages;
2793
2794		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2795		desiredpages = (size == 0) ? 0 :
2796			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2797
2798		if (bp->b_flags & B_MALLOC)
2799			panic("allocbuf: VMIO buffer can't be malloced");
2800		/*
2801		 * Set B_CACHE initially if buffer is 0 length or will become
2802		 * 0-length.
2803		 */
2804		if (size == 0 || bp->b_bufsize == 0)
2805			bp->b_flags |= B_CACHE;
2806
2807		if (newbsize < bp->b_bufsize) {
2808			/*
2809			 * DEV_BSIZE aligned new buffer size is less then the
2810			 * DEV_BSIZE aligned existing buffer size.  Figure out
2811			 * if we have to remove any pages.
2812			 */
2813			if (desiredpages < bp->b_npages) {
2814				vm_page_t m;
2815
2816				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2817				vm_page_lock_queues();
2818				for (i = desiredpages; i < bp->b_npages; i++) {
2819					/*
2820					 * the page is not freed here -- it
2821					 * is the responsibility of
2822					 * vnode_pager_setsize
2823					 */
2824					m = bp->b_pages[i];
2825					KASSERT(m != bogus_page,
2826					    ("allocbuf: bogus page found"));
2827					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2828						vm_page_lock_queues();
2829
2830					bp->b_pages[i] = NULL;
2831					vm_page_unwire(m, 0);
2832				}
2833				vm_page_unlock_queues();
2834				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2835				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2836				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2837				bp->b_npages = desiredpages;
2838			}
2839		} else if (size > bp->b_bcount) {
2840			/*
2841			 * We are growing the buffer, possibly in a
2842			 * byte-granular fashion.
2843			 */
2844			struct vnode *vp;
2845			vm_object_t obj;
2846			vm_offset_t toff;
2847			vm_offset_t tinc;
2848
2849			/*
2850			 * Step 1, bring in the VM pages from the object,
2851			 * allocating them if necessary.  We must clear
2852			 * B_CACHE if these pages are not valid for the
2853			 * range covered by the buffer.
2854			 */
2855
2856			vp = bp->b_vp;
2857			obj = bp->b_bufobj->bo_object;
2858
2859			VM_OBJECT_LOCK(obj);
2860			while (bp->b_npages < desiredpages) {
2861				vm_page_t m;
2862				vm_pindex_t pi;
2863
2864				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2865				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2866					/*
2867					 * note: must allocate system pages
2868					 * since blocking here could intefere
2869					 * with paging I/O, no matter which
2870					 * process we are.
2871					 */
2872					m = vm_page_alloc(obj, pi,
2873					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2874					    VM_ALLOC_WIRED);
2875					if (m == NULL) {
2876						atomic_add_int(&vm_pageout_deficit,
2877						    desiredpages - bp->b_npages);
2878						VM_OBJECT_UNLOCK(obj);
2879						VM_WAIT;
2880						VM_OBJECT_LOCK(obj);
2881					} else {
2882						if (m->valid == 0)
2883							bp->b_flags &= ~B_CACHE;
2884						bp->b_pages[bp->b_npages] = m;
2885						++bp->b_npages;
2886					}
2887					continue;
2888				}
2889
2890				/*
2891				 * We found a page.  If we have to sleep on it,
2892				 * retry because it might have gotten freed out
2893				 * from under us.
2894				 *
2895				 * We can only test VPO_BUSY here.  Blocking on
2896				 * m->busy might lead to a deadlock:
2897				 *
2898				 *  vm_fault->getpages->cluster_read->allocbuf
2899				 *
2900				 */
2901				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2902					continue;
2903
2904				/*
2905				 * We have a good page.
2906				 */
2907				vm_page_lock_queues();
2908				vm_page_wire(m);
2909				vm_page_unlock_queues();
2910				bp->b_pages[bp->b_npages] = m;
2911				++bp->b_npages;
2912			}
2913
2914			/*
2915			 * Step 2.  We've loaded the pages into the buffer,
2916			 * we have to figure out if we can still have B_CACHE
2917			 * set.  Note that B_CACHE is set according to the
2918			 * byte-granular range ( bcount and size ), new the
2919			 * aligned range ( newbsize ).
2920			 *
2921			 * The VM test is against m->valid, which is DEV_BSIZE
2922			 * aligned.  Needless to say, the validity of the data
2923			 * needs to also be DEV_BSIZE aligned.  Note that this
2924			 * fails with NFS if the server or some other client
2925			 * extends the file's EOF.  If our buffer is resized,
2926			 * B_CACHE may remain set! XXX
2927			 */
2928
2929			toff = bp->b_bcount;
2930			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2931
2932			while ((bp->b_flags & B_CACHE) && toff < size) {
2933				vm_pindex_t pi;
2934
2935				if (tinc > (size - toff))
2936					tinc = size - toff;
2937
2938				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2939				    PAGE_SHIFT;
2940
2941				vfs_buf_test_cache(
2942				    bp,
2943				    bp->b_offset,
2944				    toff,
2945				    tinc,
2946				    bp->b_pages[pi]
2947				);
2948				toff += tinc;
2949				tinc = PAGE_SIZE;
2950			}
2951			VM_OBJECT_UNLOCK(obj);
2952
2953			/*
2954			 * Step 3, fixup the KVM pmap.  Remember that
2955			 * bp->b_data is relative to bp->b_offset, but
2956			 * bp->b_offset may be offset into the first page.
2957			 */
2958
2959			bp->b_data = (caddr_t)
2960			    trunc_page((vm_offset_t)bp->b_data);
2961			pmap_qenter(
2962			    (vm_offset_t)bp->b_data,
2963			    bp->b_pages,
2964			    bp->b_npages
2965			);
2966
2967			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2968			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2969		}
2970	}
2971	if (newbsize < bp->b_bufsize)
2972		bufspacewakeup();
2973	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2974	bp->b_bcount = size;		/* requested buffer size	*/
2975	return 1;
2976}
2977
2978void
2979biodone(struct bio *bp)
2980{
2981	struct mtx *mtxp;
2982	void (*done)(struct bio *);
2983
2984	mtxp = mtx_pool_find(mtxpool_sleep, bp);
2985	mtx_lock(mtxp);
2986	bp->bio_flags |= BIO_DONE;
2987	done = bp->bio_done;
2988	if (done == NULL)
2989		wakeup(bp);
2990	mtx_unlock(mtxp);
2991	if (done != NULL)
2992		done(bp);
2993}
2994
2995/*
2996 * Wait for a BIO to finish.
2997 *
2998 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2999 * case is not yet clear.
3000 */
3001int
3002biowait(struct bio *bp, const char *wchan)
3003{
3004	struct mtx *mtxp;
3005
3006	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3007	mtx_lock(mtxp);
3008	while ((bp->bio_flags & BIO_DONE) == 0)
3009		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3010	mtx_unlock(mtxp);
3011	if (bp->bio_error != 0)
3012		return (bp->bio_error);
3013	if (!(bp->bio_flags & BIO_ERROR))
3014		return (0);
3015	return (EIO);
3016}
3017
3018void
3019biofinish(struct bio *bp, struct devstat *stat, int error)
3020{
3021
3022	if (error) {
3023		bp->bio_error = error;
3024		bp->bio_flags |= BIO_ERROR;
3025	}
3026	if (stat != NULL)
3027		devstat_end_transaction_bio(stat, bp);
3028	biodone(bp);
3029}
3030
3031/*
3032 *	bufwait:
3033 *
3034 *	Wait for buffer I/O completion, returning error status.  The buffer
3035 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3036 *	error and cleared.
3037 */
3038int
3039bufwait(struct buf *bp)
3040{
3041	if (bp->b_iocmd == BIO_READ)
3042		bwait(bp, PRIBIO, "biord");
3043	else
3044		bwait(bp, PRIBIO, "biowr");
3045	if (bp->b_flags & B_EINTR) {
3046		bp->b_flags &= ~B_EINTR;
3047		return (EINTR);
3048	}
3049	if (bp->b_ioflags & BIO_ERROR) {
3050		return (bp->b_error ? bp->b_error : EIO);
3051	} else {
3052		return (0);
3053	}
3054}
3055
3056 /*
3057  * Call back function from struct bio back up to struct buf.
3058  */
3059static void
3060bufdonebio(struct bio *bip)
3061{
3062	struct buf *bp;
3063
3064	bp = bip->bio_caller2;
3065	bp->b_resid = bp->b_bcount - bip->bio_completed;
3066	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3067	bp->b_ioflags = bip->bio_flags;
3068	bp->b_error = bip->bio_error;
3069	if (bp->b_error)
3070		bp->b_ioflags |= BIO_ERROR;
3071	bufdone(bp);
3072	g_destroy_bio(bip);
3073}
3074
3075void
3076dev_strategy(struct cdev *dev, struct buf *bp)
3077{
3078	struct cdevsw *csw;
3079	struct bio *bip;
3080
3081	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3082		panic("b_iocmd botch");
3083	for (;;) {
3084		bip = g_new_bio();
3085		if (bip != NULL)
3086			break;
3087		/* Try again later */
3088		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3089	}
3090	bip->bio_cmd = bp->b_iocmd;
3091	bip->bio_offset = bp->b_iooffset;
3092	bip->bio_length = bp->b_bcount;
3093	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3094	bip->bio_data = bp->b_data;
3095	bip->bio_done = bufdonebio;
3096	bip->bio_caller2 = bp;
3097	bip->bio_dev = dev;
3098	KASSERT(dev->si_refcount > 0,
3099	    ("dev_strategy on un-referenced struct cdev *(%s)",
3100	    devtoname(dev)));
3101	csw = dev_refthread(dev);
3102	if (csw == NULL) {
3103		g_destroy_bio(bip);
3104		bp->b_error = ENXIO;
3105		bp->b_ioflags = BIO_ERROR;
3106		bufdone(bp);
3107		return;
3108	}
3109	(*csw->d_strategy)(bip);
3110	dev_relthread(dev);
3111}
3112
3113/*
3114 *	bufdone:
3115 *
3116 *	Finish I/O on a buffer, optionally calling a completion function.
3117 *	This is usually called from an interrupt so process blocking is
3118 *	not allowed.
3119 *
3120 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3121 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3122 *	assuming B_INVAL is clear.
3123 *
3124 *	For the VMIO case, we set B_CACHE if the op was a read and no
3125 *	read error occured, or if the op was a write.  B_CACHE is never
3126 *	set if the buffer is invalid or otherwise uncacheable.
3127 *
3128 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3129 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3130 *	in the biodone routine.
3131 */
3132void
3133bufdone(struct buf *bp)
3134{
3135	struct bufobj *dropobj;
3136	void    (*biodone)(struct buf *);
3137
3138	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3139	dropobj = NULL;
3140
3141	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3142	BUF_ASSERT_HELD(bp);
3143
3144	runningbufwakeup(bp);
3145	if (bp->b_iocmd == BIO_WRITE)
3146		dropobj = bp->b_bufobj;
3147	/* call optional completion function if requested */
3148	if (bp->b_iodone != NULL) {
3149		biodone = bp->b_iodone;
3150		bp->b_iodone = NULL;
3151		(*biodone) (bp);
3152		if (dropobj)
3153			bufobj_wdrop(dropobj);
3154		return;
3155	}
3156
3157	bufdone_finish(bp);
3158
3159	if (dropobj)
3160		bufobj_wdrop(dropobj);
3161}
3162
3163void
3164bufdone_finish(struct buf *bp)
3165{
3166	BUF_ASSERT_HELD(bp);
3167
3168	if (!LIST_EMPTY(&bp->b_dep))
3169		buf_complete(bp);
3170
3171	if (bp->b_flags & B_VMIO) {
3172		int i;
3173		vm_ooffset_t foff;
3174		vm_page_t m;
3175		vm_object_t obj;
3176		int iosize;
3177		struct vnode *vp = bp->b_vp;
3178		boolean_t are_queues_locked;
3179
3180		obj = bp->b_bufobj->bo_object;
3181
3182#if defined(VFS_BIO_DEBUG)
3183		mp_fixme("usecount and vflag accessed without locks.");
3184		if (vp->v_usecount == 0) {
3185			panic("biodone: zero vnode ref count");
3186		}
3187
3188		KASSERT(vp->v_object != NULL,
3189			("biodone: vnode %p has no vm_object", vp));
3190#endif
3191
3192		foff = bp->b_offset;
3193		KASSERT(bp->b_offset != NOOFFSET,
3194		    ("biodone: no buffer offset"));
3195
3196		VM_OBJECT_LOCK(obj);
3197#if defined(VFS_BIO_DEBUG)
3198		if (obj->paging_in_progress < bp->b_npages) {
3199			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3200			    obj->paging_in_progress, bp->b_npages);
3201		}
3202#endif
3203
3204		/*
3205		 * Set B_CACHE if the op was a normal read and no error
3206		 * occured.  B_CACHE is set for writes in the b*write()
3207		 * routines.
3208		 */
3209		iosize = bp->b_bcount - bp->b_resid;
3210		if (bp->b_iocmd == BIO_READ &&
3211		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3212		    !(bp->b_ioflags & BIO_ERROR)) {
3213			bp->b_flags |= B_CACHE;
3214		}
3215		if (bp->b_iocmd == BIO_READ) {
3216			vm_page_lock_queues();
3217			are_queues_locked = TRUE;
3218		} else
3219			are_queues_locked = FALSE;
3220		for (i = 0; i < bp->b_npages; i++) {
3221			int bogusflag = 0;
3222			int resid;
3223
3224			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3225			if (resid > iosize)
3226				resid = iosize;
3227
3228			/*
3229			 * cleanup bogus pages, restoring the originals
3230			 */
3231			m = bp->b_pages[i];
3232			if (m == bogus_page) {
3233				bogusflag = 1;
3234				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3235				if (m == NULL)
3236					panic("biodone: page disappeared!");
3237				bp->b_pages[i] = m;
3238				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3239				    bp->b_pages, bp->b_npages);
3240			}
3241#if defined(VFS_BIO_DEBUG)
3242			if (OFF_TO_IDX(foff) != m->pindex) {
3243				printf(
3244"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3245				    (intmax_t)foff, (uintmax_t)m->pindex);
3246			}
3247#endif
3248
3249			/*
3250			 * In the write case, the valid and clean bits are
3251			 * already changed correctly ( see bdwrite() ), so we
3252			 * only need to do this here in the read case.
3253			 */
3254			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3255				vfs_page_set_valid(bp, foff, m);
3256			}
3257
3258			/*
3259			 * when debugging new filesystems or buffer I/O methods, this
3260			 * is the most common error that pops up.  if you see this, you
3261			 * have not set the page busy flag correctly!!!
3262			 */
3263			if (m->busy == 0) {
3264				printf("biodone: page busy < 0, "
3265				    "pindex: %d, foff: 0x(%x,%x), "
3266				    "resid: %d, index: %d\n",
3267				    (int) m->pindex, (int)(foff >> 32),
3268						(int) foff & 0xffffffff, resid, i);
3269				if (!vn_isdisk(vp, NULL))
3270					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3271					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3272					    (intmax_t) bp->b_lblkno,
3273					    bp->b_flags, bp->b_npages);
3274				else
3275					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3276					    (intmax_t) bp->b_lblkno,
3277					    bp->b_flags, bp->b_npages);
3278				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3279				    (u_long)m->valid, (u_long)m->dirty,
3280				    m->wire_count);
3281				panic("biodone: page busy < 0\n");
3282			}
3283			vm_page_io_finish(m);
3284			vm_object_pip_subtract(obj, 1);
3285			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3286			iosize -= resid;
3287		}
3288		if (are_queues_locked)
3289			vm_page_unlock_queues();
3290		vm_object_pip_wakeupn(obj, 0);
3291		VM_OBJECT_UNLOCK(obj);
3292	}
3293
3294	/*
3295	 * For asynchronous completions, release the buffer now. The brelse
3296	 * will do a wakeup there if necessary - so no need to do a wakeup
3297	 * here in the async case. The sync case always needs to do a wakeup.
3298	 */
3299
3300	if (bp->b_flags & B_ASYNC) {
3301		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3302			brelse(bp);
3303		else
3304			bqrelse(bp);
3305	} else
3306		bdone(bp);
3307}
3308
3309/*
3310 * This routine is called in lieu of iodone in the case of
3311 * incomplete I/O.  This keeps the busy status for pages
3312 * consistant.
3313 */
3314void
3315vfs_unbusy_pages(struct buf *bp)
3316{
3317	int i;
3318	vm_object_t obj;
3319	vm_page_t m;
3320
3321	runningbufwakeup(bp);
3322	if (!(bp->b_flags & B_VMIO))
3323		return;
3324
3325	obj = bp->b_bufobj->bo_object;
3326	VM_OBJECT_LOCK(obj);
3327	for (i = 0; i < bp->b_npages; i++) {
3328		m = bp->b_pages[i];
3329		if (m == bogus_page) {
3330			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3331			if (!m)
3332				panic("vfs_unbusy_pages: page missing\n");
3333			bp->b_pages[i] = m;
3334			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3335			    bp->b_pages, bp->b_npages);
3336		}
3337		vm_object_pip_subtract(obj, 1);
3338		vm_page_io_finish(m);
3339	}
3340	vm_object_pip_wakeupn(obj, 0);
3341	VM_OBJECT_UNLOCK(obj);
3342}
3343
3344/*
3345 * vfs_page_set_valid:
3346 *
3347 *	Set the valid bits in a page based on the supplied offset.   The
3348 *	range is restricted to the buffer's size.
3349 *
3350 *	This routine is typically called after a read completes.
3351 */
3352static void
3353vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3354{
3355	vm_ooffset_t soff, eoff;
3356
3357	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3358	/*
3359	 * Start and end offsets in buffer.  eoff - soff may not cross a
3360	 * page boundry or cross the end of the buffer.  The end of the
3361	 * buffer, in this case, is our file EOF, not the allocation size
3362	 * of the buffer.
3363	 */
3364	soff = off;
3365	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3366	if (eoff > bp->b_offset + bp->b_bcount)
3367		eoff = bp->b_offset + bp->b_bcount;
3368
3369	/*
3370	 * Set valid range.  This is typically the entire buffer and thus the
3371	 * entire page.
3372	 */
3373	if (eoff > soff) {
3374		vm_page_set_validclean(
3375		    m,
3376		   (vm_offset_t) (soff & PAGE_MASK),
3377		   (vm_offset_t) (eoff - soff)
3378		);
3379	}
3380}
3381
3382/*
3383 * This routine is called before a device strategy routine.
3384 * It is used to tell the VM system that paging I/O is in
3385 * progress, and treat the pages associated with the buffer
3386 * almost as being VPO_BUSY.  Also the object paging_in_progress
3387 * flag is handled to make sure that the object doesn't become
3388 * inconsistant.
3389 *
3390 * Since I/O has not been initiated yet, certain buffer flags
3391 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3392 * and should be ignored.
3393 */
3394void
3395vfs_busy_pages(struct buf *bp, int clear_modify)
3396{
3397	int i, bogus;
3398	vm_object_t obj;
3399	vm_ooffset_t foff;
3400	vm_page_t m;
3401
3402	if (!(bp->b_flags & B_VMIO))
3403		return;
3404
3405	obj = bp->b_bufobj->bo_object;
3406	foff = bp->b_offset;
3407	KASSERT(bp->b_offset != NOOFFSET,
3408	    ("vfs_busy_pages: no buffer offset"));
3409	VM_OBJECT_LOCK(obj);
3410	if (bp->b_bufsize != 0)
3411		vfs_setdirty_locked_object(bp);
3412retry:
3413	for (i = 0; i < bp->b_npages; i++) {
3414		m = bp->b_pages[i];
3415
3416		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3417			goto retry;
3418	}
3419	bogus = 0;
3420	vm_page_lock_queues();
3421	for (i = 0; i < bp->b_npages; i++) {
3422		m = bp->b_pages[i];
3423
3424		if ((bp->b_flags & B_CLUSTER) == 0) {
3425			vm_object_pip_add(obj, 1);
3426			vm_page_io_start(m);
3427		}
3428		/*
3429		 * When readying a buffer for a read ( i.e
3430		 * clear_modify == 0 ), it is important to do
3431		 * bogus_page replacement for valid pages in
3432		 * partially instantiated buffers.  Partially
3433		 * instantiated buffers can, in turn, occur when
3434		 * reconstituting a buffer from its VM backing store
3435		 * base.  We only have to do this if B_CACHE is
3436		 * clear ( which causes the I/O to occur in the
3437		 * first place ).  The replacement prevents the read
3438		 * I/O from overwriting potentially dirty VM-backed
3439		 * pages.  XXX bogus page replacement is, uh, bogus.
3440		 * It may not work properly with small-block devices.
3441		 * We need to find a better way.
3442		 */
3443		pmap_remove_all(m);
3444		if (clear_modify)
3445			vfs_page_set_valid(bp, foff, m);
3446		else if (m->valid == VM_PAGE_BITS_ALL &&
3447		    (bp->b_flags & B_CACHE) == 0) {
3448			bp->b_pages[i] = bogus_page;
3449			bogus++;
3450		}
3451		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3452	}
3453	vm_page_unlock_queues();
3454	VM_OBJECT_UNLOCK(obj);
3455	if (bogus)
3456		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3457		    bp->b_pages, bp->b_npages);
3458}
3459
3460/*
3461 * Tell the VM system that the pages associated with this buffer
3462 * are clean.  This is used for delayed writes where the data is
3463 * going to go to disk eventually without additional VM intevention.
3464 *
3465 * Note that while we only really need to clean through to b_bcount, we
3466 * just go ahead and clean through to b_bufsize.
3467 */
3468static void
3469vfs_clean_pages(struct buf *bp)
3470{
3471	int i;
3472	vm_ooffset_t foff, noff, eoff;
3473	vm_page_t m;
3474
3475	if (!(bp->b_flags & B_VMIO))
3476		return;
3477
3478	foff = bp->b_offset;
3479	KASSERT(bp->b_offset != NOOFFSET,
3480	    ("vfs_clean_pages: no buffer offset"));
3481	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3482	vm_page_lock_queues();
3483	for (i = 0; i < bp->b_npages; i++) {
3484		m = bp->b_pages[i];
3485		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3486		eoff = noff;
3487
3488		if (eoff > bp->b_offset + bp->b_bufsize)
3489			eoff = bp->b_offset + bp->b_bufsize;
3490		vfs_page_set_valid(bp, foff, m);
3491		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3492		foff = noff;
3493	}
3494	vm_page_unlock_queues();
3495	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3496}
3497
3498/*
3499 *	vfs_bio_set_validclean:
3500 *
3501 *	Set the range within the buffer to valid and clean.  The range is
3502 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3503 *	itself may be offset from the beginning of the first page.
3504 *
3505 */
3506
3507void
3508vfs_bio_set_validclean(struct buf *bp, int base, int size)
3509{
3510	int i, n;
3511	vm_page_t m;
3512
3513	if (!(bp->b_flags & B_VMIO))
3514		return;
3515	/*
3516	 * Fixup base to be relative to beginning of first page.
3517	 * Set initial n to be the maximum number of bytes in the
3518	 * first page that can be validated.
3519	 */
3520
3521	base += (bp->b_offset & PAGE_MASK);
3522	n = PAGE_SIZE - (base & PAGE_MASK);
3523
3524	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3525	vm_page_lock_queues();
3526	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3527		m = bp->b_pages[i];
3528		if (n > size)
3529			n = size;
3530		vm_page_set_validclean(m, base & PAGE_MASK, n);
3531		base += n;
3532		size -= n;
3533		n = PAGE_SIZE;
3534	}
3535	vm_page_unlock_queues();
3536	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3537}
3538
3539/*
3540 *	vfs_bio_clrbuf:
3541 *
3542 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3543 *	to clear BIO_ERROR and B_INVAL.
3544 *
3545 *	Note that while we only theoretically need to clear through b_bcount,
3546 *	we go ahead and clear through b_bufsize.
3547 */
3548
3549void
3550vfs_bio_clrbuf(struct buf *bp)
3551{
3552	int i, j, mask = 0;
3553	caddr_t sa, ea;
3554
3555	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3556		clrbuf(bp);
3557		return;
3558	}
3559
3560	bp->b_flags &= ~B_INVAL;
3561	bp->b_ioflags &= ~BIO_ERROR;
3562	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3563	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3564	    (bp->b_offset & PAGE_MASK) == 0) {
3565		if (bp->b_pages[0] == bogus_page)
3566			goto unlock;
3567		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3568		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3569		if ((bp->b_pages[0]->valid & mask) == mask)
3570			goto unlock;
3571		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3572		    ((bp->b_pages[0]->valid & mask) == 0)) {
3573			bzero(bp->b_data, bp->b_bufsize);
3574			bp->b_pages[0]->valid |= mask;
3575			goto unlock;
3576		}
3577	}
3578	ea = sa = bp->b_data;
3579	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3580		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3581		ea = (caddr_t)(vm_offset_t)ulmin(
3582		    (u_long)(vm_offset_t)ea,
3583		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3584		if (bp->b_pages[i] == bogus_page)
3585			continue;
3586		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3587		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3588		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3589		if ((bp->b_pages[i]->valid & mask) == mask)
3590			continue;
3591		if ((bp->b_pages[i]->valid & mask) == 0) {
3592			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3593				bzero(sa, ea - sa);
3594		} else {
3595			for (; sa < ea; sa += DEV_BSIZE, j++) {
3596				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3597				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3598					bzero(sa, DEV_BSIZE);
3599			}
3600		}
3601		bp->b_pages[i]->valid |= mask;
3602	}
3603unlock:
3604	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3605	bp->b_resid = 0;
3606}
3607
3608/*
3609 * vm_hold_load_pages and vm_hold_free_pages get pages into
3610 * a buffers address space.  The pages are anonymous and are
3611 * not associated with a file object.
3612 */
3613static void
3614vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3615{
3616	vm_offset_t pg;
3617	vm_page_t p;
3618	int index;
3619
3620	to = round_page(to);
3621	from = round_page(from);
3622	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3623
3624	VM_OBJECT_LOCK(kernel_object);
3625	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3626tryagain:
3627		/*
3628		 * note: must allocate system pages since blocking here
3629		 * could intefere with paging I/O, no matter which
3630		 * process we are.
3631		 */
3632		p = vm_page_alloc(kernel_object,
3633			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3634		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3635		if (!p) {
3636			atomic_add_int(&vm_pageout_deficit,
3637			    (to - pg) >> PAGE_SHIFT);
3638			VM_OBJECT_UNLOCK(kernel_object);
3639			VM_WAIT;
3640			VM_OBJECT_LOCK(kernel_object);
3641			goto tryagain;
3642		}
3643		p->valid = VM_PAGE_BITS_ALL;
3644		pmap_qenter(pg, &p, 1);
3645		bp->b_pages[index] = p;
3646	}
3647	VM_OBJECT_UNLOCK(kernel_object);
3648	bp->b_npages = index;
3649}
3650
3651/* Return pages associated with this buf to the vm system */
3652static void
3653vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3654{
3655	vm_offset_t pg;
3656	vm_page_t p;
3657	int index, newnpages;
3658
3659	from = round_page(from);
3660	to = round_page(to);
3661	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3662
3663	VM_OBJECT_LOCK(kernel_object);
3664	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3665		p = bp->b_pages[index];
3666		if (p && (index < bp->b_npages)) {
3667			if (p->busy) {
3668				printf(
3669			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3670				    (intmax_t)bp->b_blkno,
3671				    (intmax_t)bp->b_lblkno);
3672			}
3673			bp->b_pages[index] = NULL;
3674			pmap_qremove(pg, 1);
3675			vm_page_lock_queues();
3676			vm_page_unwire(p, 0);
3677			vm_page_free(p);
3678			vm_page_unlock_queues();
3679		}
3680	}
3681	VM_OBJECT_UNLOCK(kernel_object);
3682	bp->b_npages = newnpages;
3683}
3684
3685/*
3686 * Map an IO request into kernel virtual address space.
3687 *
3688 * All requests are (re)mapped into kernel VA space.
3689 * Notice that we use b_bufsize for the size of the buffer
3690 * to be mapped.  b_bcount might be modified by the driver.
3691 *
3692 * Note that even if the caller determines that the address space should
3693 * be valid, a race or a smaller-file mapped into a larger space may
3694 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3695 * check the return value.
3696 */
3697int
3698vmapbuf(struct buf *bp)
3699{
3700	caddr_t addr, kva;
3701	vm_prot_t prot;
3702	int pidx, i;
3703	struct vm_page *m;
3704	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3705
3706	if (bp->b_bufsize < 0)
3707		return (-1);
3708	prot = VM_PROT_READ;
3709	if (bp->b_iocmd == BIO_READ)
3710		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3711	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3712	     addr < bp->b_data + bp->b_bufsize;
3713	     addr += PAGE_SIZE, pidx++) {
3714		/*
3715		 * Do the vm_fault if needed; do the copy-on-write thing
3716		 * when reading stuff off device into memory.
3717		 *
3718		 * NOTE! Must use pmap_extract() because addr may be in
3719		 * the userland address space, and kextract is only guarenteed
3720		 * to work for the kernland address space (see: sparc64 port).
3721		 */
3722retry:
3723		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3724		    prot) < 0) {
3725			vm_page_lock_queues();
3726			for (i = 0; i < pidx; ++i) {
3727				vm_page_unhold(bp->b_pages[i]);
3728				bp->b_pages[i] = NULL;
3729			}
3730			vm_page_unlock_queues();
3731			return(-1);
3732		}
3733		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3734		if (m == NULL)
3735			goto retry;
3736		bp->b_pages[pidx] = m;
3737	}
3738	if (pidx > btoc(MAXPHYS))
3739		panic("vmapbuf: mapped more than MAXPHYS");
3740	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3741
3742	kva = bp->b_saveaddr;
3743	bp->b_npages = pidx;
3744	bp->b_saveaddr = bp->b_data;
3745	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3746	return(0);
3747}
3748
3749/*
3750 * Free the io map PTEs associated with this IO operation.
3751 * We also invalidate the TLB entries and restore the original b_addr.
3752 */
3753void
3754vunmapbuf(struct buf *bp)
3755{
3756	int pidx;
3757	int npages;
3758
3759	npages = bp->b_npages;
3760	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3761	vm_page_lock_queues();
3762	for (pidx = 0; pidx < npages; pidx++)
3763		vm_page_unhold(bp->b_pages[pidx]);
3764	vm_page_unlock_queues();
3765
3766	bp->b_data = bp->b_saveaddr;
3767}
3768
3769void
3770bdone(struct buf *bp)
3771{
3772	struct mtx *mtxp;
3773
3774	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3775	mtx_lock(mtxp);
3776	bp->b_flags |= B_DONE;
3777	wakeup(bp);
3778	mtx_unlock(mtxp);
3779}
3780
3781void
3782bwait(struct buf *bp, u_char pri, const char *wchan)
3783{
3784	struct mtx *mtxp;
3785
3786	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3787	mtx_lock(mtxp);
3788	while ((bp->b_flags & B_DONE) == 0)
3789		msleep(bp, mtxp, pri, wchan, 0);
3790	mtx_unlock(mtxp);
3791}
3792
3793int
3794bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3795{
3796
3797	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3798}
3799
3800void
3801bufstrategy(struct bufobj *bo, struct buf *bp)
3802{
3803	int i = 0;
3804	struct vnode *vp;
3805
3806	vp = bp->b_vp;
3807	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3808	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3809	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3810	i = VOP_STRATEGY(vp, bp);
3811	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3812}
3813
3814void
3815bufobj_wrefl(struct bufobj *bo)
3816{
3817
3818	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3819	ASSERT_BO_LOCKED(bo);
3820	bo->bo_numoutput++;
3821}
3822
3823void
3824bufobj_wref(struct bufobj *bo)
3825{
3826
3827	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3828	BO_LOCK(bo);
3829	bo->bo_numoutput++;
3830	BO_UNLOCK(bo);
3831}
3832
3833void
3834bufobj_wdrop(struct bufobj *bo)
3835{
3836
3837	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3838	BO_LOCK(bo);
3839	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3840	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3841		bo->bo_flag &= ~BO_WWAIT;
3842		wakeup(&bo->bo_numoutput);
3843	}
3844	BO_UNLOCK(bo);
3845}
3846
3847int
3848bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3849{
3850	int error;
3851
3852	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3853	ASSERT_BO_LOCKED(bo);
3854	error = 0;
3855	while (bo->bo_numoutput) {
3856		bo->bo_flag |= BO_WWAIT;
3857		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3858		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3859		if (error)
3860			break;
3861	}
3862	return (error);
3863}
3864
3865void
3866bpin(struct buf *bp)
3867{
3868	struct mtx *mtxp;
3869
3870	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3871	mtx_lock(mtxp);
3872	bp->b_pin_count++;
3873	mtx_unlock(mtxp);
3874}
3875
3876void
3877bunpin(struct buf *bp)
3878{
3879	struct mtx *mtxp;
3880
3881	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3882	mtx_lock(mtxp);
3883	if (--bp->b_pin_count == 0)
3884		wakeup(bp);
3885	mtx_unlock(mtxp);
3886}
3887
3888void
3889bunpin_wait(struct buf *bp)
3890{
3891	struct mtx *mtxp;
3892
3893	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3894	mtx_lock(mtxp);
3895	while (bp->b_pin_count > 0)
3896		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
3897	mtx_unlock(mtxp);
3898}
3899
3900#include "opt_ddb.h"
3901#ifdef DDB
3902#include <ddb/ddb.h>
3903
3904/* DDB command to show buffer data */
3905DB_SHOW_COMMAND(buffer, db_show_buffer)
3906{
3907	/* get args */
3908	struct buf *bp = (struct buf *)addr;
3909
3910	if (!have_addr) {
3911		db_printf("usage: show buffer <addr>\n");
3912		return;
3913	}
3914
3915	db_printf("buf at %p\n", bp);
3916	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3917	db_printf(
3918	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3919	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3920	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3921	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3922	if (bp->b_npages) {
3923		int i;
3924		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3925		for (i = 0; i < bp->b_npages; i++) {
3926			vm_page_t m;
3927			m = bp->b_pages[i];
3928			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3929			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3930			if ((i + 1) < bp->b_npages)
3931				db_printf(",");
3932		}
3933		db_printf("\n");
3934	}
3935	lockmgr_printinfo(&bp->b_lock);
3936}
3937
3938DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3939{
3940	struct buf *bp;
3941	int i;
3942
3943	for (i = 0; i < nbuf; i++) {
3944		bp = &buf[i];
3945		if (BUF_ISLOCKED(bp)) {
3946			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3947			db_printf("\n");
3948		}
3949	}
3950}
3951#endif /* DDB */
3952