vfs_bio.c revision 162941
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 162941 2006-10-02 02:06:27Z tegge $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82	.bop_sync	=	bufsync,
83};
84
85/*
86 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
87 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
88 */
89struct buf *buf;		/* buffer header pool */
90
91static struct proc *bufdaemonproc;
92
93static int inmem(struct vnode *vp, daddr_t blkno);
94static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
95		vm_offset_t to);
96static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
99			       int pageno, vm_page_t m);
100static void vfs_clean_pages(struct buf *bp);
101static void vfs_setdirty(struct buf *bp);
102static void vfs_vmio_release(struct buf *bp);
103static int vfs_bio_clcheck(struct vnode *vp, int size,
104		daddr_t lblkno, daddr_t blkno);
105static int flushbufqueues(int, int);
106static void buf_daemon(void);
107static void bremfreel(struct buf *bp);
108
109int vmiodirenable = TRUE;
110SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
111    "Use the VM system for directory writes");
112int runningbufspace;
113SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
114    "Amount of presently outstanding async buffer io");
115static int bufspace;
116SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
117    "KVA memory used for bufs");
118static int maxbufspace;
119SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
120    "Maximum allowed value of bufspace (including buf_daemon)");
121static int bufmallocspace;
122SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
123    "Amount of malloced memory for buffers");
124static int maxbufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
126    "Maximum amount of malloced memory for buffers");
127static int lobufspace;
128SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
129    "Minimum amount of buffers we want to have");
130int hibufspace;
131SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
132    "Maximum allowed value of bufspace (excluding buf_daemon)");
133static int bufreusecnt;
134SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
135    "Number of times we have reused a buffer");
136static int buffreekvacnt;
137SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
138    "Number of times we have freed the KVA space from some buffer");
139static int bufdefragcnt;
140SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
141    "Number of times we have had to repeat buffer allocation to defragment");
142static int lorunningspace;
143SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
144    "Minimum preferred space used for in-progress I/O");
145static int hirunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
147    "Maximum amount of space to use for in-progress I/O");
148static int dirtybufferflushes;
149SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
150    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
151static int altbufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
153    0, "Number of fsync flushes to limit dirty buffers");
154static int recursiveflushes;
155SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
156    0, "Number of flushes skipped due to being recursive");
157static int numdirtybuffers;
158SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
159    "Number of buffers that are dirty (has unwritten changes) at the moment");
160static int lodirtybuffers;
161SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
162    "How many buffers we want to have free before bufdaemon can sleep");
163static int hidirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
165    "When the number of dirty buffers is considered severe");
166static int dirtybufthresh;
167SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
168    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
169static int numfreebuffers;
170SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
171    "Number of free buffers");
172static int lofreebuffers;
173SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
174   "XXX Unused");
175static int hifreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
177   "XXX Complicatedly unused");
178static int getnewbufcalls;
179SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
180   "Number of calls to getnewbuf");
181static int getnewbufrestarts;
182SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
183    "Number of times getnewbuf has had to restart a buffer aquisition");
184
185/*
186 * Wakeup point for bufdaemon, as well as indicator of whether it is already
187 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
188 * is idling.
189 */
190static int bd_request;
191
192/*
193 * This lock synchronizes access to bd_request.
194 */
195static struct mtx bdlock;
196
197/*
198 * bogus page -- for I/O to/from partially complete buffers
199 * this is a temporary solution to the problem, but it is not
200 * really that bad.  it would be better to split the buffer
201 * for input in the case of buffers partially already in memory,
202 * but the code is intricate enough already.
203 */
204vm_page_t bogus_page;
205
206/*
207 * Synchronization (sleep/wakeup) variable for active buffer space requests.
208 * Set when wait starts, cleared prior to wakeup().
209 * Used in runningbufwakeup() and waitrunningbufspace().
210 */
211static int runningbufreq;
212
213/*
214 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
215 * waitrunningbufspace().
216 */
217static struct mtx rbreqlock;
218
219/*
220 * Synchronization (sleep/wakeup) variable for buffer requests.
221 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
222 * by and/or.
223 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
224 * getnewbuf(), and getblk().
225 */
226static int needsbuffer;
227
228/*
229 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
230 */
231static struct mtx nblock;
232
233/*
234 * Lock that protects against bwait()/bdone()/B_DONE races.
235 */
236
237static struct mtx bdonelock;
238
239/*
240 * Lock that protects against bwait()/bdone()/B_DONE races.
241 */
242static struct mtx bpinlock;
243
244/*
245 * Definitions for the buffer free lists.
246 */
247#define BUFFER_QUEUES	6	/* number of free buffer queues */
248
249#define QUEUE_NONE	0	/* on no queue */
250#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
251#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
252#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
253#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
254#define QUEUE_EMPTY	5	/* empty buffer headers */
255
256/* Queues for free buffers with various properties */
257static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
258
259/* Lock for the bufqueues */
260static struct mtx bqlock;
261
262/*
263 * Single global constant for BUF_WMESG, to avoid getting multiple references.
264 * buf_wmesg is referred from macros.
265 */
266const char *buf_wmesg = BUF_WMESG;
267
268#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
269#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
270#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
271#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
272
273#ifdef DIRECTIO
274extern void ffs_rawread_setup(void);
275#endif /* DIRECTIO */
276/*
277 *	numdirtywakeup:
278 *
279 *	If someone is blocked due to there being too many dirty buffers,
280 *	and numdirtybuffers is now reasonable, wake them up.
281 */
282
283static __inline void
284numdirtywakeup(int level)
285{
286
287	if (numdirtybuffers <= level) {
288		mtx_lock(&nblock);
289		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
290			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
291			wakeup(&needsbuffer);
292		}
293		mtx_unlock(&nblock);
294	}
295}
296
297/*
298 *	bufspacewakeup:
299 *
300 *	Called when buffer space is potentially available for recovery.
301 *	getnewbuf() will block on this flag when it is unable to free
302 *	sufficient buffer space.  Buffer space becomes recoverable when
303 *	bp's get placed back in the queues.
304 */
305
306static __inline void
307bufspacewakeup(void)
308{
309
310	/*
311	 * If someone is waiting for BUF space, wake them up.  Even
312	 * though we haven't freed the kva space yet, the waiting
313	 * process will be able to now.
314	 */
315	mtx_lock(&nblock);
316	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
317		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
318		wakeup(&needsbuffer);
319	}
320	mtx_unlock(&nblock);
321}
322
323/*
324 * runningbufwakeup() - in-progress I/O accounting.
325 *
326 */
327void
328runningbufwakeup(struct buf *bp)
329{
330
331	if (bp->b_runningbufspace) {
332		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
333		bp->b_runningbufspace = 0;
334		mtx_lock(&rbreqlock);
335		if (runningbufreq && runningbufspace <= lorunningspace) {
336			runningbufreq = 0;
337			wakeup(&runningbufreq);
338		}
339		mtx_unlock(&rbreqlock);
340	}
341}
342
343/*
344 *	bufcountwakeup:
345 *
346 *	Called when a buffer has been added to one of the free queues to
347 *	account for the buffer and to wakeup anyone waiting for free buffers.
348 *	This typically occurs when large amounts of metadata are being handled
349 *	by the buffer cache ( else buffer space runs out first, usually ).
350 */
351
352static __inline void
353bufcountwakeup(void)
354{
355
356	atomic_add_int(&numfreebuffers, 1);
357	mtx_lock(&nblock);
358	if (needsbuffer) {
359		needsbuffer &= ~VFS_BIO_NEED_ANY;
360		if (numfreebuffers >= hifreebuffers)
361			needsbuffer &= ~VFS_BIO_NEED_FREE;
362		wakeup(&needsbuffer);
363	}
364	mtx_unlock(&nblock);
365}
366
367/*
368 *	waitrunningbufspace()
369 *
370 *	runningbufspace is a measure of the amount of I/O currently
371 *	running.  This routine is used in async-write situations to
372 *	prevent creating huge backups of pending writes to a device.
373 *	Only asynchronous writes are governed by this function.
374 *
375 *	Reads will adjust runningbufspace, but will not block based on it.
376 *	The read load has a side effect of reducing the allowed write load.
377 *
378 *	This does NOT turn an async write into a sync write.  It waits
379 *	for earlier writes to complete and generally returns before the
380 *	caller's write has reached the device.
381 */
382void
383waitrunningbufspace(void)
384{
385
386	mtx_lock(&rbreqlock);
387	while (runningbufspace > hirunningspace) {
388		++runningbufreq;
389		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
390	}
391	mtx_unlock(&rbreqlock);
392}
393
394
395/*
396 *	vfs_buf_test_cache:
397 *
398 *	Called when a buffer is extended.  This function clears the B_CACHE
399 *	bit if the newly extended portion of the buffer does not contain
400 *	valid data.
401 */
402static __inline
403void
404vfs_buf_test_cache(struct buf *bp,
405		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
406		  vm_page_t m)
407{
408
409	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
410	if (bp->b_flags & B_CACHE) {
411		int base = (foff + off) & PAGE_MASK;
412		if (vm_page_is_valid(m, base, size) == 0)
413			bp->b_flags &= ~B_CACHE;
414	}
415}
416
417/* Wake up the buffer deamon if necessary */
418static __inline
419void
420bd_wakeup(int dirtybuflevel)
421{
422
423	mtx_lock(&bdlock);
424	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
425		bd_request = 1;
426		wakeup(&bd_request);
427	}
428	mtx_unlock(&bdlock);
429}
430
431/*
432 * bd_speedup - speedup the buffer cache flushing code
433 */
434
435static __inline
436void
437bd_speedup(void)
438{
439
440	bd_wakeup(1);
441}
442
443/*
444 * Calculating buffer cache scaling values and reserve space for buffer
445 * headers.  This is called during low level kernel initialization and
446 * may be called more then once.  We CANNOT write to the memory area
447 * being reserved at this time.
448 */
449caddr_t
450kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
451{
452
453	/*
454	 * physmem_est is in pages.  Convert it to kilobytes (assumes
455	 * PAGE_SIZE is >= 1K)
456	 */
457	physmem_est = physmem_est * (PAGE_SIZE / 1024);
458
459	/*
460	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
461	 * For the first 64MB of ram nominally allocate sufficient buffers to
462	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
463	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
464	 * the buffer cache we limit the eventual kva reservation to
465	 * maxbcache bytes.
466	 *
467	 * factor represents the 1/4 x ram conversion.
468	 */
469	if (nbuf == 0) {
470		int factor = 4 * BKVASIZE / 1024;
471
472		nbuf = 50;
473		if (physmem_est > 4096)
474			nbuf += min((physmem_est - 4096) / factor,
475			    65536 / factor);
476		if (physmem_est > 65536)
477			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
478
479		if (maxbcache && nbuf > maxbcache / BKVASIZE)
480			nbuf = maxbcache / BKVASIZE;
481	}
482
483#if 0
484	/*
485	 * Do not allow the buffer_map to be more then 1/2 the size of the
486	 * kernel_map.
487	 */
488	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
489	    (BKVASIZE * 2)) {
490		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
491		    (BKVASIZE * 2);
492		printf("Warning: nbufs capped at %d\n", nbuf);
493	}
494#endif
495
496	/*
497	 * swbufs are used as temporary holders for I/O, such as paging I/O.
498	 * We have no less then 16 and no more then 256.
499	 */
500	nswbuf = max(min(nbuf/4, 256), 16);
501#ifdef NSWBUF_MIN
502	if (nswbuf < NSWBUF_MIN)
503		nswbuf = NSWBUF_MIN;
504#endif
505#ifdef DIRECTIO
506	ffs_rawread_setup();
507#endif
508
509	/*
510	 * Reserve space for the buffer cache buffers
511	 */
512	swbuf = (void *)v;
513	v = (caddr_t)(swbuf + nswbuf);
514	buf = (void *)v;
515	v = (caddr_t)(buf + nbuf);
516
517	return(v);
518}
519
520/* Initialize the buffer subsystem.  Called before use of any buffers. */
521void
522bufinit(void)
523{
524	struct buf *bp;
525	int i;
526
527	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
528	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
529	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
530	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
531	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
532	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
533
534	/* next, make a null set of free lists */
535	for (i = 0; i < BUFFER_QUEUES; i++)
536		TAILQ_INIT(&bufqueues[i]);
537
538	/* finally, initialize each buffer header and stick on empty q */
539	for (i = 0; i < nbuf; i++) {
540		bp = &buf[i];
541		bzero(bp, sizeof *bp);
542		bp->b_flags = B_INVAL;	/* we're just an empty header */
543		bp->b_rcred = NOCRED;
544		bp->b_wcred = NOCRED;
545		bp->b_qindex = QUEUE_EMPTY;
546		bp->b_vflags = 0;
547		bp->b_xflags = 0;
548		LIST_INIT(&bp->b_dep);
549		BUF_LOCKINIT(bp);
550		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
551	}
552
553	/*
554	 * maxbufspace is the absolute maximum amount of buffer space we are
555	 * allowed to reserve in KVM and in real terms.  The absolute maximum
556	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
557	 * used by most other processes.  The differential is required to
558	 * ensure that buf_daemon is able to run when other processes might
559	 * be blocked waiting for buffer space.
560	 *
561	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
562	 * this may result in KVM fragmentation which is not handled optimally
563	 * by the system.
564	 */
565	maxbufspace = nbuf * BKVASIZE;
566	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
567	lobufspace = hibufspace - MAXBSIZE;
568
569	lorunningspace = 512 * 1024;
570	hirunningspace = 1024 * 1024;
571
572/*
573 * Limit the amount of malloc memory since it is wired permanently into
574 * the kernel space.  Even though this is accounted for in the buffer
575 * allocation, we don't want the malloced region to grow uncontrolled.
576 * The malloc scheme improves memory utilization significantly on average
577 * (small) directories.
578 */
579	maxbufmallocspace = hibufspace / 20;
580
581/*
582 * Reduce the chance of a deadlock occuring by limiting the number
583 * of delayed-write dirty buffers we allow to stack up.
584 */
585	hidirtybuffers = nbuf / 4 + 20;
586	dirtybufthresh = hidirtybuffers * 9 / 10;
587	numdirtybuffers = 0;
588/*
589 * To support extreme low-memory systems, make sure hidirtybuffers cannot
590 * eat up all available buffer space.  This occurs when our minimum cannot
591 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
592 * BKVASIZE'd (8K) buffers.
593 */
594	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
595		hidirtybuffers >>= 1;
596	}
597	lodirtybuffers = hidirtybuffers / 2;
598
599/*
600 * Try to keep the number of free buffers in the specified range,
601 * and give special processes (e.g. like buf_daemon) access to an
602 * emergency reserve.
603 */
604	lofreebuffers = nbuf / 18 + 5;
605	hifreebuffers = 2 * lofreebuffers;
606	numfreebuffers = nbuf;
607
608/*
609 * Maximum number of async ops initiated per buf_daemon loop.  This is
610 * somewhat of a hack at the moment, we really need to limit ourselves
611 * based on the number of bytes of I/O in-transit that were initiated
612 * from buf_daemon.
613 */
614
615	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
616	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
617}
618
619/*
620 * bfreekva() - free the kva allocation for a buffer.
621 *
622 *	Since this call frees up buffer space, we call bufspacewakeup().
623 */
624static void
625bfreekva(struct buf *bp)
626{
627
628	if (bp->b_kvasize) {
629		atomic_add_int(&buffreekvacnt, 1);
630		atomic_subtract_int(&bufspace, bp->b_kvasize);
631		vm_map_lock(buffer_map);
632		vm_map_delete(buffer_map,
633		    (vm_offset_t) bp->b_kvabase,
634		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
635		);
636		vm_map_unlock(buffer_map);
637		bp->b_kvasize = 0;
638		bufspacewakeup();
639	}
640}
641
642/*
643 *	bremfree:
644 *
645 *	Mark the buffer for removal from the appropriate free list in brelse.
646 *
647 */
648void
649bremfree(struct buf *bp)
650{
651
652	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
653	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
654	KASSERT((bp->b_flags & B_REMFREE) == 0,
655	    ("bremfree: buffer %p already marked for delayed removal.", bp));
656	KASSERT(bp->b_qindex != QUEUE_NONE,
657	    ("bremfree: buffer %p not on a queue.", bp));
658
659	bp->b_flags |= B_REMFREE;
660	/* Fixup numfreebuffers count.  */
661	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
662		atomic_subtract_int(&numfreebuffers, 1);
663}
664
665/*
666 *	bremfreef:
667 *
668 *	Force an immediate removal from a free list.  Used only in nfs when
669 *	it abuses the b_freelist pointer.
670 */
671void
672bremfreef(struct buf *bp)
673{
674	mtx_lock(&bqlock);
675	bremfreel(bp);
676	mtx_unlock(&bqlock);
677}
678
679/*
680 *	bremfreel:
681 *
682 *	Removes a buffer from the free list, must be called with the
683 *	bqlock held.
684 */
685static void
686bremfreel(struct buf *bp)
687{
688	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
689	    bp, bp->b_vp, bp->b_flags);
690	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
691	KASSERT(bp->b_qindex != QUEUE_NONE,
692	    ("bremfreel: buffer %p not on a queue.", bp));
693	mtx_assert(&bqlock, MA_OWNED);
694
695	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
696	bp->b_qindex = QUEUE_NONE;
697	/*
698	 * If this was a delayed bremfree() we only need to remove the buffer
699	 * from the queue and return the stats are already done.
700	 */
701	if (bp->b_flags & B_REMFREE) {
702		bp->b_flags &= ~B_REMFREE;
703		return;
704	}
705	/*
706	 * Fixup numfreebuffers count.  If the buffer is invalid or not
707	 * delayed-write, the buffer was free and we must decrement
708	 * numfreebuffers.
709	 */
710	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
711		atomic_subtract_int(&numfreebuffers, 1);
712}
713
714
715/*
716 * Get a buffer with the specified data.  Look in the cache first.  We
717 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
718 * is set, the buffer is valid and we do not have to do anything ( see
719 * getblk() ).  This is really just a special case of breadn().
720 */
721int
722bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
723    struct buf **bpp)
724{
725
726	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
727}
728
729/*
730 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
731 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
732 * the buffer is valid and we do not have to do anything.
733 */
734void
735breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
736    int cnt, struct ucred * cred)
737{
738	struct buf *rabp;
739	int i;
740
741	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
742		if (inmem(vp, *rablkno))
743			continue;
744		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
745
746		if ((rabp->b_flags & B_CACHE) == 0) {
747			if (curthread != PCPU_GET(idlethread))
748				curthread->td_proc->p_stats->p_ru.ru_inblock++;
749			rabp->b_flags |= B_ASYNC;
750			rabp->b_flags &= ~B_INVAL;
751			rabp->b_ioflags &= ~BIO_ERROR;
752			rabp->b_iocmd = BIO_READ;
753			if (rabp->b_rcred == NOCRED && cred != NOCRED)
754				rabp->b_rcred = crhold(cred);
755			vfs_busy_pages(rabp, 0);
756			BUF_KERNPROC(rabp);
757			rabp->b_iooffset = dbtob(rabp->b_blkno);
758			bstrategy(rabp);
759		} else {
760			brelse(rabp);
761		}
762	}
763}
764
765/*
766 * Operates like bread, but also starts asynchronous I/O on
767 * read-ahead blocks.
768 */
769int
770breadn(struct vnode * vp, daddr_t blkno, int size,
771    daddr_t * rablkno, int *rabsize,
772    int cnt, struct ucred * cred, struct buf **bpp)
773{
774	struct buf *bp;
775	int rv = 0, readwait = 0;
776
777	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
778	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
779
780	/* if not found in cache, do some I/O */
781	if ((bp->b_flags & B_CACHE) == 0) {
782		if (curthread != PCPU_GET(idlethread))
783			curthread->td_proc->p_stats->p_ru.ru_inblock++;
784		bp->b_iocmd = BIO_READ;
785		bp->b_flags &= ~B_INVAL;
786		bp->b_ioflags &= ~BIO_ERROR;
787		if (bp->b_rcred == NOCRED && cred != NOCRED)
788			bp->b_rcred = crhold(cred);
789		vfs_busy_pages(bp, 0);
790		bp->b_iooffset = dbtob(bp->b_blkno);
791		bstrategy(bp);
792		++readwait;
793	}
794
795	breada(vp, rablkno, rabsize, cnt, cred);
796
797	if (readwait) {
798		rv = bufwait(bp);
799	}
800	return (rv);
801}
802
803/*
804 * Write, release buffer on completion.  (Done by iodone
805 * if async).  Do not bother writing anything if the buffer
806 * is invalid.
807 *
808 * Note that we set B_CACHE here, indicating that buffer is
809 * fully valid and thus cacheable.  This is true even of NFS
810 * now so we set it generally.  This could be set either here
811 * or in biodone() since the I/O is synchronous.  We put it
812 * here.
813 */
814int
815bufwrite(struct buf *bp)
816{
817	int oldflags;
818
819	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
820	if (bp->b_flags & B_INVAL) {
821		brelse(bp);
822		return (0);
823	}
824
825	oldflags = bp->b_flags;
826
827	if (BUF_REFCNT(bp) == 0)
828		panic("bufwrite: buffer is not busy???");
829
830	if (bp->b_pin_count > 0)
831		bunpin_wait(bp);
832
833	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
834	    ("FFS background buffer should not get here %p", bp));
835
836	/* Mark the buffer clean */
837	bundirty(bp);
838
839	bp->b_flags &= ~B_DONE;
840	bp->b_ioflags &= ~BIO_ERROR;
841	bp->b_flags |= B_CACHE;
842	bp->b_iocmd = BIO_WRITE;
843
844	bufobj_wref(bp->b_bufobj);
845	vfs_busy_pages(bp, 1);
846
847	/*
848	 * Normal bwrites pipeline writes
849	 */
850	bp->b_runningbufspace = bp->b_bufsize;
851	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
852
853	if (curthread != PCPU_GET(idlethread))
854		curthread->td_proc->p_stats->p_ru.ru_oublock++;
855	if (oldflags & B_ASYNC)
856		BUF_KERNPROC(bp);
857	bp->b_iooffset = dbtob(bp->b_blkno);
858	bstrategy(bp);
859
860	if ((oldflags & B_ASYNC) == 0) {
861		int rtval = bufwait(bp);
862		brelse(bp);
863		return (rtval);
864	} else {
865		/*
866		 * don't allow the async write to saturate the I/O
867		 * system.  We will not deadlock here because
868		 * we are blocking waiting for I/O that is already in-progress
869		 * to complete. We do not block here if it is the update
870		 * or syncer daemon trying to clean up as that can lead
871		 * to deadlock.
872		 */
873		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0)
874			waitrunningbufspace();
875	}
876
877	return (0);
878}
879
880/*
881 * Delayed write. (Buffer is marked dirty).  Do not bother writing
882 * anything if the buffer is marked invalid.
883 *
884 * Note that since the buffer must be completely valid, we can safely
885 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
886 * biodone() in order to prevent getblk from writing the buffer
887 * out synchronously.
888 */
889void
890bdwrite(struct buf *bp)
891{
892	struct thread *td = curthread;
893	struct vnode *vp;
894	struct buf *nbp;
895	struct bufobj *bo;
896
897	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
898	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
899	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
900
901	if (bp->b_flags & B_INVAL) {
902		brelse(bp);
903		return;
904	}
905
906	/*
907	 * If we have too many dirty buffers, don't create any more.
908	 * If we are wildly over our limit, then force a complete
909	 * cleanup. Otherwise, just keep the situation from getting
910	 * out of control. Note that we have to avoid a recursive
911	 * disaster and not try to clean up after our own cleanup!
912	 */
913	vp = bp->b_vp;
914	bo = bp->b_bufobj;
915	if ((td->td_pflags & TDP_COWINPROGRESS) == 0) {
916		BO_LOCK(bo);
917		if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
918			BO_UNLOCK(bo);
919			(void) VOP_FSYNC(vp, MNT_NOWAIT, td);
920			altbufferflushes++;
921		} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
922			/*
923			 * Try to find a buffer to flush.
924			 */
925			TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
926				if ((nbp->b_vflags & BV_BKGRDINPROG) ||
927				    BUF_LOCK(nbp,
928				    LK_EXCLUSIVE | LK_NOWAIT, NULL))
929					continue;
930				if (bp == nbp)
931					panic("bdwrite: found ourselves");
932				BO_UNLOCK(bo);
933				/* Don't countdeps with the bo lock held. */
934				if (buf_countdeps(nbp, 0)) {
935					BO_LOCK(bo);
936					BUF_UNLOCK(nbp);
937					continue;
938				}
939				if (nbp->b_flags & B_CLUSTEROK) {
940					vfs_bio_awrite(nbp);
941				} else {
942					bremfree(nbp);
943					bawrite(nbp);
944				}
945				dirtybufferflushes++;
946				break;
947			}
948			if (nbp == NULL)
949				BO_UNLOCK(bo);
950		} else
951			BO_UNLOCK(bo);
952	} else
953		recursiveflushes++;
954
955	bdirty(bp);
956	/*
957	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
958	 * true even of NFS now.
959	 */
960	bp->b_flags |= B_CACHE;
961
962	/*
963	 * This bmap keeps the system from needing to do the bmap later,
964	 * perhaps when the system is attempting to do a sync.  Since it
965	 * is likely that the indirect block -- or whatever other datastructure
966	 * that the filesystem needs is still in memory now, it is a good
967	 * thing to do this.  Note also, that if the pageout daemon is
968	 * requesting a sync -- there might not be enough memory to do
969	 * the bmap then...  So, this is important to do.
970	 */
971	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
972		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
973	}
974
975	/*
976	 * Set the *dirty* buffer range based upon the VM system dirty pages.
977	 */
978	vfs_setdirty(bp);
979
980	/*
981	 * We need to do this here to satisfy the vnode_pager and the
982	 * pageout daemon, so that it thinks that the pages have been
983	 * "cleaned".  Note that since the pages are in a delayed write
984	 * buffer -- the VFS layer "will" see that the pages get written
985	 * out on the next sync, or perhaps the cluster will be completed.
986	 */
987	vfs_clean_pages(bp);
988	bqrelse(bp);
989
990	/*
991	 * Wakeup the buffer flushing daemon if we have a lot of dirty
992	 * buffers (midpoint between our recovery point and our stall
993	 * point).
994	 */
995	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
996
997	/*
998	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
999	 * due to the softdep code.
1000	 */
1001}
1002
1003/*
1004 *	bdirty:
1005 *
1006 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1007 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1008 *	itself to properly update it in the dirty/clean lists.  We mark it
1009 *	B_DONE to ensure that any asynchronization of the buffer properly
1010 *	clears B_DONE ( else a panic will occur later ).
1011 *
1012 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1013 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1014 *	should only be called if the buffer is known-good.
1015 *
1016 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1017 *	count.
1018 *
1019 *	The buffer must be on QUEUE_NONE.
1020 */
1021void
1022bdirty(struct buf *bp)
1023{
1024
1025	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1026	    bp, bp->b_vp, bp->b_flags);
1027	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1028	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1029	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1030	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1031	bp->b_flags &= ~(B_RELBUF);
1032	bp->b_iocmd = BIO_WRITE;
1033
1034	if ((bp->b_flags & B_DELWRI) == 0) {
1035		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1036		reassignbuf(bp);
1037		atomic_add_int(&numdirtybuffers, 1);
1038		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1039	}
1040}
1041
1042/*
1043 *	bundirty:
1044 *
1045 *	Clear B_DELWRI for buffer.
1046 *
1047 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1048 *	count.
1049 *
1050 *	The buffer must be on QUEUE_NONE.
1051 */
1052
1053void
1054bundirty(struct buf *bp)
1055{
1056
1057	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1058	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1059	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1060	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1061	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1062
1063	if (bp->b_flags & B_DELWRI) {
1064		bp->b_flags &= ~B_DELWRI;
1065		reassignbuf(bp);
1066		atomic_subtract_int(&numdirtybuffers, 1);
1067		numdirtywakeup(lodirtybuffers);
1068	}
1069	/*
1070	 * Since it is now being written, we can clear its deferred write flag.
1071	 */
1072	bp->b_flags &= ~B_DEFERRED;
1073}
1074
1075/*
1076 *	bawrite:
1077 *
1078 *	Asynchronous write.  Start output on a buffer, but do not wait for
1079 *	it to complete.  The buffer is released when the output completes.
1080 *
1081 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1082 *	B_INVAL buffers.  Not us.
1083 */
1084void
1085bawrite(struct buf *bp)
1086{
1087
1088	bp->b_flags |= B_ASYNC;
1089	(void) bwrite(bp);
1090}
1091
1092/*
1093 *	bwillwrite:
1094 *
1095 *	Called prior to the locking of any vnodes when we are expecting to
1096 *	write.  We do not want to starve the buffer cache with too many
1097 *	dirty buffers so we block here.  By blocking prior to the locking
1098 *	of any vnodes we attempt to avoid the situation where a locked vnode
1099 *	prevents the various system daemons from flushing related buffers.
1100 */
1101
1102void
1103bwillwrite(void)
1104{
1105
1106	if (numdirtybuffers >= hidirtybuffers) {
1107		mtx_lock(&nblock);
1108		while (numdirtybuffers >= hidirtybuffers) {
1109			bd_wakeup(1);
1110			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1111			msleep(&needsbuffer, &nblock,
1112			    (PRIBIO + 4), "flswai", 0);
1113		}
1114		mtx_unlock(&nblock);
1115	}
1116}
1117
1118/*
1119 * Return true if we have too many dirty buffers.
1120 */
1121int
1122buf_dirty_count_severe(void)
1123{
1124
1125	return(numdirtybuffers >= hidirtybuffers);
1126}
1127
1128/*
1129 *	brelse:
1130 *
1131 *	Release a busy buffer and, if requested, free its resources.  The
1132 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1133 *	to be accessed later as a cache entity or reused for other purposes.
1134 */
1135void
1136brelse(struct buf *bp)
1137{
1138	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1139	    bp, bp->b_vp, bp->b_flags);
1140	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1141	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1142
1143	if (bp->b_flags & B_MANAGED) {
1144		bqrelse(bp);
1145		return;
1146	}
1147
1148	if (bp->b_iocmd == BIO_WRITE &&
1149	    (bp->b_ioflags & BIO_ERROR) &&
1150	    !(bp->b_flags & B_INVAL)) {
1151		/*
1152		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1153		 * pages from being scrapped.  If B_INVAL is set then
1154		 * this case is not run and the next case is run to
1155		 * destroy the buffer.  B_INVAL can occur if the buffer
1156		 * is outside the range supported by the underlying device.
1157		 */
1158		bp->b_ioflags &= ~BIO_ERROR;
1159		bdirty(bp);
1160	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1161	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1162		/*
1163		 * Either a failed I/O or we were asked to free or not
1164		 * cache the buffer.
1165		 */
1166		bp->b_flags |= B_INVAL;
1167		if (LIST_FIRST(&bp->b_dep) != NULL)
1168			buf_deallocate(bp);
1169		if (bp->b_flags & B_DELWRI) {
1170			atomic_subtract_int(&numdirtybuffers, 1);
1171			numdirtywakeup(lodirtybuffers);
1172		}
1173		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1174		if ((bp->b_flags & B_VMIO) == 0) {
1175			if (bp->b_bufsize)
1176				allocbuf(bp, 0);
1177			if (bp->b_vp)
1178				brelvp(bp);
1179		}
1180	}
1181
1182	/*
1183	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1184	 * is called with B_DELWRI set, the underlying pages may wind up
1185	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1186	 * because pages associated with a B_DELWRI bp are marked clean.
1187	 *
1188	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1189	 * if B_DELWRI is set.
1190	 *
1191	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1192	 * on pages to return pages to the VM page queues.
1193	 */
1194	if (bp->b_flags & B_DELWRI)
1195		bp->b_flags &= ~B_RELBUF;
1196	else if (vm_page_count_severe()) {
1197		/*
1198		 * XXX This lock may not be necessary since BKGRDINPROG
1199		 * cannot be set while we hold the buf lock, it can only be
1200		 * cleared if it is already pending.
1201		 */
1202		if (bp->b_vp) {
1203			BO_LOCK(bp->b_bufobj);
1204			if (!(bp->b_vflags & BV_BKGRDINPROG))
1205				bp->b_flags |= B_RELBUF;
1206			BO_UNLOCK(bp->b_bufobj);
1207		} else
1208			bp->b_flags |= B_RELBUF;
1209	}
1210
1211	/*
1212	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1213	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1214	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1215	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1216	 *
1217	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1218	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1219	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1220	 *
1221	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1222	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1223	 * the commit state and we cannot afford to lose the buffer. If the
1224	 * buffer has a background write in progress, we need to keep it
1225	 * around to prevent it from being reconstituted and starting a second
1226	 * background write.
1227	 */
1228	if ((bp->b_flags & B_VMIO)
1229	    && !(bp->b_vp->v_mount != NULL &&
1230		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1231		 !vn_isdisk(bp->b_vp, NULL) &&
1232		 (bp->b_flags & B_DELWRI))
1233	    ) {
1234
1235		int i, j, resid;
1236		vm_page_t m;
1237		off_t foff;
1238		vm_pindex_t poff;
1239		vm_object_t obj;
1240
1241		obj = bp->b_bufobj->bo_object;
1242
1243		/*
1244		 * Get the base offset and length of the buffer.  Note that
1245		 * in the VMIO case if the buffer block size is not
1246		 * page-aligned then b_data pointer may not be page-aligned.
1247		 * But our b_pages[] array *IS* page aligned.
1248		 *
1249		 * block sizes less then DEV_BSIZE (usually 512) are not
1250		 * supported due to the page granularity bits (m->valid,
1251		 * m->dirty, etc...).
1252		 *
1253		 * See man buf(9) for more information
1254		 */
1255		resid = bp->b_bufsize;
1256		foff = bp->b_offset;
1257		VM_OBJECT_LOCK(obj);
1258		for (i = 0; i < bp->b_npages; i++) {
1259			int had_bogus = 0;
1260
1261			m = bp->b_pages[i];
1262
1263			/*
1264			 * If we hit a bogus page, fixup *all* the bogus pages
1265			 * now.
1266			 */
1267			if (m == bogus_page) {
1268				poff = OFF_TO_IDX(bp->b_offset);
1269				had_bogus = 1;
1270
1271				for (j = i; j < bp->b_npages; j++) {
1272					vm_page_t mtmp;
1273					mtmp = bp->b_pages[j];
1274					if (mtmp == bogus_page) {
1275						mtmp = vm_page_lookup(obj, poff + j);
1276						if (!mtmp) {
1277							panic("brelse: page missing\n");
1278						}
1279						bp->b_pages[j] = mtmp;
1280					}
1281				}
1282
1283				if ((bp->b_flags & B_INVAL) == 0) {
1284					pmap_qenter(
1285					    trunc_page((vm_offset_t)bp->b_data),
1286					    bp->b_pages, bp->b_npages);
1287				}
1288				m = bp->b_pages[i];
1289			}
1290			if ((bp->b_flags & B_NOCACHE) ||
1291			    (bp->b_ioflags & BIO_ERROR)) {
1292				int poffset = foff & PAGE_MASK;
1293				int presid = resid > (PAGE_SIZE - poffset) ?
1294					(PAGE_SIZE - poffset) : resid;
1295
1296				KASSERT(presid >= 0, ("brelse: extra page"));
1297				vm_page_lock_queues();
1298				vm_page_set_invalid(m, poffset, presid);
1299				vm_page_unlock_queues();
1300				if (had_bogus)
1301					printf("avoided corruption bug in bogus_page/brelse code\n");
1302			}
1303			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1304			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1305		}
1306		VM_OBJECT_UNLOCK(obj);
1307		if (bp->b_flags & (B_INVAL | B_RELBUF))
1308			vfs_vmio_release(bp);
1309
1310	} else if (bp->b_flags & B_VMIO) {
1311
1312		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1313			vfs_vmio_release(bp);
1314		}
1315
1316	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1317		if (bp->b_bufsize != 0)
1318			allocbuf(bp, 0);
1319		if (bp->b_vp != NULL)
1320			brelvp(bp);
1321	}
1322
1323	if (BUF_REFCNT(bp) > 1) {
1324		/* do not release to free list */
1325		BUF_UNLOCK(bp);
1326		return;
1327	}
1328
1329	/* enqueue */
1330	mtx_lock(&bqlock);
1331	/* Handle delayed bremfree() processing. */
1332	if (bp->b_flags & B_REMFREE)
1333		bremfreel(bp);
1334	if (bp->b_qindex != QUEUE_NONE)
1335		panic("brelse: free buffer onto another queue???");
1336
1337	/* buffers with no memory */
1338	if (bp->b_bufsize == 0) {
1339		bp->b_flags |= B_INVAL;
1340		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1341		if (bp->b_vflags & BV_BKGRDINPROG)
1342			panic("losing buffer 1");
1343		if (bp->b_kvasize) {
1344			bp->b_qindex = QUEUE_EMPTYKVA;
1345		} else {
1346			bp->b_qindex = QUEUE_EMPTY;
1347		}
1348		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1349	/* buffers with junk contents */
1350	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1351	    (bp->b_ioflags & BIO_ERROR)) {
1352		bp->b_flags |= B_INVAL;
1353		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1354		if (bp->b_vflags & BV_BKGRDINPROG)
1355			panic("losing buffer 2");
1356		bp->b_qindex = QUEUE_CLEAN;
1357		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1358	/* remaining buffers */
1359	} else {
1360		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1361		    (B_DELWRI|B_NEEDSGIANT))
1362			bp->b_qindex = QUEUE_DIRTY_GIANT;
1363		if (bp->b_flags & B_DELWRI)
1364			bp->b_qindex = QUEUE_DIRTY;
1365		else
1366			bp->b_qindex = QUEUE_CLEAN;
1367		if (bp->b_flags & B_AGE)
1368			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1369		else
1370			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1371	}
1372	mtx_unlock(&bqlock);
1373
1374	/*
1375	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1376	 * placed the buffer on the correct queue.  We must also disassociate
1377	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1378	 * find it.
1379	 */
1380	if (bp->b_flags & B_INVAL) {
1381		if (bp->b_flags & B_DELWRI)
1382			bundirty(bp);
1383		if (bp->b_vp)
1384			brelvp(bp);
1385	}
1386
1387	/*
1388	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1389	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1390	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1391	 * if B_INVAL is set ).
1392	 */
1393
1394	if (!(bp->b_flags & B_DELWRI))
1395		bufcountwakeup();
1396
1397	/*
1398	 * Something we can maybe free or reuse
1399	 */
1400	if (bp->b_bufsize || bp->b_kvasize)
1401		bufspacewakeup();
1402
1403	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1404	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1405		panic("brelse: not dirty");
1406	/* unlock */
1407	BUF_UNLOCK(bp);
1408}
1409
1410/*
1411 * Release a buffer back to the appropriate queue but do not try to free
1412 * it.  The buffer is expected to be used again soon.
1413 *
1414 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1415 * biodone() to requeue an async I/O on completion.  It is also used when
1416 * known good buffers need to be requeued but we think we may need the data
1417 * again soon.
1418 *
1419 * XXX we should be able to leave the B_RELBUF hint set on completion.
1420 */
1421void
1422bqrelse(struct buf *bp)
1423{
1424	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1425	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1426	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1427
1428	if (BUF_REFCNT(bp) > 1) {
1429		/* do not release to free list */
1430		BUF_UNLOCK(bp);
1431		return;
1432	}
1433
1434	if (bp->b_flags & B_MANAGED) {
1435		if (bp->b_flags & B_REMFREE) {
1436			mtx_lock(&bqlock);
1437			bremfreel(bp);
1438			mtx_unlock(&bqlock);
1439		}
1440		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1441		BUF_UNLOCK(bp);
1442		return;
1443	}
1444
1445	mtx_lock(&bqlock);
1446	/* Handle delayed bremfree() processing. */
1447	if (bp->b_flags & B_REMFREE)
1448		bremfreel(bp);
1449	if (bp->b_qindex != QUEUE_NONE)
1450		panic("bqrelse: free buffer onto another queue???");
1451	/* buffers with stale but valid contents */
1452	if (bp->b_flags & B_DELWRI) {
1453		if (bp->b_flags & B_NEEDSGIANT)
1454			bp->b_qindex = QUEUE_DIRTY_GIANT;
1455		else
1456			bp->b_qindex = QUEUE_DIRTY;
1457		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1458	} else {
1459		/*
1460		 * XXX This lock may not be necessary since BKGRDINPROG
1461		 * cannot be set while we hold the buf lock, it can only be
1462		 * cleared if it is already pending.
1463		 */
1464		BO_LOCK(bp->b_bufobj);
1465		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1466			BO_UNLOCK(bp->b_bufobj);
1467			bp->b_qindex = QUEUE_CLEAN;
1468			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1469			    b_freelist);
1470		} else {
1471			/*
1472			 * We are too low on memory, we have to try to free
1473			 * the buffer (most importantly: the wired pages
1474			 * making up its backing store) *now*.
1475			 */
1476			BO_UNLOCK(bp->b_bufobj);
1477			mtx_unlock(&bqlock);
1478			brelse(bp);
1479			return;
1480		}
1481	}
1482	mtx_unlock(&bqlock);
1483
1484	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1485		bufcountwakeup();
1486
1487	/*
1488	 * Something we can maybe free or reuse.
1489	 */
1490	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1491		bufspacewakeup();
1492
1493	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1494	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1495		panic("bqrelse: not dirty");
1496	/* unlock */
1497	BUF_UNLOCK(bp);
1498}
1499
1500/* Give pages used by the bp back to the VM system (where possible) */
1501static void
1502vfs_vmio_release(struct buf *bp)
1503{
1504	int i;
1505	vm_page_t m;
1506
1507	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1508	vm_page_lock_queues();
1509	for (i = 0; i < bp->b_npages; i++) {
1510		m = bp->b_pages[i];
1511		bp->b_pages[i] = NULL;
1512		/*
1513		 * In order to keep page LRU ordering consistent, put
1514		 * everything on the inactive queue.
1515		 */
1516		vm_page_unwire(m, 0);
1517		/*
1518		 * We don't mess with busy pages, it is
1519		 * the responsibility of the process that
1520		 * busied the pages to deal with them.
1521		 */
1522		if ((m->flags & PG_BUSY) || (m->busy != 0))
1523			continue;
1524
1525		if (m->wire_count == 0) {
1526			/*
1527			 * Might as well free the page if we can and it has
1528			 * no valid data.  We also free the page if the
1529			 * buffer was used for direct I/O
1530			 */
1531			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1532			    m->hold_count == 0) {
1533				vm_page_free(m);
1534			} else if (bp->b_flags & B_DIRECT) {
1535				vm_page_try_to_free(m);
1536			} else if (vm_page_count_severe()) {
1537				vm_page_try_to_cache(m);
1538			}
1539		}
1540	}
1541	vm_page_unlock_queues();
1542	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1543	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1544
1545	if (bp->b_bufsize) {
1546		bufspacewakeup();
1547		bp->b_bufsize = 0;
1548	}
1549	bp->b_npages = 0;
1550	bp->b_flags &= ~B_VMIO;
1551	if (bp->b_vp)
1552		brelvp(bp);
1553}
1554
1555/*
1556 * Check to see if a block at a particular lbn is available for a clustered
1557 * write.
1558 */
1559static int
1560vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1561{
1562	struct buf *bpa;
1563	int match;
1564
1565	match = 0;
1566
1567	/* If the buf isn't in core skip it */
1568	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1569		return (0);
1570
1571	/* If the buf is busy we don't want to wait for it */
1572	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1573		return (0);
1574
1575	/* Only cluster with valid clusterable delayed write buffers */
1576	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1577	    (B_DELWRI | B_CLUSTEROK))
1578		goto done;
1579
1580	if (bpa->b_bufsize != size)
1581		goto done;
1582
1583	/*
1584	 * Check to see if it is in the expected place on disk and that the
1585	 * block has been mapped.
1586	 */
1587	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1588		match = 1;
1589done:
1590	BUF_UNLOCK(bpa);
1591	return (match);
1592}
1593
1594/*
1595 *	vfs_bio_awrite:
1596 *
1597 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1598 *	This is much better then the old way of writing only one buffer at
1599 *	a time.  Note that we may not be presented with the buffers in the
1600 *	correct order, so we search for the cluster in both directions.
1601 */
1602int
1603vfs_bio_awrite(struct buf *bp)
1604{
1605	int i;
1606	int j;
1607	daddr_t lblkno = bp->b_lblkno;
1608	struct vnode *vp = bp->b_vp;
1609	int ncl;
1610	int nwritten;
1611	int size;
1612	int maxcl;
1613
1614	/*
1615	 * right now we support clustered writing only to regular files.  If
1616	 * we find a clusterable block we could be in the middle of a cluster
1617	 * rather then at the beginning.
1618	 */
1619	if ((vp->v_type == VREG) &&
1620	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1621	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1622
1623		size = vp->v_mount->mnt_stat.f_iosize;
1624		maxcl = MAXPHYS / size;
1625
1626		VI_LOCK(vp);
1627		for (i = 1; i < maxcl; i++)
1628			if (vfs_bio_clcheck(vp, size, lblkno + i,
1629			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1630				break;
1631
1632		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1633			if (vfs_bio_clcheck(vp, size, lblkno - j,
1634			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1635				break;
1636
1637		VI_UNLOCK(vp);
1638		--j;
1639		ncl = i + j;
1640		/*
1641		 * this is a possible cluster write
1642		 */
1643		if (ncl != 1) {
1644			BUF_UNLOCK(bp);
1645			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1646			return nwritten;
1647		}
1648	}
1649	bremfree(bp);
1650	bp->b_flags |= B_ASYNC;
1651	/*
1652	 * default (old) behavior, writing out only one block
1653	 *
1654	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1655	 */
1656	nwritten = bp->b_bufsize;
1657	(void) bwrite(bp);
1658
1659	return nwritten;
1660}
1661
1662/*
1663 *	getnewbuf:
1664 *
1665 *	Find and initialize a new buffer header, freeing up existing buffers
1666 *	in the bufqueues as necessary.  The new buffer is returned locked.
1667 *
1668 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1669 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1670 *
1671 *	We block if:
1672 *		We have insufficient buffer headers
1673 *		We have insufficient buffer space
1674 *		buffer_map is too fragmented ( space reservation fails )
1675 *		If we have to flush dirty buffers ( but we try to avoid this )
1676 *
1677 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1678 *	Instead we ask the buf daemon to do it for us.  We attempt to
1679 *	avoid piecemeal wakeups of the pageout daemon.
1680 */
1681
1682static struct buf *
1683getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1684{
1685	struct buf *bp;
1686	struct buf *nbp;
1687	int defrag = 0;
1688	int nqindex;
1689	static int flushingbufs;
1690
1691	/*
1692	 * We can't afford to block since we might be holding a vnode lock,
1693	 * which may prevent system daemons from running.  We deal with
1694	 * low-memory situations by proactively returning memory and running
1695	 * async I/O rather then sync I/O.
1696	 */
1697
1698	atomic_add_int(&getnewbufcalls, 1);
1699	atomic_subtract_int(&getnewbufrestarts, 1);
1700restart:
1701	atomic_add_int(&getnewbufrestarts, 1);
1702
1703	/*
1704	 * Setup for scan.  If we do not have enough free buffers,
1705	 * we setup a degenerate case that immediately fails.  Note
1706	 * that if we are specially marked process, we are allowed to
1707	 * dip into our reserves.
1708	 *
1709	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1710	 *
1711	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1712	 * However, there are a number of cases (defragging, reusing, ...)
1713	 * where we cannot backup.
1714	 */
1715	mtx_lock(&bqlock);
1716	nqindex = QUEUE_EMPTYKVA;
1717	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1718
1719	if (nbp == NULL) {
1720		/*
1721		 * If no EMPTYKVA buffers and we are either
1722		 * defragging or reusing, locate a CLEAN buffer
1723		 * to free or reuse.  If bufspace useage is low
1724		 * skip this step so we can allocate a new buffer.
1725		 */
1726		if (defrag || bufspace >= lobufspace) {
1727			nqindex = QUEUE_CLEAN;
1728			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1729		}
1730
1731		/*
1732		 * If we could not find or were not allowed to reuse a
1733		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1734		 * buffer.  We can only use an EMPTY buffer if allocating
1735		 * its KVA would not otherwise run us out of buffer space.
1736		 */
1737		if (nbp == NULL && defrag == 0 &&
1738		    bufspace + maxsize < hibufspace) {
1739			nqindex = QUEUE_EMPTY;
1740			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1741		}
1742	}
1743
1744	/*
1745	 * Run scan, possibly freeing data and/or kva mappings on the fly
1746	 * depending.
1747	 */
1748
1749	while ((bp = nbp) != NULL) {
1750		int qindex = nqindex;
1751
1752		/*
1753		 * Calculate next bp ( we can only use it if we do not block
1754		 * or do other fancy things ).
1755		 */
1756		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1757			switch(qindex) {
1758			case QUEUE_EMPTY:
1759				nqindex = QUEUE_EMPTYKVA;
1760				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1761					break;
1762				/* FALLTHROUGH */
1763			case QUEUE_EMPTYKVA:
1764				nqindex = QUEUE_CLEAN;
1765				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1766					break;
1767				/* FALLTHROUGH */
1768			case QUEUE_CLEAN:
1769				/*
1770				 * nbp is NULL.
1771				 */
1772				break;
1773			}
1774		}
1775		/*
1776		 * If we are defragging then we need a buffer with
1777		 * b_kvasize != 0.  XXX this situation should no longer
1778		 * occur, if defrag is non-zero the buffer's b_kvasize
1779		 * should also be non-zero at this point.  XXX
1780		 */
1781		if (defrag && bp->b_kvasize == 0) {
1782			printf("Warning: defrag empty buffer %p\n", bp);
1783			continue;
1784		}
1785
1786		/*
1787		 * Start freeing the bp.  This is somewhat involved.  nbp
1788		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1789		 */
1790		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1791			continue;
1792		if (bp->b_vp) {
1793			BO_LOCK(bp->b_bufobj);
1794			if (bp->b_vflags & BV_BKGRDINPROG) {
1795				BO_UNLOCK(bp->b_bufobj);
1796				BUF_UNLOCK(bp);
1797				continue;
1798			}
1799			BO_UNLOCK(bp->b_bufobj);
1800		}
1801		CTR6(KTR_BUF,
1802		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1803		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1804		    bp->b_kvasize, bp->b_bufsize, qindex);
1805
1806		/*
1807		 * Sanity Checks
1808		 */
1809		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1810
1811		/*
1812		 * Note: we no longer distinguish between VMIO and non-VMIO
1813		 * buffers.
1814		 */
1815
1816		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1817
1818		bremfreel(bp);
1819		mtx_unlock(&bqlock);
1820
1821		if (qindex == QUEUE_CLEAN) {
1822			if (bp->b_flags & B_VMIO) {
1823				bp->b_flags &= ~B_ASYNC;
1824				vfs_vmio_release(bp);
1825			}
1826			if (bp->b_vp)
1827				brelvp(bp);
1828		}
1829
1830		/*
1831		 * NOTE:  nbp is now entirely invalid.  We can only restart
1832		 * the scan from this point on.
1833		 *
1834		 * Get the rest of the buffer freed up.  b_kva* is still
1835		 * valid after this operation.
1836		 */
1837
1838		if (bp->b_rcred != NOCRED) {
1839			crfree(bp->b_rcred);
1840			bp->b_rcred = NOCRED;
1841		}
1842		if (bp->b_wcred != NOCRED) {
1843			crfree(bp->b_wcred);
1844			bp->b_wcred = NOCRED;
1845		}
1846		if (LIST_FIRST(&bp->b_dep) != NULL)
1847			buf_deallocate(bp);
1848		if (bp->b_vflags & BV_BKGRDINPROG)
1849			panic("losing buffer 3");
1850		KASSERT(bp->b_vp == NULL,
1851		    ("bp: %p still has vnode %p.  qindex: %d",
1852		    bp, bp->b_vp, qindex));
1853		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1854		   ("bp: %p still on a buffer list. xflags %X",
1855		    bp, bp->b_xflags));
1856
1857		if (bp->b_bufsize)
1858			allocbuf(bp, 0);
1859
1860		bp->b_flags = 0;
1861		bp->b_ioflags = 0;
1862		bp->b_xflags = 0;
1863		bp->b_vflags = 0;
1864		bp->b_vp = NULL;
1865		bp->b_blkno = bp->b_lblkno = 0;
1866		bp->b_offset = NOOFFSET;
1867		bp->b_iodone = 0;
1868		bp->b_error = 0;
1869		bp->b_resid = 0;
1870		bp->b_bcount = 0;
1871		bp->b_npages = 0;
1872		bp->b_dirtyoff = bp->b_dirtyend = 0;
1873		bp->b_bufobj = NULL;
1874		bp->b_pin_count = 0;
1875		bp->b_fsprivate1 = NULL;
1876		bp->b_fsprivate2 = NULL;
1877		bp->b_fsprivate3 = NULL;
1878
1879		LIST_INIT(&bp->b_dep);
1880
1881		/*
1882		 * If we are defragging then free the buffer.
1883		 */
1884		if (defrag) {
1885			bp->b_flags |= B_INVAL;
1886			bfreekva(bp);
1887			brelse(bp);
1888			defrag = 0;
1889			goto restart;
1890		}
1891
1892		/*
1893		 * Notify any waiters for the buffer lock about
1894		 * identity change by freeing the buffer.
1895		 */
1896		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp) > 0) {
1897			bp->b_flags |= B_INVAL;
1898			bfreekva(bp);
1899			brelse(bp);
1900			goto restart;
1901		}
1902
1903		/*
1904		 * If we are overcomitted then recover the buffer and its
1905		 * KVM space.  This occurs in rare situations when multiple
1906		 * processes are blocked in getnewbuf() or allocbuf().
1907		 */
1908		if (bufspace >= hibufspace)
1909			flushingbufs = 1;
1910		if (flushingbufs && bp->b_kvasize != 0) {
1911			bp->b_flags |= B_INVAL;
1912			bfreekva(bp);
1913			brelse(bp);
1914			goto restart;
1915		}
1916		if (bufspace < lobufspace)
1917			flushingbufs = 0;
1918		break;
1919	}
1920
1921	/*
1922	 * If we exhausted our list, sleep as appropriate.  We may have to
1923	 * wakeup various daemons and write out some dirty buffers.
1924	 *
1925	 * Generally we are sleeping due to insufficient buffer space.
1926	 */
1927
1928	if (bp == NULL) {
1929		int flags;
1930		char *waitmsg;
1931
1932		if (defrag) {
1933			flags = VFS_BIO_NEED_BUFSPACE;
1934			waitmsg = "nbufkv";
1935		} else if (bufspace >= hibufspace) {
1936			waitmsg = "nbufbs";
1937			flags = VFS_BIO_NEED_BUFSPACE;
1938		} else {
1939			waitmsg = "newbuf";
1940			flags = VFS_BIO_NEED_ANY;
1941		}
1942		mtx_lock(&nblock);
1943		needsbuffer |= flags;
1944		mtx_unlock(&nblock);
1945		mtx_unlock(&bqlock);
1946
1947		bd_speedup();	/* heeeelp */
1948
1949		mtx_lock(&nblock);
1950		while (needsbuffer & flags) {
1951			if (msleep(&needsbuffer, &nblock,
1952			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1953				mtx_unlock(&nblock);
1954				return (NULL);
1955			}
1956		}
1957		mtx_unlock(&nblock);
1958	} else {
1959		/*
1960		 * We finally have a valid bp.  We aren't quite out of the
1961		 * woods, we still have to reserve kva space.  In order
1962		 * to keep fragmentation sane we only allocate kva in
1963		 * BKVASIZE chunks.
1964		 */
1965		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1966
1967		if (maxsize != bp->b_kvasize) {
1968			vm_offset_t addr = 0;
1969
1970			bfreekva(bp);
1971
1972			vm_map_lock(buffer_map);
1973			if (vm_map_findspace(buffer_map,
1974				vm_map_min(buffer_map), maxsize, &addr)) {
1975				/*
1976				 * Uh oh.  Buffer map is to fragmented.  We
1977				 * must defragment the map.
1978				 */
1979				atomic_add_int(&bufdefragcnt, 1);
1980				vm_map_unlock(buffer_map);
1981				defrag = 1;
1982				bp->b_flags |= B_INVAL;
1983				brelse(bp);
1984				goto restart;
1985			}
1986			if (addr) {
1987				vm_map_insert(buffer_map, NULL, 0,
1988					addr, addr + maxsize,
1989					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1990
1991				bp->b_kvabase = (caddr_t) addr;
1992				bp->b_kvasize = maxsize;
1993				atomic_add_int(&bufspace, bp->b_kvasize);
1994				atomic_add_int(&bufreusecnt, 1);
1995			}
1996			vm_map_unlock(buffer_map);
1997		}
1998		bp->b_saveaddr = bp->b_kvabase;
1999		bp->b_data = bp->b_saveaddr;
2000	}
2001	return(bp);
2002}
2003
2004/*
2005 *	buf_daemon:
2006 *
2007 *	buffer flushing daemon.  Buffers are normally flushed by the
2008 *	update daemon but if it cannot keep up this process starts to
2009 *	take the load in an attempt to prevent getnewbuf() from blocking.
2010 */
2011
2012static struct kproc_desc buf_kp = {
2013	"bufdaemon",
2014	buf_daemon,
2015	&bufdaemonproc
2016};
2017SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2018
2019static void
2020buf_daemon()
2021{
2022
2023	/*
2024	 * This process needs to be suspended prior to shutdown sync.
2025	 */
2026	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2027	    SHUTDOWN_PRI_LAST);
2028
2029	/*
2030	 * This process is allowed to take the buffer cache to the limit
2031	 */
2032	curthread->td_pflags |= TDP_NORUNNINGBUF;
2033	mtx_lock(&bdlock);
2034	for (;;) {
2035		bd_request = 0;
2036		mtx_unlock(&bdlock);
2037
2038		kthread_suspend_check(bufdaemonproc);
2039
2040		/*
2041		 * Do the flush.  Limit the amount of in-transit I/O we
2042		 * allow to build up, otherwise we would completely saturate
2043		 * the I/O system.  Wakeup any waiting processes before we
2044		 * normally would so they can run in parallel with our drain.
2045		 */
2046		while (numdirtybuffers > lodirtybuffers) {
2047			int flushed;
2048
2049			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2050			/* The list empty check here is slightly racy */
2051			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2052				mtx_lock(&Giant);
2053				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2054				mtx_unlock(&Giant);
2055			}
2056			if (flushed == 0) {
2057				/*
2058				 * Could not find any buffers without rollback
2059				 * dependencies, so just write the first one
2060				 * in the hopes of eventually making progress.
2061				 */
2062				flushbufqueues(QUEUE_DIRTY, 1);
2063				if (!TAILQ_EMPTY(
2064				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2065					mtx_lock(&Giant);
2066					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2067					mtx_unlock(&Giant);
2068				}
2069				break;
2070			}
2071			uio_yield();
2072		}
2073
2074		/*
2075		 * Only clear bd_request if we have reached our low water
2076		 * mark.  The buf_daemon normally waits 1 second and
2077		 * then incrementally flushes any dirty buffers that have
2078		 * built up, within reason.
2079		 *
2080		 * If we were unable to hit our low water mark and couldn't
2081		 * find any flushable buffers, we sleep half a second.
2082		 * Otherwise we loop immediately.
2083		 */
2084		mtx_lock(&bdlock);
2085		if (numdirtybuffers <= lodirtybuffers) {
2086			/*
2087			 * We reached our low water mark, reset the
2088			 * request and sleep until we are needed again.
2089			 * The sleep is just so the suspend code works.
2090			 */
2091			bd_request = 0;
2092			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2093		} else {
2094			/*
2095			 * We couldn't find any flushable dirty buffers but
2096			 * still have too many dirty buffers, we
2097			 * have to sleep and try again.  (rare)
2098			 */
2099			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2100		}
2101	}
2102}
2103
2104/*
2105 *	flushbufqueues:
2106 *
2107 *	Try to flush a buffer in the dirty queue.  We must be careful to
2108 *	free up B_INVAL buffers instead of write them, which NFS is
2109 *	particularly sensitive to.
2110 */
2111static int flushwithdeps = 0;
2112SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2113    0, "Number of buffers flushed with dependecies that require rollbacks");
2114
2115static int
2116flushbufqueues(int queue, int flushdeps)
2117{
2118	struct thread *td = curthread;
2119	struct buf sentinel;
2120	struct vnode *vp;
2121	struct mount *mp;
2122	struct buf *bp;
2123	int hasdeps;
2124	int flushed;
2125	int target;
2126
2127	target = numdirtybuffers - lodirtybuffers;
2128	if (flushdeps && target > 2)
2129		target /= 2;
2130	flushed = 0;
2131	bp = NULL;
2132	mtx_lock(&bqlock);
2133	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2134	while (flushed != target) {
2135		bp = TAILQ_FIRST(&bufqueues[queue]);
2136		if (bp == &sentinel)
2137			break;
2138		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2139		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2140
2141		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2142			continue;
2143		if (bp->b_pin_count > 0) {
2144			BUF_UNLOCK(bp);
2145			continue;
2146		}
2147		BO_LOCK(bp->b_bufobj);
2148		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2149		    (bp->b_flags & B_DELWRI) == 0) {
2150			BO_UNLOCK(bp->b_bufobj);
2151			BUF_UNLOCK(bp);
2152			continue;
2153		}
2154		BO_UNLOCK(bp->b_bufobj);
2155		if (bp->b_flags & B_INVAL) {
2156			bremfreel(bp);
2157			mtx_unlock(&bqlock);
2158			brelse(bp);
2159			flushed++;
2160			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2161			mtx_lock(&bqlock);
2162			continue;
2163		}
2164
2165		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2166			if (flushdeps == 0) {
2167				BUF_UNLOCK(bp);
2168				continue;
2169			}
2170			hasdeps = 1;
2171		} else
2172			hasdeps = 0;
2173		/*
2174		 * We must hold the lock on a vnode before writing
2175		 * one of its buffers. Otherwise we may confuse, or
2176		 * in the case of a snapshot vnode, deadlock the
2177		 * system.
2178		 *
2179		 * The lock order here is the reverse of the normal
2180		 * of vnode followed by buf lock.  This is ok because
2181		 * the NOWAIT will prevent deadlock.
2182		 */
2183		vp = bp->b_vp;
2184		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2185			BUF_UNLOCK(bp);
2186			continue;
2187		}
2188		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2189			mtx_unlock(&bqlock);
2190			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2191			    bp, bp->b_vp, bp->b_flags);
2192			vfs_bio_awrite(bp);
2193			vn_finished_write(mp);
2194			VOP_UNLOCK(vp, 0, td);
2195			flushwithdeps += hasdeps;
2196			flushed++;
2197			waitrunningbufspace();
2198			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2199			mtx_lock(&bqlock);
2200			continue;
2201		}
2202		vn_finished_write(mp);
2203		BUF_UNLOCK(bp);
2204	}
2205	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2206	mtx_unlock(&bqlock);
2207	return (flushed);
2208}
2209
2210/*
2211 * Check to see if a block is currently memory resident.
2212 */
2213struct buf *
2214incore(struct bufobj *bo, daddr_t blkno)
2215{
2216	struct buf *bp;
2217
2218	BO_LOCK(bo);
2219	bp = gbincore(bo, blkno);
2220	BO_UNLOCK(bo);
2221	return (bp);
2222}
2223
2224/*
2225 * Returns true if no I/O is needed to access the
2226 * associated VM object.  This is like incore except
2227 * it also hunts around in the VM system for the data.
2228 */
2229
2230static int
2231inmem(struct vnode * vp, daddr_t blkno)
2232{
2233	vm_object_t obj;
2234	vm_offset_t toff, tinc, size;
2235	vm_page_t m;
2236	vm_ooffset_t off;
2237
2238	ASSERT_VOP_LOCKED(vp, "inmem");
2239
2240	if (incore(&vp->v_bufobj, blkno))
2241		return 1;
2242	if (vp->v_mount == NULL)
2243		return 0;
2244	obj = vp->v_object;
2245	if (obj == NULL)
2246		return (0);
2247
2248	size = PAGE_SIZE;
2249	if (size > vp->v_mount->mnt_stat.f_iosize)
2250		size = vp->v_mount->mnt_stat.f_iosize;
2251	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2252
2253	VM_OBJECT_LOCK(obj);
2254	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2255		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2256		if (!m)
2257			goto notinmem;
2258		tinc = size;
2259		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2260			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2261		if (vm_page_is_valid(m,
2262		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2263			goto notinmem;
2264	}
2265	VM_OBJECT_UNLOCK(obj);
2266	return 1;
2267
2268notinmem:
2269	VM_OBJECT_UNLOCK(obj);
2270	return (0);
2271}
2272
2273/*
2274 *	vfs_setdirty:
2275 *
2276 *	Sets the dirty range for a buffer based on the status of the dirty
2277 *	bits in the pages comprising the buffer.
2278 *
2279 *	The range is limited to the size of the buffer.
2280 *
2281 *	This routine is primarily used by NFS, but is generalized for the
2282 *	B_VMIO case.
2283 */
2284static void
2285vfs_setdirty(struct buf *bp)
2286{
2287	int i;
2288	vm_object_t object;
2289
2290	/*
2291	 * Degenerate case - empty buffer
2292	 */
2293
2294	if (bp->b_bufsize == 0)
2295		return;
2296
2297	/*
2298	 * We qualify the scan for modified pages on whether the
2299	 * object has been flushed yet.
2300	 */
2301
2302	if ((bp->b_flags & B_VMIO) == 0)
2303		return;
2304
2305	object = bp->b_pages[0]->object;
2306	VM_OBJECT_LOCK(object);
2307	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2308		vm_offset_t boffset;
2309		vm_offset_t eoffset;
2310
2311		vm_page_lock_queues();
2312		/*
2313		 * test the pages to see if they have been modified directly
2314		 * by users through the VM system.
2315		 */
2316		for (i = 0; i < bp->b_npages; i++)
2317			vm_page_test_dirty(bp->b_pages[i]);
2318
2319		/*
2320		 * Calculate the encompassing dirty range, boffset and eoffset,
2321		 * (eoffset - boffset) bytes.
2322		 */
2323
2324		for (i = 0; i < bp->b_npages; i++) {
2325			if (bp->b_pages[i]->dirty)
2326				break;
2327		}
2328		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2329
2330		for (i = bp->b_npages - 1; i >= 0; --i) {
2331			if (bp->b_pages[i]->dirty) {
2332				break;
2333			}
2334		}
2335		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2336
2337		vm_page_unlock_queues();
2338		/*
2339		 * Fit it to the buffer.
2340		 */
2341
2342		if (eoffset > bp->b_bcount)
2343			eoffset = bp->b_bcount;
2344
2345		/*
2346		 * If we have a good dirty range, merge with the existing
2347		 * dirty range.
2348		 */
2349
2350		if (boffset < eoffset) {
2351			if (bp->b_dirtyoff > boffset)
2352				bp->b_dirtyoff = boffset;
2353			if (bp->b_dirtyend < eoffset)
2354				bp->b_dirtyend = eoffset;
2355		}
2356	}
2357	VM_OBJECT_UNLOCK(object);
2358}
2359
2360/*
2361 *	getblk:
2362 *
2363 *	Get a block given a specified block and offset into a file/device.
2364 *	The buffers B_DONE bit will be cleared on return, making it almost
2365 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2366 *	return.  The caller should clear B_INVAL prior to initiating a
2367 *	READ.
2368 *
2369 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2370 *	an existing buffer.
2371 *
2372 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2373 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2374 *	and then cleared based on the backing VM.  If the previous buffer is
2375 *	non-0-sized but invalid, B_CACHE will be cleared.
2376 *
2377 *	If getblk() must create a new buffer, the new buffer is returned with
2378 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2379 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2380 *	backing VM.
2381 *
2382 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2383 *	B_CACHE bit is clear.
2384 *
2385 *	What this means, basically, is that the caller should use B_CACHE to
2386 *	determine whether the buffer is fully valid or not and should clear
2387 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2388 *	the buffer by loading its data area with something, the caller needs
2389 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2390 *	the caller should set B_CACHE ( as an optimization ), else the caller
2391 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2392 *	a write attempt or if it was a successfull read.  If the caller
2393 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2394 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2395 */
2396struct buf *
2397getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2398    int flags)
2399{
2400	struct buf *bp;
2401	struct bufobj *bo;
2402	int error;
2403
2404	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2405	ASSERT_VOP_LOCKED(vp, "getblk");
2406	if (size > MAXBSIZE)
2407		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2408
2409	bo = &vp->v_bufobj;
2410loop:
2411	/*
2412	 * Block if we are low on buffers.   Certain processes are allowed
2413	 * to completely exhaust the buffer cache.
2414         *
2415         * If this check ever becomes a bottleneck it may be better to
2416         * move it into the else, when gbincore() fails.  At the moment
2417         * it isn't a problem.
2418	 *
2419	 * XXX remove if 0 sections (clean this up after its proven)
2420         */
2421	if (numfreebuffers == 0) {
2422		if (curthread == PCPU_GET(idlethread))
2423			return NULL;
2424		mtx_lock(&nblock);
2425		needsbuffer |= VFS_BIO_NEED_ANY;
2426		mtx_unlock(&nblock);
2427	}
2428
2429	VI_LOCK(vp);
2430	bp = gbincore(bo, blkno);
2431	if (bp != NULL) {
2432		int lockflags;
2433		/*
2434		 * Buffer is in-core.  If the buffer is not busy, it must
2435		 * be on a queue.
2436		 */
2437		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2438
2439		if (flags & GB_LOCK_NOWAIT)
2440			lockflags |= LK_NOWAIT;
2441
2442		error = BUF_TIMELOCK(bp, lockflags,
2443		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2444
2445		/*
2446		 * If we slept and got the lock we have to restart in case
2447		 * the buffer changed identities.
2448		 */
2449		if (error == ENOLCK)
2450			goto loop;
2451		/* We timed out or were interrupted. */
2452		else if (error)
2453			return (NULL);
2454
2455		/*
2456		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2457		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2458		 * and for a VMIO buffer B_CACHE is adjusted according to the
2459		 * backing VM cache.
2460		 */
2461		if (bp->b_flags & B_INVAL)
2462			bp->b_flags &= ~B_CACHE;
2463		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2464			bp->b_flags |= B_CACHE;
2465		bremfree(bp);
2466
2467		/*
2468		 * check for size inconsistancies for non-VMIO case.
2469		 */
2470
2471		if (bp->b_bcount != size) {
2472			if ((bp->b_flags & B_VMIO) == 0 ||
2473			    (size > bp->b_kvasize)) {
2474				if (bp->b_flags & B_DELWRI) {
2475					/*
2476					 * If buffer is pinned and caller does
2477					 * not want sleep  waiting for it to be
2478					 * unpinned, bail out
2479					 * */
2480					if (bp->b_pin_count > 0) {
2481						if (flags & GB_LOCK_NOWAIT) {
2482							bqrelse(bp);
2483							return (NULL);
2484						} else {
2485							bunpin_wait(bp);
2486						}
2487					}
2488					bp->b_flags |= B_NOCACHE;
2489					bwrite(bp);
2490				} else {
2491					if (LIST_FIRST(&bp->b_dep) == NULL) {
2492						bp->b_flags |= B_RELBUF;
2493						brelse(bp);
2494					} else {
2495						bp->b_flags |= B_NOCACHE;
2496						bwrite(bp);
2497					}
2498				}
2499				goto loop;
2500			}
2501		}
2502
2503		/*
2504		 * If the size is inconsistant in the VMIO case, we can resize
2505		 * the buffer.  This might lead to B_CACHE getting set or
2506		 * cleared.  If the size has not changed, B_CACHE remains
2507		 * unchanged from its previous state.
2508		 */
2509
2510		if (bp->b_bcount != size)
2511			allocbuf(bp, size);
2512
2513		KASSERT(bp->b_offset != NOOFFSET,
2514		    ("getblk: no buffer offset"));
2515
2516		/*
2517		 * A buffer with B_DELWRI set and B_CACHE clear must
2518		 * be committed before we can return the buffer in
2519		 * order to prevent the caller from issuing a read
2520		 * ( due to B_CACHE not being set ) and overwriting
2521		 * it.
2522		 *
2523		 * Most callers, including NFS and FFS, need this to
2524		 * operate properly either because they assume they
2525		 * can issue a read if B_CACHE is not set, or because
2526		 * ( for example ) an uncached B_DELWRI might loop due
2527		 * to softupdates re-dirtying the buffer.  In the latter
2528		 * case, B_CACHE is set after the first write completes,
2529		 * preventing further loops.
2530		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2531		 * above while extending the buffer, we cannot allow the
2532		 * buffer to remain with B_CACHE set after the write
2533		 * completes or it will represent a corrupt state.  To
2534		 * deal with this we set B_NOCACHE to scrap the buffer
2535		 * after the write.
2536		 *
2537		 * We might be able to do something fancy, like setting
2538		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2539		 * so the below call doesn't set B_CACHE, but that gets real
2540		 * confusing.  This is much easier.
2541		 */
2542
2543		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2544			bp->b_flags |= B_NOCACHE;
2545			bwrite(bp);
2546			goto loop;
2547		}
2548		bp->b_flags &= ~B_DONE;
2549	} else {
2550		int bsize, maxsize, vmio;
2551		off_t offset;
2552
2553		/*
2554		 * Buffer is not in-core, create new buffer.  The buffer
2555		 * returned by getnewbuf() is locked.  Note that the returned
2556		 * buffer is also considered valid (not marked B_INVAL).
2557		 */
2558		VI_UNLOCK(vp);
2559		/*
2560		 * If the user does not want us to create the buffer, bail out
2561		 * here.
2562		 */
2563		if (flags & GB_NOCREAT)
2564			return NULL;
2565		bsize = bo->bo_bsize;
2566		offset = blkno * bsize;
2567		vmio = vp->v_object != NULL;
2568		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2569		maxsize = imax(maxsize, bsize);
2570
2571		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2572		if (bp == NULL) {
2573			if (slpflag || slptimeo)
2574				return NULL;
2575			goto loop;
2576		}
2577
2578		/*
2579		 * This code is used to make sure that a buffer is not
2580		 * created while the getnewbuf routine is blocked.
2581		 * This can be a problem whether the vnode is locked or not.
2582		 * If the buffer is created out from under us, we have to
2583		 * throw away the one we just created.
2584		 *
2585		 * Note: this must occur before we associate the buffer
2586		 * with the vp especially considering limitations in
2587		 * the splay tree implementation when dealing with duplicate
2588		 * lblkno's.
2589		 */
2590		BO_LOCK(bo);
2591		if (gbincore(bo, blkno)) {
2592			BO_UNLOCK(bo);
2593			bp->b_flags |= B_INVAL;
2594			brelse(bp);
2595			goto loop;
2596		}
2597
2598		/*
2599		 * Insert the buffer into the hash, so that it can
2600		 * be found by incore.
2601		 */
2602		bp->b_blkno = bp->b_lblkno = blkno;
2603		bp->b_offset = offset;
2604		bgetvp(vp, bp);
2605		BO_UNLOCK(bo);
2606
2607		/*
2608		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2609		 * buffer size starts out as 0, B_CACHE will be set by
2610		 * allocbuf() for the VMIO case prior to it testing the
2611		 * backing store for validity.
2612		 */
2613
2614		if (vmio) {
2615			bp->b_flags |= B_VMIO;
2616#if defined(VFS_BIO_DEBUG)
2617			if (vn_canvmio(vp) != TRUE)
2618				printf("getblk: VMIO on vnode type %d\n",
2619					vp->v_type);
2620#endif
2621			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2622			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2623			    bp, vp->v_object, bp->b_bufobj->bo_object));
2624		} else {
2625			bp->b_flags &= ~B_VMIO;
2626			KASSERT(bp->b_bufobj->bo_object == NULL,
2627			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2628			    bp, bp->b_bufobj->bo_object));
2629		}
2630
2631		allocbuf(bp, size);
2632		bp->b_flags &= ~B_DONE;
2633	}
2634	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2635	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2636	KASSERT(bp->b_bufobj == bo,
2637	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2638	return (bp);
2639}
2640
2641/*
2642 * Get an empty, disassociated buffer of given size.  The buffer is initially
2643 * set to B_INVAL.
2644 */
2645struct buf *
2646geteblk(int size)
2647{
2648	struct buf *bp;
2649	int maxsize;
2650
2651	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2652	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2653		continue;
2654	allocbuf(bp, size);
2655	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2656	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2657	return (bp);
2658}
2659
2660
2661/*
2662 * This code constitutes the buffer memory from either anonymous system
2663 * memory (in the case of non-VMIO operations) or from an associated
2664 * VM object (in the case of VMIO operations).  This code is able to
2665 * resize a buffer up or down.
2666 *
2667 * Note that this code is tricky, and has many complications to resolve
2668 * deadlock or inconsistant data situations.  Tread lightly!!!
2669 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2670 * the caller.  Calling this code willy nilly can result in the loss of data.
2671 *
2672 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2673 * B_CACHE for the non-VMIO case.
2674 */
2675
2676int
2677allocbuf(struct buf *bp, int size)
2678{
2679	int newbsize, mbsize;
2680	int i;
2681
2682	if (BUF_REFCNT(bp) == 0)
2683		panic("allocbuf: buffer not busy");
2684
2685	if (bp->b_kvasize < size)
2686		panic("allocbuf: buffer too small");
2687
2688	if ((bp->b_flags & B_VMIO) == 0) {
2689		caddr_t origbuf;
2690		int origbufsize;
2691		/*
2692		 * Just get anonymous memory from the kernel.  Don't
2693		 * mess with B_CACHE.
2694		 */
2695		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2696		if (bp->b_flags & B_MALLOC)
2697			newbsize = mbsize;
2698		else
2699			newbsize = round_page(size);
2700
2701		if (newbsize < bp->b_bufsize) {
2702			/*
2703			 * malloced buffers are not shrunk
2704			 */
2705			if (bp->b_flags & B_MALLOC) {
2706				if (newbsize) {
2707					bp->b_bcount = size;
2708				} else {
2709					free(bp->b_data, M_BIOBUF);
2710					if (bp->b_bufsize) {
2711						atomic_subtract_int(
2712						    &bufmallocspace,
2713						    bp->b_bufsize);
2714						bufspacewakeup();
2715						bp->b_bufsize = 0;
2716					}
2717					bp->b_saveaddr = bp->b_kvabase;
2718					bp->b_data = bp->b_saveaddr;
2719					bp->b_bcount = 0;
2720					bp->b_flags &= ~B_MALLOC;
2721				}
2722				return 1;
2723			}
2724			vm_hold_free_pages(
2725			    bp,
2726			    (vm_offset_t) bp->b_data + newbsize,
2727			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2728		} else if (newbsize > bp->b_bufsize) {
2729			/*
2730			 * We only use malloced memory on the first allocation.
2731			 * and revert to page-allocated memory when the buffer
2732			 * grows.
2733			 */
2734			/*
2735			 * There is a potential smp race here that could lead
2736			 * to bufmallocspace slightly passing the max.  It
2737			 * is probably extremely rare and not worth worrying
2738			 * over.
2739			 */
2740			if ( (bufmallocspace < maxbufmallocspace) &&
2741				(bp->b_bufsize == 0) &&
2742				(mbsize <= PAGE_SIZE/2)) {
2743
2744				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2745				bp->b_bufsize = mbsize;
2746				bp->b_bcount = size;
2747				bp->b_flags |= B_MALLOC;
2748				atomic_add_int(&bufmallocspace, mbsize);
2749				return 1;
2750			}
2751			origbuf = NULL;
2752			origbufsize = 0;
2753			/*
2754			 * If the buffer is growing on its other-than-first allocation,
2755			 * then we revert to the page-allocation scheme.
2756			 */
2757			if (bp->b_flags & B_MALLOC) {
2758				origbuf = bp->b_data;
2759				origbufsize = bp->b_bufsize;
2760				bp->b_data = bp->b_kvabase;
2761				if (bp->b_bufsize) {
2762					atomic_subtract_int(&bufmallocspace,
2763					    bp->b_bufsize);
2764					bufspacewakeup();
2765					bp->b_bufsize = 0;
2766				}
2767				bp->b_flags &= ~B_MALLOC;
2768				newbsize = round_page(newbsize);
2769			}
2770			vm_hold_load_pages(
2771			    bp,
2772			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2773			    (vm_offset_t) bp->b_data + newbsize);
2774			if (origbuf) {
2775				bcopy(origbuf, bp->b_data, origbufsize);
2776				free(origbuf, M_BIOBUF);
2777			}
2778		}
2779	} else {
2780		int desiredpages;
2781
2782		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2783		desiredpages = (size == 0) ? 0 :
2784			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2785
2786		if (bp->b_flags & B_MALLOC)
2787			panic("allocbuf: VMIO buffer can't be malloced");
2788		/*
2789		 * Set B_CACHE initially if buffer is 0 length or will become
2790		 * 0-length.
2791		 */
2792		if (size == 0 || bp->b_bufsize == 0)
2793			bp->b_flags |= B_CACHE;
2794
2795		if (newbsize < bp->b_bufsize) {
2796			/*
2797			 * DEV_BSIZE aligned new buffer size is less then the
2798			 * DEV_BSIZE aligned existing buffer size.  Figure out
2799			 * if we have to remove any pages.
2800			 */
2801			if (desiredpages < bp->b_npages) {
2802				vm_page_t m;
2803
2804				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2805				vm_page_lock_queues();
2806				for (i = desiredpages; i < bp->b_npages; i++) {
2807					/*
2808					 * the page is not freed here -- it
2809					 * is the responsibility of
2810					 * vnode_pager_setsize
2811					 */
2812					m = bp->b_pages[i];
2813					KASSERT(m != bogus_page,
2814					    ("allocbuf: bogus page found"));
2815					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2816						vm_page_lock_queues();
2817
2818					bp->b_pages[i] = NULL;
2819					vm_page_unwire(m, 0);
2820				}
2821				vm_page_unlock_queues();
2822				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2823				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2824				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2825				bp->b_npages = desiredpages;
2826			}
2827		} else if (size > bp->b_bcount) {
2828			/*
2829			 * We are growing the buffer, possibly in a
2830			 * byte-granular fashion.
2831			 */
2832			struct vnode *vp;
2833			vm_object_t obj;
2834			vm_offset_t toff;
2835			vm_offset_t tinc;
2836
2837			/*
2838			 * Step 1, bring in the VM pages from the object,
2839			 * allocating them if necessary.  We must clear
2840			 * B_CACHE if these pages are not valid for the
2841			 * range covered by the buffer.
2842			 */
2843
2844			vp = bp->b_vp;
2845			obj = bp->b_bufobj->bo_object;
2846
2847			VM_OBJECT_LOCK(obj);
2848			while (bp->b_npages < desiredpages) {
2849				vm_page_t m;
2850				vm_pindex_t pi;
2851
2852				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2853				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2854					/*
2855					 * note: must allocate system pages
2856					 * since blocking here could intefere
2857					 * with paging I/O, no matter which
2858					 * process we are.
2859					 */
2860					m = vm_page_alloc(obj, pi,
2861					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2862					    VM_ALLOC_WIRED);
2863					if (m == NULL) {
2864						atomic_add_int(&vm_pageout_deficit,
2865						    desiredpages - bp->b_npages);
2866						VM_OBJECT_UNLOCK(obj);
2867						VM_WAIT;
2868						VM_OBJECT_LOCK(obj);
2869					} else {
2870						bp->b_flags &= ~B_CACHE;
2871						bp->b_pages[bp->b_npages] = m;
2872						++bp->b_npages;
2873					}
2874					continue;
2875				}
2876
2877				/*
2878				 * We found a page.  If we have to sleep on it,
2879				 * retry because it might have gotten freed out
2880				 * from under us.
2881				 *
2882				 * We can only test PG_BUSY here.  Blocking on
2883				 * m->busy might lead to a deadlock:
2884				 *
2885				 *  vm_fault->getpages->cluster_read->allocbuf
2886				 *
2887				 */
2888				vm_page_lock_queues();
2889				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2890					continue;
2891
2892				/*
2893				 * We have a good page.  Should we wakeup the
2894				 * page daemon?
2895				 */
2896				if ((curproc != pageproc) &&
2897				    (VM_PAGE_INQUEUE1(m, PQ_CACHE)) &&
2898				    ((cnt.v_free_count + cnt.v_cache_count) <
2899			 		(cnt.v_free_min + cnt.v_cache_min))) {
2900					pagedaemon_wakeup();
2901				}
2902				vm_page_wire(m);
2903				vm_page_unlock_queues();
2904				bp->b_pages[bp->b_npages] = m;
2905				++bp->b_npages;
2906			}
2907
2908			/*
2909			 * Step 2.  We've loaded the pages into the buffer,
2910			 * we have to figure out if we can still have B_CACHE
2911			 * set.  Note that B_CACHE is set according to the
2912			 * byte-granular range ( bcount and size ), new the
2913			 * aligned range ( newbsize ).
2914			 *
2915			 * The VM test is against m->valid, which is DEV_BSIZE
2916			 * aligned.  Needless to say, the validity of the data
2917			 * needs to also be DEV_BSIZE aligned.  Note that this
2918			 * fails with NFS if the server or some other client
2919			 * extends the file's EOF.  If our buffer is resized,
2920			 * B_CACHE may remain set! XXX
2921			 */
2922
2923			toff = bp->b_bcount;
2924			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2925
2926			while ((bp->b_flags & B_CACHE) && toff < size) {
2927				vm_pindex_t pi;
2928
2929				if (tinc > (size - toff))
2930					tinc = size - toff;
2931
2932				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2933				    PAGE_SHIFT;
2934
2935				vfs_buf_test_cache(
2936				    bp,
2937				    bp->b_offset,
2938				    toff,
2939				    tinc,
2940				    bp->b_pages[pi]
2941				);
2942				toff += tinc;
2943				tinc = PAGE_SIZE;
2944			}
2945			VM_OBJECT_UNLOCK(obj);
2946
2947			/*
2948			 * Step 3, fixup the KVM pmap.  Remember that
2949			 * bp->b_data is relative to bp->b_offset, but
2950			 * bp->b_offset may be offset into the first page.
2951			 */
2952
2953			bp->b_data = (caddr_t)
2954			    trunc_page((vm_offset_t)bp->b_data);
2955			pmap_qenter(
2956			    (vm_offset_t)bp->b_data,
2957			    bp->b_pages,
2958			    bp->b_npages
2959			);
2960
2961			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2962			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2963		}
2964	}
2965	if (newbsize < bp->b_bufsize)
2966		bufspacewakeup();
2967	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2968	bp->b_bcount = size;		/* requested buffer size	*/
2969	return 1;
2970}
2971
2972void
2973biodone(struct bio *bp)
2974{
2975	void (*done)(struct bio *);
2976
2977	mtx_lock(&bdonelock);
2978	bp->bio_flags |= BIO_DONE;
2979	done = bp->bio_done;
2980	if (done == NULL)
2981		wakeup(bp);
2982	mtx_unlock(&bdonelock);
2983	if (done != NULL)
2984		done(bp);
2985}
2986
2987/*
2988 * Wait for a BIO to finish.
2989 *
2990 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2991 * case is not yet clear.
2992 */
2993int
2994biowait(struct bio *bp, const char *wchan)
2995{
2996
2997	mtx_lock(&bdonelock);
2998	while ((bp->bio_flags & BIO_DONE) == 0)
2999		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3000	mtx_unlock(&bdonelock);
3001	if (bp->bio_error != 0)
3002		return (bp->bio_error);
3003	if (!(bp->bio_flags & BIO_ERROR))
3004		return (0);
3005	return (EIO);
3006}
3007
3008void
3009biofinish(struct bio *bp, struct devstat *stat, int error)
3010{
3011
3012	if (error) {
3013		bp->bio_error = error;
3014		bp->bio_flags |= BIO_ERROR;
3015	}
3016	if (stat != NULL)
3017		devstat_end_transaction_bio(stat, bp);
3018	biodone(bp);
3019}
3020
3021/*
3022 *	bufwait:
3023 *
3024 *	Wait for buffer I/O completion, returning error status.  The buffer
3025 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3026 *	error and cleared.
3027 */
3028int
3029bufwait(struct buf *bp)
3030{
3031	if (bp->b_iocmd == BIO_READ)
3032		bwait(bp, PRIBIO, "biord");
3033	else
3034		bwait(bp, PRIBIO, "biowr");
3035	if (bp->b_flags & B_EINTR) {
3036		bp->b_flags &= ~B_EINTR;
3037		return (EINTR);
3038	}
3039	if (bp->b_ioflags & BIO_ERROR) {
3040		return (bp->b_error ? bp->b_error : EIO);
3041	} else {
3042		return (0);
3043	}
3044}
3045
3046 /*
3047  * Call back function from struct bio back up to struct buf.
3048  */
3049static void
3050bufdonebio(struct bio *bip)
3051{
3052	struct buf *bp;
3053
3054	bp = bip->bio_caller2;
3055	bp->b_resid = bp->b_bcount - bip->bio_completed;
3056	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3057	bp->b_ioflags = bip->bio_flags;
3058	bp->b_error = bip->bio_error;
3059	if (bp->b_error)
3060		bp->b_ioflags |= BIO_ERROR;
3061	bufdone(bp);
3062	g_destroy_bio(bip);
3063}
3064
3065void
3066dev_strategy(struct cdev *dev, struct buf *bp)
3067{
3068	struct cdevsw *csw;
3069	struct bio *bip;
3070
3071	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3072		panic("b_iocmd botch");
3073	for (;;) {
3074		bip = g_new_bio();
3075		if (bip != NULL)
3076			break;
3077		/* Try again later */
3078		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3079	}
3080	bip->bio_cmd = bp->b_iocmd;
3081	bip->bio_offset = bp->b_iooffset;
3082	bip->bio_length = bp->b_bcount;
3083	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3084	bip->bio_data = bp->b_data;
3085	bip->bio_done = bufdonebio;
3086	bip->bio_caller2 = bp;
3087	bip->bio_dev = dev;
3088	KASSERT(dev->si_refcount > 0,
3089	    ("dev_strategy on un-referenced struct cdev *(%s)",
3090	    devtoname(dev)));
3091	csw = dev_refthread(dev);
3092	if (csw == NULL) {
3093		g_destroy_bio(bip);
3094		bp->b_error = ENXIO;
3095		bp->b_ioflags = BIO_ERROR;
3096		bufdone(bp);
3097		return;
3098	}
3099	(*csw->d_strategy)(bip);
3100	dev_relthread(dev);
3101}
3102
3103/*
3104 *	bufdone:
3105 *
3106 *	Finish I/O on a buffer, optionally calling a completion function.
3107 *	This is usually called from an interrupt so process blocking is
3108 *	not allowed.
3109 *
3110 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3111 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3112 *	assuming B_INVAL is clear.
3113 *
3114 *	For the VMIO case, we set B_CACHE if the op was a read and no
3115 *	read error occured, or if the op was a write.  B_CACHE is never
3116 *	set if the buffer is invalid or otherwise uncacheable.
3117 *
3118 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3119 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3120 *	in the biodone routine.
3121 */
3122void
3123bufdone(struct buf *bp)
3124{
3125	struct bufobj *dropobj;
3126	void    (*biodone)(struct buf *);
3127
3128	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3129	dropobj = NULL;
3130
3131	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3132	    BUF_REFCNT(bp)));
3133	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3134
3135	runningbufwakeup(bp);
3136	if (bp->b_iocmd == BIO_WRITE)
3137		dropobj = bp->b_bufobj;
3138	/* call optional completion function if requested */
3139	if (bp->b_iodone != NULL) {
3140		biodone = bp->b_iodone;
3141		bp->b_iodone = NULL;
3142		(*biodone) (bp);
3143		if (dropobj)
3144			bufobj_wdrop(dropobj);
3145		return;
3146	}
3147
3148	bufdone_finish(bp);
3149
3150	if (dropobj)
3151		bufobj_wdrop(dropobj);
3152}
3153
3154void
3155bufdone_finish(struct buf *bp)
3156{
3157	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3158	    BUF_REFCNT(bp)));
3159
3160	if (LIST_FIRST(&bp->b_dep) != NULL)
3161		buf_complete(bp);
3162
3163	if (bp->b_flags & B_VMIO) {
3164		int i;
3165		vm_ooffset_t foff;
3166		vm_page_t m;
3167		vm_object_t obj;
3168		int iosize;
3169		struct vnode *vp = bp->b_vp;
3170
3171		obj = bp->b_bufobj->bo_object;
3172
3173#if defined(VFS_BIO_DEBUG)
3174		mp_fixme("usecount and vflag accessed without locks.");
3175		if (vp->v_usecount == 0) {
3176			panic("biodone: zero vnode ref count");
3177		}
3178
3179		KASSERT(vp->v_object != NULL,
3180			("biodone: vnode %p has no vm_object", vp));
3181#endif
3182
3183		foff = bp->b_offset;
3184		KASSERT(bp->b_offset != NOOFFSET,
3185		    ("biodone: no buffer offset"));
3186
3187		VM_OBJECT_LOCK(obj);
3188#if defined(VFS_BIO_DEBUG)
3189		if (obj->paging_in_progress < bp->b_npages) {
3190			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3191			    obj->paging_in_progress, bp->b_npages);
3192		}
3193#endif
3194
3195		/*
3196		 * Set B_CACHE if the op was a normal read and no error
3197		 * occured.  B_CACHE is set for writes in the b*write()
3198		 * routines.
3199		 */
3200		iosize = bp->b_bcount - bp->b_resid;
3201		if (bp->b_iocmd == BIO_READ &&
3202		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3203		    !(bp->b_ioflags & BIO_ERROR)) {
3204			bp->b_flags |= B_CACHE;
3205		}
3206		vm_page_lock_queues();
3207		for (i = 0; i < bp->b_npages; i++) {
3208			int bogusflag = 0;
3209			int resid;
3210
3211			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3212			if (resid > iosize)
3213				resid = iosize;
3214
3215			/*
3216			 * cleanup bogus pages, restoring the originals
3217			 */
3218			m = bp->b_pages[i];
3219			if (m == bogus_page) {
3220				bogusflag = 1;
3221				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3222				if (m == NULL)
3223					panic("biodone: page disappeared!");
3224				bp->b_pages[i] = m;
3225				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3226				    bp->b_pages, bp->b_npages);
3227			}
3228#if defined(VFS_BIO_DEBUG)
3229			if (OFF_TO_IDX(foff) != m->pindex) {
3230				printf(
3231"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3232				    (intmax_t)foff, (uintmax_t)m->pindex);
3233			}
3234#endif
3235
3236			/*
3237			 * In the write case, the valid and clean bits are
3238			 * already changed correctly ( see bdwrite() ), so we
3239			 * only need to do this here in the read case.
3240			 */
3241			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3242				vfs_page_set_valid(bp, foff, i, m);
3243			}
3244
3245			/*
3246			 * when debugging new filesystems or buffer I/O methods, this
3247			 * is the most common error that pops up.  if you see this, you
3248			 * have not set the page busy flag correctly!!!
3249			 */
3250			if (m->busy == 0) {
3251				printf("biodone: page busy < 0, "
3252				    "pindex: %d, foff: 0x(%x,%x), "
3253				    "resid: %d, index: %d\n",
3254				    (int) m->pindex, (int)(foff >> 32),
3255						(int) foff & 0xffffffff, resid, i);
3256				if (!vn_isdisk(vp, NULL))
3257					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3258					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3259					    (intmax_t) bp->b_lblkno,
3260					    bp->b_flags, bp->b_npages);
3261				else
3262					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3263					    (intmax_t) bp->b_lblkno,
3264					    bp->b_flags, bp->b_npages);
3265				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3266				    (u_long)m->valid, (u_long)m->dirty,
3267				    m->wire_count);
3268				panic("biodone: page busy < 0\n");
3269			}
3270			vm_page_io_finish(m);
3271			vm_object_pip_subtract(obj, 1);
3272			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3273			iosize -= resid;
3274		}
3275		vm_page_unlock_queues();
3276		vm_object_pip_wakeupn(obj, 0);
3277		VM_OBJECT_UNLOCK(obj);
3278	}
3279
3280	/*
3281	 * For asynchronous completions, release the buffer now. The brelse
3282	 * will do a wakeup there if necessary - so no need to do a wakeup
3283	 * here in the async case. The sync case always needs to do a wakeup.
3284	 */
3285
3286	if (bp->b_flags & B_ASYNC) {
3287		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3288			brelse(bp);
3289		else
3290			bqrelse(bp);
3291	} else
3292		bdone(bp);
3293}
3294
3295/*
3296 * This routine is called in lieu of iodone in the case of
3297 * incomplete I/O.  This keeps the busy status for pages
3298 * consistant.
3299 */
3300void
3301vfs_unbusy_pages(struct buf *bp)
3302{
3303	int i;
3304	vm_object_t obj;
3305	vm_page_t m;
3306
3307	runningbufwakeup(bp);
3308	if (!(bp->b_flags & B_VMIO))
3309		return;
3310
3311	obj = bp->b_bufobj->bo_object;
3312	VM_OBJECT_LOCK(obj);
3313	for (i = 0; i < bp->b_npages; i++) {
3314		m = bp->b_pages[i];
3315		if (m == bogus_page) {
3316			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3317			if (!m)
3318				panic("vfs_unbusy_pages: page missing\n");
3319			bp->b_pages[i] = m;
3320			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3321			    bp->b_pages, bp->b_npages);
3322		}
3323		vm_object_pip_subtract(obj, 1);
3324		vm_page_io_finish(m);
3325	}
3326	vm_object_pip_wakeupn(obj, 0);
3327	VM_OBJECT_UNLOCK(obj);
3328}
3329
3330/*
3331 * vfs_page_set_valid:
3332 *
3333 *	Set the valid bits in a page based on the supplied offset.   The
3334 *	range is restricted to the buffer's size.
3335 *
3336 *	This routine is typically called after a read completes.
3337 */
3338static void
3339vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3340{
3341	vm_ooffset_t soff, eoff;
3342
3343	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3344	/*
3345	 * Start and end offsets in buffer.  eoff - soff may not cross a
3346	 * page boundry or cross the end of the buffer.  The end of the
3347	 * buffer, in this case, is our file EOF, not the allocation size
3348	 * of the buffer.
3349	 */
3350	soff = off;
3351	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3352	if (eoff > bp->b_offset + bp->b_bcount)
3353		eoff = bp->b_offset + bp->b_bcount;
3354
3355	/*
3356	 * Set valid range.  This is typically the entire buffer and thus the
3357	 * entire page.
3358	 */
3359	if (eoff > soff) {
3360		vm_page_set_validclean(
3361		    m,
3362		   (vm_offset_t) (soff & PAGE_MASK),
3363		   (vm_offset_t) (eoff - soff)
3364		);
3365	}
3366}
3367
3368/*
3369 * This routine is called before a device strategy routine.
3370 * It is used to tell the VM system that paging I/O is in
3371 * progress, and treat the pages associated with the buffer
3372 * almost as being PG_BUSY.  Also the object paging_in_progress
3373 * flag is handled to make sure that the object doesn't become
3374 * inconsistant.
3375 *
3376 * Since I/O has not been initiated yet, certain buffer flags
3377 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3378 * and should be ignored.
3379 */
3380void
3381vfs_busy_pages(struct buf *bp, int clear_modify)
3382{
3383	int i, bogus;
3384	vm_object_t obj;
3385	vm_ooffset_t foff;
3386	vm_page_t m;
3387
3388	if (!(bp->b_flags & B_VMIO))
3389		return;
3390
3391	obj = bp->b_bufobj->bo_object;
3392	foff = bp->b_offset;
3393	KASSERT(bp->b_offset != NOOFFSET,
3394	    ("vfs_busy_pages: no buffer offset"));
3395	vfs_setdirty(bp);
3396	VM_OBJECT_LOCK(obj);
3397retry:
3398	for (i = 0; i < bp->b_npages; i++) {
3399		m = bp->b_pages[i];
3400
3401		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3402			goto retry;
3403	}
3404	bogus = 0;
3405	vm_page_lock_queues();
3406	for (i = 0; i < bp->b_npages; i++) {
3407		m = bp->b_pages[i];
3408
3409		if ((bp->b_flags & B_CLUSTER) == 0) {
3410			vm_object_pip_add(obj, 1);
3411			vm_page_io_start(m);
3412		}
3413		/*
3414		 * When readying a buffer for a read ( i.e
3415		 * clear_modify == 0 ), it is important to do
3416		 * bogus_page replacement for valid pages in
3417		 * partially instantiated buffers.  Partially
3418		 * instantiated buffers can, in turn, occur when
3419		 * reconstituting a buffer from its VM backing store
3420		 * base.  We only have to do this if B_CACHE is
3421		 * clear ( which causes the I/O to occur in the
3422		 * first place ).  The replacement prevents the read
3423		 * I/O from overwriting potentially dirty VM-backed
3424		 * pages.  XXX bogus page replacement is, uh, bogus.
3425		 * It may not work properly with small-block devices.
3426		 * We need to find a better way.
3427		 */
3428		pmap_remove_all(m);
3429		if (clear_modify)
3430			vfs_page_set_valid(bp, foff, i, m);
3431		else if (m->valid == VM_PAGE_BITS_ALL &&
3432		    (bp->b_flags & B_CACHE) == 0) {
3433			bp->b_pages[i] = bogus_page;
3434			bogus++;
3435		}
3436		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3437	}
3438	vm_page_unlock_queues();
3439	VM_OBJECT_UNLOCK(obj);
3440	if (bogus)
3441		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3442		    bp->b_pages, bp->b_npages);
3443}
3444
3445/*
3446 * Tell the VM system that the pages associated with this buffer
3447 * are clean.  This is used for delayed writes where the data is
3448 * going to go to disk eventually without additional VM intevention.
3449 *
3450 * Note that while we only really need to clean through to b_bcount, we
3451 * just go ahead and clean through to b_bufsize.
3452 */
3453static void
3454vfs_clean_pages(struct buf *bp)
3455{
3456	int i;
3457	vm_ooffset_t foff, noff, eoff;
3458	vm_page_t m;
3459
3460	if (!(bp->b_flags & B_VMIO))
3461		return;
3462
3463	foff = bp->b_offset;
3464	KASSERT(bp->b_offset != NOOFFSET,
3465	    ("vfs_clean_pages: no buffer offset"));
3466	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3467	vm_page_lock_queues();
3468	for (i = 0; i < bp->b_npages; i++) {
3469		m = bp->b_pages[i];
3470		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3471		eoff = noff;
3472
3473		if (eoff > bp->b_offset + bp->b_bufsize)
3474			eoff = bp->b_offset + bp->b_bufsize;
3475		vfs_page_set_valid(bp, foff, i, m);
3476		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3477		foff = noff;
3478	}
3479	vm_page_unlock_queues();
3480	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3481}
3482
3483/*
3484 *	vfs_bio_set_validclean:
3485 *
3486 *	Set the range within the buffer to valid and clean.  The range is
3487 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3488 *	itself may be offset from the beginning of the first page.
3489 *
3490 */
3491
3492void
3493vfs_bio_set_validclean(struct buf *bp, int base, int size)
3494{
3495	int i, n;
3496	vm_page_t m;
3497
3498	if (!(bp->b_flags & B_VMIO))
3499		return;
3500	/*
3501	 * Fixup base to be relative to beginning of first page.
3502	 * Set initial n to be the maximum number of bytes in the
3503	 * first page that can be validated.
3504	 */
3505
3506	base += (bp->b_offset & PAGE_MASK);
3507	n = PAGE_SIZE - (base & PAGE_MASK);
3508
3509	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3510	vm_page_lock_queues();
3511	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3512		m = bp->b_pages[i];
3513		if (n > size)
3514			n = size;
3515		vm_page_set_validclean(m, base & PAGE_MASK, n);
3516		base += n;
3517		size -= n;
3518		n = PAGE_SIZE;
3519	}
3520	vm_page_unlock_queues();
3521	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3522}
3523
3524/*
3525 *	vfs_bio_clrbuf:
3526 *
3527 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3528 *	to clear BIO_ERROR and B_INVAL.
3529 *
3530 *	Note that while we only theoretically need to clear through b_bcount,
3531 *	we go ahead and clear through b_bufsize.
3532 */
3533
3534void
3535vfs_bio_clrbuf(struct buf *bp)
3536{
3537	int i, j, mask = 0;
3538	caddr_t sa, ea;
3539
3540	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3541		clrbuf(bp);
3542		return;
3543	}
3544
3545	bp->b_flags &= ~B_INVAL;
3546	bp->b_ioflags &= ~BIO_ERROR;
3547	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3548	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3549	    (bp->b_offset & PAGE_MASK) == 0) {
3550		if (bp->b_pages[0] == bogus_page)
3551			goto unlock;
3552		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3553		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3554		if ((bp->b_pages[0]->valid & mask) == mask)
3555			goto unlock;
3556		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3557		    ((bp->b_pages[0]->valid & mask) == 0)) {
3558			bzero(bp->b_data, bp->b_bufsize);
3559			bp->b_pages[0]->valid |= mask;
3560			goto unlock;
3561		}
3562	}
3563	ea = sa = bp->b_data;
3564	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3565		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3566		ea = (caddr_t)(vm_offset_t)ulmin(
3567		    (u_long)(vm_offset_t)ea,
3568		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3569		if (bp->b_pages[i] == bogus_page)
3570			continue;
3571		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3572		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3573		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3574		if ((bp->b_pages[i]->valid & mask) == mask)
3575			continue;
3576		if ((bp->b_pages[i]->valid & mask) == 0) {
3577			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3578				bzero(sa, ea - sa);
3579		} else {
3580			for (; sa < ea; sa += DEV_BSIZE, j++) {
3581				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3582				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3583					bzero(sa, DEV_BSIZE);
3584			}
3585		}
3586		bp->b_pages[i]->valid |= mask;
3587	}
3588unlock:
3589	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3590	bp->b_resid = 0;
3591}
3592
3593/*
3594 * vm_hold_load_pages and vm_hold_free_pages get pages into
3595 * a buffers address space.  The pages are anonymous and are
3596 * not associated with a file object.
3597 */
3598static void
3599vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3600{
3601	vm_offset_t pg;
3602	vm_page_t p;
3603	int index;
3604
3605	to = round_page(to);
3606	from = round_page(from);
3607	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3608
3609	VM_OBJECT_LOCK(kernel_object);
3610	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3611tryagain:
3612		/*
3613		 * note: must allocate system pages since blocking here
3614		 * could intefere with paging I/O, no matter which
3615		 * process we are.
3616		 */
3617		p = vm_page_alloc(kernel_object,
3618			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3619		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3620		if (!p) {
3621			atomic_add_int(&vm_pageout_deficit,
3622			    (to - pg) >> PAGE_SHIFT);
3623			VM_OBJECT_UNLOCK(kernel_object);
3624			VM_WAIT;
3625			VM_OBJECT_LOCK(kernel_object);
3626			goto tryagain;
3627		}
3628		p->valid = VM_PAGE_BITS_ALL;
3629		pmap_qenter(pg, &p, 1);
3630		bp->b_pages[index] = p;
3631	}
3632	VM_OBJECT_UNLOCK(kernel_object);
3633	bp->b_npages = index;
3634}
3635
3636/* Return pages associated with this buf to the vm system */
3637static void
3638vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3639{
3640	vm_offset_t pg;
3641	vm_page_t p;
3642	int index, newnpages;
3643
3644	from = round_page(from);
3645	to = round_page(to);
3646	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3647
3648	VM_OBJECT_LOCK(kernel_object);
3649	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3650		p = bp->b_pages[index];
3651		if (p && (index < bp->b_npages)) {
3652			if (p->busy) {
3653				printf(
3654			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3655				    (intmax_t)bp->b_blkno,
3656				    (intmax_t)bp->b_lblkno);
3657			}
3658			bp->b_pages[index] = NULL;
3659			pmap_qremove(pg, 1);
3660			vm_page_lock_queues();
3661			vm_page_unwire(p, 0);
3662			vm_page_free(p);
3663			vm_page_unlock_queues();
3664		}
3665	}
3666	VM_OBJECT_UNLOCK(kernel_object);
3667	bp->b_npages = newnpages;
3668}
3669
3670/*
3671 * Map an IO request into kernel virtual address space.
3672 *
3673 * All requests are (re)mapped into kernel VA space.
3674 * Notice that we use b_bufsize for the size of the buffer
3675 * to be mapped.  b_bcount might be modified by the driver.
3676 *
3677 * Note that even if the caller determines that the address space should
3678 * be valid, a race or a smaller-file mapped into a larger space may
3679 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3680 * check the return value.
3681 */
3682int
3683vmapbuf(struct buf *bp)
3684{
3685	caddr_t addr, kva;
3686	vm_prot_t prot;
3687	int pidx, i;
3688	struct vm_page *m;
3689	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3690
3691	if (bp->b_bufsize < 0)
3692		return (-1);
3693	prot = VM_PROT_READ;
3694	if (bp->b_iocmd == BIO_READ)
3695		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3696	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3697	     addr < bp->b_data + bp->b_bufsize;
3698	     addr += PAGE_SIZE, pidx++) {
3699		/*
3700		 * Do the vm_fault if needed; do the copy-on-write thing
3701		 * when reading stuff off device into memory.
3702		 *
3703		 * NOTE! Must use pmap_extract() because addr may be in
3704		 * the userland address space, and kextract is only guarenteed
3705		 * to work for the kernland address space (see: sparc64 port).
3706		 */
3707retry:
3708		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3709		    prot) < 0) {
3710			vm_page_lock_queues();
3711			for (i = 0; i < pidx; ++i) {
3712				vm_page_unhold(bp->b_pages[i]);
3713				bp->b_pages[i] = NULL;
3714			}
3715			vm_page_unlock_queues();
3716			return(-1);
3717		}
3718		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3719		if (m == NULL)
3720			goto retry;
3721		bp->b_pages[pidx] = m;
3722	}
3723	if (pidx > btoc(MAXPHYS))
3724		panic("vmapbuf: mapped more than MAXPHYS");
3725	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3726
3727	kva = bp->b_saveaddr;
3728	bp->b_npages = pidx;
3729	bp->b_saveaddr = bp->b_data;
3730	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3731	return(0);
3732}
3733
3734/*
3735 * Free the io map PTEs associated with this IO operation.
3736 * We also invalidate the TLB entries and restore the original b_addr.
3737 */
3738void
3739vunmapbuf(struct buf *bp)
3740{
3741	int pidx;
3742	int npages;
3743
3744	npages = bp->b_npages;
3745	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3746	vm_page_lock_queues();
3747	for (pidx = 0; pidx < npages; pidx++)
3748		vm_page_unhold(bp->b_pages[pidx]);
3749	vm_page_unlock_queues();
3750
3751	bp->b_data = bp->b_saveaddr;
3752}
3753
3754void
3755bdone(struct buf *bp)
3756{
3757
3758	mtx_lock(&bdonelock);
3759	bp->b_flags |= B_DONE;
3760	wakeup(bp);
3761	mtx_unlock(&bdonelock);
3762}
3763
3764void
3765bwait(struct buf *bp, u_char pri, const char *wchan)
3766{
3767
3768	mtx_lock(&bdonelock);
3769	while ((bp->b_flags & B_DONE) == 0)
3770		msleep(bp, &bdonelock, pri, wchan, 0);
3771	mtx_unlock(&bdonelock);
3772}
3773
3774int
3775bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3776{
3777
3778	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3779}
3780
3781void
3782bufstrategy(struct bufobj *bo, struct buf *bp)
3783{
3784	int i = 0;
3785	struct vnode *vp;
3786
3787	vp = bp->b_vp;
3788	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3789	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3790	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3791	i = VOP_STRATEGY(vp, bp);
3792	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3793}
3794
3795void
3796bufobj_wrefl(struct bufobj *bo)
3797{
3798
3799	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3800	ASSERT_BO_LOCKED(bo);
3801	bo->bo_numoutput++;
3802}
3803
3804void
3805bufobj_wref(struct bufobj *bo)
3806{
3807
3808	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3809	BO_LOCK(bo);
3810	bo->bo_numoutput++;
3811	BO_UNLOCK(bo);
3812}
3813
3814void
3815bufobj_wdrop(struct bufobj *bo)
3816{
3817
3818	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3819	BO_LOCK(bo);
3820	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3821	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3822		bo->bo_flag &= ~BO_WWAIT;
3823		wakeup(&bo->bo_numoutput);
3824	}
3825	BO_UNLOCK(bo);
3826}
3827
3828int
3829bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3830{
3831	int error;
3832
3833	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3834	ASSERT_BO_LOCKED(bo);
3835	error = 0;
3836	while (bo->bo_numoutput) {
3837		bo->bo_flag |= BO_WWAIT;
3838		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3839		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3840		if (error)
3841			break;
3842	}
3843	return (error);
3844}
3845
3846void
3847bpin(struct buf *bp)
3848{
3849	mtx_lock(&bpinlock);
3850	bp->b_pin_count++;
3851	mtx_unlock(&bpinlock);
3852}
3853
3854void
3855bunpin(struct buf *bp)
3856{
3857	mtx_lock(&bpinlock);
3858	if (--bp->b_pin_count == 0)
3859		wakeup(bp);
3860	mtx_unlock(&bpinlock);
3861}
3862
3863void
3864bunpin_wait(struct buf *bp)
3865{
3866	mtx_lock(&bpinlock);
3867	while (bp->b_pin_count > 0)
3868		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3869	mtx_unlock(&bpinlock);
3870}
3871
3872#include "opt_ddb.h"
3873#ifdef DDB
3874#include <ddb/ddb.h>
3875
3876/* DDB command to show buffer data */
3877DB_SHOW_COMMAND(buffer, db_show_buffer)
3878{
3879	/* get args */
3880	struct buf *bp = (struct buf *)addr;
3881
3882	if (!have_addr) {
3883		db_printf("usage: show buffer <addr>\n");
3884		return;
3885	}
3886
3887	db_printf("buf at %p\n", bp);
3888	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3889	db_printf(
3890	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3891	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3892	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3893	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3894	if (bp->b_npages) {
3895		int i;
3896		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3897		for (i = 0; i < bp->b_npages; i++) {
3898			vm_page_t m;
3899			m = bp->b_pages[i];
3900			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3901			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3902			if ((i + 1) < bp->b_npages)
3903				db_printf(",");
3904		}
3905		db_printf("\n");
3906	}
3907	lockmgr_printinfo(&bp->b_lock);
3908}
3909
3910DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3911{
3912	struct buf *bp;
3913	int i;
3914
3915	for (i = 0; i < nbuf; i++) {
3916		bp = &buf[i];
3917		if (lockcount(&bp->b_lock)) {
3918			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3919			db_printf("\n");
3920		}
3921	}
3922}
3923#endif /* DDB */
3924