vfs_bio.c revision 17761
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.95 1996/08/04 20:13:08 phk Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#include "opt_bounce.h"
36
37#define VMIO
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/vmmeter.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_prot.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_pageout.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_extern.h>
54#include <sys/buf.h>
55#include <sys/mount.h>
56#include <sys/malloc.h>
57#include <sys/resourcevar.h>
58#include <sys/proc.h>
59
60#include <miscfs/specfs/specdev.h>
61
62static void vfs_update __P((void));
63static struct	proc *updateproc;
64static struct kproc_desc up_kp = {
65	"update",
66	vfs_update,
67	&updateproc
68};
69SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
70
71struct buf *buf;		/* buffer header pool */
72struct swqueue bswlist;
73
74int count_lock_queue __P((void));
75static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
78		vm_offset_t to);
79static void vfs_clean_pages(struct buf * bp);
80static void vfs_setdirty(struct buf *bp);
81static void vfs_vmio_release(struct buf *bp);
82
83int needsbuffer;
84
85/*
86 * Internal update daemon, process 3
87 *	The variable vfs_update_wakeup allows for internal syncs.
88 */
89int vfs_update_wakeup;
90
91
92/*
93 * buffers base kva
94 */
95caddr_t buffers_kva;
96
97/*
98 * bogus page -- for I/O to/from partially complete buffers
99 * this is a temporary solution to the problem, but it is not
100 * really that bad.  it would be better to split the buffer
101 * for input in the case of buffers partially already in memory,
102 * but the code is intricate enough already.
103 */
104vm_page_t bogus_page;
105static vm_offset_t bogus_offset;
106
107static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
108	bufmallocspace, maxbufmallocspace;
109
110static struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
111static struct bqueues bufqueues[BUFFER_QUEUES];
112
113extern int vm_swap_size;
114
115#define BUF_MAXUSE 8
116/*
117#define NO_B_MALLOC
118*/
119
120/*
121 * Initialize buffer headers and related structures.
122 */
123void
124bufinit()
125{
126	struct buf *bp;
127	int i;
128
129	TAILQ_INIT(&bswlist);
130	LIST_INIT(&invalhash);
131
132	/* first, make a null hash table */
133	for (i = 0; i < BUFHSZ; i++)
134		LIST_INIT(&bufhashtbl[i]);
135
136	/* next, make a null set of free lists */
137	for (i = 0; i < BUFFER_QUEUES; i++)
138		TAILQ_INIT(&bufqueues[i]);
139
140	buffers_kva = (caddr_t) kmem_alloc_pageable(buffer_map, MAXBSIZE * nbuf);
141	/* finally, initialize each buffer header and stick on empty q */
142	for (i = 0; i < nbuf; i++) {
143		bp = &buf[i];
144		bzero(bp, sizeof *bp);
145		bp->b_flags = B_INVAL;	/* we're just an empty header */
146		bp->b_dev = NODEV;
147		bp->b_rcred = NOCRED;
148		bp->b_wcred = NOCRED;
149		bp->b_qindex = QUEUE_EMPTY;
150		bp->b_vnbufs.le_next = NOLIST;
151		bp->b_data = buffers_kva + i * MAXBSIZE;
152		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
153		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
154	}
155/*
156 * maxbufspace is currently calculated to support all filesystem blocks
157 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
158 * cache is still the same as it would be for 8K filesystems.  This
159 * keeps the size of the buffer cache "in check" for big block filesystems.
160 */
161	maxbufspace = 2 * (nbuf + 8) * PAGE_SIZE;
162/*
163 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
164 */
165	maxvmiobufspace = 2 * maxbufspace / 3;
166/*
167 * Limit the amount of malloc memory since it is wired permanently into
168 * the kernel space.  Even though this is accounted for in the buffer
169 * allocation, we don't want the malloced region to grow uncontrolled.
170 * The malloc scheme improves memory utilization significantly on average
171 * (small) directories.
172 */
173	maxbufmallocspace = maxbufspace / 20;
174
175	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
176	bogus_page = vm_page_alloc(kernel_object,
177			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
178			VM_ALLOC_NORMAL);
179
180}
181
182/*
183 * remove the buffer from the appropriate free list
184 */
185void
186bremfree(struct buf * bp)
187{
188	int s = splbio();
189
190	if (bp->b_qindex != QUEUE_NONE) {
191		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
192		bp->b_qindex = QUEUE_NONE;
193	} else {
194		panic("bremfree: removing a buffer when not on a queue");
195	}
196	splx(s);
197}
198
199/*
200 * Get a buffer with the specified data.  Look in the cache first.
201 */
202int
203bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
204    struct buf ** bpp)
205{
206	struct buf *bp;
207
208	bp = getblk(vp, blkno, size, 0, 0);
209	*bpp = bp;
210
211	/* if not found in cache, do some I/O */
212	if ((bp->b_flags & B_CACHE) == 0) {
213		if (curproc != NULL)
214			curproc->p_stats->p_ru.ru_inblock++;
215		bp->b_flags |= B_READ;
216		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
217		if (bp->b_rcred == NOCRED) {
218			if (cred != NOCRED)
219				crhold(cred);
220			bp->b_rcred = cred;
221		}
222		vfs_busy_pages(bp, 0);
223		VOP_STRATEGY(bp);
224		return (biowait(bp));
225	}
226	return (0);
227}
228
229/*
230 * Operates like bread, but also starts asynchronous I/O on
231 * read-ahead blocks.
232 */
233int
234breadn(struct vnode * vp, daddr_t blkno, int size,
235    daddr_t * rablkno, int *rabsize,
236    int cnt, struct ucred * cred, struct buf ** bpp)
237{
238	struct buf *bp, *rabp;
239	int i;
240	int rv = 0, readwait = 0;
241
242	*bpp = bp = getblk(vp, blkno, size, 0, 0);
243
244	/* if not found in cache, do some I/O */
245	if ((bp->b_flags & B_CACHE) == 0) {
246		if (curproc != NULL)
247			curproc->p_stats->p_ru.ru_inblock++;
248		bp->b_flags |= B_READ;
249		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
250		if (bp->b_rcred == NOCRED) {
251			if (cred != NOCRED)
252				crhold(cred);
253			bp->b_rcred = cred;
254		}
255		vfs_busy_pages(bp, 0);
256		VOP_STRATEGY(bp);
257		++readwait;
258	}
259	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
260		if (inmem(vp, *rablkno))
261			continue;
262		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
263
264		if ((rabp->b_flags & B_CACHE) == 0) {
265			if (curproc != NULL)
266				curproc->p_stats->p_ru.ru_inblock++;
267			rabp->b_flags |= B_READ | B_ASYNC;
268			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
269			if (rabp->b_rcred == NOCRED) {
270				if (cred != NOCRED)
271					crhold(cred);
272				rabp->b_rcred = cred;
273			}
274			vfs_busy_pages(rabp, 0);
275			VOP_STRATEGY(rabp);
276		} else {
277			brelse(rabp);
278		}
279	}
280
281	if (readwait) {
282		rv = biowait(bp);
283	}
284	return (rv);
285}
286
287/*
288 * Write, release buffer on completion.  (Done by iodone
289 * if async.)
290 */
291int
292bwrite(struct buf * bp)
293{
294	int oldflags = bp->b_flags;
295
296	if (bp->b_flags & B_INVAL) {
297		brelse(bp);
298		return (0);
299	}
300	if (!(bp->b_flags & B_BUSY))
301		panic("bwrite: buffer is not busy???");
302
303	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
304	bp->b_flags |= B_WRITEINPROG;
305
306	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
307		reassignbuf(bp, bp->b_vp);
308	}
309
310	bp->b_vp->v_numoutput++;
311	vfs_busy_pages(bp, 1);
312	if (curproc != NULL)
313		curproc->p_stats->p_ru.ru_oublock++;
314	VOP_STRATEGY(bp);
315
316	if ((oldflags & B_ASYNC) == 0) {
317		int rtval = biowait(bp);
318
319		if (oldflags & B_DELWRI) {
320			reassignbuf(bp, bp->b_vp);
321		}
322		brelse(bp);
323		return (rtval);
324	}
325	return (0);
326}
327
328int
329vn_bwrite(ap)
330	struct vop_bwrite_args *ap;
331{
332	return (bwrite(ap->a_bp));
333}
334
335/*
336 * Delayed write. (Buffer is marked dirty).
337 */
338void
339bdwrite(struct buf * bp)
340{
341
342	if ((bp->b_flags & B_BUSY) == 0) {
343		panic("bdwrite: buffer is not busy");
344	}
345	if (bp->b_flags & B_INVAL) {
346		brelse(bp);
347		return;
348	}
349	if (bp->b_flags & B_TAPE) {
350		bawrite(bp);
351		return;
352	}
353	bp->b_flags &= ~(B_READ|B_RELBUF);
354	if ((bp->b_flags & B_DELWRI) == 0) {
355		bp->b_flags |= B_DONE | B_DELWRI;
356		reassignbuf(bp, bp->b_vp);
357	}
358
359	/*
360	 * This bmap keeps the system from needing to do the bmap later,
361	 * perhaps when the system is attempting to do a sync.  Since it
362	 * is likely that the indirect block -- or whatever other datastructure
363	 * that the filesystem needs is still in memory now, it is a good
364	 * thing to do this.  Note also, that if the pageout daemon is
365	 * requesting a sync -- there might not be enough memory to do
366	 * the bmap then...  So, this is important to do.
367	 */
368	if( bp->b_lblkno == bp->b_blkno) {
369		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
370	}
371
372	/*
373	 * Set the *dirty* buffer range based upon the VM system dirty pages.
374	 */
375	vfs_setdirty(bp);
376
377	/*
378	 * We need to do this here to satisfy the vnode_pager and the
379	 * pageout daemon, so that it thinks that the pages have been
380	 * "cleaned".  Note that since the pages are in a delayed write
381	 * buffer -- the VFS layer "will" see that the pages get written
382	 * out on the next sync, or perhaps the cluster will be completed.
383	 */
384	vfs_clean_pages(bp);
385	bqrelse(bp);
386	return;
387}
388
389/*
390 * Asynchronous write.
391 * Start output on a buffer, but do not wait for it to complete.
392 * The buffer is released when the output completes.
393 */
394void
395bawrite(struct buf * bp)
396{
397	bp->b_flags |= B_ASYNC;
398	(void) VOP_BWRITE(bp);
399}
400
401/*
402 * Release a buffer.
403 */
404void
405brelse(struct buf * bp)
406{
407	int s;
408
409	if (bp->b_flags & B_CLUSTER) {
410		relpbuf(bp);
411		return;
412	}
413	/* anyone need a "free" block? */
414	s = splbio();
415
416	/* anyone need this block? */
417	if (bp->b_flags & B_WANTED) {
418		bp->b_flags &= ~(B_WANTED | B_AGE);
419		wakeup(bp);
420	}
421
422	if (bp->b_flags & B_LOCKED)
423		bp->b_flags &= ~B_ERROR;
424
425	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
426	    (bp->b_bufsize <= 0)) {
427		bp->b_flags |= B_INVAL;
428		bp->b_flags &= ~(B_DELWRI | B_CACHE);
429		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
430			if (bp->b_bufsize)
431				allocbuf(bp, 0);
432			brelvp(bp);
433		}
434	}
435
436	/*
437	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
438	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
439	 * but the VM object is kept around.  The B_NOCACHE flag is used to
440	 * invalidate the pages in the VM object.
441	 */
442	if (bp->b_flags & B_VMIO) {
443		vm_ooffset_t foff;
444		vm_object_t obj;
445		int i, resid;
446		vm_page_t m;
447		struct vnode *vp;
448		int iototal = bp->b_bufsize;
449
450		vp = bp->b_vp;
451		if (!vp)
452			panic("brelse: missing vp");
453
454		if (bp->b_npages) {
455			vm_pindex_t poff;
456			obj = (vm_object_t) vp->v_object;
457			if (vp->v_type == VBLK)
458				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
459			else
460				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
461			poff = OFF_TO_IDX(foff);
462			for (i = 0; i < bp->b_npages; i++) {
463				m = bp->b_pages[i];
464				if (m == bogus_page) {
465					m = vm_page_lookup(obj, poff + i);
466					if (!m) {
467						panic("brelse: page missing\n");
468					}
469					bp->b_pages[i] = m;
470					pmap_qenter(trunc_page(bp->b_data),
471						bp->b_pages, bp->b_npages);
472				}
473				resid = IDX_TO_OFF(m->pindex+1) - foff;
474				if (resid > iototal)
475					resid = iototal;
476				if (resid > 0) {
477					/*
478					 * Don't invalidate the page if the local machine has already
479					 * modified it.  This is the lesser of two evils, and should
480					 * be fixed.
481					 */
482					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
483						vm_page_test_dirty(m);
484						if (m->dirty == 0) {
485							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
486							if (m->valid == 0)
487								vm_page_protect(m, VM_PROT_NONE);
488						}
489					}
490					if (resid >= PAGE_SIZE) {
491						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
492							bp->b_flags |= B_INVAL;
493						}
494					} else {
495						if (!vm_page_is_valid(m,
496							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
497							bp->b_flags |= B_INVAL;
498						}
499					}
500				}
501				foff += resid;
502				iototal -= resid;
503			}
504		}
505		if (bp->b_flags & (B_INVAL | B_RELBUF))
506			vfs_vmio_release(bp);
507	}
508	if (bp->b_qindex != QUEUE_NONE)
509		panic("brelse: free buffer onto another queue???");
510
511	/* enqueue */
512	/* buffers with no memory */
513	if (bp->b_bufsize == 0) {
514		bp->b_qindex = QUEUE_EMPTY;
515		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
516		LIST_REMOVE(bp, b_hash);
517		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
518		bp->b_dev = NODEV;
519		if (needsbuffer) {
520			wakeup(&needsbuffer);
521			needsbuffer=0;
522		}
523		/* buffers with junk contents */
524	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
525		bp->b_qindex = QUEUE_AGE;
526		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
527		LIST_REMOVE(bp, b_hash);
528		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
529		bp->b_dev = NODEV;
530		if (needsbuffer) {
531			wakeup(&needsbuffer);
532			needsbuffer=0;
533		}
534		/* buffers that are locked */
535	} else if (bp->b_flags & B_LOCKED) {
536		bp->b_qindex = QUEUE_LOCKED;
537		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
538		/* buffers with stale but valid contents */
539	} else if (bp->b_flags & B_AGE) {
540		bp->b_qindex = QUEUE_AGE;
541		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
542		if (needsbuffer) {
543			wakeup(&needsbuffer);
544			needsbuffer=0;
545		}
546		/* buffers with valid and quite potentially reuseable contents */
547	} else {
548		bp->b_qindex = QUEUE_LRU;
549		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
550		if (needsbuffer) {
551			wakeup(&needsbuffer);
552			needsbuffer=0;
553		}
554	}
555
556	/* unlock */
557	bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
558	splx(s);
559}
560
561/*
562 * Release a buffer.
563 */
564void
565bqrelse(struct buf * bp)
566{
567	int s;
568
569	s = splbio();
570
571
572	/* anyone need this block? */
573	if (bp->b_flags & B_WANTED) {
574		bp->b_flags &= ~(B_WANTED | B_AGE);
575		wakeup(bp);
576	}
577
578	if (bp->b_qindex != QUEUE_NONE)
579		panic("bqrelse: free buffer onto another queue???");
580
581	if (bp->b_flags & B_LOCKED) {
582		bp->b_flags &= ~B_ERROR;
583		bp->b_qindex = QUEUE_LOCKED;
584		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
585		/* buffers with stale but valid contents */
586	} else {
587		bp->b_qindex = QUEUE_LRU;
588		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
589		if (needsbuffer) {
590			wakeup(&needsbuffer);
591			needsbuffer=0;
592		}
593	}
594
595	/* unlock */
596	bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
597	splx(s);
598}
599
600static void
601vfs_vmio_release(bp)
602	struct buf *bp;
603{
604	int i;
605	vm_page_t m;
606
607	for (i = 0; i < bp->b_npages; i++) {
608		m = bp->b_pages[i];
609		bp->b_pages[i] = NULL;
610		if (m->flags & PG_WANTED) {
611			m->flags &= ~PG_WANTED;
612			wakeup(m);
613		}
614		vm_page_unwire(m);
615		if (m->wire_count == 0 && (m->flags & PG_BUSY) == 0) {
616			if (m->valid) {
617				if(m->dirty == 0)
618					vm_page_test_dirty(m);
619				/*
620				 * this keeps pressure off of the process memory
621				 */
622				if ((vm_swap_size == 0) ||
623					(cnt.v_free_count < cnt.v_free_min)) {
624					if ((m->dirty == 0) &&
625						(m->hold_count == 0) &&
626						(m->flags & PG_BUSY) == 0 &&
627						(m->busy == 0))
628						vm_page_cache(m);
629					else
630						vm_page_deactivate(m);
631				}
632			} else if ((m->hold_count == 0) &&
633				((m->flags & PG_BUSY) == 0) &&
634				(m->busy == 0)) {
635				vm_page_protect(m, VM_PROT_NONE);
636				vm_page_free(m);
637			}
638		}
639	}
640	bufspace -= bp->b_bufsize;
641	vmiospace -= bp->b_bufsize;
642	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
643	bp->b_npages = 0;
644	bp->b_bufsize = 0;
645	bp->b_flags &= ~B_VMIO;
646	if (bp->b_vp)
647		brelvp(bp);
648}
649
650/*
651 * Check to see if a block is currently memory resident.
652 */
653__inline struct buf *
654gbincore(struct vnode * vp, daddr_t blkno)
655{
656	struct buf *bp;
657	struct bufhashhdr *bh;
658
659	bh = BUFHASH(vp, blkno);
660	bp = bh->lh_first;
661
662	/* Search hash chain */
663	while (bp != NULL) {
664		/* hit */
665		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
666		    (bp->b_flags & B_INVAL) == 0) {
667			break;
668		}
669		bp = bp->b_hash.le_next;
670	}
671	return (bp);
672}
673
674/*
675 * this routine implements clustered async writes for
676 * clearing out B_DELWRI buffers...  This is much better
677 * than the old way of writing only one buffer at a time.
678 */
679int
680vfs_bio_awrite(struct buf * bp)
681{
682	int i;
683	daddr_t lblkno = bp->b_lblkno;
684	struct vnode *vp = bp->b_vp;
685	int s;
686	int ncl;
687	struct buf *bpa;
688	int nwritten;
689
690	s = splbio();
691	/*
692	 * right now we support clustered writing only to regular files
693	 */
694	if ((vp->v_type == VREG) &&
695	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
696	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
697		int size;
698		int maxcl;
699
700		size = vp->v_mount->mnt_stat.f_iosize;
701		maxcl = MAXPHYS / size;
702
703		for (i = 1; i < maxcl; i++) {
704			if ((bpa = gbincore(vp, lblkno + i)) &&
705			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
706			    (B_DELWRI | B_CLUSTEROK)) &&
707			    (bpa->b_bufsize == size)) {
708				if ((bpa->b_blkno == bpa->b_lblkno) ||
709				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
710					break;
711			} else {
712				break;
713			}
714		}
715		ncl = i;
716		/*
717		 * this is a possible cluster write
718		 */
719		if (ncl != 1) {
720			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
721			splx(s);
722			return nwritten;
723		}
724	}
725	bremfree(bp);
726	splx(s);
727	/*
728	 * default (old) behavior, writing out only one block
729	 */
730	bp->b_flags |= B_BUSY | B_ASYNC;
731	nwritten = bp->b_bufsize;
732	(void) VOP_BWRITE(bp);
733	return nwritten;
734}
735
736
737/*
738 * Find a buffer header which is available for use.
739 */
740static struct buf *
741getnewbuf(int slpflag, int slptimeo, int doingvmio)
742{
743	struct buf *bp;
744	int nbyteswritten = 0;
745
746start:
747	if (bufspace >= maxbufspace)
748		goto trytofreespace;
749
750	/* can we constitute a new buffer? */
751	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
752		if (bp->b_qindex != QUEUE_EMPTY)
753			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
754			    bp->b_qindex);
755		bp->b_flags |= B_BUSY;
756		bremfree(bp);
757		goto fillbuf;
758	}
759trytofreespace:
760	/*
761	 * We keep the file I/O from hogging metadata I/O
762	 * This is desirable because file data is cached in the
763	 * VM/Buffer cache even if a buffer is freed.
764	 */
765	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
766		if (bp->b_qindex != QUEUE_AGE)
767			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
768			    bp->b_qindex);
769	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
770		if (bp->b_qindex != QUEUE_LRU)
771			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
772			    bp->b_qindex);
773	}
774	if (!bp) {
775		/* wait for a free buffer of any kind */
776		needsbuffer = 1;
777		tsleep(&needsbuffer,
778			(PRIBIO + 1) | slpflag, "newbuf", slptimeo);
779		return (0);
780	}
781
782	/*
783	 * We are fairly aggressive about freeing VMIO buffers, but since
784	 * the buffering is intact without buffer headers, there is not
785	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
786	 */
787	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
788		if ((bp->b_flags & B_VMIO) == 0 ||
789			(vmiospace < maxvmiobufspace)) {
790			--bp->b_usecount;
791			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
792			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
793				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
794				goto start;
795			}
796			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
797		}
798	}
799
800	/* if we are a delayed write, convert to an async write */
801	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
802		nbyteswritten += vfs_bio_awrite(bp);
803		if (!slpflag && !slptimeo) {
804			return (0);
805		}
806		goto start;
807	}
808
809	if (bp->b_flags & B_WANTED) {
810		bp->b_flags &= ~B_WANTED;
811		wakeup(bp);
812	}
813	bremfree(bp);
814	bp->b_flags |= B_BUSY;
815
816	if (bp->b_flags & B_VMIO)
817		vfs_vmio_release(bp);
818
819	if (bp->b_vp)
820		brelvp(bp);
821
822fillbuf:
823	/* we are not free, nor do we contain interesting data */
824	if (bp->b_rcred != NOCRED) {
825		crfree(bp->b_rcred);
826		bp->b_rcred = NOCRED;
827	}
828	if (bp->b_wcred != NOCRED) {
829		crfree(bp->b_wcred);
830		bp->b_wcred = NOCRED;
831	}
832
833	LIST_REMOVE(bp, b_hash);
834	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
835	if (bp->b_bufsize) {
836		allocbuf(bp, 0);
837	}
838	bp->b_flags = B_BUSY;
839	bp->b_dev = NODEV;
840	bp->b_vp = NULL;
841	bp->b_blkno = bp->b_lblkno = 0;
842	bp->b_iodone = 0;
843	bp->b_error = 0;
844	bp->b_resid = 0;
845	bp->b_bcount = 0;
846	bp->b_npages = 0;
847	bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
848	bp->b_dirtyoff = bp->b_dirtyend = 0;
849	bp->b_validoff = bp->b_validend = 0;
850	bp->b_usecount = 4;
851	if (bufspace >= maxbufspace + nbyteswritten) {
852		bp->b_flags |= B_INVAL;
853		brelse(bp);
854		goto trytofreespace;
855	}
856	return (bp);
857}
858
859/*
860 * Check to see if a block is currently memory resident.
861 */
862struct buf *
863incore(struct vnode * vp, daddr_t blkno)
864{
865	struct buf *bp;
866
867	int s = splbio();
868	bp = gbincore(vp, blkno);
869	splx(s);
870	return (bp);
871}
872
873/*
874 * Returns true if no I/O is needed to access the
875 * associated VM object.  This is like incore except
876 * it also hunts around in the VM system for the data.
877 */
878
879int
880inmem(struct vnode * vp, daddr_t blkno)
881{
882	vm_object_t obj;
883	vm_offset_t toff, tinc;
884	vm_page_t m;
885	vm_ooffset_t off;
886
887	if (incore(vp, blkno))
888		return 1;
889	if (vp->v_mount == NULL)
890		return 0;
891	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
892		return 0;
893
894	obj = vp->v_object;
895	tinc = PAGE_SIZE;
896	if (tinc > vp->v_mount->mnt_stat.f_iosize)
897		tinc = vp->v_mount->mnt_stat.f_iosize;
898	off = blkno * vp->v_mount->mnt_stat.f_iosize;
899
900	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
901
902		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
903		if (!m)
904			return 0;
905		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
906			return 0;
907	}
908	return 1;
909}
910
911/*
912 * now we set the dirty range for the buffer --
913 * for NFS -- if the file is mapped and pages have
914 * been written to, let it know.  We want the
915 * entire range of the buffer to be marked dirty if
916 * any of the pages have been written to for consistancy
917 * with the b_validoff, b_validend set in the nfs write
918 * code, and used by the nfs read code.
919 */
920static void
921vfs_setdirty(struct buf *bp) {
922	int i;
923	vm_object_t object;
924	vm_offset_t boffset, offset;
925	/*
926	 * We qualify the scan for modified pages on whether the
927	 * object has been flushed yet.  The OBJ_WRITEABLE flag
928	 * is not cleared simply by protecting pages off.
929	 */
930	if ((bp->b_flags & B_VMIO) &&
931		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
932		/*
933		 * test the pages to see if they have been modified directly
934		 * by users through the VM system.
935		 */
936		for (i = 0; i < bp->b_npages; i++)
937			vm_page_test_dirty(bp->b_pages[i]);
938
939		/*
940		 * scan forwards for the first page modified
941		 */
942		for (i = 0; i < bp->b_npages; i++) {
943			if (bp->b_pages[i]->dirty) {
944				break;
945			}
946		}
947		boffset = (i << PAGE_SHIFT);
948		if (boffset < bp->b_dirtyoff) {
949			bp->b_dirtyoff = boffset;
950		}
951
952		/*
953		 * scan backwards for the last page modified
954		 */
955		for (i = bp->b_npages - 1; i >= 0; --i) {
956			if (bp->b_pages[i]->dirty) {
957				break;
958			}
959		}
960		boffset = (i + 1);
961		offset = boffset + bp->b_pages[0]->pindex;
962		if (offset >= object->size)
963			boffset = object->size - bp->b_pages[0]->pindex;
964		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
965			bp->b_dirtyend = (boffset << PAGE_SHIFT);
966	}
967}
968
969/*
970 * Get a block given a specified block and offset into a file/device.
971 */
972struct buf *
973getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
974{
975	struct buf *bp;
976	int s;
977	struct bufhashhdr *bh;
978
979	s = splbio();
980loop:
981	if ((bp = gbincore(vp, blkno))) {
982		if (bp->b_flags & B_BUSY) {
983			bp->b_flags |= B_WANTED;
984			if (bp->b_usecount < BUF_MAXUSE)
985				++bp->b_usecount;
986			if (!tsleep(bp,
987				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
988				goto loop;
989
990			splx(s);
991			return (struct buf *) NULL;
992		}
993		bp->b_flags |= B_BUSY | B_CACHE;
994		bremfree(bp);
995
996		/*
997		 * check for size inconsistancies (note that they shouldn't happen
998		 * but do when filesystems don't handle the size changes correctly.)
999		 * We are conservative on metadata and don't just extend the buffer
1000		 * but write and re-constitute it.
1001		 */
1002
1003		if (bp->b_bcount != size) {
1004			if (bp->b_flags & B_VMIO) {
1005				allocbuf(bp, size);
1006			} else {
1007				bp->b_flags |= B_NOCACHE;
1008				VOP_BWRITE(bp);
1009				goto loop;
1010			}
1011		}
1012
1013		if (bp->b_usecount < BUF_MAXUSE)
1014			++bp->b_usecount;
1015		splx(s);
1016		return (bp);
1017	} else {
1018		vm_object_t obj;
1019		int doingvmio;
1020
1021		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1022			doingvmio = 1;
1023		} else {
1024			doingvmio = 0;
1025		}
1026		if ((bp = getnewbuf(slpflag, slptimeo, doingvmio)) == 0) {
1027			if (slpflag || slptimeo) {
1028				splx(s);
1029				return NULL;
1030			}
1031			goto loop;
1032		}
1033
1034		/*
1035		 * This code is used to make sure that a buffer is not
1036		 * created while the getnewbuf routine is blocked.
1037		 * Normally the vnode is locked so this isn't a problem.
1038		 * VBLK type I/O requests, however, don't lock the vnode.
1039		 */
1040		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1041			bp->b_flags |= B_INVAL;
1042			brelse(bp);
1043			goto loop;
1044		}
1045
1046		/*
1047		 * Insert the buffer into the hash, so that it can
1048		 * be found by incore.
1049		 */
1050		bp->b_blkno = bp->b_lblkno = blkno;
1051		bgetvp(vp, bp);
1052		LIST_REMOVE(bp, b_hash);
1053		bh = BUFHASH(vp, blkno);
1054		LIST_INSERT_HEAD(bh, bp, b_hash);
1055
1056		if (doingvmio) {
1057			bp->b_flags |= (B_VMIO | B_CACHE);
1058#if defined(VFS_BIO_DEBUG)
1059			if (vp->v_type != VREG && vp->v_type != VBLK)
1060				printf("getblk: vmioing file type %d???\n", vp->v_type);
1061#endif
1062		} else {
1063			bp->b_flags &= ~B_VMIO;
1064		}
1065		splx(s);
1066
1067		allocbuf(bp, size);
1068#ifdef	PC98
1069		/*
1070		 * 1024byte/sector support
1071		 */
1072#define B_XXX2 0x8000000
1073		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1074#endif
1075		return (bp);
1076	}
1077}
1078
1079/*
1080 * Get an empty, disassociated buffer of given size.
1081 */
1082struct buf *
1083geteblk(int size)
1084{
1085	struct buf *bp;
1086	int s;
1087
1088	s = splbio();
1089	while ((bp = getnewbuf(0, 0, 0)) == 0);
1090	splx(s);
1091	allocbuf(bp, size);
1092	bp->b_flags |= B_INVAL;
1093	return (bp);
1094}
1095
1096
1097/*
1098 * This code constitutes the buffer memory from either anonymous system
1099 * memory (in the case of non-VMIO operations) or from an associated
1100 * VM object (in the case of VMIO operations).
1101 *
1102 * Note that this code is tricky, and has many complications to resolve
1103 * deadlock or inconsistant data situations.  Tread lightly!!!
1104 *
1105 * Modify the length of a buffer's underlying buffer storage without
1106 * destroying information (unless, of course the buffer is shrinking).
1107 */
1108int
1109allocbuf(struct buf * bp, int size)
1110{
1111
1112	int s;
1113	int newbsize, mbsize;
1114	int i;
1115
1116	if (!(bp->b_flags & B_BUSY))
1117		panic("allocbuf: buffer not busy");
1118
1119	if ((bp->b_flags & B_VMIO) == 0) {
1120		caddr_t origbuf;
1121		int origbufsize;
1122		/*
1123		 * Just get anonymous memory from the kernel
1124		 */
1125		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1126#if !defined(NO_B_MALLOC)
1127		if (bp->b_flags & B_MALLOC)
1128			newbsize = mbsize;
1129		else
1130#endif
1131			newbsize = round_page(size);
1132
1133		if (newbsize < bp->b_bufsize) {
1134#if !defined(NO_B_MALLOC)
1135			/*
1136			 * malloced buffers are not shrunk
1137			 */
1138			if (bp->b_flags & B_MALLOC) {
1139				if (newbsize) {
1140					bp->b_bcount = size;
1141				} else {
1142					free(bp->b_data, M_BIOBUF);
1143					bufspace -= bp->b_bufsize;
1144					bufmallocspace -= bp->b_bufsize;
1145					bp->b_data = (caddr_t) buffers_kva + (bp - buf) * MAXBSIZE;
1146					bp->b_bufsize = 0;
1147					bp->b_bcount = 0;
1148					bp->b_flags &= ~B_MALLOC;
1149				}
1150				return 1;
1151			}
1152#endif
1153			vm_hold_free_pages(
1154			    bp,
1155			    (vm_offset_t) bp->b_data + newbsize,
1156			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1157		} else if (newbsize > bp->b_bufsize) {
1158#if !defined(NO_B_MALLOC)
1159			/*
1160			 * We only use malloced memory on the first allocation.
1161			 * and revert to page-allocated memory when the buffer grows.
1162			 */
1163			if ( (bufmallocspace < maxbufmallocspace) &&
1164				(bp->b_bufsize == 0) &&
1165				(mbsize <= PAGE_SIZE/2)) {
1166
1167				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1168				bp->b_bufsize = mbsize;
1169				bp->b_bcount = size;
1170				bp->b_flags |= B_MALLOC;
1171				bufspace += mbsize;
1172				bufmallocspace += mbsize;
1173				return 1;
1174			}
1175#endif
1176			origbuf = NULL;
1177			origbufsize = 0;
1178#if !defined(NO_B_MALLOC)
1179			/*
1180			 * If the buffer is growing on it's other-than-first allocation,
1181			 * then we revert to the page-allocation scheme.
1182			 */
1183			if (bp->b_flags & B_MALLOC) {
1184				origbuf = bp->b_data;
1185				origbufsize = bp->b_bufsize;
1186				bp->b_data = (caddr_t) buffers_kva + (bp - buf) * MAXBSIZE;
1187				bufspace -= bp->b_bufsize;
1188				bufmallocspace -= bp->b_bufsize;
1189				bp->b_bufsize = 0;
1190				bp->b_flags &= ~B_MALLOC;
1191				newbsize = round_page(newbsize);
1192			}
1193#endif
1194			vm_hold_load_pages(
1195			    bp,
1196			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1197			    (vm_offset_t) bp->b_data + newbsize);
1198#if !defined(NO_B_MALLOC)
1199			if (origbuf) {
1200				bcopy(origbuf, bp->b_data, origbufsize);
1201				free(origbuf, M_BIOBUF);
1202			}
1203#endif
1204		}
1205	} else {
1206		vm_page_t m;
1207		int desiredpages;
1208
1209		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1210		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1211
1212#if !defined(NO_B_MALLOC)
1213		if (bp->b_flags & B_MALLOC)
1214			panic("allocbuf: VMIO buffer can't be malloced");
1215#endif
1216
1217		if (newbsize < bp->b_bufsize) {
1218			if (desiredpages < bp->b_npages) {
1219				for (i = desiredpages; i < bp->b_npages; i++) {
1220					/*
1221					 * the page is not freed here -- it
1222					 * is the responsibility of vnode_pager_setsize
1223					 */
1224					m = bp->b_pages[i];
1225					s = splhigh();
1226					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1227						m->flags |= PG_WANTED;
1228						tsleep(m, PVM, "biodep", 0);
1229					}
1230					splx(s);
1231
1232					bp->b_pages[i] = NULL;
1233					vm_page_unwire(m);
1234				}
1235				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1236				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1237				bp->b_npages = desiredpages;
1238			}
1239		} else if (newbsize > bp->b_bufsize) {
1240			vm_object_t obj;
1241			vm_offset_t tinc, toff;
1242			vm_ooffset_t off;
1243			vm_pindex_t objoff;
1244			int pageindex, curbpnpages;
1245			struct vnode *vp;
1246			int bsize;
1247
1248			vp = bp->b_vp;
1249
1250			if (vp->v_type == VBLK)
1251				bsize = DEV_BSIZE;
1252			else
1253				bsize = vp->v_mount->mnt_stat.f_iosize;
1254
1255			if (bp->b_npages < desiredpages) {
1256				obj = vp->v_object;
1257				tinc = PAGE_SIZE;
1258				if (tinc > bsize)
1259					tinc = bsize;
1260				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1261		doretry:
1262				curbpnpages = bp->b_npages;
1263				bp->b_flags |= B_CACHE;
1264				for (toff = 0; toff < newbsize; toff += tinc) {
1265					int bytesinpage;
1266
1267					pageindex = toff >> PAGE_SHIFT;
1268					objoff = OFF_TO_IDX(off + toff);
1269					if (pageindex < curbpnpages) {
1270
1271						m = bp->b_pages[pageindex];
1272#ifdef VFS_BIO_DIAG
1273						if (m->pindex != objoff)
1274							panic("allocbuf: page changed offset??!!!?");
1275#endif
1276						bytesinpage = tinc;
1277						if (tinc > (newbsize - toff))
1278							bytesinpage = newbsize - toff;
1279						if ((bp->b_flags & B_CACHE) &&
1280							!vm_page_is_valid(m,
1281							(vm_offset_t) ((toff + off) & PAGE_MASK),
1282							bytesinpage)) {
1283							bp->b_flags &= ~B_CACHE;
1284						}
1285						continue;
1286					}
1287					m = vm_page_lookup(obj, objoff);
1288					if (!m) {
1289						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1290						if (!m) {
1291							VM_WAIT;
1292							goto doretry;
1293						}
1294						/*
1295						 * Normally it is unwise to clear PG_BUSY without
1296						 * PAGE_WAKEUP -- but it is okay here, as there is
1297						 * no chance for blocking between here and vm_page_alloc
1298						 */
1299						m->flags &= ~PG_BUSY;
1300						vm_page_wire(m);
1301						bp->b_flags &= ~B_CACHE;
1302					} else if (m->flags & PG_BUSY) {
1303
1304						s = splhigh();
1305						m->flags |= PG_WANTED;
1306						tsleep(m, PVM, "pgtblk", 0);
1307						splx(s);
1308
1309						goto doretry;
1310					} else {
1311						if ((curproc != pageproc) &&
1312							(m->queue == PQ_CACHE) &&
1313						    ((cnt.v_free_count + cnt.v_cache_count) <
1314								(cnt.v_free_min + cnt.v_cache_min))) {
1315							pagedaemon_wakeup();
1316						}
1317						bytesinpage = tinc;
1318						if (tinc > (newbsize - toff))
1319							bytesinpage = newbsize - toff;
1320						if ((bp->b_flags & B_CACHE) &&
1321							!vm_page_is_valid(m,
1322							(vm_offset_t) ((toff + off) & PAGE_MASK),
1323							bytesinpage)) {
1324							bp->b_flags &= ~B_CACHE;
1325						}
1326						vm_page_wire(m);
1327					}
1328					bp->b_pages[pageindex] = m;
1329					curbpnpages = pageindex + 1;
1330				}
1331				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1332				bp->b_npages = curbpnpages;
1333				pmap_qenter((vm_offset_t) bp->b_data,
1334					bp->b_pages, bp->b_npages);
1335				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1336			}
1337		}
1338	}
1339	if (bp->b_flags & B_VMIO)
1340		vmiospace += bp->b_bufsize;
1341	bufspace += (newbsize - bp->b_bufsize);
1342	bp->b_bufsize = newbsize;
1343	bp->b_bcount = size;
1344	return 1;
1345}
1346
1347/*
1348 * Wait for buffer I/O completion, returning error status.
1349 */
1350int
1351biowait(register struct buf * bp)
1352{
1353	int s;
1354
1355	s = splbio();
1356	while ((bp->b_flags & B_DONE) == 0)
1357		tsleep(bp, PRIBIO, "biowait", 0);
1358	splx(s);
1359	if (bp->b_flags & B_EINTR) {
1360		bp->b_flags &= ~B_EINTR;
1361		return (EINTR);
1362	}
1363	if (bp->b_flags & B_ERROR) {
1364		return (bp->b_error ? bp->b_error : EIO);
1365	} else {
1366		return (0);
1367	}
1368}
1369
1370/*
1371 * Finish I/O on a buffer, calling an optional function.
1372 * This is usually called from interrupt level, so process blocking
1373 * is not *a good idea*.
1374 */
1375void
1376biodone(register struct buf * bp)
1377{
1378	int s;
1379
1380	s = splbio();
1381	if (!(bp->b_flags & B_BUSY))
1382		panic("biodone: buffer not busy");
1383
1384	if (bp->b_flags & B_DONE) {
1385		splx(s);
1386		printf("biodone: buffer already done\n");
1387		return;
1388	}
1389	bp->b_flags |= B_DONE;
1390
1391	if ((bp->b_flags & B_READ) == 0) {
1392		vwakeup(bp);
1393	}
1394#ifdef BOUNCE_BUFFERS
1395	if (bp->b_flags & B_BOUNCE)
1396		vm_bounce_free(bp);
1397#endif
1398
1399	/* call optional completion function if requested */
1400	if (bp->b_flags & B_CALL) {
1401		bp->b_flags &= ~B_CALL;
1402		(*bp->b_iodone) (bp);
1403		splx(s);
1404		return;
1405	}
1406	if (bp->b_flags & B_VMIO) {
1407		int i, resid;
1408		vm_ooffset_t foff;
1409		vm_page_t m;
1410		vm_object_t obj;
1411		int iosize;
1412		struct vnode *vp = bp->b_vp;
1413
1414		if (vp->v_type == VBLK)
1415			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1416		else
1417			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1418		obj = vp->v_object;
1419		if (!obj) {
1420			panic("biodone: no object");
1421		}
1422#if defined(VFS_BIO_DEBUG)
1423		if (obj->paging_in_progress < bp->b_npages) {
1424			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1425			    obj->paging_in_progress, bp->b_npages);
1426		}
1427#endif
1428		iosize = bp->b_bufsize;
1429		for (i = 0; i < bp->b_npages; i++) {
1430			int bogusflag = 0;
1431			m = bp->b_pages[i];
1432			if (m == bogus_page) {
1433				bogusflag = 1;
1434				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1435				if (!m) {
1436#if defined(VFS_BIO_DEBUG)
1437					printf("biodone: page disappeared\n");
1438#endif
1439					--obj->paging_in_progress;
1440					continue;
1441				}
1442				bp->b_pages[i] = m;
1443				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1444			}
1445#if defined(VFS_BIO_DEBUG)
1446			if (OFF_TO_IDX(foff) != m->pindex) {
1447				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1448			}
1449#endif
1450			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1451			if (resid > iosize)
1452				resid = iosize;
1453			/*
1454			 * In the write case, the valid and clean bits are
1455			 * already changed correctly, so we only need to do this
1456			 * here in the read case.
1457			 */
1458			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1459				vm_page_set_validclean(m,
1460					(vm_offset_t) (foff & PAGE_MASK), resid);
1461			}
1462
1463			/*
1464			 * when debugging new filesystems or buffer I/O methods, this
1465			 * is the most common error that pops up.  if you see this, you
1466			 * have not set the page busy flag correctly!!!
1467			 */
1468			if (m->busy == 0) {
1469				printf("biodone: page busy < 0, "
1470				    "pindex: %d, foff: 0x(%x,%x), "
1471				    "resid: %d, index: %d\n",
1472				    (int) m->pindex, (int)(foff >> 32),
1473						(int) foff & 0xffffffff, resid, i);
1474				if (vp->v_type != VBLK)
1475					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1476					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1477					    (int) bp->b_lblkno,
1478					    bp->b_flags, bp->b_npages);
1479				else
1480					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1481					    (int) bp->b_lblkno,
1482					    bp->b_flags, bp->b_npages);
1483				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1484				    m->valid, m->dirty, m->wire_count);
1485				panic("biodone: page busy < 0\n");
1486			}
1487			--m->busy;
1488			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1489				m->flags &= ~PG_WANTED;
1490				wakeup(m);
1491			}
1492			--obj->paging_in_progress;
1493			foff += resid;
1494			iosize -= resid;
1495		}
1496		if (obj && obj->paging_in_progress == 0 &&
1497		    (obj->flags & OBJ_PIPWNT)) {
1498			obj->flags &= ~OBJ_PIPWNT;
1499			wakeup(obj);
1500		}
1501	}
1502	/*
1503	 * For asynchronous completions, release the buffer now. The brelse
1504	 * checks for B_WANTED and will do the wakeup there if necessary - so
1505	 * no need to do a wakeup here in the async case.
1506	 */
1507
1508	if (bp->b_flags & B_ASYNC) {
1509		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1510			brelse(bp);
1511		else
1512			bqrelse(bp);
1513	} else {
1514		wakeup(bp);
1515	}
1516	splx(s);
1517}
1518
1519int
1520count_lock_queue()
1521{
1522	int count;
1523	struct buf *bp;
1524
1525	count = 0;
1526	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1527	    bp != NULL;
1528	    bp = TAILQ_NEXT(bp, b_freelist))
1529		count++;
1530	return (count);
1531}
1532
1533int vfs_update_interval = 30;
1534
1535static void
1536vfs_update()
1537{
1538	(void) spl0();		/* XXX redundant?  wrong place? */
1539	while (1) {
1540		tsleep(&vfs_update_wakeup, PUSER, "update",
1541		    hz * vfs_update_interval);
1542		vfs_update_wakeup = 0;
1543		sync(curproc, NULL, NULL);
1544	}
1545}
1546
1547static int
1548sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1549{
1550	int error = sysctl_handle_int(oidp,
1551		oidp->oid_arg1, oidp->oid_arg2, req);
1552	if (!error)
1553		wakeup(&vfs_update_wakeup);
1554	return error;
1555}
1556
1557SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1558	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1559
1560
1561/*
1562 * This routine is called in lieu of iodone in the case of
1563 * incomplete I/O.  This keeps the busy status for pages
1564 * consistant.
1565 */
1566void
1567vfs_unbusy_pages(struct buf * bp)
1568{
1569	int i;
1570
1571	if (bp->b_flags & B_VMIO) {
1572		struct vnode *vp = bp->b_vp;
1573		vm_object_t obj = vp->v_object;
1574		vm_ooffset_t foff;
1575
1576		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1577
1578		for (i = 0; i < bp->b_npages; i++) {
1579			vm_page_t m = bp->b_pages[i];
1580
1581			if (m == bogus_page) {
1582				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1583				if (!m) {
1584					panic("vfs_unbusy_pages: page missing\n");
1585				}
1586				bp->b_pages[i] = m;
1587				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1588			}
1589			--obj->paging_in_progress;
1590			--m->busy;
1591			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1592				m->flags &= ~PG_WANTED;
1593				wakeup(m);
1594			}
1595		}
1596		if (obj->paging_in_progress == 0 &&
1597		    (obj->flags & OBJ_PIPWNT)) {
1598			obj->flags &= ~OBJ_PIPWNT;
1599			wakeup(obj);
1600		}
1601	}
1602}
1603
1604/*
1605 * This routine is called before a device strategy routine.
1606 * It is used to tell the VM system that paging I/O is in
1607 * progress, and treat the pages associated with the buffer
1608 * almost as being PG_BUSY.  Also the object paging_in_progress
1609 * flag is handled to make sure that the object doesn't become
1610 * inconsistant.
1611 */
1612void
1613vfs_busy_pages(struct buf * bp, int clear_modify)
1614{
1615	int i;
1616
1617	if (bp->b_flags & B_VMIO) {
1618		vm_object_t obj = bp->b_vp->v_object;
1619		vm_ooffset_t foff;
1620		int iocount = bp->b_bufsize;
1621
1622		if (bp->b_vp->v_type == VBLK)
1623			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1624		else
1625			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1626		vfs_setdirty(bp);
1627		for (i = 0; i < bp->b_npages; i++) {
1628			vm_page_t m = bp->b_pages[i];
1629			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1630
1631			if (resid > iocount)
1632				resid = iocount;
1633			if ((bp->b_flags & B_CLUSTER) == 0) {
1634				obj->paging_in_progress++;
1635				m->busy++;
1636			}
1637			vm_page_protect(m, VM_PROT_NONE);
1638			if (clear_modify) {
1639				vm_page_set_validclean(m,
1640					(vm_offset_t) (foff & PAGE_MASK), resid);
1641			} else if (bp->b_bcount >= PAGE_SIZE) {
1642				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1643					bp->b_pages[i] = bogus_page;
1644					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1645				}
1646			}
1647			foff += resid;
1648			iocount -= resid;
1649		}
1650	}
1651}
1652
1653/*
1654 * Tell the VM system that the pages associated with this buffer
1655 * are clean.  This is used for delayed writes where the data is
1656 * going to go to disk eventually without additional VM intevention.
1657 */
1658void
1659vfs_clean_pages(struct buf * bp)
1660{
1661	int i;
1662
1663	if (bp->b_flags & B_VMIO) {
1664		vm_ooffset_t foff;
1665		int iocount = bp->b_bufsize;
1666
1667		if (bp->b_vp->v_type == VBLK)
1668			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1669		else
1670			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1671
1672		for (i = 0; i < bp->b_npages; i++) {
1673			vm_page_t m = bp->b_pages[i];
1674			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1675
1676			if (resid > iocount)
1677				resid = iocount;
1678			if (resid > 0) {
1679				vm_page_set_validclean(m,
1680					((vm_offset_t) foff & PAGE_MASK), resid);
1681			}
1682			foff += resid;
1683			iocount -= resid;
1684		}
1685	}
1686}
1687
1688void
1689vfs_bio_clrbuf(struct buf *bp) {
1690	int i;
1691	if( bp->b_flags & B_VMIO) {
1692		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1693			int mask;
1694			mask = 0;
1695			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
1696				mask |= (1 << (i/DEV_BSIZE));
1697			if( bp->b_pages[0]->valid != mask) {
1698				bzero(bp->b_data, bp->b_bufsize);
1699			}
1700			bp->b_pages[0]->valid = mask;
1701			bp->b_resid = 0;
1702			return;
1703		}
1704		for(i=0;i<bp->b_npages;i++) {
1705			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1706				continue;
1707			if( bp->b_pages[i]->valid == 0) {
1708				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
1709					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
1710				}
1711			} else {
1712				int j;
1713				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1714					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1715						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
1716				}
1717			}
1718			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
1719		}
1720		bp->b_resid = 0;
1721	} else {
1722		clrbuf(bp);
1723	}
1724}
1725
1726/*
1727 * vm_hold_load_pages and vm_hold_unload pages get pages into
1728 * a buffers address space.  The pages are anonymous and are
1729 * not associated with a file object.
1730 */
1731void
1732vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1733{
1734	vm_offset_t pg;
1735	vm_page_t p;
1736	int index;
1737
1738	to = round_page(to);
1739	from = round_page(from);
1740	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1741
1742	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1743
1744tryagain:
1745
1746		p = vm_page_alloc(kernel_object, ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
1747		    VM_ALLOC_NORMAL);
1748		if (!p) {
1749			VM_WAIT;
1750			goto tryagain;
1751		}
1752		vm_page_wire(p);
1753		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1754		bp->b_pages[index] = p;
1755		PAGE_WAKEUP(p);
1756	}
1757	bp->b_npages = to >> PAGE_SHIFT;
1758}
1759
1760void
1761vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1762{
1763	vm_offset_t pg;
1764	vm_page_t p;
1765	int index;
1766
1767	from = round_page(from);
1768	to = round_page(to);
1769	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1770
1771	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1772		p = bp->b_pages[index];
1773		if (p && (index < bp->b_npages)) {
1774			if (p->busy) {
1775				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
1776					bp->b_blkno, bp->b_lblkno);
1777			}
1778			bp->b_pages[index] = NULL;
1779			pmap_kremove(pg);
1780			vm_page_unwire(p);
1781			vm_page_free(p);
1782		}
1783	}
1784	bp->b_npages = from >> PAGE_SHIFT;
1785}
1786