uipc_sockbuf.c revision 95759
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34 * $FreeBSD: head/sys/kern/uipc_sockbuf.c 95759 2002-04-30 01:54:54Z tanimura $
35 */
36
37#include "opt_param.h"
38#include <sys/param.h>
39#include <sys/aio.h> /* for aio_swake proto */
40#include <sys/domain.h>
41#include <sys/event.h>
42#include <sys/file.h>	/* for maxfiles */
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/mutex.h>
48#include <sys/proc.h>
49#include <sys/protosw.h>
50#include <sys/resourcevar.h>
51#include <sys/signalvar.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/stat.h>
55#include <sys/sx.h>
56#include <sys/sysctl.h>
57#include <sys/systm.h>
58
59int	maxsockets;
60
61void (*aio_swake)(struct socket *, struct sockbuf *);
62
63/*
64 * Primitive routines for operating on sockets and socket buffers
65 */
66
67u_long	sb_max = SB_MAX;		/* XXX should be static */
68
69static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
70
71/*
72 * Procedures to manipulate state flags of socket
73 * and do appropriate wakeups.  Normal sequence from the
74 * active (originating) side is that soisconnecting() is
75 * called during processing of connect() call,
76 * resulting in an eventual call to soisconnected() if/when the
77 * connection is established.  When the connection is torn down
78 * soisdisconnecting() is called during processing of disconnect() call,
79 * and soisdisconnected() is called when the connection to the peer
80 * is totally severed.  The semantics of these routines are such that
81 * connectionless protocols can call soisconnected() and soisdisconnected()
82 * only, bypassing the in-progress calls when setting up a ``connection''
83 * takes no time.
84 *
85 * From the passive side, a socket is created with
86 * two queues of sockets: so_incomp for connections in progress
87 * and so_comp for connections already made and awaiting user acceptance.
88 * As a protocol is preparing incoming connections, it creates a socket
89 * structure queued on so_incomp by calling sonewconn().  When the connection
90 * is established, soisconnected() is called, and transfers the
91 * socket structure to so_comp, making it available to accept().
92 *
93 * If a socket is closed with sockets on either
94 * so_incomp or so_comp, these sockets are dropped.
95 *
96 * If higher level protocols are implemented in
97 * the kernel, the wakeups done here will sometimes
98 * cause software-interrupt process scheduling.
99 */
100
101void
102soisconnecting(so)
103	register struct socket *so;
104{
105
106	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
107	so->so_state |= SS_ISCONNECTING;
108}
109
110void
111soisconnected_locked(so)
112	struct socket *so;
113{
114	struct socket *head = so->so_head;
115
116	SIGIO_ASSERT(SX_SLOCKED); /* XXX */
117	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
118	so->so_state |= SS_ISCONNECTED;
119	if (head && (so->so_state & SS_INCOMP)) {
120		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
121			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
122			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
123			so->so_rcv.sb_flags |= SB_UPCALL;
124			so->so_options &= ~SO_ACCEPTFILTER;
125			SIGIO_SUNLOCK(); /* XXX */
126			so->so_upcall(so, so->so_upcallarg, 0);
127			SIGIO_SLOCK();
128			return;
129		}
130		TAILQ_REMOVE(&head->so_incomp, so, so_list);
131		head->so_incqlen--;
132		so->so_state &= ~SS_INCOMP;
133		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
134		so->so_state |= SS_COMP;
135		sorwakeup_locked(head);
136		wakeup_one(&head->so_timeo);
137	} else {
138		wakeup(&so->so_timeo);
139		sorwakeup_locked(so);
140		sowwakeup_locked(so);
141	}
142}
143
144void
145soisconnected(so)
146	struct socket *so;
147{
148	struct socket *head = so->so_head;
149
150	SIGIO_SLOCK();
151	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
152	so->so_state |= SS_ISCONNECTED;
153	if (head && (so->so_state & SS_INCOMP)) {
154		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
155			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
156			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
157			so->so_rcv.sb_flags |= SB_UPCALL;
158			so->so_options &= ~SO_ACCEPTFILTER;
159			SIGIO_SUNLOCK();
160			so->so_upcall(so, so->so_upcallarg, 0);
161			return;
162		}
163		TAILQ_REMOVE(&head->so_incomp, so, so_list);
164		head->so_incqlen--;
165		so->so_state &= ~SS_INCOMP;
166		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
167		head->so_qlen++;
168		so->so_state |= SS_COMP;
169		sorwakeup_locked(head);
170		wakeup_one(&head->so_timeo);
171	} else {
172		wakeup(&so->so_timeo);
173		sorwakeup_locked(so);
174		sowwakeup_locked(so);
175	}
176	SIGIO_SUNLOCK();
177}
178
179void
180soisdisconnecting(so)
181	register struct socket *so;
182{
183
184	SIGIO_SLOCK();
185	so->so_state &= ~SS_ISCONNECTING;
186	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
187	wakeup((caddr_t)&so->so_timeo);
188	sowwakeup_locked(so);
189	sorwakeup_locked(so);
190	SIGIO_SUNLOCK();
191}
192
193void
194soisdisconnected_locked(so)
195	register struct socket *so;
196{
197
198	SIGIO_ASSERT(SX_LOCKED);
199	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
200	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
201	wakeup((caddr_t)&so->so_timeo);
202	sowwakeup_locked(so);
203	sorwakeup_locked(so);
204}
205
206void
207soisdisconnected(so)
208	register struct socket *so;
209{
210
211	SIGIO_SLOCK();
212	soisdisconnected_locked(so);
213	SIGIO_SUNLOCK();
214}
215
216/*
217 * When an attempt at a new connection is noted on a socket
218 * which accepts connections, sonewconn is called.  If the
219 * connection is possible (subject to space constraints, etc.)
220 * then we allocate a new structure, propoerly linked into the
221 * data structure of the original socket, and return this.
222 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
223 *
224 * note: the ref count on the socket is 0 on return
225 */
226struct socket *
227sonewconn(head, connstatus)
228	register struct socket *head;
229	int connstatus;
230{
231	register struct socket *so;
232
233	if (head->so_qlen > 3 * head->so_qlimit / 2)
234		return ((struct socket *)0);
235	so = soalloc(0);
236	if (so == NULL)
237		return ((struct socket *)0);
238	if ((head->so_options & SO_ACCEPTFILTER) != 0)
239		connstatus = 0;
240	so->so_head = head;
241	so->so_type = head->so_type;
242	so->so_options = head->so_options &~ SO_ACCEPTCONN;
243	so->so_linger = head->so_linger;
244	so->so_state = head->so_state | SS_NOFDREF;
245	so->so_proto = head->so_proto;
246	so->so_timeo = head->so_timeo;
247	so->so_cred = crhold(head->so_cred);
248	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
249	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
250		sotryfree(so);
251		return ((struct socket *)0);
252	}
253
254	if (connstatus) {
255		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
256		so->so_state |= SS_COMP;
257		head->so_qlen++;
258	} else {
259		if (head->so_incqlen >= head->so_qlimit) {
260			struct socket *sp;
261			sp = TAILQ_FIRST(&head->so_incomp);
262			(void) soabort(sp);
263		}
264		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
265		so->so_state |= SS_INCOMP;
266		head->so_incqlen++;
267	}
268	if (connstatus) {
269		SIGIO_SLOCK();
270		sorwakeup_locked(head);
271		SIGIO_SUNLOCK();
272		wakeup((caddr_t)&head->so_timeo);
273		so->so_state |= connstatus;
274	}
275	return (so);
276}
277
278/*
279 * Socantsendmore indicates that no more data will be sent on the
280 * socket; it would normally be applied to a socket when the user
281 * informs the system that no more data is to be sent, by the protocol
282 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
283 * will be received, and will normally be applied to the socket by a
284 * protocol when it detects that the peer will send no more data.
285 * Data queued for reading in the socket may yet be read.
286 */
287
288void
289socantsendmore(so)
290	struct socket *so;
291{
292
293	SIGIO_SLOCK();
294	so->so_state |= SS_CANTSENDMORE;
295	sowwakeup_locked(so);
296	SIGIO_SUNLOCK();
297}
298
299void
300socantrcvmore(so)
301	struct socket *so;
302{
303
304	SIGIO_SLOCK();
305	so->so_state |= SS_CANTRCVMORE;
306	sorwakeup_locked(so);
307	SIGIO_SUNLOCK();
308}
309
310/*
311 * Wait for data to arrive at/drain from a socket buffer.
312 */
313int
314sbwait(sb)
315	struct sockbuf *sb;
316{
317
318	sb->sb_flags |= SB_WAIT;
319	return (tsleep((caddr_t)&sb->sb_cc,
320	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
321	    sb->sb_timeo));
322}
323
324/*
325 * Lock a sockbuf already known to be locked;
326 * return any error returned from sleep (EINTR).
327 */
328int
329sb_lock(sb)
330	register struct sockbuf *sb;
331{
332	int error;
333
334	while (sb->sb_flags & SB_LOCK) {
335		sb->sb_flags |= SB_WANT;
336		error = tsleep((caddr_t)&sb->sb_flags,
337		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
338		    "sblock", 0);
339		if (error)
340			return (error);
341	}
342	sb->sb_flags |= SB_LOCK;
343	return (0);
344}
345
346/*
347 * Wakeup processes waiting on a socket buffer.
348 * Do asynchronous notification via SIGIO
349 * if the socket has the SS_ASYNC flag set.
350 */
351void
352sowakeup(so, sb)
353	register struct socket *so;
354	register struct sockbuf *sb;
355{
356	SIGIO_ASSERT(SX_LOCKED);
357
358	selwakeup(&sb->sb_sel);
359	sb->sb_flags &= ~SB_SEL;
360	if (sb->sb_flags & SB_WAIT) {
361		sb->sb_flags &= ~SB_WAIT;
362		wakeup((caddr_t)&sb->sb_cc);
363	}
364	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
365		pgsigio(so->so_sigio, SIGIO, 0);
366	if (sb->sb_flags & SB_UPCALL)
367		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
368	if (sb->sb_flags & SB_AIO)
369		aio_swake(so, sb);
370	KNOTE(&sb->sb_sel.si_note, 0);
371}
372
373/*
374 * Socket buffer (struct sockbuf) utility routines.
375 *
376 * Each socket contains two socket buffers: one for sending data and
377 * one for receiving data.  Each buffer contains a queue of mbufs,
378 * information about the number of mbufs and amount of data in the
379 * queue, and other fields allowing select() statements and notification
380 * on data availability to be implemented.
381 *
382 * Data stored in a socket buffer is maintained as a list of records.
383 * Each record is a list of mbufs chained together with the m_next
384 * field.  Records are chained together with the m_nextpkt field. The upper
385 * level routine soreceive() expects the following conventions to be
386 * observed when placing information in the receive buffer:
387 *
388 * 1. If the protocol requires each message be preceded by the sender's
389 *    name, then a record containing that name must be present before
390 *    any associated data (mbuf's must be of type MT_SONAME).
391 * 2. If the protocol supports the exchange of ``access rights'' (really
392 *    just additional data associated with the message), and there are
393 *    ``rights'' to be received, then a record containing this data
394 *    should be present (mbuf's must be of type MT_RIGHTS).
395 * 3. If a name or rights record exists, then it must be followed by
396 *    a data record, perhaps of zero length.
397 *
398 * Before using a new socket structure it is first necessary to reserve
399 * buffer space to the socket, by calling sbreserve().  This should commit
400 * some of the available buffer space in the system buffer pool for the
401 * socket (currently, it does nothing but enforce limits).  The space
402 * should be released by calling sbrelease() when the socket is destroyed.
403 */
404
405int
406soreserve(so, sndcc, rcvcc)
407	register struct socket *so;
408	u_long sndcc, rcvcc;
409{
410	struct thread *td = curthread;
411
412	if (sbreserve(&so->so_snd, sndcc, so, td) == 0)
413		goto bad;
414	if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0)
415		goto bad2;
416	if (so->so_rcv.sb_lowat == 0)
417		so->so_rcv.sb_lowat = 1;
418	if (so->so_snd.sb_lowat == 0)
419		so->so_snd.sb_lowat = MCLBYTES;
420	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
421		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
422	return (0);
423bad2:
424	sbrelease(&so->so_snd, so);
425bad:
426	return (ENOBUFS);
427}
428
429/*
430 * Allot mbufs to a sockbuf.
431 * Attempt to scale mbmax so that mbcnt doesn't become limiting
432 * if buffering efficiency is near the normal case.
433 */
434int
435sbreserve(sb, cc, so, td)
436	struct sockbuf *sb;
437	u_long cc;
438	struct socket *so;
439	struct thread *td;
440{
441
442	/*
443	 * td will only be NULL when we're in an interrupt
444	 * (e.g. in tcp_input())
445	 */
446	if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
447		return (0);
448	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
449	    td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) {
450		return (0);
451	}
452	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
453	if (sb->sb_lowat > sb->sb_hiwat)
454		sb->sb_lowat = sb->sb_hiwat;
455	return (1);
456}
457
458/*
459 * Free mbufs held by a socket, and reserved mbuf space.
460 */
461void
462sbrelease(sb, so)
463	struct sockbuf *sb;
464	struct socket *so;
465{
466
467	sbflush(sb);
468	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
469	    RLIM_INFINITY);
470	sb->sb_mbmax = 0;
471}
472
473/*
474 * Routines to add and remove
475 * data from an mbuf queue.
476 *
477 * The routines sbappend() or sbappendrecord() are normally called to
478 * append new mbufs to a socket buffer, after checking that adequate
479 * space is available, comparing the function sbspace() with the amount
480 * of data to be added.  sbappendrecord() differs from sbappend() in
481 * that data supplied is treated as the beginning of a new record.
482 * To place a sender's address, optional access rights, and data in a
483 * socket receive buffer, sbappendaddr() should be used.  To place
484 * access rights and data in a socket receive buffer, sbappendrights()
485 * should be used.  In either case, the new data begins a new record.
486 * Note that unlike sbappend() and sbappendrecord(), these routines check
487 * for the caller that there will be enough space to store the data.
488 * Each fails if there is not enough space, or if it cannot find mbufs
489 * to store additional information in.
490 *
491 * Reliable protocols may use the socket send buffer to hold data
492 * awaiting acknowledgement.  Data is normally copied from a socket
493 * send buffer in a protocol with m_copy for output to a peer,
494 * and then removing the data from the socket buffer with sbdrop()
495 * or sbdroprecord() when the data is acknowledged by the peer.
496 */
497
498/*
499 * Append mbuf chain m to the last record in the
500 * socket buffer sb.  The additional space associated
501 * the mbuf chain is recorded in sb.  Empty mbufs are
502 * discarded and mbufs are compacted where possible.
503 */
504void
505sbappend(sb, m)
506	struct sockbuf *sb;
507	struct mbuf *m;
508{
509	register struct mbuf *n;
510
511	if (m == 0)
512		return;
513	n = sb->sb_mb;
514	if (n) {
515		while (n->m_nextpkt)
516			n = n->m_nextpkt;
517		do {
518			if (n->m_flags & M_EOR) {
519				sbappendrecord(sb, m); /* XXXXXX!!!! */
520				return;
521			}
522		} while (n->m_next && (n = n->m_next));
523	}
524	sbcompress(sb, m, n);
525}
526
527#ifdef SOCKBUF_DEBUG
528void
529sbcheck(sb)
530	register struct sockbuf *sb;
531{
532	register struct mbuf *m;
533	register struct mbuf *n = 0;
534	register u_long len = 0, mbcnt = 0;
535
536	for (m = sb->sb_mb; m; m = n) {
537	    n = m->m_nextpkt;
538	    for (; m; m = m->m_next) {
539		len += m->m_len;
540		mbcnt += MSIZE;
541		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
542			mbcnt += m->m_ext.ext_size;
543	    }
544	}
545	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
546		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
547		    mbcnt, sb->sb_mbcnt);
548		panic("sbcheck");
549	}
550}
551#endif
552
553/*
554 * As above, except the mbuf chain
555 * begins a new record.
556 */
557void
558sbappendrecord(sb, m0)
559	register struct sockbuf *sb;
560	register struct mbuf *m0;
561{
562	register struct mbuf *m;
563
564	if (m0 == 0)
565		return;
566	m = sb->sb_mb;
567	if (m)
568		while (m->m_nextpkt)
569			m = m->m_nextpkt;
570	/*
571	 * Put the first mbuf on the queue.
572	 * Note this permits zero length records.
573	 */
574	sballoc(sb, m0);
575	if (m)
576		m->m_nextpkt = m0;
577	else
578		sb->sb_mb = m0;
579	m = m0->m_next;
580	m0->m_next = 0;
581	if (m && (m0->m_flags & M_EOR)) {
582		m0->m_flags &= ~M_EOR;
583		m->m_flags |= M_EOR;
584	}
585	sbcompress(sb, m, m0);
586}
587
588/*
589 * As above except that OOB data
590 * is inserted at the beginning of the sockbuf,
591 * but after any other OOB data.
592 */
593void
594sbinsertoob(sb, m0)
595	register struct sockbuf *sb;
596	register struct mbuf *m0;
597{
598	register struct mbuf *m;
599	register struct mbuf **mp;
600
601	if (m0 == 0)
602		return;
603	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
604	    m = *mp;
605	    again:
606		switch (m->m_type) {
607
608		case MT_OOBDATA:
609			continue;		/* WANT next train */
610
611		case MT_CONTROL:
612			m = m->m_next;
613			if (m)
614				goto again;	/* inspect THIS train further */
615		}
616		break;
617	}
618	/*
619	 * Put the first mbuf on the queue.
620	 * Note this permits zero length records.
621	 */
622	sballoc(sb, m0);
623	m0->m_nextpkt = *mp;
624	*mp = m0;
625	m = m0->m_next;
626	m0->m_next = 0;
627	if (m && (m0->m_flags & M_EOR)) {
628		m0->m_flags &= ~M_EOR;
629		m->m_flags |= M_EOR;
630	}
631	sbcompress(sb, m, m0);
632}
633
634/*
635 * Append address and data, and optionally, control (ancillary) data
636 * to the receive queue of a socket.  If present,
637 * m0 must include a packet header with total length.
638 * Returns 0 if no space in sockbuf or insufficient mbufs.
639 */
640int
641sbappendaddr(sb, asa, m0, control)
642	register struct sockbuf *sb;
643	struct sockaddr *asa;
644	struct mbuf *m0, *control;
645{
646	register struct mbuf *m, *n;
647	int space = asa->sa_len;
648
649	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
650		panic("sbappendaddr");
651	if (m0)
652		space += m0->m_pkthdr.len;
653	for (n = control; n; n = n->m_next) {
654		space += n->m_len;
655		if (n->m_next == 0)	/* keep pointer to last control buf */
656			break;
657	}
658	if (space > sbspace(sb))
659		return (0);
660	if (asa->sa_len > MLEN)
661		return (0);
662	MGET(m, M_DONTWAIT, MT_SONAME);
663	if (m == 0)
664		return (0);
665	m->m_len = asa->sa_len;
666	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
667	if (n)
668		n->m_next = m0;		/* concatenate data to control */
669	else
670		control = m0;
671	m->m_next = control;
672	for (n = m; n; n = n->m_next)
673		sballoc(sb, n);
674	n = sb->sb_mb;
675	if (n) {
676		while (n->m_nextpkt)
677			n = n->m_nextpkt;
678		n->m_nextpkt = m;
679	} else
680		sb->sb_mb = m;
681	return (1);
682}
683
684int
685sbappendcontrol(sb, m0, control)
686	struct sockbuf *sb;
687	struct mbuf *control, *m0;
688{
689	register struct mbuf *m, *n;
690	int space = 0;
691
692	if (control == 0)
693		panic("sbappendcontrol");
694	for (m = control; ; m = m->m_next) {
695		space += m->m_len;
696		if (m->m_next == 0)
697			break;
698	}
699	n = m;			/* save pointer to last control buffer */
700	for (m = m0; m; m = m->m_next)
701		space += m->m_len;
702	if (space > sbspace(sb))
703		return (0);
704	n->m_next = m0;			/* concatenate data to control */
705	for (m = control; m; m = m->m_next)
706		sballoc(sb, m);
707	n = sb->sb_mb;
708	if (n) {
709		while (n->m_nextpkt)
710			n = n->m_nextpkt;
711		n->m_nextpkt = control;
712	} else
713		sb->sb_mb = control;
714	return (1);
715}
716
717/*
718 * Compress mbuf chain m into the socket
719 * buffer sb following mbuf n.  If n
720 * is null, the buffer is presumed empty.
721 */
722void
723sbcompress(sb, m, n)
724	register struct sockbuf *sb;
725	register struct mbuf *m, *n;
726{
727	register int eor = 0;
728	register struct mbuf *o;
729
730	while (m) {
731		eor |= m->m_flags & M_EOR;
732		if (m->m_len == 0 &&
733		    (eor == 0 ||
734		     (((o = m->m_next) || (o = n)) &&
735		      o->m_type == m->m_type))) {
736			m = m_free(m);
737			continue;
738		}
739		if (n && (n->m_flags & M_EOR) == 0 &&
740		    M_WRITABLE(n) &&
741		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
742		    m->m_len <= M_TRAILINGSPACE(n) &&
743		    n->m_type == m->m_type) {
744			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
745			    (unsigned)m->m_len);
746			n->m_len += m->m_len;
747			sb->sb_cc += m->m_len;
748			m = m_free(m);
749			continue;
750		}
751		if (n)
752			n->m_next = m;
753		else
754			sb->sb_mb = m;
755		sballoc(sb, m);
756		n = m;
757		m->m_flags &= ~M_EOR;
758		m = m->m_next;
759		n->m_next = 0;
760	}
761	if (eor) {
762		if (n)
763			n->m_flags |= eor;
764		else
765			printf("semi-panic: sbcompress\n");
766	}
767}
768
769/*
770 * Free all mbufs in a sockbuf.
771 * Check that all resources are reclaimed.
772 */
773void
774sbflush(sb)
775	register struct sockbuf *sb;
776{
777
778	if (sb->sb_flags & SB_LOCK)
779		panic("sbflush: locked");
780	while (sb->sb_mbcnt) {
781		/*
782		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
783		 * we would loop forever. Panic instead.
784		 */
785		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
786			break;
787		sbdrop(sb, (int)sb->sb_cc);
788	}
789	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
790		panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
791}
792
793/*
794 * Drop data from (the front of) a sockbuf.
795 */
796void
797sbdrop(sb, len)
798	register struct sockbuf *sb;
799	register int len;
800{
801	register struct mbuf *m;
802	struct mbuf *next;
803
804	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
805	while (len > 0) {
806		if (m == 0) {
807			if (next == 0)
808				panic("sbdrop");
809			m = next;
810			next = m->m_nextpkt;
811			continue;
812		}
813		if (m->m_len > len) {
814			m->m_len -= len;
815			m->m_data += len;
816			sb->sb_cc -= len;
817			break;
818		}
819		len -= m->m_len;
820		sbfree(sb, m);
821		m = m_free(m);
822	}
823	while (m && m->m_len == 0) {
824		sbfree(sb, m);
825		m = m_free(m);
826	}
827	if (m) {
828		sb->sb_mb = m;
829		m->m_nextpkt = next;
830	} else
831		sb->sb_mb = next;
832}
833
834/*
835 * Drop a record off the front of a sockbuf
836 * and move the next record to the front.
837 */
838void
839sbdroprecord(sb)
840	register struct sockbuf *sb;
841{
842	register struct mbuf *m;
843
844	m = sb->sb_mb;
845	if (m) {
846		sb->sb_mb = m->m_nextpkt;
847		do {
848			sbfree(sb, m);
849			m = m_free(m);
850		} while (m);
851	}
852}
853
854/*
855 * Create a "control" mbuf containing the specified data
856 * with the specified type for presentation on a socket buffer.
857 */
858struct mbuf *
859sbcreatecontrol(p, size, type, level)
860	caddr_t p;
861	register int size;
862	int type, level;
863{
864	register struct cmsghdr *cp;
865	struct mbuf *m;
866
867	if (CMSG_SPACE((u_int)size) > MCLBYTES)
868		return ((struct mbuf *) NULL);
869	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
870		return ((struct mbuf *) NULL);
871	if (CMSG_SPACE((u_int)size) > MLEN) {
872		MCLGET(m, M_DONTWAIT);
873		if ((m->m_flags & M_EXT) == 0) {
874			m_free(m);
875			return ((struct mbuf *) NULL);
876		}
877	}
878	cp = mtod(m, struct cmsghdr *);
879	m->m_len = 0;
880	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
881	    ("sbcreatecontrol: short mbuf"));
882	if (p != NULL)
883		(void)memcpy(CMSG_DATA(cp), p, size);
884	m->m_len = CMSG_SPACE(size);
885	cp->cmsg_len = CMSG_LEN(size);
886	cp->cmsg_level = level;
887	cp->cmsg_type = type;
888	return (m);
889}
890
891/*
892 * Some routines that return EOPNOTSUPP for entry points that are not
893 * supported by a protocol.  Fill in as needed.
894 */
895int
896pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
897{
898	return EOPNOTSUPP;
899}
900
901int
902pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
903{
904	return EOPNOTSUPP;
905}
906
907int
908pru_connect2_notsupp(struct socket *so1, struct socket *so2)
909{
910	return EOPNOTSUPP;
911}
912
913int
914pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
915		    struct ifnet *ifp, struct thread *td)
916{
917	return EOPNOTSUPP;
918}
919
920int
921pru_listen_notsupp(struct socket *so, struct thread *td)
922{
923	return EOPNOTSUPP;
924}
925
926int
927pru_rcvd_notsupp(struct socket *so, int flags)
928{
929	return EOPNOTSUPP;
930}
931
932int
933pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
934{
935	return EOPNOTSUPP;
936}
937
938/*
939 * This isn't really a ``null'' operation, but it's the default one
940 * and doesn't do anything destructive.
941 */
942int
943pru_sense_null(struct socket *so, struct stat *sb)
944{
945	sb->st_blksize = so->so_snd.sb_hiwat;
946	return 0;
947}
948
949/*
950 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
951 */
952struct sockaddr *
953dup_sockaddr(sa, canwait)
954	struct sockaddr *sa;
955	int canwait;
956{
957	struct sockaddr *sa2;
958
959	MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
960	       canwait ? M_WAITOK : M_NOWAIT);
961	if (sa2)
962		bcopy(sa, sa2, sa->sa_len);
963	return sa2;
964}
965
966/*
967 * Create an external-format (``xsocket'') structure using the information
968 * in the kernel-format socket structure pointed to by so.  This is done
969 * to reduce the spew of irrelevant information over this interface,
970 * to isolate user code from changes in the kernel structure, and
971 * potentially to provide information-hiding if we decide that
972 * some of this information should be hidden from users.
973 */
974void
975sotoxsocket(struct socket *so, struct xsocket *xso)
976{
977	xso->xso_len = sizeof *xso;
978	xso->xso_so = so;
979	xso->so_type = so->so_type;
980	xso->so_options = so->so_options;
981	xso->so_linger = so->so_linger;
982	xso->so_state = so->so_state;
983	xso->so_pcb = so->so_pcb;
984	xso->xso_protocol = so->so_proto->pr_protocol;
985	xso->xso_family = so->so_proto->pr_domain->dom_family;
986	xso->so_qlen = so->so_qlen;
987	xso->so_incqlen = so->so_incqlen;
988	xso->so_qlimit = so->so_qlimit;
989	xso->so_timeo = so->so_timeo;
990	xso->so_error = so->so_error;
991	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
992	xso->so_oobmark = so->so_oobmark;
993	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
994	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
995	xso->so_uid = so->so_cred->cr_uid;
996}
997
998/*
999 * This does the same for sockbufs.  Note that the xsockbuf structure,
1000 * since it is always embedded in a socket, does not include a self
1001 * pointer nor a length.  We make this entry point public in case
1002 * some other mechanism needs it.
1003 */
1004void
1005sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1006{
1007	xsb->sb_cc = sb->sb_cc;
1008	xsb->sb_hiwat = sb->sb_hiwat;
1009	xsb->sb_mbcnt = sb->sb_mbcnt;
1010	xsb->sb_mbmax = sb->sb_mbmax;
1011	xsb->sb_lowat = sb->sb_lowat;
1012	xsb->sb_flags = sb->sb_flags;
1013	xsb->sb_timeo = sb->sb_timeo;
1014}
1015
1016/*
1017 * Here is the definition of some of the basic objects in the kern.ipc
1018 * branch of the MIB.
1019 */
1020SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1021
1022/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1023static int dummy;
1024SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1025
1026SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW,
1027    &sb_max, 0, "Maximum socket buffer size");
1028SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
1029    &maxsockets, 0, "Maximum number of sockets avaliable");
1030SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1031    &sb_efficiency, 0, "");
1032
1033/*
1034 * Initialise maxsockets
1035 */
1036static void init_maxsockets(void *ignored)
1037{
1038	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
1039	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
1040}
1041SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
1042