vfs_bio.c revision 154441
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 154441 2006-01-16 22:09:47Z tegge $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82	.bop_sync	=	bufsync,
83};
84
85/*
86 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
87 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
88 */
89struct buf *buf;		/* buffer header pool */
90
91static struct proc *bufdaemonproc;
92
93static int inmem(struct vnode *vp, daddr_t blkno);
94static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
95		vm_offset_t to);
96static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
99			       int pageno, vm_page_t m);
100static void vfs_clean_pages(struct buf *bp);
101static void vfs_setdirty(struct buf *bp);
102static void vfs_vmio_release(struct buf *bp);
103static int vfs_bio_clcheck(struct vnode *vp, int size,
104		daddr_t lblkno, daddr_t blkno);
105static int flushbufqueues(int flushdeps);
106static void buf_daemon(void);
107static void bremfreel(struct buf *bp);
108
109int vmiodirenable = TRUE;
110SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
111    "Use the VM system for directory writes");
112int runningbufspace;
113SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
114    "Amount of presently outstanding async buffer io");
115static int bufspace;
116SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
117    "KVA memory used for bufs");
118static int maxbufspace;
119SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
120    "Maximum allowed value of bufspace (including buf_daemon)");
121static int bufmallocspace;
122SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
123    "Amount of malloced memory for buffers");
124static int maxbufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
126    "Maximum amount of malloced memory for buffers");
127static int lobufspace;
128SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
129    "Minimum amount of buffers we want to have");
130int hibufspace;
131SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
132    "Maximum allowed value of bufspace (excluding buf_daemon)");
133static int bufreusecnt;
134SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
135    "Number of times we have reused a buffer");
136static int buffreekvacnt;
137SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
138    "Number of times we have freed the KVA space from some buffer");
139static int bufdefragcnt;
140SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
141    "Number of times we have had to repeat buffer allocation to defragment");
142static int lorunningspace;
143SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
144    "Minimum preferred space used for in-progress I/O");
145static int hirunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
147    "Maximum amount of space to use for in-progress I/O");
148static int dirtybufferflushes;
149SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
150    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
151static int altbufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
153    0, "Number of fsync flushes to limit dirty buffers");
154static int recursiveflushes;
155SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
156    0, "Number of flushes skipped due to being recursive");
157static int numdirtybuffers;
158SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
159    "Number of buffers that are dirty (has unwritten changes) at the moment");
160static int lodirtybuffers;
161SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
162    "How many buffers we want to have free before bufdaemon can sleep");
163static int hidirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
165    "When the number of dirty buffers is considered severe");
166static int dirtybufthresh;
167SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
168    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
169static int numfreebuffers;
170SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
171    "Number of free buffers");
172static int lofreebuffers;
173SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
174   "XXX Unused");
175static int hifreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
177   "XXX Complicatedly unused");
178static int getnewbufcalls;
179SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
180   "Number of calls to getnewbuf");
181static int getnewbufrestarts;
182SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
183    "Number of times getnewbuf has had to restart a buffer aquisition");
184
185/*
186 * Wakeup point for bufdaemon, as well as indicator of whether it is already
187 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
188 * is idling.
189 */
190static int bd_request;
191
192/*
193 * This lock synchronizes access to bd_request.
194 */
195static struct mtx bdlock;
196
197/*
198 * bogus page -- for I/O to/from partially complete buffers
199 * this is a temporary solution to the problem, but it is not
200 * really that bad.  it would be better to split the buffer
201 * for input in the case of buffers partially already in memory,
202 * but the code is intricate enough already.
203 */
204vm_page_t bogus_page;
205
206/*
207 * Synchronization (sleep/wakeup) variable for active buffer space requests.
208 * Set when wait starts, cleared prior to wakeup().
209 * Used in runningbufwakeup() and waitrunningbufspace().
210 */
211static int runningbufreq;
212
213/*
214 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
215 * waitrunningbufspace().
216 */
217static struct mtx rbreqlock;
218
219/*
220 * Synchronization (sleep/wakeup) variable for buffer requests.
221 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
222 * by and/or.
223 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
224 * getnewbuf(), and getblk().
225 */
226static int needsbuffer;
227
228/*
229 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
230 */
231static struct mtx nblock;
232
233/*
234 * Lock that protects against bwait()/bdone()/B_DONE races.
235 */
236
237static struct mtx bdonelock;
238
239/*
240 * Lock that protects against bwait()/bdone()/B_DONE races.
241 */
242static struct mtx bpinlock;
243
244/*
245 * Definitions for the buffer free lists.
246 */
247#define BUFFER_QUEUES	5	/* number of free buffer queues */
248
249#define QUEUE_NONE	0	/* on no queue */
250#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
251#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
252#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
253#define QUEUE_EMPTY	4	/* empty buffer headers */
254
255/* Queues for free buffers with various properties */
256static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
257
258/* Lock for the bufqueues */
259static struct mtx bqlock;
260
261/*
262 * Single global constant for BUF_WMESG, to avoid getting multiple references.
263 * buf_wmesg is referred from macros.
264 */
265const char *buf_wmesg = BUF_WMESG;
266
267#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
268#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
269#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
270#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
271
272#ifdef DIRECTIO
273extern void ffs_rawread_setup(void);
274#endif /* DIRECTIO */
275/*
276 *	numdirtywakeup:
277 *
278 *	If someone is blocked due to there being too many dirty buffers,
279 *	and numdirtybuffers is now reasonable, wake them up.
280 */
281
282static __inline void
283numdirtywakeup(int level)
284{
285
286	if (numdirtybuffers <= level) {
287		mtx_lock(&nblock);
288		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
289			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
290			wakeup(&needsbuffer);
291		}
292		mtx_unlock(&nblock);
293	}
294}
295
296/*
297 *	bufspacewakeup:
298 *
299 *	Called when buffer space is potentially available for recovery.
300 *	getnewbuf() will block on this flag when it is unable to free
301 *	sufficient buffer space.  Buffer space becomes recoverable when
302 *	bp's get placed back in the queues.
303 */
304
305static __inline void
306bufspacewakeup(void)
307{
308
309	/*
310	 * If someone is waiting for BUF space, wake them up.  Even
311	 * though we haven't freed the kva space yet, the waiting
312	 * process will be able to now.
313	 */
314	mtx_lock(&nblock);
315	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
316		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
317		wakeup(&needsbuffer);
318	}
319	mtx_unlock(&nblock);
320}
321
322/*
323 * runningbufwakeup() - in-progress I/O accounting.
324 *
325 */
326void
327runningbufwakeup(struct buf *bp)
328{
329
330	if (bp->b_runningbufspace) {
331		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
332		bp->b_runningbufspace = 0;
333		mtx_lock(&rbreqlock);
334		if (runningbufreq && runningbufspace <= lorunningspace) {
335			runningbufreq = 0;
336			wakeup(&runningbufreq);
337		}
338		mtx_unlock(&rbreqlock);
339	}
340}
341
342/*
343 *	bufcountwakeup:
344 *
345 *	Called when a buffer has been added to one of the free queues to
346 *	account for the buffer and to wakeup anyone waiting for free buffers.
347 *	This typically occurs when large amounts of metadata are being handled
348 *	by the buffer cache ( else buffer space runs out first, usually ).
349 */
350
351static __inline void
352bufcountwakeup(void)
353{
354
355	atomic_add_int(&numfreebuffers, 1);
356	mtx_lock(&nblock);
357	if (needsbuffer) {
358		needsbuffer &= ~VFS_BIO_NEED_ANY;
359		if (numfreebuffers >= hifreebuffers)
360			needsbuffer &= ~VFS_BIO_NEED_FREE;
361		wakeup(&needsbuffer);
362	}
363	mtx_unlock(&nblock);
364}
365
366/*
367 *	waitrunningbufspace()
368 *
369 *	runningbufspace is a measure of the amount of I/O currently
370 *	running.  This routine is used in async-write situations to
371 *	prevent creating huge backups of pending writes to a device.
372 *	Only asynchronous writes are governed by this function.
373 *
374 *	Reads will adjust runningbufspace, but will not block based on it.
375 *	The read load has a side effect of reducing the allowed write load.
376 *
377 *	This does NOT turn an async write into a sync write.  It waits
378 *	for earlier writes to complete and generally returns before the
379 *	caller's write has reached the device.
380 */
381void
382waitrunningbufspace(void)
383{
384
385	mtx_lock(&rbreqlock);
386	while (runningbufspace > hirunningspace) {
387		++runningbufreq;
388		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
389	}
390	mtx_unlock(&rbreqlock);
391}
392
393
394/*
395 *	vfs_buf_test_cache:
396 *
397 *	Called when a buffer is extended.  This function clears the B_CACHE
398 *	bit if the newly extended portion of the buffer does not contain
399 *	valid data.
400 */
401static __inline
402void
403vfs_buf_test_cache(struct buf *bp,
404		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
405		  vm_page_t m)
406{
407
408	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
409	if (bp->b_flags & B_CACHE) {
410		int base = (foff + off) & PAGE_MASK;
411		if (vm_page_is_valid(m, base, size) == 0)
412			bp->b_flags &= ~B_CACHE;
413	}
414}
415
416/* Wake up the buffer deamon if necessary */
417static __inline
418void
419bd_wakeup(int dirtybuflevel)
420{
421
422	mtx_lock(&bdlock);
423	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
424		bd_request = 1;
425		wakeup(&bd_request);
426	}
427	mtx_unlock(&bdlock);
428}
429
430/*
431 * bd_speedup - speedup the buffer cache flushing code
432 */
433
434static __inline
435void
436bd_speedup(void)
437{
438
439	bd_wakeup(1);
440}
441
442/*
443 * Calculating buffer cache scaling values and reserve space for buffer
444 * headers.  This is called during low level kernel initialization and
445 * may be called more then once.  We CANNOT write to the memory area
446 * being reserved at this time.
447 */
448caddr_t
449kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
450{
451
452	/*
453	 * physmem_est is in pages.  Convert it to kilobytes (assumes
454	 * PAGE_SIZE is >= 1K)
455	 */
456	physmem_est = physmem_est * (PAGE_SIZE / 1024);
457
458	/*
459	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
460	 * For the first 64MB of ram nominally allocate sufficient buffers to
461	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
462	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
463	 * the buffer cache we limit the eventual kva reservation to
464	 * maxbcache bytes.
465	 *
466	 * factor represents the 1/4 x ram conversion.
467	 */
468	if (nbuf == 0) {
469		int factor = 4 * BKVASIZE / 1024;
470
471		nbuf = 50;
472		if (physmem_est > 4096)
473			nbuf += min((physmem_est - 4096) / factor,
474			    65536 / factor);
475		if (physmem_est > 65536)
476			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
477
478		if (maxbcache && nbuf > maxbcache / BKVASIZE)
479			nbuf = maxbcache / BKVASIZE;
480	}
481
482#if 0
483	/*
484	 * Do not allow the buffer_map to be more then 1/2 the size of the
485	 * kernel_map.
486	 */
487	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
488	    (BKVASIZE * 2)) {
489		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
490		    (BKVASIZE * 2);
491		printf("Warning: nbufs capped at %d\n", nbuf);
492	}
493#endif
494
495	/*
496	 * swbufs are used as temporary holders for I/O, such as paging I/O.
497	 * We have no less then 16 and no more then 256.
498	 */
499	nswbuf = max(min(nbuf/4, 256), 16);
500#ifdef NSWBUF_MIN
501	if (nswbuf < NSWBUF_MIN)
502		nswbuf = NSWBUF_MIN;
503#endif
504#ifdef DIRECTIO
505	ffs_rawread_setup();
506#endif
507
508	/*
509	 * Reserve space for the buffer cache buffers
510	 */
511	swbuf = (void *)v;
512	v = (caddr_t)(swbuf + nswbuf);
513	buf = (void *)v;
514	v = (caddr_t)(buf + nbuf);
515
516	return(v);
517}
518
519/* Initialize the buffer subsystem.  Called before use of any buffers. */
520void
521bufinit(void)
522{
523	struct buf *bp;
524	int i;
525
526	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
527	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
528	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
529	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
530	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
531	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
532
533	/* next, make a null set of free lists */
534	for (i = 0; i < BUFFER_QUEUES; i++)
535		TAILQ_INIT(&bufqueues[i]);
536
537	/* finally, initialize each buffer header and stick on empty q */
538	for (i = 0; i < nbuf; i++) {
539		bp = &buf[i];
540		bzero(bp, sizeof *bp);
541		bp->b_flags = B_INVAL;	/* we're just an empty header */
542		bp->b_rcred = NOCRED;
543		bp->b_wcred = NOCRED;
544		bp->b_qindex = QUEUE_EMPTY;
545		bp->b_vflags = 0;
546		bp->b_xflags = 0;
547		LIST_INIT(&bp->b_dep);
548		BUF_LOCKINIT(bp);
549		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
550	}
551
552	/*
553	 * maxbufspace is the absolute maximum amount of buffer space we are
554	 * allowed to reserve in KVM and in real terms.  The absolute maximum
555	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
556	 * used by most other processes.  The differential is required to
557	 * ensure that buf_daemon is able to run when other processes might
558	 * be blocked waiting for buffer space.
559	 *
560	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
561	 * this may result in KVM fragmentation which is not handled optimally
562	 * by the system.
563	 */
564	maxbufspace = nbuf * BKVASIZE;
565	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
566	lobufspace = hibufspace - MAXBSIZE;
567
568	lorunningspace = 512 * 1024;
569	hirunningspace = 1024 * 1024;
570
571/*
572 * Limit the amount of malloc memory since it is wired permanently into
573 * the kernel space.  Even though this is accounted for in the buffer
574 * allocation, we don't want the malloced region to grow uncontrolled.
575 * The malloc scheme improves memory utilization significantly on average
576 * (small) directories.
577 */
578	maxbufmallocspace = hibufspace / 20;
579
580/*
581 * Reduce the chance of a deadlock occuring by limiting the number
582 * of delayed-write dirty buffers we allow to stack up.
583 */
584	hidirtybuffers = nbuf / 4 + 20;
585	dirtybufthresh = hidirtybuffers * 9 / 10;
586	numdirtybuffers = 0;
587/*
588 * To support extreme low-memory systems, make sure hidirtybuffers cannot
589 * eat up all available buffer space.  This occurs when our minimum cannot
590 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
591 * BKVASIZE'd (8K) buffers.
592 */
593	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
594		hidirtybuffers >>= 1;
595	}
596	lodirtybuffers = hidirtybuffers / 2;
597
598/*
599 * Try to keep the number of free buffers in the specified range,
600 * and give special processes (e.g. like buf_daemon) access to an
601 * emergency reserve.
602 */
603	lofreebuffers = nbuf / 18 + 5;
604	hifreebuffers = 2 * lofreebuffers;
605	numfreebuffers = nbuf;
606
607/*
608 * Maximum number of async ops initiated per buf_daemon loop.  This is
609 * somewhat of a hack at the moment, we really need to limit ourselves
610 * based on the number of bytes of I/O in-transit that were initiated
611 * from buf_daemon.
612 */
613
614	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
615	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
616}
617
618/*
619 * bfreekva() - free the kva allocation for a buffer.
620 *
621 *	Since this call frees up buffer space, we call bufspacewakeup().
622 */
623static void
624bfreekva(struct buf *bp)
625{
626
627	if (bp->b_kvasize) {
628		atomic_add_int(&buffreekvacnt, 1);
629		atomic_subtract_int(&bufspace, bp->b_kvasize);
630		vm_map_lock(buffer_map);
631		vm_map_delete(buffer_map,
632		    (vm_offset_t) bp->b_kvabase,
633		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
634		);
635		vm_map_unlock(buffer_map);
636		bp->b_kvasize = 0;
637		bufspacewakeup();
638	}
639}
640
641/*
642 *	bremfree:
643 *
644 *	Mark the buffer for removal from the appropriate free list in brelse.
645 *
646 */
647void
648bremfree(struct buf *bp)
649{
650
651	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
652	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
653	KASSERT((bp->b_flags & B_REMFREE) == 0,
654	    ("bremfree: buffer %p already marked for delayed removal.", bp));
655	KASSERT(bp->b_qindex != QUEUE_NONE,
656	    ("bremfree: buffer %p not on a queue.", bp));
657
658	bp->b_flags |= B_REMFREE;
659	/* Fixup numfreebuffers count.  */
660	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
661		atomic_subtract_int(&numfreebuffers, 1);
662}
663
664/*
665 *	bremfreef:
666 *
667 *	Force an immediate removal from a free list.  Used only in nfs when
668 *	it abuses the b_freelist pointer.
669 */
670void
671bremfreef(struct buf *bp)
672{
673	mtx_lock(&bqlock);
674	bremfreel(bp);
675	mtx_unlock(&bqlock);
676}
677
678/*
679 *	bremfreel:
680 *
681 *	Removes a buffer from the free list, must be called with the
682 *	bqlock held.
683 */
684static void
685bremfreel(struct buf *bp)
686{
687	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
688	    bp, bp->b_vp, bp->b_flags);
689	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
690	KASSERT(bp->b_qindex != QUEUE_NONE,
691	    ("bremfreel: buffer %p not on a queue.", bp));
692	mtx_assert(&bqlock, MA_OWNED);
693
694	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
695	bp->b_qindex = QUEUE_NONE;
696	/*
697	 * If this was a delayed bremfree() we only need to remove the buffer
698	 * from the queue and return the stats are already done.
699	 */
700	if (bp->b_flags & B_REMFREE) {
701		bp->b_flags &= ~B_REMFREE;
702		return;
703	}
704	/*
705	 * Fixup numfreebuffers count.  If the buffer is invalid or not
706	 * delayed-write, the buffer was free and we must decrement
707	 * numfreebuffers.
708	 */
709	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
710		atomic_subtract_int(&numfreebuffers, 1);
711}
712
713
714/*
715 * Get a buffer with the specified data.  Look in the cache first.  We
716 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
717 * is set, the buffer is valid and we do not have to do anything ( see
718 * getblk() ).  This is really just a special case of breadn().
719 */
720int
721bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
722    struct buf **bpp)
723{
724
725	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
726}
727
728/*
729 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
730 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
731 * the buffer is valid and we do not have to do anything.
732 */
733void
734breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
735    int cnt, struct ucred * cred)
736{
737	struct buf *rabp;
738	int i;
739
740	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
741		if (inmem(vp, *rablkno))
742			continue;
743		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
744
745		if ((rabp->b_flags & B_CACHE) == 0) {
746			if (curthread != PCPU_GET(idlethread))
747				curthread->td_proc->p_stats->p_ru.ru_inblock++;
748			rabp->b_flags |= B_ASYNC;
749			rabp->b_flags &= ~B_INVAL;
750			rabp->b_ioflags &= ~BIO_ERROR;
751			rabp->b_iocmd = BIO_READ;
752			if (rabp->b_rcred == NOCRED && cred != NOCRED)
753				rabp->b_rcred = crhold(cred);
754			vfs_busy_pages(rabp, 0);
755			BUF_KERNPROC(rabp);
756			rabp->b_iooffset = dbtob(rabp->b_blkno);
757			bstrategy(rabp);
758		} else {
759			brelse(rabp);
760		}
761	}
762}
763
764/*
765 * Operates like bread, but also starts asynchronous I/O on
766 * read-ahead blocks.
767 */
768int
769breadn(struct vnode * vp, daddr_t blkno, int size,
770    daddr_t * rablkno, int *rabsize,
771    int cnt, struct ucred * cred, struct buf **bpp)
772{
773	struct buf *bp;
774	int rv = 0, readwait = 0;
775
776	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
777	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
778
779	/* if not found in cache, do some I/O */
780	if ((bp->b_flags & B_CACHE) == 0) {
781		if (curthread != PCPU_GET(idlethread))
782			curthread->td_proc->p_stats->p_ru.ru_inblock++;
783		bp->b_iocmd = BIO_READ;
784		bp->b_flags &= ~B_INVAL;
785		bp->b_ioflags &= ~BIO_ERROR;
786		if (bp->b_rcred == NOCRED && cred != NOCRED)
787			bp->b_rcred = crhold(cred);
788		vfs_busy_pages(bp, 0);
789		bp->b_iooffset = dbtob(bp->b_blkno);
790		bstrategy(bp);
791		++readwait;
792	}
793
794	breada(vp, rablkno, rabsize, cnt, cred);
795
796	if (readwait) {
797		rv = bufwait(bp);
798	}
799	return (rv);
800}
801
802/*
803 * Write, release buffer on completion.  (Done by iodone
804 * if async).  Do not bother writing anything if the buffer
805 * is invalid.
806 *
807 * Note that we set B_CACHE here, indicating that buffer is
808 * fully valid and thus cacheable.  This is true even of NFS
809 * now so we set it generally.  This could be set either here
810 * or in biodone() since the I/O is synchronous.  We put it
811 * here.
812 */
813int
814bufwrite(struct buf *bp)
815{
816	int oldflags;
817
818	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
819	if (bp->b_flags & B_INVAL) {
820		brelse(bp);
821		return (0);
822	}
823
824	oldflags = bp->b_flags;
825
826	if (BUF_REFCNT(bp) == 0)
827		panic("bufwrite: buffer is not busy???");
828
829	if (bp->b_pin_count > 0)
830		bunpin_wait(bp);
831
832	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
833	    ("FFS background buffer should not get here %p", bp));
834
835	/* Mark the buffer clean */
836	bundirty(bp);
837
838	bp->b_flags &= ~B_DONE;
839	bp->b_ioflags &= ~BIO_ERROR;
840	bp->b_flags |= B_CACHE;
841	bp->b_iocmd = BIO_WRITE;
842
843	bufobj_wref(bp->b_bufobj);
844	vfs_busy_pages(bp, 1);
845
846	/*
847	 * Normal bwrites pipeline writes
848	 */
849	bp->b_runningbufspace = bp->b_bufsize;
850	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
851
852	if (curthread != PCPU_GET(idlethread))
853		curthread->td_proc->p_stats->p_ru.ru_oublock++;
854	if (oldflags & B_ASYNC)
855		BUF_KERNPROC(bp);
856	bp->b_iooffset = dbtob(bp->b_blkno);
857	bstrategy(bp);
858
859	if ((oldflags & B_ASYNC) == 0) {
860		int rtval = bufwait(bp);
861		brelse(bp);
862		return (rtval);
863	} else {
864		/*
865		 * don't allow the async write to saturate the I/O
866		 * system.  We will not deadlock here because
867		 * we are blocking waiting for I/O that is already in-progress
868		 * to complete. We do not block here if it is the update
869		 * or syncer daemon trying to clean up as that can lead
870		 * to deadlock.
871		 */
872		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0)
873			waitrunningbufspace();
874	}
875
876	return (0);
877}
878
879/*
880 * Delayed write. (Buffer is marked dirty).  Do not bother writing
881 * anything if the buffer is marked invalid.
882 *
883 * Note that since the buffer must be completely valid, we can safely
884 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
885 * biodone() in order to prevent getblk from writing the buffer
886 * out synchronously.
887 */
888void
889bdwrite(struct buf *bp)
890{
891	struct thread *td = curthread;
892	struct vnode *vp;
893	struct buf *nbp;
894	struct bufobj *bo;
895
896	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
897	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
898	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
899
900	if (bp->b_flags & B_INVAL) {
901		brelse(bp);
902		return;
903	}
904
905	/*
906	 * If we have too many dirty buffers, don't create any more.
907	 * If we are wildly over our limit, then force a complete
908	 * cleanup. Otherwise, just keep the situation from getting
909	 * out of control. Note that we have to avoid a recursive
910	 * disaster and not try to clean up after our own cleanup!
911	 */
912	vp = bp->b_vp;
913	bo = bp->b_bufobj;
914	if ((td->td_pflags & TDP_COWINPROGRESS) == 0) {
915		BO_LOCK(bo);
916		if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
917			BO_UNLOCK(bo);
918			(void) VOP_FSYNC(vp, MNT_NOWAIT, td);
919			altbufferflushes++;
920		} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
921			/*
922			 * Try to find a buffer to flush.
923			 */
924			TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
925				if ((nbp->b_vflags & BV_BKGRDINPROG) ||
926				    BUF_LOCK(nbp,
927				    LK_EXCLUSIVE | LK_NOWAIT, NULL))
928					continue;
929				if (bp == nbp)
930					panic("bdwrite: found ourselves");
931				BO_UNLOCK(bo);
932				/* Don't countdeps with the bo lock held. */
933				if (buf_countdeps(nbp, 0)) {
934					BO_LOCK(bo);
935					BUF_UNLOCK(nbp);
936					continue;
937				}
938				if (nbp->b_flags & B_CLUSTEROK) {
939					vfs_bio_awrite(nbp);
940				} else {
941					bremfree(nbp);
942					bawrite(nbp);
943				}
944				dirtybufferflushes++;
945				break;
946			}
947			if (nbp == NULL)
948				BO_UNLOCK(bo);
949		} else
950			BO_UNLOCK(bo);
951	} else
952		recursiveflushes++;
953
954	bdirty(bp);
955	/*
956	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
957	 * true even of NFS now.
958	 */
959	bp->b_flags |= B_CACHE;
960
961	/*
962	 * This bmap keeps the system from needing to do the bmap later,
963	 * perhaps when the system is attempting to do a sync.  Since it
964	 * is likely that the indirect block -- or whatever other datastructure
965	 * that the filesystem needs is still in memory now, it is a good
966	 * thing to do this.  Note also, that if the pageout daemon is
967	 * requesting a sync -- there might not be enough memory to do
968	 * the bmap then...  So, this is important to do.
969	 */
970	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
971		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
972	}
973
974	/*
975	 * Set the *dirty* buffer range based upon the VM system dirty pages.
976	 */
977	vfs_setdirty(bp);
978
979	/*
980	 * We need to do this here to satisfy the vnode_pager and the
981	 * pageout daemon, so that it thinks that the pages have been
982	 * "cleaned".  Note that since the pages are in a delayed write
983	 * buffer -- the VFS layer "will" see that the pages get written
984	 * out on the next sync, or perhaps the cluster will be completed.
985	 */
986	vfs_clean_pages(bp);
987	bqrelse(bp);
988
989	/*
990	 * Wakeup the buffer flushing daemon if we have a lot of dirty
991	 * buffers (midpoint between our recovery point and our stall
992	 * point).
993	 */
994	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
995
996	/*
997	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
998	 * due to the softdep code.
999	 */
1000}
1001
1002/*
1003 *	bdirty:
1004 *
1005 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1006 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1007 *	itself to properly update it in the dirty/clean lists.  We mark it
1008 *	B_DONE to ensure that any asynchronization of the buffer properly
1009 *	clears B_DONE ( else a panic will occur later ).
1010 *
1011 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1012 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1013 *	should only be called if the buffer is known-good.
1014 *
1015 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1016 *	count.
1017 *
1018 *	The buffer must be on QUEUE_NONE.
1019 */
1020void
1021bdirty(struct buf *bp)
1022{
1023
1024	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1025	    bp, bp->b_vp, bp->b_flags);
1026	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1027	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1028	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1029	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1030	bp->b_flags &= ~(B_RELBUF);
1031	bp->b_iocmd = BIO_WRITE;
1032
1033	if ((bp->b_flags & B_DELWRI) == 0) {
1034		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1035		reassignbuf(bp);
1036		atomic_add_int(&numdirtybuffers, 1);
1037		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1038	}
1039}
1040
1041/*
1042 *	bundirty:
1043 *
1044 *	Clear B_DELWRI for buffer.
1045 *
1046 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1047 *	count.
1048 *
1049 *	The buffer must be on QUEUE_NONE.
1050 */
1051
1052void
1053bundirty(struct buf *bp)
1054{
1055
1056	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1057	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1058	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1059	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1060	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1061
1062	if (bp->b_flags & B_DELWRI) {
1063		bp->b_flags &= ~B_DELWRI;
1064		reassignbuf(bp);
1065		atomic_subtract_int(&numdirtybuffers, 1);
1066		numdirtywakeup(lodirtybuffers);
1067	}
1068	/*
1069	 * Since it is now being written, we can clear its deferred write flag.
1070	 */
1071	bp->b_flags &= ~B_DEFERRED;
1072}
1073
1074/*
1075 *	bawrite:
1076 *
1077 *	Asynchronous write.  Start output on a buffer, but do not wait for
1078 *	it to complete.  The buffer is released when the output completes.
1079 *
1080 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1081 *	B_INVAL buffers.  Not us.
1082 */
1083void
1084bawrite(struct buf *bp)
1085{
1086
1087	bp->b_flags |= B_ASYNC;
1088	(void) bwrite(bp);
1089}
1090
1091/*
1092 *	bwillwrite:
1093 *
1094 *	Called prior to the locking of any vnodes when we are expecting to
1095 *	write.  We do not want to starve the buffer cache with too many
1096 *	dirty buffers so we block here.  By blocking prior to the locking
1097 *	of any vnodes we attempt to avoid the situation where a locked vnode
1098 *	prevents the various system daemons from flushing related buffers.
1099 */
1100
1101void
1102bwillwrite(void)
1103{
1104
1105	if (numdirtybuffers >= hidirtybuffers) {
1106		mtx_lock(&nblock);
1107		while (numdirtybuffers >= hidirtybuffers) {
1108			bd_wakeup(1);
1109			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1110			msleep(&needsbuffer, &nblock,
1111			    (PRIBIO + 4), "flswai", 0);
1112		}
1113		mtx_unlock(&nblock);
1114	}
1115}
1116
1117/*
1118 * Return true if we have too many dirty buffers.
1119 */
1120int
1121buf_dirty_count_severe(void)
1122{
1123
1124	return(numdirtybuffers >= hidirtybuffers);
1125}
1126
1127/*
1128 *	brelse:
1129 *
1130 *	Release a busy buffer and, if requested, free its resources.  The
1131 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1132 *	to be accessed later as a cache entity or reused for other purposes.
1133 */
1134void
1135brelse(struct buf *bp)
1136{
1137	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1138	    bp, bp->b_vp, bp->b_flags);
1139	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1140	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1141
1142	if (bp->b_flags & B_MANAGED) {
1143		bqrelse(bp);
1144		return;
1145	}
1146
1147	if (bp->b_iocmd == BIO_WRITE &&
1148	    (bp->b_ioflags & BIO_ERROR) &&
1149	    !(bp->b_flags & B_INVAL)) {
1150		/*
1151		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1152		 * pages from being scrapped.  If B_INVAL is set then
1153		 * this case is not run and the next case is run to
1154		 * destroy the buffer.  B_INVAL can occur if the buffer
1155		 * is outside the range supported by the underlying device.
1156		 */
1157		bp->b_ioflags &= ~BIO_ERROR;
1158		bdirty(bp);
1159	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1160	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1161		/*
1162		 * Either a failed I/O or we were asked to free or not
1163		 * cache the buffer.
1164		 */
1165		bp->b_flags |= B_INVAL;
1166		if (LIST_FIRST(&bp->b_dep) != NULL)
1167			buf_deallocate(bp);
1168		if (bp->b_flags & B_DELWRI) {
1169			atomic_subtract_int(&numdirtybuffers, 1);
1170			numdirtywakeup(lodirtybuffers);
1171		}
1172		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1173		if ((bp->b_flags & B_VMIO) == 0) {
1174			if (bp->b_bufsize)
1175				allocbuf(bp, 0);
1176			if (bp->b_vp)
1177				brelvp(bp);
1178		}
1179	}
1180
1181	/*
1182	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1183	 * is called with B_DELWRI set, the underlying pages may wind up
1184	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1185	 * because pages associated with a B_DELWRI bp are marked clean.
1186	 *
1187	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1188	 * if B_DELWRI is set.
1189	 *
1190	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1191	 * on pages to return pages to the VM page queues.
1192	 */
1193	if (bp->b_flags & B_DELWRI)
1194		bp->b_flags &= ~B_RELBUF;
1195	else if (vm_page_count_severe()) {
1196		/*
1197		 * XXX This lock may not be necessary since BKGRDINPROG
1198		 * cannot be set while we hold the buf lock, it can only be
1199		 * cleared if it is already pending.
1200		 */
1201		if (bp->b_vp) {
1202			BO_LOCK(bp->b_bufobj);
1203			if (!(bp->b_vflags & BV_BKGRDINPROG))
1204				bp->b_flags |= B_RELBUF;
1205			BO_UNLOCK(bp->b_bufobj);
1206		} else
1207			bp->b_flags |= B_RELBUF;
1208	}
1209
1210	/*
1211	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1212	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1213	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1214	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1215	 *
1216	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1217	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1218	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1219	 *
1220	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1221	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1222	 * the commit state and we cannot afford to lose the buffer. If the
1223	 * buffer has a background write in progress, we need to keep it
1224	 * around to prevent it from being reconstituted and starting a second
1225	 * background write.
1226	 */
1227	if ((bp->b_flags & B_VMIO)
1228	    && !(bp->b_vp->v_mount != NULL &&
1229		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1230		 !vn_isdisk(bp->b_vp, NULL) &&
1231		 (bp->b_flags & B_DELWRI))
1232	    ) {
1233
1234		int i, j, resid;
1235		vm_page_t m;
1236		off_t foff;
1237		vm_pindex_t poff;
1238		vm_object_t obj;
1239
1240		obj = bp->b_bufobj->bo_object;
1241
1242		/*
1243		 * Get the base offset and length of the buffer.  Note that
1244		 * in the VMIO case if the buffer block size is not
1245		 * page-aligned then b_data pointer may not be page-aligned.
1246		 * But our b_pages[] array *IS* page aligned.
1247		 *
1248		 * block sizes less then DEV_BSIZE (usually 512) are not
1249		 * supported due to the page granularity bits (m->valid,
1250		 * m->dirty, etc...).
1251		 *
1252		 * See man buf(9) for more information
1253		 */
1254		resid = bp->b_bufsize;
1255		foff = bp->b_offset;
1256		VM_OBJECT_LOCK(obj);
1257		for (i = 0; i < bp->b_npages; i++) {
1258			int had_bogus = 0;
1259
1260			m = bp->b_pages[i];
1261
1262			/*
1263			 * If we hit a bogus page, fixup *all* the bogus pages
1264			 * now.
1265			 */
1266			if (m == bogus_page) {
1267				poff = OFF_TO_IDX(bp->b_offset);
1268				had_bogus = 1;
1269
1270				for (j = i; j < bp->b_npages; j++) {
1271					vm_page_t mtmp;
1272					mtmp = bp->b_pages[j];
1273					if (mtmp == bogus_page) {
1274						mtmp = vm_page_lookup(obj, poff + j);
1275						if (!mtmp) {
1276							panic("brelse: page missing\n");
1277						}
1278						bp->b_pages[j] = mtmp;
1279					}
1280				}
1281
1282				if ((bp->b_flags & B_INVAL) == 0) {
1283					pmap_qenter(
1284					    trunc_page((vm_offset_t)bp->b_data),
1285					    bp->b_pages, bp->b_npages);
1286				}
1287				m = bp->b_pages[i];
1288			}
1289			if ((bp->b_flags & B_NOCACHE) ||
1290			    (bp->b_ioflags & BIO_ERROR)) {
1291				int poffset = foff & PAGE_MASK;
1292				int presid = resid > (PAGE_SIZE - poffset) ?
1293					(PAGE_SIZE - poffset) : resid;
1294
1295				KASSERT(presid >= 0, ("brelse: extra page"));
1296				vm_page_lock_queues();
1297				vm_page_set_invalid(m, poffset, presid);
1298				vm_page_unlock_queues();
1299				if (had_bogus)
1300					printf("avoided corruption bug in bogus_page/brelse code\n");
1301			}
1302			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1303			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1304		}
1305		VM_OBJECT_UNLOCK(obj);
1306		if (bp->b_flags & (B_INVAL | B_RELBUF))
1307			vfs_vmio_release(bp);
1308
1309	} else if (bp->b_flags & B_VMIO) {
1310
1311		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1312			vfs_vmio_release(bp);
1313		}
1314
1315	}
1316
1317	if (BUF_REFCNT(bp) > 1) {
1318		/* do not release to free list */
1319		BUF_UNLOCK(bp);
1320		return;
1321	}
1322
1323	/* enqueue */
1324	mtx_lock(&bqlock);
1325	/* Handle delayed bremfree() processing. */
1326	if (bp->b_flags & B_REMFREE)
1327		bremfreel(bp);
1328	if (bp->b_qindex != QUEUE_NONE)
1329		panic("brelse: free buffer onto another queue???");
1330
1331	/* buffers with no memory */
1332	if (bp->b_bufsize == 0) {
1333		bp->b_flags |= B_INVAL;
1334		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1335		if (bp->b_vflags & BV_BKGRDINPROG)
1336			panic("losing buffer 1");
1337		if (bp->b_kvasize) {
1338			bp->b_qindex = QUEUE_EMPTYKVA;
1339		} else {
1340			bp->b_qindex = QUEUE_EMPTY;
1341		}
1342		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1343	/* buffers with junk contents */
1344	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1345	    (bp->b_ioflags & BIO_ERROR)) {
1346		bp->b_flags |= B_INVAL;
1347		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1348		if (bp->b_vflags & BV_BKGRDINPROG)
1349			panic("losing buffer 2");
1350		bp->b_qindex = QUEUE_CLEAN;
1351		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1352	/* remaining buffers */
1353	} else {
1354		if (bp->b_flags & B_DELWRI)
1355			bp->b_qindex = QUEUE_DIRTY;
1356		else
1357			bp->b_qindex = QUEUE_CLEAN;
1358		if (bp->b_flags & B_AGE)
1359			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1360		else
1361			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1362	}
1363	mtx_unlock(&bqlock);
1364
1365	/*
1366	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1367	 * placed the buffer on the correct queue.  We must also disassociate
1368	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1369	 * find it.
1370	 */
1371	if (bp->b_flags & B_INVAL) {
1372		if (bp->b_flags & B_DELWRI)
1373			bundirty(bp);
1374		if (bp->b_vp)
1375			brelvp(bp);
1376	}
1377
1378	/*
1379	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1380	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1381	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1382	 * if B_INVAL is set ).
1383	 */
1384
1385	if (!(bp->b_flags & B_DELWRI))
1386		bufcountwakeup();
1387
1388	/*
1389	 * Something we can maybe free or reuse
1390	 */
1391	if (bp->b_bufsize || bp->b_kvasize)
1392		bufspacewakeup();
1393
1394	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1395	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1396		panic("brelse: not dirty");
1397	/* unlock */
1398	BUF_UNLOCK(bp);
1399}
1400
1401/*
1402 * Release a buffer back to the appropriate queue but do not try to free
1403 * it.  The buffer is expected to be used again soon.
1404 *
1405 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1406 * biodone() to requeue an async I/O on completion.  It is also used when
1407 * known good buffers need to be requeued but we think we may need the data
1408 * again soon.
1409 *
1410 * XXX we should be able to leave the B_RELBUF hint set on completion.
1411 */
1412void
1413bqrelse(struct buf *bp)
1414{
1415	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1416	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1417	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1418
1419	if (BUF_REFCNT(bp) > 1) {
1420		/* do not release to free list */
1421		BUF_UNLOCK(bp);
1422		return;
1423	}
1424
1425	if (bp->b_flags & B_MANAGED) {
1426		if (bp->b_flags & B_REMFREE) {
1427			mtx_lock(&bqlock);
1428			bremfreel(bp);
1429			mtx_unlock(&bqlock);
1430		}
1431		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1432		BUF_UNLOCK(bp);
1433		return;
1434	}
1435
1436	mtx_lock(&bqlock);
1437	/* Handle delayed bremfree() processing. */
1438	if (bp->b_flags & B_REMFREE)
1439		bremfreel(bp);
1440	if (bp->b_qindex != QUEUE_NONE)
1441		panic("bqrelse: free buffer onto another queue???");
1442	/* buffers with stale but valid contents */
1443	if (bp->b_flags & B_DELWRI) {
1444		bp->b_qindex = QUEUE_DIRTY;
1445		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1446	} else {
1447		/*
1448		 * XXX This lock may not be necessary since BKGRDINPROG
1449		 * cannot be set while we hold the buf lock, it can only be
1450		 * cleared if it is already pending.
1451		 */
1452		BO_LOCK(bp->b_bufobj);
1453		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1454			BO_UNLOCK(bp->b_bufobj);
1455			bp->b_qindex = QUEUE_CLEAN;
1456			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1457			    b_freelist);
1458		} else {
1459			/*
1460			 * We are too low on memory, we have to try to free
1461			 * the buffer (most importantly: the wired pages
1462			 * making up its backing store) *now*.
1463			 */
1464			BO_UNLOCK(bp->b_bufobj);
1465			mtx_unlock(&bqlock);
1466			brelse(bp);
1467			return;
1468		}
1469	}
1470	mtx_unlock(&bqlock);
1471
1472	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1473		bufcountwakeup();
1474
1475	/*
1476	 * Something we can maybe free or reuse.
1477	 */
1478	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1479		bufspacewakeup();
1480
1481	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1482	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1483		panic("bqrelse: not dirty");
1484	/* unlock */
1485	BUF_UNLOCK(bp);
1486}
1487
1488/* Give pages used by the bp back to the VM system (where possible) */
1489static void
1490vfs_vmio_release(struct buf *bp)
1491{
1492	int i;
1493	vm_page_t m;
1494
1495	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1496	vm_page_lock_queues();
1497	for (i = 0; i < bp->b_npages; i++) {
1498		m = bp->b_pages[i];
1499		bp->b_pages[i] = NULL;
1500		/*
1501		 * In order to keep page LRU ordering consistent, put
1502		 * everything on the inactive queue.
1503		 */
1504		vm_page_unwire(m, 0);
1505		/*
1506		 * We don't mess with busy pages, it is
1507		 * the responsibility of the process that
1508		 * busied the pages to deal with them.
1509		 */
1510		if ((m->flags & PG_BUSY) || (m->busy != 0))
1511			continue;
1512
1513		if (m->wire_count == 0) {
1514			/*
1515			 * Might as well free the page if we can and it has
1516			 * no valid data.  We also free the page if the
1517			 * buffer was used for direct I/O
1518			 */
1519			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1520			    m->hold_count == 0) {
1521				pmap_remove_all(m);
1522				vm_page_free(m);
1523			} else if (bp->b_flags & B_DIRECT) {
1524				vm_page_try_to_free(m);
1525			} else if (vm_page_count_severe()) {
1526				vm_page_try_to_cache(m);
1527			}
1528		}
1529	}
1530	vm_page_unlock_queues();
1531	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1532	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1533
1534	if (bp->b_bufsize) {
1535		bufspacewakeup();
1536		bp->b_bufsize = 0;
1537	}
1538	bp->b_npages = 0;
1539	bp->b_flags &= ~B_VMIO;
1540	if (bp->b_vp)
1541		brelvp(bp);
1542}
1543
1544/*
1545 * Check to see if a block at a particular lbn is available for a clustered
1546 * write.
1547 */
1548static int
1549vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1550{
1551	struct buf *bpa;
1552	int match;
1553
1554	match = 0;
1555
1556	/* If the buf isn't in core skip it */
1557	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1558		return (0);
1559
1560	/* If the buf is busy we don't want to wait for it */
1561	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1562		return (0);
1563
1564	/* Only cluster with valid clusterable delayed write buffers */
1565	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1566	    (B_DELWRI | B_CLUSTEROK))
1567		goto done;
1568
1569	if (bpa->b_bufsize != size)
1570		goto done;
1571
1572	/*
1573	 * Check to see if it is in the expected place on disk and that the
1574	 * block has been mapped.
1575	 */
1576	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1577		match = 1;
1578done:
1579	BUF_UNLOCK(bpa);
1580	return (match);
1581}
1582
1583/*
1584 *	vfs_bio_awrite:
1585 *
1586 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1587 *	This is much better then the old way of writing only one buffer at
1588 *	a time.  Note that we may not be presented with the buffers in the
1589 *	correct order, so we search for the cluster in both directions.
1590 */
1591int
1592vfs_bio_awrite(struct buf *bp)
1593{
1594	int i;
1595	int j;
1596	daddr_t lblkno = bp->b_lblkno;
1597	struct vnode *vp = bp->b_vp;
1598	int ncl;
1599	int nwritten;
1600	int size;
1601	int maxcl;
1602
1603	/*
1604	 * right now we support clustered writing only to regular files.  If
1605	 * we find a clusterable block we could be in the middle of a cluster
1606	 * rather then at the beginning.
1607	 */
1608	if ((vp->v_type == VREG) &&
1609	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1610	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1611
1612		size = vp->v_mount->mnt_stat.f_iosize;
1613		maxcl = MAXPHYS / size;
1614
1615		VI_LOCK(vp);
1616		for (i = 1; i < maxcl; i++)
1617			if (vfs_bio_clcheck(vp, size, lblkno + i,
1618			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1619				break;
1620
1621		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1622			if (vfs_bio_clcheck(vp, size, lblkno - j,
1623			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1624				break;
1625
1626		VI_UNLOCK(vp);
1627		--j;
1628		ncl = i + j;
1629		/*
1630		 * this is a possible cluster write
1631		 */
1632		if (ncl != 1) {
1633			BUF_UNLOCK(bp);
1634			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1635			return nwritten;
1636		}
1637	}
1638	bremfree(bp);
1639	bp->b_flags |= B_ASYNC;
1640	/*
1641	 * default (old) behavior, writing out only one block
1642	 *
1643	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1644	 */
1645	nwritten = bp->b_bufsize;
1646	(void) bwrite(bp);
1647
1648	return nwritten;
1649}
1650
1651/*
1652 *	getnewbuf:
1653 *
1654 *	Find and initialize a new buffer header, freeing up existing buffers
1655 *	in the bufqueues as necessary.  The new buffer is returned locked.
1656 *
1657 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1658 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1659 *
1660 *	We block if:
1661 *		We have insufficient buffer headers
1662 *		We have insufficient buffer space
1663 *		buffer_map is too fragmented ( space reservation fails )
1664 *		If we have to flush dirty buffers ( but we try to avoid this )
1665 *
1666 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1667 *	Instead we ask the buf daemon to do it for us.  We attempt to
1668 *	avoid piecemeal wakeups of the pageout daemon.
1669 */
1670
1671static struct buf *
1672getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1673{
1674	struct buf *bp;
1675	struct buf *nbp;
1676	int defrag = 0;
1677	int nqindex;
1678	static int flushingbufs;
1679
1680	/*
1681	 * We can't afford to block since we might be holding a vnode lock,
1682	 * which may prevent system daemons from running.  We deal with
1683	 * low-memory situations by proactively returning memory and running
1684	 * async I/O rather then sync I/O.
1685	 */
1686
1687	atomic_add_int(&getnewbufcalls, 1);
1688	atomic_subtract_int(&getnewbufrestarts, 1);
1689restart:
1690	atomic_add_int(&getnewbufrestarts, 1);
1691
1692	/*
1693	 * Setup for scan.  If we do not have enough free buffers,
1694	 * we setup a degenerate case that immediately fails.  Note
1695	 * that if we are specially marked process, we are allowed to
1696	 * dip into our reserves.
1697	 *
1698	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1699	 *
1700	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1701	 * However, there are a number of cases (defragging, reusing, ...)
1702	 * where we cannot backup.
1703	 */
1704	mtx_lock(&bqlock);
1705	nqindex = QUEUE_EMPTYKVA;
1706	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1707
1708	if (nbp == NULL) {
1709		/*
1710		 * If no EMPTYKVA buffers and we are either
1711		 * defragging or reusing, locate a CLEAN buffer
1712		 * to free or reuse.  If bufspace useage is low
1713		 * skip this step so we can allocate a new buffer.
1714		 */
1715		if (defrag || bufspace >= lobufspace) {
1716			nqindex = QUEUE_CLEAN;
1717			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1718		}
1719
1720		/*
1721		 * If we could not find or were not allowed to reuse a
1722		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1723		 * buffer.  We can only use an EMPTY buffer if allocating
1724		 * its KVA would not otherwise run us out of buffer space.
1725		 */
1726		if (nbp == NULL && defrag == 0 &&
1727		    bufspace + maxsize < hibufspace) {
1728			nqindex = QUEUE_EMPTY;
1729			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1730		}
1731	}
1732
1733	/*
1734	 * Run scan, possibly freeing data and/or kva mappings on the fly
1735	 * depending.
1736	 */
1737
1738	while ((bp = nbp) != NULL) {
1739		int qindex = nqindex;
1740
1741		/*
1742		 * Calculate next bp ( we can only use it if we do not block
1743		 * or do other fancy things ).
1744		 */
1745		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1746			switch(qindex) {
1747			case QUEUE_EMPTY:
1748				nqindex = QUEUE_EMPTYKVA;
1749				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1750					break;
1751				/* FALLTHROUGH */
1752			case QUEUE_EMPTYKVA:
1753				nqindex = QUEUE_CLEAN;
1754				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1755					break;
1756				/* FALLTHROUGH */
1757			case QUEUE_CLEAN:
1758				/*
1759				 * nbp is NULL.
1760				 */
1761				break;
1762			}
1763		}
1764		/*
1765		 * If we are defragging then we need a buffer with
1766		 * b_kvasize != 0.  XXX this situation should no longer
1767		 * occur, if defrag is non-zero the buffer's b_kvasize
1768		 * should also be non-zero at this point.  XXX
1769		 */
1770		if (defrag && bp->b_kvasize == 0) {
1771			printf("Warning: defrag empty buffer %p\n", bp);
1772			continue;
1773		}
1774
1775		/*
1776		 * Start freeing the bp.  This is somewhat involved.  nbp
1777		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1778		 */
1779		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1780			continue;
1781		if (bp->b_vp) {
1782			BO_LOCK(bp->b_bufobj);
1783			if (bp->b_vflags & BV_BKGRDINPROG) {
1784				BO_UNLOCK(bp->b_bufobj);
1785				BUF_UNLOCK(bp);
1786				continue;
1787			}
1788			BO_UNLOCK(bp->b_bufobj);
1789		}
1790		CTR6(KTR_BUF,
1791		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1792		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1793		    bp->b_kvasize, bp->b_bufsize, qindex);
1794
1795		/*
1796		 * Sanity Checks
1797		 */
1798		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1799
1800		/*
1801		 * Note: we no longer distinguish between VMIO and non-VMIO
1802		 * buffers.
1803		 */
1804
1805		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1806
1807		bremfreel(bp);
1808		mtx_unlock(&bqlock);
1809
1810		if (qindex == QUEUE_CLEAN) {
1811			if (bp->b_flags & B_VMIO) {
1812				bp->b_flags &= ~B_ASYNC;
1813				vfs_vmio_release(bp);
1814			}
1815			if (bp->b_vp)
1816				brelvp(bp);
1817		}
1818
1819		/*
1820		 * NOTE:  nbp is now entirely invalid.  We can only restart
1821		 * the scan from this point on.
1822		 *
1823		 * Get the rest of the buffer freed up.  b_kva* is still
1824		 * valid after this operation.
1825		 */
1826
1827		if (bp->b_rcred != NOCRED) {
1828			crfree(bp->b_rcred);
1829			bp->b_rcred = NOCRED;
1830		}
1831		if (bp->b_wcred != NOCRED) {
1832			crfree(bp->b_wcred);
1833			bp->b_wcred = NOCRED;
1834		}
1835		if (LIST_FIRST(&bp->b_dep) != NULL)
1836			buf_deallocate(bp);
1837		if (bp->b_vflags & BV_BKGRDINPROG)
1838			panic("losing buffer 3");
1839		KASSERT(bp->b_vp == NULL,
1840		    ("bp: %p still has vnode %p.  qindex: %d",
1841		    bp, bp->b_vp, qindex));
1842		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1843		   ("bp: %p still on a buffer list. xflags %X",
1844		    bp, bp->b_xflags));
1845
1846		if (bp->b_bufsize)
1847			allocbuf(bp, 0);
1848
1849		bp->b_flags = 0;
1850		bp->b_ioflags = 0;
1851		bp->b_xflags = 0;
1852		bp->b_vflags = 0;
1853		bp->b_vp = NULL;
1854		bp->b_blkno = bp->b_lblkno = 0;
1855		bp->b_offset = NOOFFSET;
1856		bp->b_iodone = 0;
1857		bp->b_error = 0;
1858		bp->b_resid = 0;
1859		bp->b_bcount = 0;
1860		bp->b_npages = 0;
1861		bp->b_dirtyoff = bp->b_dirtyend = 0;
1862		bp->b_bufobj = NULL;
1863		bp->b_pin_count = 0;
1864		bp->b_fsprivate1 = NULL;
1865		bp->b_fsprivate2 = NULL;
1866		bp->b_fsprivate3 = NULL;
1867
1868		LIST_INIT(&bp->b_dep);
1869
1870		/*
1871		 * If we are defragging then free the buffer.
1872		 */
1873		if (defrag) {
1874			bp->b_flags |= B_INVAL;
1875			bfreekva(bp);
1876			brelse(bp);
1877			defrag = 0;
1878			goto restart;
1879		}
1880
1881		/*
1882		 * If we are overcomitted then recover the buffer and its
1883		 * KVM space.  This occurs in rare situations when multiple
1884		 * processes are blocked in getnewbuf() or allocbuf().
1885		 */
1886		if (bufspace >= hibufspace)
1887			flushingbufs = 1;
1888		if (flushingbufs && bp->b_kvasize != 0) {
1889			bp->b_flags |= B_INVAL;
1890			bfreekva(bp);
1891			brelse(bp);
1892			goto restart;
1893		}
1894		if (bufspace < lobufspace)
1895			flushingbufs = 0;
1896		break;
1897	}
1898
1899	/*
1900	 * If we exhausted our list, sleep as appropriate.  We may have to
1901	 * wakeup various daemons and write out some dirty buffers.
1902	 *
1903	 * Generally we are sleeping due to insufficient buffer space.
1904	 */
1905
1906	if (bp == NULL) {
1907		int flags;
1908		char *waitmsg;
1909
1910		if (defrag) {
1911			flags = VFS_BIO_NEED_BUFSPACE;
1912			waitmsg = "nbufkv";
1913		} else if (bufspace >= hibufspace) {
1914			waitmsg = "nbufbs";
1915			flags = VFS_BIO_NEED_BUFSPACE;
1916		} else {
1917			waitmsg = "newbuf";
1918			flags = VFS_BIO_NEED_ANY;
1919		}
1920		mtx_lock(&nblock);
1921		needsbuffer |= flags;
1922		mtx_unlock(&nblock);
1923		mtx_unlock(&bqlock);
1924
1925		bd_speedup();	/* heeeelp */
1926
1927		mtx_lock(&nblock);
1928		while (needsbuffer & flags) {
1929			if (msleep(&needsbuffer, &nblock,
1930			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1931				mtx_unlock(&nblock);
1932				return (NULL);
1933			}
1934		}
1935		mtx_unlock(&nblock);
1936	} else {
1937		/*
1938		 * We finally have a valid bp.  We aren't quite out of the
1939		 * woods, we still have to reserve kva space.  In order
1940		 * to keep fragmentation sane we only allocate kva in
1941		 * BKVASIZE chunks.
1942		 */
1943		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1944
1945		if (maxsize != bp->b_kvasize) {
1946			vm_offset_t addr = 0;
1947
1948			bfreekva(bp);
1949
1950			vm_map_lock(buffer_map);
1951			if (vm_map_findspace(buffer_map,
1952				vm_map_min(buffer_map), maxsize, &addr)) {
1953				/*
1954				 * Uh oh.  Buffer map is to fragmented.  We
1955				 * must defragment the map.
1956				 */
1957				atomic_add_int(&bufdefragcnt, 1);
1958				vm_map_unlock(buffer_map);
1959				defrag = 1;
1960				bp->b_flags |= B_INVAL;
1961				brelse(bp);
1962				goto restart;
1963			}
1964			if (addr) {
1965				vm_map_insert(buffer_map, NULL, 0,
1966					addr, addr + maxsize,
1967					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1968
1969				bp->b_kvabase = (caddr_t) addr;
1970				bp->b_kvasize = maxsize;
1971				atomic_add_int(&bufspace, bp->b_kvasize);
1972				atomic_add_int(&bufreusecnt, 1);
1973			}
1974			vm_map_unlock(buffer_map);
1975		}
1976		bp->b_saveaddr = bp->b_kvabase;
1977		bp->b_data = bp->b_saveaddr;
1978	}
1979	return(bp);
1980}
1981
1982/*
1983 *	buf_daemon:
1984 *
1985 *	buffer flushing daemon.  Buffers are normally flushed by the
1986 *	update daemon but if it cannot keep up this process starts to
1987 *	take the load in an attempt to prevent getnewbuf() from blocking.
1988 */
1989
1990static struct kproc_desc buf_kp = {
1991	"bufdaemon",
1992	buf_daemon,
1993	&bufdaemonproc
1994};
1995SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1996
1997static void
1998buf_daemon()
1999{
2000	mtx_lock(&Giant);
2001
2002	/*
2003	 * This process needs to be suspended prior to shutdown sync.
2004	 */
2005	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2006	    SHUTDOWN_PRI_LAST);
2007
2008	/*
2009	 * This process is allowed to take the buffer cache to the limit
2010	 */
2011	curthread->td_pflags |= TDP_NORUNNINGBUF;
2012	mtx_lock(&bdlock);
2013	for (;;) {
2014		bd_request = 0;
2015		mtx_unlock(&bdlock);
2016
2017		kthread_suspend_check(bufdaemonproc);
2018
2019		/*
2020		 * Do the flush.  Limit the amount of in-transit I/O we
2021		 * allow to build up, otherwise we would completely saturate
2022		 * the I/O system.  Wakeup any waiting processes before we
2023		 * normally would so they can run in parallel with our drain.
2024		 */
2025		while (numdirtybuffers > lodirtybuffers) {
2026			if (flushbufqueues(0) == 0) {
2027				/*
2028				 * Could not find any buffers without rollback
2029				 * dependencies, so just write the first one
2030				 * in the hopes of eventually making progress.
2031				 */
2032				flushbufqueues(1);
2033				break;
2034			}
2035			uio_yield();
2036		}
2037
2038		/*
2039		 * Only clear bd_request if we have reached our low water
2040		 * mark.  The buf_daemon normally waits 1 second and
2041		 * then incrementally flushes any dirty buffers that have
2042		 * built up, within reason.
2043		 *
2044		 * If we were unable to hit our low water mark and couldn't
2045		 * find any flushable buffers, we sleep half a second.
2046		 * Otherwise we loop immediately.
2047		 */
2048		mtx_lock(&bdlock);
2049		if (numdirtybuffers <= lodirtybuffers) {
2050			/*
2051			 * We reached our low water mark, reset the
2052			 * request and sleep until we are needed again.
2053			 * The sleep is just so the suspend code works.
2054			 */
2055			bd_request = 0;
2056			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2057		} else {
2058			/*
2059			 * We couldn't find any flushable dirty buffers but
2060			 * still have too many dirty buffers, we
2061			 * have to sleep and try again.  (rare)
2062			 */
2063			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2064		}
2065	}
2066}
2067
2068/*
2069 *	flushbufqueues:
2070 *
2071 *	Try to flush a buffer in the dirty queue.  We must be careful to
2072 *	free up B_INVAL buffers instead of write them, which NFS is
2073 *	particularly sensitive to.
2074 */
2075static int flushwithdeps = 0;
2076SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2077    0, "Number of buffers flushed with dependecies that require rollbacks");
2078
2079static int
2080flushbufqueues(int flushdeps)
2081{
2082	struct thread *td = curthread;
2083	struct buf sentinel;
2084	struct vnode *vp;
2085	struct mount *mp;
2086	struct buf *bp;
2087	int hasdeps;
2088	int flushed;
2089	int target;
2090
2091	target = numdirtybuffers - lodirtybuffers;
2092	if (flushdeps && target > 2)
2093		target /= 2;
2094	flushed = 0;
2095	bp = NULL;
2096	mtx_lock(&bqlock);
2097	TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], &sentinel, b_freelist);
2098	while (flushed != target) {
2099		bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2100		if (bp == &sentinel)
2101			break;
2102		TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
2103		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
2104
2105		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2106			continue;
2107		if (bp->b_pin_count > 0) {
2108			BUF_UNLOCK(bp);
2109			continue;
2110		}
2111		BO_LOCK(bp->b_bufobj);
2112		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2113		    (bp->b_flags & B_DELWRI) == 0) {
2114			BO_UNLOCK(bp->b_bufobj);
2115			BUF_UNLOCK(bp);
2116			continue;
2117		}
2118		BO_UNLOCK(bp->b_bufobj);
2119		if (bp->b_flags & B_INVAL) {
2120			bremfreel(bp);
2121			mtx_unlock(&bqlock);
2122			brelse(bp);
2123			flushed++;
2124			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2125			mtx_lock(&bqlock);
2126			continue;
2127		}
2128
2129		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2130			if (flushdeps == 0) {
2131				BUF_UNLOCK(bp);
2132				continue;
2133			}
2134			hasdeps = 1;
2135		} else
2136			hasdeps = 0;
2137		/*
2138		 * We must hold the lock on a vnode before writing
2139		 * one of its buffers. Otherwise we may confuse, or
2140		 * in the case of a snapshot vnode, deadlock the
2141		 * system.
2142		 *
2143		 * The lock order here is the reverse of the normal
2144		 * of vnode followed by buf lock.  This is ok because
2145		 * the NOWAIT will prevent deadlock.
2146		 */
2147		vp = bp->b_vp;
2148		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2149			BUF_UNLOCK(bp);
2150			continue;
2151		}
2152		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2153			mtx_unlock(&bqlock);
2154			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2155			    bp, bp->b_vp, bp->b_flags);
2156			vfs_bio_awrite(bp);
2157			vn_finished_write(mp);
2158			VOP_UNLOCK(vp, 0, td);
2159			flushwithdeps += hasdeps;
2160			flushed++;
2161			waitrunningbufspace();
2162			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2163			mtx_lock(&bqlock);
2164			continue;
2165		}
2166		vn_finished_write(mp);
2167		BUF_UNLOCK(bp);
2168	}
2169	TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], &sentinel, b_freelist);
2170	mtx_unlock(&bqlock);
2171	return (flushed);
2172}
2173
2174/*
2175 * Check to see if a block is currently memory resident.
2176 */
2177struct buf *
2178incore(struct bufobj *bo, daddr_t blkno)
2179{
2180	struct buf *bp;
2181
2182	BO_LOCK(bo);
2183	bp = gbincore(bo, blkno);
2184	BO_UNLOCK(bo);
2185	return (bp);
2186}
2187
2188/*
2189 * Returns true if no I/O is needed to access the
2190 * associated VM object.  This is like incore except
2191 * it also hunts around in the VM system for the data.
2192 */
2193
2194static int
2195inmem(struct vnode * vp, daddr_t blkno)
2196{
2197	vm_object_t obj;
2198	vm_offset_t toff, tinc, size;
2199	vm_page_t m;
2200	vm_ooffset_t off;
2201
2202	ASSERT_VOP_LOCKED(vp, "inmem");
2203
2204	if (incore(&vp->v_bufobj, blkno))
2205		return 1;
2206	if (vp->v_mount == NULL)
2207		return 0;
2208	obj = vp->v_object;
2209	if (obj == NULL)
2210		return (0);
2211
2212	size = PAGE_SIZE;
2213	if (size > vp->v_mount->mnt_stat.f_iosize)
2214		size = vp->v_mount->mnt_stat.f_iosize;
2215	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2216
2217	VM_OBJECT_LOCK(obj);
2218	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2219		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2220		if (!m)
2221			goto notinmem;
2222		tinc = size;
2223		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2224			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2225		if (vm_page_is_valid(m,
2226		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2227			goto notinmem;
2228	}
2229	VM_OBJECT_UNLOCK(obj);
2230	return 1;
2231
2232notinmem:
2233	VM_OBJECT_UNLOCK(obj);
2234	return (0);
2235}
2236
2237/*
2238 *	vfs_setdirty:
2239 *
2240 *	Sets the dirty range for a buffer based on the status of the dirty
2241 *	bits in the pages comprising the buffer.
2242 *
2243 *	The range is limited to the size of the buffer.
2244 *
2245 *	This routine is primarily used by NFS, but is generalized for the
2246 *	B_VMIO case.
2247 */
2248static void
2249vfs_setdirty(struct buf *bp)
2250{
2251	int i;
2252	vm_object_t object;
2253
2254	/*
2255	 * Degenerate case - empty buffer
2256	 */
2257
2258	if (bp->b_bufsize == 0)
2259		return;
2260
2261	/*
2262	 * We qualify the scan for modified pages on whether the
2263	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2264	 * is not cleared simply by protecting pages off.
2265	 */
2266
2267	if ((bp->b_flags & B_VMIO) == 0)
2268		return;
2269
2270	object = bp->b_pages[0]->object;
2271	VM_OBJECT_LOCK(object);
2272	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2273		printf("Warning: object %p writeable but not mightbedirty\n", object);
2274	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2275		printf("Warning: object %p mightbedirty but not writeable\n", object);
2276
2277	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2278		vm_offset_t boffset;
2279		vm_offset_t eoffset;
2280
2281		vm_page_lock_queues();
2282		/*
2283		 * test the pages to see if they have been modified directly
2284		 * by users through the VM system.
2285		 */
2286		for (i = 0; i < bp->b_npages; i++)
2287			vm_page_test_dirty(bp->b_pages[i]);
2288
2289		/*
2290		 * Calculate the encompassing dirty range, boffset and eoffset,
2291		 * (eoffset - boffset) bytes.
2292		 */
2293
2294		for (i = 0; i < bp->b_npages; i++) {
2295			if (bp->b_pages[i]->dirty)
2296				break;
2297		}
2298		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2299
2300		for (i = bp->b_npages - 1; i >= 0; --i) {
2301			if (bp->b_pages[i]->dirty) {
2302				break;
2303			}
2304		}
2305		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2306
2307		vm_page_unlock_queues();
2308		/*
2309		 * Fit it to the buffer.
2310		 */
2311
2312		if (eoffset > bp->b_bcount)
2313			eoffset = bp->b_bcount;
2314
2315		/*
2316		 * If we have a good dirty range, merge with the existing
2317		 * dirty range.
2318		 */
2319
2320		if (boffset < eoffset) {
2321			if (bp->b_dirtyoff > boffset)
2322				bp->b_dirtyoff = boffset;
2323			if (bp->b_dirtyend < eoffset)
2324				bp->b_dirtyend = eoffset;
2325		}
2326	}
2327	VM_OBJECT_UNLOCK(object);
2328}
2329
2330/*
2331 *	getblk:
2332 *
2333 *	Get a block given a specified block and offset into a file/device.
2334 *	The buffers B_DONE bit will be cleared on return, making it almost
2335 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2336 *	return.  The caller should clear B_INVAL prior to initiating a
2337 *	READ.
2338 *
2339 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2340 *	an existing buffer.
2341 *
2342 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2343 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2344 *	and then cleared based on the backing VM.  If the previous buffer is
2345 *	non-0-sized but invalid, B_CACHE will be cleared.
2346 *
2347 *	If getblk() must create a new buffer, the new buffer is returned with
2348 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2349 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2350 *	backing VM.
2351 *
2352 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2353 *	B_CACHE bit is clear.
2354 *
2355 *	What this means, basically, is that the caller should use B_CACHE to
2356 *	determine whether the buffer is fully valid or not and should clear
2357 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2358 *	the buffer by loading its data area with something, the caller needs
2359 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2360 *	the caller should set B_CACHE ( as an optimization ), else the caller
2361 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2362 *	a write attempt or if it was a successfull read.  If the caller
2363 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2364 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2365 */
2366struct buf *
2367getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2368    int flags)
2369{
2370	struct buf *bp;
2371	struct bufobj *bo;
2372	int error;
2373
2374	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2375	ASSERT_VOP_LOCKED(vp, "getblk");
2376	if (size > MAXBSIZE)
2377		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2378
2379	bo = &vp->v_bufobj;
2380loop:
2381	/*
2382	 * Block if we are low on buffers.   Certain processes are allowed
2383	 * to completely exhaust the buffer cache.
2384         *
2385         * If this check ever becomes a bottleneck it may be better to
2386         * move it into the else, when gbincore() fails.  At the moment
2387         * it isn't a problem.
2388	 *
2389	 * XXX remove if 0 sections (clean this up after its proven)
2390         */
2391	if (numfreebuffers == 0) {
2392		if (curthread == PCPU_GET(idlethread))
2393			return NULL;
2394		mtx_lock(&nblock);
2395		needsbuffer |= VFS_BIO_NEED_ANY;
2396		mtx_unlock(&nblock);
2397	}
2398
2399	VI_LOCK(vp);
2400	bp = gbincore(bo, blkno);
2401	if (bp != NULL) {
2402		int lockflags;
2403		/*
2404		 * Buffer is in-core.  If the buffer is not busy, it must
2405		 * be on a queue.
2406		 */
2407		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2408
2409		if (flags & GB_LOCK_NOWAIT)
2410			lockflags |= LK_NOWAIT;
2411
2412		error = BUF_TIMELOCK(bp, lockflags,
2413		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2414
2415		/*
2416		 * If we slept and got the lock we have to restart in case
2417		 * the buffer changed identities.
2418		 */
2419		if (error == ENOLCK)
2420			goto loop;
2421		/* We timed out or were interrupted. */
2422		else if (error)
2423			return (NULL);
2424
2425		/*
2426		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2427		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2428		 * and for a VMIO buffer B_CACHE is adjusted according to the
2429		 * backing VM cache.
2430		 */
2431		if (bp->b_flags & B_INVAL)
2432			bp->b_flags &= ~B_CACHE;
2433		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2434			bp->b_flags |= B_CACHE;
2435		bremfree(bp);
2436
2437		/*
2438		 * check for size inconsistancies for non-VMIO case.
2439		 */
2440
2441		if (bp->b_bcount != size) {
2442			if ((bp->b_flags & B_VMIO) == 0 ||
2443			    (size > bp->b_kvasize)) {
2444				if (bp->b_flags & B_DELWRI) {
2445					/*
2446					 * If buffer is pinned and caller does
2447					 * not want sleep  waiting for it to be
2448					 * unpinned, bail out
2449					 * */
2450					if (bp->b_pin_count > 0) {
2451						if (flags & GB_LOCK_NOWAIT) {
2452							bqrelse(bp);
2453							return (NULL);
2454						} else {
2455							bunpin_wait(bp);
2456						}
2457					}
2458					bp->b_flags |= B_NOCACHE;
2459					bwrite(bp);
2460				} else {
2461					if (LIST_FIRST(&bp->b_dep) == NULL) {
2462						bp->b_flags |= B_RELBUF;
2463						brelse(bp);
2464					} else {
2465						bp->b_flags |= B_NOCACHE;
2466						bwrite(bp);
2467					}
2468				}
2469				goto loop;
2470			}
2471		}
2472
2473		/*
2474		 * If the size is inconsistant in the VMIO case, we can resize
2475		 * the buffer.  This might lead to B_CACHE getting set or
2476		 * cleared.  If the size has not changed, B_CACHE remains
2477		 * unchanged from its previous state.
2478		 */
2479
2480		if (bp->b_bcount != size)
2481			allocbuf(bp, size);
2482
2483		KASSERT(bp->b_offset != NOOFFSET,
2484		    ("getblk: no buffer offset"));
2485
2486		/*
2487		 * A buffer with B_DELWRI set and B_CACHE clear must
2488		 * be committed before we can return the buffer in
2489		 * order to prevent the caller from issuing a read
2490		 * ( due to B_CACHE not being set ) and overwriting
2491		 * it.
2492		 *
2493		 * Most callers, including NFS and FFS, need this to
2494		 * operate properly either because they assume they
2495		 * can issue a read if B_CACHE is not set, or because
2496		 * ( for example ) an uncached B_DELWRI might loop due
2497		 * to softupdates re-dirtying the buffer.  In the latter
2498		 * case, B_CACHE is set after the first write completes,
2499		 * preventing further loops.
2500		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2501		 * above while extending the buffer, we cannot allow the
2502		 * buffer to remain with B_CACHE set after the write
2503		 * completes or it will represent a corrupt state.  To
2504		 * deal with this we set B_NOCACHE to scrap the buffer
2505		 * after the write.
2506		 *
2507		 * We might be able to do something fancy, like setting
2508		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2509		 * so the below call doesn't set B_CACHE, but that gets real
2510		 * confusing.  This is much easier.
2511		 */
2512
2513		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2514			bp->b_flags |= B_NOCACHE;
2515			bwrite(bp);
2516			goto loop;
2517		}
2518		bp->b_flags &= ~B_DONE;
2519	} else {
2520		int bsize, maxsize, vmio;
2521		off_t offset;
2522
2523		/*
2524		 * Buffer is not in-core, create new buffer.  The buffer
2525		 * returned by getnewbuf() is locked.  Note that the returned
2526		 * buffer is also considered valid (not marked B_INVAL).
2527		 */
2528		VI_UNLOCK(vp);
2529		/*
2530		 * If the user does not want us to create the buffer, bail out
2531		 * here.
2532		 */
2533		if (flags & GB_NOCREAT)
2534			return NULL;
2535		bsize = bo->bo_bsize;
2536		offset = blkno * bsize;
2537		vmio = vp->v_object != NULL;
2538		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2539		maxsize = imax(maxsize, bsize);
2540
2541		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2542		if (bp == NULL) {
2543			if (slpflag || slptimeo)
2544				return NULL;
2545			goto loop;
2546		}
2547
2548		/*
2549		 * This code is used to make sure that a buffer is not
2550		 * created while the getnewbuf routine is blocked.
2551		 * This can be a problem whether the vnode is locked or not.
2552		 * If the buffer is created out from under us, we have to
2553		 * throw away the one we just created.
2554		 *
2555		 * Note: this must occur before we associate the buffer
2556		 * with the vp especially considering limitations in
2557		 * the splay tree implementation when dealing with duplicate
2558		 * lblkno's.
2559		 */
2560		BO_LOCK(bo);
2561		if (gbincore(bo, blkno)) {
2562			BO_UNLOCK(bo);
2563			bp->b_flags |= B_INVAL;
2564			brelse(bp);
2565			goto loop;
2566		}
2567
2568		/*
2569		 * Insert the buffer into the hash, so that it can
2570		 * be found by incore.
2571		 */
2572		bp->b_blkno = bp->b_lblkno = blkno;
2573		bp->b_offset = offset;
2574
2575		bgetvp(vp, bp);
2576		BO_UNLOCK(bo);
2577
2578		/*
2579		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2580		 * buffer size starts out as 0, B_CACHE will be set by
2581		 * allocbuf() for the VMIO case prior to it testing the
2582		 * backing store for validity.
2583		 */
2584
2585		if (vmio) {
2586			bp->b_flags |= B_VMIO;
2587#if defined(VFS_BIO_DEBUG)
2588			if (vn_canvmio(vp) != TRUE)
2589				printf("getblk: VMIO on vnode type %d\n",
2590					vp->v_type);
2591#endif
2592			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2593			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2594			    bp, vp->v_object, bp->b_bufobj->bo_object));
2595		} else {
2596			bp->b_flags &= ~B_VMIO;
2597			KASSERT(bp->b_bufobj->bo_object == NULL,
2598			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2599			    bp, bp->b_bufobj->bo_object));
2600		}
2601
2602		allocbuf(bp, size);
2603		bp->b_flags &= ~B_DONE;
2604	}
2605	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2606	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2607	KASSERT(bp->b_bufobj == bo,
2608	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2609	return (bp);
2610}
2611
2612/*
2613 * Get an empty, disassociated buffer of given size.  The buffer is initially
2614 * set to B_INVAL.
2615 */
2616struct buf *
2617geteblk(int size)
2618{
2619	struct buf *bp;
2620	int maxsize;
2621
2622	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2623	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2624		continue;
2625	allocbuf(bp, size);
2626	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2627	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2628	return (bp);
2629}
2630
2631
2632/*
2633 * This code constitutes the buffer memory from either anonymous system
2634 * memory (in the case of non-VMIO operations) or from an associated
2635 * VM object (in the case of VMIO operations).  This code is able to
2636 * resize a buffer up or down.
2637 *
2638 * Note that this code is tricky, and has many complications to resolve
2639 * deadlock or inconsistant data situations.  Tread lightly!!!
2640 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2641 * the caller.  Calling this code willy nilly can result in the loss of data.
2642 *
2643 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2644 * B_CACHE for the non-VMIO case.
2645 */
2646
2647int
2648allocbuf(struct buf *bp, int size)
2649{
2650	int newbsize, mbsize;
2651	int i;
2652
2653	if (BUF_REFCNT(bp) == 0)
2654		panic("allocbuf: buffer not busy");
2655
2656	if (bp->b_kvasize < size)
2657		panic("allocbuf: buffer too small");
2658
2659	if ((bp->b_flags & B_VMIO) == 0) {
2660		caddr_t origbuf;
2661		int origbufsize;
2662		/*
2663		 * Just get anonymous memory from the kernel.  Don't
2664		 * mess with B_CACHE.
2665		 */
2666		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2667		if (bp->b_flags & B_MALLOC)
2668			newbsize = mbsize;
2669		else
2670			newbsize = round_page(size);
2671
2672		if (newbsize < bp->b_bufsize) {
2673			/*
2674			 * malloced buffers are not shrunk
2675			 */
2676			if (bp->b_flags & B_MALLOC) {
2677				if (newbsize) {
2678					bp->b_bcount = size;
2679				} else {
2680					free(bp->b_data, M_BIOBUF);
2681					if (bp->b_bufsize) {
2682						atomic_subtract_int(
2683						    &bufmallocspace,
2684						    bp->b_bufsize);
2685						bufspacewakeup();
2686						bp->b_bufsize = 0;
2687					}
2688					bp->b_saveaddr = bp->b_kvabase;
2689					bp->b_data = bp->b_saveaddr;
2690					bp->b_bcount = 0;
2691					bp->b_flags &= ~B_MALLOC;
2692				}
2693				return 1;
2694			}
2695			vm_hold_free_pages(
2696			    bp,
2697			    (vm_offset_t) bp->b_data + newbsize,
2698			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2699		} else if (newbsize > bp->b_bufsize) {
2700			/*
2701			 * We only use malloced memory on the first allocation.
2702			 * and revert to page-allocated memory when the buffer
2703			 * grows.
2704			 */
2705			/*
2706			 * There is a potential smp race here that could lead
2707			 * to bufmallocspace slightly passing the max.  It
2708			 * is probably extremely rare and not worth worrying
2709			 * over.
2710			 */
2711			if ( (bufmallocspace < maxbufmallocspace) &&
2712				(bp->b_bufsize == 0) &&
2713				(mbsize <= PAGE_SIZE/2)) {
2714
2715				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2716				bp->b_bufsize = mbsize;
2717				bp->b_bcount = size;
2718				bp->b_flags |= B_MALLOC;
2719				atomic_add_int(&bufmallocspace, mbsize);
2720				return 1;
2721			}
2722			origbuf = NULL;
2723			origbufsize = 0;
2724			/*
2725			 * If the buffer is growing on its other-than-first allocation,
2726			 * then we revert to the page-allocation scheme.
2727			 */
2728			if (bp->b_flags & B_MALLOC) {
2729				origbuf = bp->b_data;
2730				origbufsize = bp->b_bufsize;
2731				bp->b_data = bp->b_kvabase;
2732				if (bp->b_bufsize) {
2733					atomic_subtract_int(&bufmallocspace,
2734					    bp->b_bufsize);
2735					bufspacewakeup();
2736					bp->b_bufsize = 0;
2737				}
2738				bp->b_flags &= ~B_MALLOC;
2739				newbsize = round_page(newbsize);
2740			}
2741			vm_hold_load_pages(
2742			    bp,
2743			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2744			    (vm_offset_t) bp->b_data + newbsize);
2745			if (origbuf) {
2746				bcopy(origbuf, bp->b_data, origbufsize);
2747				free(origbuf, M_BIOBUF);
2748			}
2749		}
2750	} else {
2751		int desiredpages;
2752
2753		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2754		desiredpages = (size == 0) ? 0 :
2755			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2756
2757		if (bp->b_flags & B_MALLOC)
2758			panic("allocbuf: VMIO buffer can't be malloced");
2759		/*
2760		 * Set B_CACHE initially if buffer is 0 length or will become
2761		 * 0-length.
2762		 */
2763		if (size == 0 || bp->b_bufsize == 0)
2764			bp->b_flags |= B_CACHE;
2765
2766		if (newbsize < bp->b_bufsize) {
2767			/*
2768			 * DEV_BSIZE aligned new buffer size is less then the
2769			 * DEV_BSIZE aligned existing buffer size.  Figure out
2770			 * if we have to remove any pages.
2771			 */
2772			if (desiredpages < bp->b_npages) {
2773				vm_page_t m;
2774
2775				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2776				vm_page_lock_queues();
2777				for (i = desiredpages; i < bp->b_npages; i++) {
2778					/*
2779					 * the page is not freed here -- it
2780					 * is the responsibility of
2781					 * vnode_pager_setsize
2782					 */
2783					m = bp->b_pages[i];
2784					KASSERT(m != bogus_page,
2785					    ("allocbuf: bogus page found"));
2786					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2787						vm_page_lock_queues();
2788
2789					bp->b_pages[i] = NULL;
2790					vm_page_unwire(m, 0);
2791				}
2792				vm_page_unlock_queues();
2793				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2794				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2795				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2796				bp->b_npages = desiredpages;
2797			}
2798		} else if (size > bp->b_bcount) {
2799			/*
2800			 * We are growing the buffer, possibly in a
2801			 * byte-granular fashion.
2802			 */
2803			struct vnode *vp;
2804			vm_object_t obj;
2805			vm_offset_t toff;
2806			vm_offset_t tinc;
2807
2808			/*
2809			 * Step 1, bring in the VM pages from the object,
2810			 * allocating them if necessary.  We must clear
2811			 * B_CACHE if these pages are not valid for the
2812			 * range covered by the buffer.
2813			 */
2814
2815			vp = bp->b_vp;
2816			obj = bp->b_bufobj->bo_object;
2817
2818			VM_OBJECT_LOCK(obj);
2819			while (bp->b_npages < desiredpages) {
2820				vm_page_t m;
2821				vm_pindex_t pi;
2822
2823				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2824				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2825					/*
2826					 * note: must allocate system pages
2827					 * since blocking here could intefere
2828					 * with paging I/O, no matter which
2829					 * process we are.
2830					 */
2831					m = vm_page_alloc(obj, pi,
2832					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2833					    VM_ALLOC_WIRED);
2834					if (m == NULL) {
2835						atomic_add_int(&vm_pageout_deficit,
2836						    desiredpages - bp->b_npages);
2837						VM_OBJECT_UNLOCK(obj);
2838						VM_WAIT;
2839						VM_OBJECT_LOCK(obj);
2840					} else {
2841						bp->b_flags &= ~B_CACHE;
2842						bp->b_pages[bp->b_npages] = m;
2843						++bp->b_npages;
2844					}
2845					continue;
2846				}
2847
2848				/*
2849				 * We found a page.  If we have to sleep on it,
2850				 * retry because it might have gotten freed out
2851				 * from under us.
2852				 *
2853				 * We can only test PG_BUSY here.  Blocking on
2854				 * m->busy might lead to a deadlock:
2855				 *
2856				 *  vm_fault->getpages->cluster_read->allocbuf
2857				 *
2858				 */
2859				vm_page_lock_queues();
2860				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2861					continue;
2862
2863				/*
2864				 * We have a good page.  Should we wakeup the
2865				 * page daemon?
2866				 */
2867				if ((curproc != pageproc) &&
2868				    (VM_PAGE_INQUEUE1(m, PQ_CACHE)) &&
2869				    ((cnt.v_free_count + cnt.v_cache_count) <
2870			 		(cnt.v_free_min + cnt.v_cache_min))) {
2871					pagedaemon_wakeup();
2872				}
2873				vm_page_wire(m);
2874				vm_page_unlock_queues();
2875				bp->b_pages[bp->b_npages] = m;
2876				++bp->b_npages;
2877			}
2878
2879			/*
2880			 * Step 2.  We've loaded the pages into the buffer,
2881			 * we have to figure out if we can still have B_CACHE
2882			 * set.  Note that B_CACHE is set according to the
2883			 * byte-granular range ( bcount and size ), new the
2884			 * aligned range ( newbsize ).
2885			 *
2886			 * The VM test is against m->valid, which is DEV_BSIZE
2887			 * aligned.  Needless to say, the validity of the data
2888			 * needs to also be DEV_BSIZE aligned.  Note that this
2889			 * fails with NFS if the server or some other client
2890			 * extends the file's EOF.  If our buffer is resized,
2891			 * B_CACHE may remain set! XXX
2892			 */
2893
2894			toff = bp->b_bcount;
2895			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2896
2897			while ((bp->b_flags & B_CACHE) && toff < size) {
2898				vm_pindex_t pi;
2899
2900				if (tinc > (size - toff))
2901					tinc = size - toff;
2902
2903				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2904				    PAGE_SHIFT;
2905
2906				vfs_buf_test_cache(
2907				    bp,
2908				    bp->b_offset,
2909				    toff,
2910				    tinc,
2911				    bp->b_pages[pi]
2912				);
2913				toff += tinc;
2914				tinc = PAGE_SIZE;
2915			}
2916			VM_OBJECT_UNLOCK(obj);
2917
2918			/*
2919			 * Step 3, fixup the KVM pmap.  Remember that
2920			 * bp->b_data is relative to bp->b_offset, but
2921			 * bp->b_offset may be offset into the first page.
2922			 */
2923
2924			bp->b_data = (caddr_t)
2925			    trunc_page((vm_offset_t)bp->b_data);
2926			pmap_qenter(
2927			    (vm_offset_t)bp->b_data,
2928			    bp->b_pages,
2929			    bp->b_npages
2930			);
2931
2932			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2933			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2934		}
2935	}
2936	if (newbsize < bp->b_bufsize)
2937		bufspacewakeup();
2938	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2939	bp->b_bcount = size;		/* requested buffer size	*/
2940	return 1;
2941}
2942
2943void
2944biodone(struct bio *bp)
2945{
2946	void (*done)(struct bio *);
2947
2948	mtx_lock(&bdonelock);
2949	bp->bio_flags |= BIO_DONE;
2950	done = bp->bio_done;
2951	if (done == NULL)
2952		wakeup(bp);
2953	mtx_unlock(&bdonelock);
2954	if (done != NULL)
2955		done(bp);
2956}
2957
2958/*
2959 * Wait for a BIO to finish.
2960 *
2961 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2962 * case is not yet clear.
2963 */
2964int
2965biowait(struct bio *bp, const char *wchan)
2966{
2967
2968	mtx_lock(&bdonelock);
2969	while ((bp->bio_flags & BIO_DONE) == 0)
2970		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2971	mtx_unlock(&bdonelock);
2972	if (bp->bio_error != 0)
2973		return (bp->bio_error);
2974	if (!(bp->bio_flags & BIO_ERROR))
2975		return (0);
2976	return (EIO);
2977}
2978
2979void
2980biofinish(struct bio *bp, struct devstat *stat, int error)
2981{
2982
2983	if (error) {
2984		bp->bio_error = error;
2985		bp->bio_flags |= BIO_ERROR;
2986	}
2987	if (stat != NULL)
2988		devstat_end_transaction_bio(stat, bp);
2989	biodone(bp);
2990}
2991
2992/*
2993 *	bufwait:
2994 *
2995 *	Wait for buffer I/O completion, returning error status.  The buffer
2996 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
2997 *	error and cleared.
2998 */
2999int
3000bufwait(struct buf *bp)
3001{
3002	if (bp->b_iocmd == BIO_READ)
3003		bwait(bp, PRIBIO, "biord");
3004	else
3005		bwait(bp, PRIBIO, "biowr");
3006	if (bp->b_flags & B_EINTR) {
3007		bp->b_flags &= ~B_EINTR;
3008		return (EINTR);
3009	}
3010	if (bp->b_ioflags & BIO_ERROR) {
3011		return (bp->b_error ? bp->b_error : EIO);
3012	} else {
3013		return (0);
3014	}
3015}
3016
3017 /*
3018  * Call back function from struct bio back up to struct buf.
3019  */
3020static void
3021bufdonebio(struct bio *bip)
3022{
3023	struct buf *bp;
3024
3025	bp = bip->bio_caller2;
3026	bp->b_resid = bp->b_bcount - bip->bio_completed;
3027	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3028	bp->b_ioflags = bip->bio_flags;
3029	bp->b_error = bip->bio_error;
3030	if (bp->b_error)
3031		bp->b_ioflags |= BIO_ERROR;
3032	bufdone(bp);
3033	g_destroy_bio(bip);
3034}
3035
3036void
3037dev_strategy(struct cdev *dev, struct buf *bp)
3038{
3039	struct cdevsw *csw;
3040	struct bio *bip;
3041
3042	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3043		panic("b_iocmd botch");
3044	for (;;) {
3045		bip = g_new_bio();
3046		if (bip != NULL)
3047			break;
3048		/* Try again later */
3049		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3050	}
3051	bip->bio_cmd = bp->b_iocmd;
3052	bip->bio_offset = bp->b_iooffset;
3053	bip->bio_length = bp->b_bcount;
3054	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3055	bip->bio_data = bp->b_data;
3056	bip->bio_done = bufdonebio;
3057	bip->bio_caller2 = bp;
3058	bip->bio_dev = dev;
3059	KASSERT(dev->si_refcount > 0,
3060	    ("dev_strategy on un-referenced struct cdev *(%s)",
3061	    devtoname(dev)));
3062	csw = dev_refthread(dev);
3063	if (csw == NULL) {
3064		bp->b_error = ENXIO;
3065		bp->b_ioflags = BIO_ERROR;
3066		bufdone(bp);
3067		return;
3068	}
3069	(*csw->d_strategy)(bip);
3070	dev_relthread(dev);
3071}
3072
3073/*
3074 *	bufdone:
3075 *
3076 *	Finish I/O on a buffer, optionally calling a completion function.
3077 *	This is usually called from an interrupt so process blocking is
3078 *	not allowed.
3079 *
3080 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3081 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3082 *	assuming B_INVAL is clear.
3083 *
3084 *	For the VMIO case, we set B_CACHE if the op was a read and no
3085 *	read error occured, or if the op was a write.  B_CACHE is never
3086 *	set if the buffer is invalid or otherwise uncacheable.
3087 *
3088 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3089 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3090 *	in the biodone routine.
3091 */
3092void
3093bufdone(struct buf *bp)
3094{
3095	struct bufobj *dropobj;
3096	void    (*biodone)(struct buf *);
3097
3098	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3099	dropobj = NULL;
3100
3101	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3102	    BUF_REFCNT(bp)));
3103	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3104
3105	runningbufwakeup(bp);
3106	if (bp->b_iocmd == BIO_WRITE)
3107		dropobj = bp->b_bufobj;
3108	/* call optional completion function if requested */
3109	if (bp->b_iodone != NULL) {
3110		biodone = bp->b_iodone;
3111		bp->b_iodone = NULL;
3112		(*biodone) (bp);
3113		if (dropobj)
3114			bufobj_wdrop(dropobj);
3115		return;
3116	}
3117
3118	bufdone_finish(bp);
3119
3120	if (dropobj)
3121		bufobj_wdrop(dropobj);
3122}
3123
3124void
3125bufdone_finish(struct buf *bp)
3126{
3127	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3128	    BUF_REFCNT(bp)));
3129
3130	if (LIST_FIRST(&bp->b_dep) != NULL)
3131		buf_complete(bp);
3132
3133	if (bp->b_flags & B_VMIO) {
3134		int i;
3135		vm_ooffset_t foff;
3136		vm_page_t m;
3137		vm_object_t obj;
3138		int iosize;
3139		struct vnode *vp = bp->b_vp;
3140
3141		obj = bp->b_bufobj->bo_object;
3142
3143#if defined(VFS_BIO_DEBUG)
3144		mp_fixme("usecount and vflag accessed without locks.");
3145		if (vp->v_usecount == 0) {
3146			panic("biodone: zero vnode ref count");
3147		}
3148
3149		KASSERT(vp->v_object != NULL,
3150			("biodone: vnode %p has no vm_object", vp));
3151#endif
3152
3153		foff = bp->b_offset;
3154		KASSERT(bp->b_offset != NOOFFSET,
3155		    ("biodone: no buffer offset"));
3156
3157		VM_OBJECT_LOCK(obj);
3158#if defined(VFS_BIO_DEBUG)
3159		if (obj->paging_in_progress < bp->b_npages) {
3160			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3161			    obj->paging_in_progress, bp->b_npages);
3162		}
3163#endif
3164
3165		/*
3166		 * Set B_CACHE if the op was a normal read and no error
3167		 * occured.  B_CACHE is set for writes in the b*write()
3168		 * routines.
3169		 */
3170		iosize = bp->b_bcount - bp->b_resid;
3171		if (bp->b_iocmd == BIO_READ &&
3172		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3173		    !(bp->b_ioflags & BIO_ERROR)) {
3174			bp->b_flags |= B_CACHE;
3175		}
3176		vm_page_lock_queues();
3177		for (i = 0; i < bp->b_npages; i++) {
3178			int bogusflag = 0;
3179			int resid;
3180
3181			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3182			if (resid > iosize)
3183				resid = iosize;
3184
3185			/*
3186			 * cleanup bogus pages, restoring the originals
3187			 */
3188			m = bp->b_pages[i];
3189			if (m == bogus_page) {
3190				bogusflag = 1;
3191				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3192				if (m == NULL)
3193					panic("biodone: page disappeared!");
3194				bp->b_pages[i] = m;
3195				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3196				    bp->b_pages, bp->b_npages);
3197			}
3198#if defined(VFS_BIO_DEBUG)
3199			if (OFF_TO_IDX(foff) != m->pindex) {
3200				printf(
3201"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3202				    (intmax_t)foff, (uintmax_t)m->pindex);
3203			}
3204#endif
3205
3206			/*
3207			 * In the write case, the valid and clean bits are
3208			 * already changed correctly ( see bdwrite() ), so we
3209			 * only need to do this here in the read case.
3210			 */
3211			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3212				vfs_page_set_valid(bp, foff, i, m);
3213			}
3214
3215			/*
3216			 * when debugging new filesystems or buffer I/O methods, this
3217			 * is the most common error that pops up.  if you see this, you
3218			 * have not set the page busy flag correctly!!!
3219			 */
3220			if (m->busy == 0) {
3221				printf("biodone: page busy < 0, "
3222				    "pindex: %d, foff: 0x(%x,%x), "
3223				    "resid: %d, index: %d\n",
3224				    (int) m->pindex, (int)(foff >> 32),
3225						(int) foff & 0xffffffff, resid, i);
3226				if (!vn_isdisk(vp, NULL))
3227					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3228					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3229					    (intmax_t) bp->b_lblkno,
3230					    bp->b_flags, bp->b_npages);
3231				else
3232					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3233					    (intmax_t) bp->b_lblkno,
3234					    bp->b_flags, bp->b_npages);
3235				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3236				    (u_long)m->valid, (u_long)m->dirty,
3237				    m->wire_count);
3238				panic("biodone: page busy < 0\n");
3239			}
3240			vm_page_io_finish(m);
3241			vm_object_pip_subtract(obj, 1);
3242			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3243			iosize -= resid;
3244		}
3245		vm_page_unlock_queues();
3246		vm_object_pip_wakeupn(obj, 0);
3247		VM_OBJECT_UNLOCK(obj);
3248	}
3249
3250	/*
3251	 * For asynchronous completions, release the buffer now. The brelse
3252	 * will do a wakeup there if necessary - so no need to do a wakeup
3253	 * here in the async case. The sync case always needs to do a wakeup.
3254	 */
3255
3256	if (bp->b_flags & B_ASYNC) {
3257		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3258			brelse(bp);
3259		else
3260			bqrelse(bp);
3261	} else
3262		bdone(bp);
3263}
3264
3265/*
3266 * This routine is called in lieu of iodone in the case of
3267 * incomplete I/O.  This keeps the busy status for pages
3268 * consistant.
3269 */
3270void
3271vfs_unbusy_pages(struct buf *bp)
3272{
3273	int i;
3274	vm_object_t obj;
3275	vm_page_t m;
3276
3277	runningbufwakeup(bp);
3278	if (!(bp->b_flags & B_VMIO))
3279		return;
3280
3281	obj = bp->b_bufobj->bo_object;
3282	VM_OBJECT_LOCK(obj);
3283	vm_page_lock_queues();
3284	for (i = 0; i < bp->b_npages; i++) {
3285		m = bp->b_pages[i];
3286		if (m == bogus_page) {
3287			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3288			if (!m)
3289				panic("vfs_unbusy_pages: page missing\n");
3290			bp->b_pages[i] = m;
3291			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3292			    bp->b_pages, bp->b_npages);
3293		}
3294		vm_object_pip_subtract(obj, 1);
3295		vm_page_io_finish(m);
3296	}
3297	vm_page_unlock_queues();
3298	vm_object_pip_wakeupn(obj, 0);
3299	VM_OBJECT_UNLOCK(obj);
3300}
3301
3302/*
3303 * vfs_page_set_valid:
3304 *
3305 *	Set the valid bits in a page based on the supplied offset.   The
3306 *	range is restricted to the buffer's size.
3307 *
3308 *	This routine is typically called after a read completes.
3309 */
3310static void
3311vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3312{
3313	vm_ooffset_t soff, eoff;
3314
3315	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3316	/*
3317	 * Start and end offsets in buffer.  eoff - soff may not cross a
3318	 * page boundry or cross the end of the buffer.  The end of the
3319	 * buffer, in this case, is our file EOF, not the allocation size
3320	 * of the buffer.
3321	 */
3322	soff = off;
3323	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3324	if (eoff > bp->b_offset + bp->b_bcount)
3325		eoff = bp->b_offset + bp->b_bcount;
3326
3327	/*
3328	 * Set valid range.  This is typically the entire buffer and thus the
3329	 * entire page.
3330	 */
3331	if (eoff > soff) {
3332		vm_page_set_validclean(
3333		    m,
3334		   (vm_offset_t) (soff & PAGE_MASK),
3335		   (vm_offset_t) (eoff - soff)
3336		);
3337	}
3338}
3339
3340/*
3341 * This routine is called before a device strategy routine.
3342 * It is used to tell the VM system that paging I/O is in
3343 * progress, and treat the pages associated with the buffer
3344 * almost as being PG_BUSY.  Also the object paging_in_progress
3345 * flag is handled to make sure that the object doesn't become
3346 * inconsistant.
3347 *
3348 * Since I/O has not been initiated yet, certain buffer flags
3349 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3350 * and should be ignored.
3351 */
3352void
3353vfs_busy_pages(struct buf *bp, int clear_modify)
3354{
3355	int i, bogus;
3356	vm_object_t obj;
3357	vm_ooffset_t foff;
3358	vm_page_t m;
3359
3360	if (!(bp->b_flags & B_VMIO))
3361		return;
3362
3363	obj = bp->b_bufobj->bo_object;
3364	foff = bp->b_offset;
3365	KASSERT(bp->b_offset != NOOFFSET,
3366	    ("vfs_busy_pages: no buffer offset"));
3367	vfs_setdirty(bp);
3368	VM_OBJECT_LOCK(obj);
3369retry:
3370	vm_page_lock_queues();
3371	for (i = 0; i < bp->b_npages; i++) {
3372		m = bp->b_pages[i];
3373
3374		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3375			goto retry;
3376	}
3377	bogus = 0;
3378	for (i = 0; i < bp->b_npages; i++) {
3379		m = bp->b_pages[i];
3380
3381		if ((bp->b_flags & B_CLUSTER) == 0) {
3382			vm_object_pip_add(obj, 1);
3383			vm_page_io_start(m);
3384		}
3385		/*
3386		 * When readying a buffer for a read ( i.e
3387		 * clear_modify == 0 ), it is important to do
3388		 * bogus_page replacement for valid pages in
3389		 * partially instantiated buffers.  Partially
3390		 * instantiated buffers can, in turn, occur when
3391		 * reconstituting a buffer from its VM backing store
3392		 * base.  We only have to do this if B_CACHE is
3393		 * clear ( which causes the I/O to occur in the
3394		 * first place ).  The replacement prevents the read
3395		 * I/O from overwriting potentially dirty VM-backed
3396		 * pages.  XXX bogus page replacement is, uh, bogus.
3397		 * It may not work properly with small-block devices.
3398		 * We need to find a better way.
3399		 */
3400		pmap_remove_all(m);
3401		if (clear_modify)
3402			vfs_page_set_valid(bp, foff, i, m);
3403		else if (m->valid == VM_PAGE_BITS_ALL &&
3404		    (bp->b_flags & B_CACHE) == 0) {
3405			bp->b_pages[i] = bogus_page;
3406			bogus++;
3407		}
3408		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3409	}
3410	vm_page_unlock_queues();
3411	VM_OBJECT_UNLOCK(obj);
3412	if (bogus)
3413		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3414		    bp->b_pages, bp->b_npages);
3415}
3416
3417/*
3418 * Tell the VM system that the pages associated with this buffer
3419 * are clean.  This is used for delayed writes where the data is
3420 * going to go to disk eventually without additional VM intevention.
3421 *
3422 * Note that while we only really need to clean through to b_bcount, we
3423 * just go ahead and clean through to b_bufsize.
3424 */
3425static void
3426vfs_clean_pages(struct buf *bp)
3427{
3428	int i;
3429	vm_ooffset_t foff, noff, eoff;
3430	vm_page_t m;
3431
3432	if (!(bp->b_flags & B_VMIO))
3433		return;
3434
3435	foff = bp->b_offset;
3436	KASSERT(bp->b_offset != NOOFFSET,
3437	    ("vfs_clean_pages: no buffer offset"));
3438	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3439	vm_page_lock_queues();
3440	for (i = 0; i < bp->b_npages; i++) {
3441		m = bp->b_pages[i];
3442		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3443		eoff = noff;
3444
3445		if (eoff > bp->b_offset + bp->b_bufsize)
3446			eoff = bp->b_offset + bp->b_bufsize;
3447		vfs_page_set_valid(bp, foff, i, m);
3448		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3449		foff = noff;
3450	}
3451	vm_page_unlock_queues();
3452	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3453}
3454
3455/*
3456 *	vfs_bio_set_validclean:
3457 *
3458 *	Set the range within the buffer to valid and clean.  The range is
3459 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3460 *	itself may be offset from the beginning of the first page.
3461 *
3462 */
3463
3464void
3465vfs_bio_set_validclean(struct buf *bp, int base, int size)
3466{
3467	int i, n;
3468	vm_page_t m;
3469
3470	if (!(bp->b_flags & B_VMIO))
3471		return;
3472	/*
3473	 * Fixup base to be relative to beginning of first page.
3474	 * Set initial n to be the maximum number of bytes in the
3475	 * first page that can be validated.
3476	 */
3477
3478	base += (bp->b_offset & PAGE_MASK);
3479	n = PAGE_SIZE - (base & PAGE_MASK);
3480
3481	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3482	vm_page_lock_queues();
3483	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3484		m = bp->b_pages[i];
3485		if (n > size)
3486			n = size;
3487		vm_page_set_validclean(m, base & PAGE_MASK, n);
3488		base += n;
3489		size -= n;
3490		n = PAGE_SIZE;
3491	}
3492	vm_page_unlock_queues();
3493	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3494}
3495
3496/*
3497 *	vfs_bio_clrbuf:
3498 *
3499 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3500 *	to clear BIO_ERROR and B_INVAL.
3501 *
3502 *	Note that while we only theoretically need to clear through b_bcount,
3503 *	we go ahead and clear through b_bufsize.
3504 */
3505
3506void
3507vfs_bio_clrbuf(struct buf *bp)
3508{
3509	int i, j, mask = 0;
3510	caddr_t sa, ea;
3511
3512	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3513		clrbuf(bp);
3514		return;
3515	}
3516
3517	bp->b_flags &= ~B_INVAL;
3518	bp->b_ioflags &= ~BIO_ERROR;
3519	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3520	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3521	    (bp->b_offset & PAGE_MASK) == 0) {
3522		if (bp->b_pages[0] == bogus_page)
3523			goto unlock;
3524		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3525		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3526		if ((bp->b_pages[0]->valid & mask) == mask)
3527			goto unlock;
3528		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3529		    ((bp->b_pages[0]->valid & mask) == 0)) {
3530			bzero(bp->b_data, bp->b_bufsize);
3531			bp->b_pages[0]->valid |= mask;
3532			goto unlock;
3533		}
3534	}
3535	ea = sa = bp->b_data;
3536	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3537		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3538		ea = (caddr_t)(vm_offset_t)ulmin(
3539		    (u_long)(vm_offset_t)ea,
3540		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3541		if (bp->b_pages[i] == bogus_page)
3542			continue;
3543		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3544		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3545		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3546		if ((bp->b_pages[i]->valid & mask) == mask)
3547			continue;
3548		if ((bp->b_pages[i]->valid & mask) == 0) {
3549			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3550				bzero(sa, ea - sa);
3551		} else {
3552			for (; sa < ea; sa += DEV_BSIZE, j++) {
3553				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3554				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3555					bzero(sa, DEV_BSIZE);
3556			}
3557		}
3558		bp->b_pages[i]->valid |= mask;
3559	}
3560unlock:
3561	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3562	bp->b_resid = 0;
3563}
3564
3565/*
3566 * vm_hold_load_pages and vm_hold_free_pages get pages into
3567 * a buffers address space.  The pages are anonymous and are
3568 * not associated with a file object.
3569 */
3570static void
3571vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3572{
3573	vm_offset_t pg;
3574	vm_page_t p;
3575	int index;
3576
3577	to = round_page(to);
3578	from = round_page(from);
3579	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3580
3581	VM_OBJECT_LOCK(kernel_object);
3582	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3583tryagain:
3584		/*
3585		 * note: must allocate system pages since blocking here
3586		 * could intefere with paging I/O, no matter which
3587		 * process we are.
3588		 */
3589		p = vm_page_alloc(kernel_object,
3590			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3591		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3592		if (!p) {
3593			atomic_add_int(&vm_pageout_deficit,
3594			    (to - pg) >> PAGE_SHIFT);
3595			VM_OBJECT_UNLOCK(kernel_object);
3596			VM_WAIT;
3597			VM_OBJECT_LOCK(kernel_object);
3598			goto tryagain;
3599		}
3600		p->valid = VM_PAGE_BITS_ALL;
3601		pmap_qenter(pg, &p, 1);
3602		bp->b_pages[index] = p;
3603	}
3604	VM_OBJECT_UNLOCK(kernel_object);
3605	bp->b_npages = index;
3606}
3607
3608/* Return pages associated with this buf to the vm system */
3609static void
3610vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3611{
3612	vm_offset_t pg;
3613	vm_page_t p;
3614	int index, newnpages;
3615
3616	from = round_page(from);
3617	to = round_page(to);
3618	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3619
3620	VM_OBJECT_LOCK(kernel_object);
3621	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3622		p = bp->b_pages[index];
3623		if (p && (index < bp->b_npages)) {
3624			if (p->busy) {
3625				printf(
3626			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3627				    (intmax_t)bp->b_blkno,
3628				    (intmax_t)bp->b_lblkno);
3629			}
3630			bp->b_pages[index] = NULL;
3631			pmap_qremove(pg, 1);
3632			vm_page_lock_queues();
3633			vm_page_unwire(p, 0);
3634			vm_page_free(p);
3635			vm_page_unlock_queues();
3636		}
3637	}
3638	VM_OBJECT_UNLOCK(kernel_object);
3639	bp->b_npages = newnpages;
3640}
3641
3642/*
3643 * Map an IO request into kernel virtual address space.
3644 *
3645 * All requests are (re)mapped into kernel VA space.
3646 * Notice that we use b_bufsize for the size of the buffer
3647 * to be mapped.  b_bcount might be modified by the driver.
3648 *
3649 * Note that even if the caller determines that the address space should
3650 * be valid, a race or a smaller-file mapped into a larger space may
3651 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3652 * check the return value.
3653 */
3654int
3655vmapbuf(struct buf *bp)
3656{
3657	caddr_t addr, kva;
3658	vm_prot_t prot;
3659	int pidx, i;
3660	struct vm_page *m;
3661	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3662
3663	if (bp->b_bufsize < 0)
3664		return (-1);
3665	prot = VM_PROT_READ;
3666	if (bp->b_iocmd == BIO_READ)
3667		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3668	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3669	     addr < bp->b_data + bp->b_bufsize;
3670	     addr += PAGE_SIZE, pidx++) {
3671		/*
3672		 * Do the vm_fault if needed; do the copy-on-write thing
3673		 * when reading stuff off device into memory.
3674		 *
3675		 * NOTE! Must use pmap_extract() because addr may be in
3676		 * the userland address space, and kextract is only guarenteed
3677		 * to work for the kernland address space (see: sparc64 port).
3678		 */
3679retry:
3680		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3681		    prot) < 0) {
3682			vm_page_lock_queues();
3683			for (i = 0; i < pidx; ++i) {
3684				vm_page_unhold(bp->b_pages[i]);
3685				bp->b_pages[i] = NULL;
3686			}
3687			vm_page_unlock_queues();
3688			return(-1);
3689		}
3690		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3691		if (m == NULL)
3692			goto retry;
3693		bp->b_pages[pidx] = m;
3694	}
3695	if (pidx > btoc(MAXPHYS))
3696		panic("vmapbuf: mapped more than MAXPHYS");
3697	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3698
3699	kva = bp->b_saveaddr;
3700	bp->b_npages = pidx;
3701	bp->b_saveaddr = bp->b_data;
3702	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3703	return(0);
3704}
3705
3706/*
3707 * Free the io map PTEs associated with this IO operation.
3708 * We also invalidate the TLB entries and restore the original b_addr.
3709 */
3710void
3711vunmapbuf(struct buf *bp)
3712{
3713	int pidx;
3714	int npages;
3715
3716	npages = bp->b_npages;
3717	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3718	vm_page_lock_queues();
3719	for (pidx = 0; pidx < npages; pidx++)
3720		vm_page_unhold(bp->b_pages[pidx]);
3721	vm_page_unlock_queues();
3722
3723	bp->b_data = bp->b_saveaddr;
3724}
3725
3726void
3727bdone(struct buf *bp)
3728{
3729
3730	mtx_lock(&bdonelock);
3731	bp->b_flags |= B_DONE;
3732	wakeup(bp);
3733	mtx_unlock(&bdonelock);
3734}
3735
3736void
3737bwait(struct buf *bp, u_char pri, const char *wchan)
3738{
3739
3740	mtx_lock(&bdonelock);
3741	while ((bp->b_flags & B_DONE) == 0)
3742		msleep(bp, &bdonelock, pri, wchan, 0);
3743	mtx_unlock(&bdonelock);
3744}
3745
3746int
3747bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3748{
3749
3750	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3751}
3752
3753void
3754bufstrategy(struct bufobj *bo, struct buf *bp)
3755{
3756	int i = 0;
3757	struct vnode *vp;
3758
3759	vp = bp->b_vp;
3760	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3761	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3762	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3763	i = VOP_STRATEGY(vp, bp);
3764	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3765}
3766
3767void
3768bufobj_wrefl(struct bufobj *bo)
3769{
3770
3771	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3772	ASSERT_BO_LOCKED(bo);
3773	bo->bo_numoutput++;
3774}
3775
3776void
3777bufobj_wref(struct bufobj *bo)
3778{
3779
3780	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3781	BO_LOCK(bo);
3782	bo->bo_numoutput++;
3783	BO_UNLOCK(bo);
3784}
3785
3786void
3787bufobj_wdrop(struct bufobj *bo)
3788{
3789
3790	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3791	BO_LOCK(bo);
3792	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3793	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3794		bo->bo_flag &= ~BO_WWAIT;
3795		wakeup(&bo->bo_numoutput);
3796	}
3797	BO_UNLOCK(bo);
3798}
3799
3800int
3801bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3802{
3803	int error;
3804
3805	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3806	ASSERT_BO_LOCKED(bo);
3807	error = 0;
3808	while (bo->bo_numoutput) {
3809		bo->bo_flag |= BO_WWAIT;
3810		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3811		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3812		if (error)
3813			break;
3814	}
3815	return (error);
3816}
3817
3818void
3819bpin(struct buf *bp)
3820{
3821	mtx_lock(&bpinlock);
3822	bp->b_pin_count++;
3823	mtx_unlock(&bpinlock);
3824}
3825
3826void
3827bunpin(struct buf *bp)
3828{
3829	mtx_lock(&bpinlock);
3830	if (--bp->b_pin_count == 0)
3831		wakeup(bp);
3832	mtx_unlock(&bpinlock);
3833}
3834
3835void
3836bunpin_wait(struct buf *bp)
3837{
3838	mtx_lock(&bpinlock);
3839	while (bp->b_pin_count > 0)
3840		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3841	mtx_unlock(&bpinlock);
3842}
3843
3844#include "opt_ddb.h"
3845#ifdef DDB
3846#include <ddb/ddb.h>
3847
3848/* DDB command to show buffer data */
3849DB_SHOW_COMMAND(buffer, db_show_buffer)
3850{
3851	/* get args */
3852	struct buf *bp = (struct buf *)addr;
3853
3854	if (!have_addr) {
3855		db_printf("usage: show buffer <addr>\n");
3856		return;
3857	}
3858
3859	db_printf("buf at %p\n", bp);
3860	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3861	db_printf(
3862	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3863	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3864	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3865	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3866	if (bp->b_npages) {
3867		int i;
3868		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3869		for (i = 0; i < bp->b_npages; i++) {
3870			vm_page_t m;
3871			m = bp->b_pages[i];
3872			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3873			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3874			if ((i + 1) < bp->b_npages)
3875				db_printf(",");
3876		}
3877		db_printf("\n");
3878	}
3879	lockmgr_printinfo(&bp->b_lock);
3880}
3881
3882DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3883{
3884	struct buf *bp;
3885	int i;
3886
3887	for (i = 0; i < nbuf; i++) {
3888		bp = &buf[i];
3889		if (lockcount(&bp->b_lock)) {
3890			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3891			db_printf("\n");
3892		}
3893	}
3894}
3895#endif /* DDB */
3896