uipc_sockbuf.c revision 51381
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34 * $FreeBSD: head/sys/kern/uipc_sockbuf.c 51381 1999-09-19 02:17:02Z green $
35 */
36
37#include "opt_param.h"
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/domain.h>
41#include <sys/file.h>	/* for maxfiles */
42#include <sys/kernel.h>
43#include <sys/proc.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/protosw.h>
47#include <sys/resourcevar.h>
48#include <sys/stat.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/signalvar.h>
52#include <sys/sysctl.h>
53
54int	maxsockets;
55
56/*
57 * Primitive routines for operating on sockets and socket buffers
58 */
59
60u_long	sb_max = SB_MAX;		/* XXX should be static */
61
62static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
63
64/*
65 * Procedures to manipulate state flags of socket
66 * and do appropriate wakeups.  Normal sequence from the
67 * active (originating) side is that soisconnecting() is
68 * called during processing of connect() call,
69 * resulting in an eventual call to soisconnected() if/when the
70 * connection is established.  When the connection is torn down
71 * soisdisconnecting() is called during processing of disconnect() call,
72 * and soisdisconnected() is called when the connection to the peer
73 * is totally severed.  The semantics of these routines are such that
74 * connectionless protocols can call soisconnected() and soisdisconnected()
75 * only, bypassing the in-progress calls when setting up a ``connection''
76 * takes no time.
77 *
78 * From the passive side, a socket is created with
79 * two queues of sockets: so_incomp for connections in progress
80 * and so_comp for connections already made and awaiting user acceptance.
81 * As a protocol is preparing incoming connections, it creates a socket
82 * structure queued on so_incomp by calling sonewconn().  When the connection
83 * is established, soisconnected() is called, and transfers the
84 * socket structure to so_comp, making it available to accept().
85 *
86 * If a socket is closed with sockets on either
87 * so_incomp or so_comp, these sockets are dropped.
88 *
89 * If higher level protocols are implemented in
90 * the kernel, the wakeups done here will sometimes
91 * cause software-interrupt process scheduling.
92 */
93
94void
95soisconnecting(so)
96	register struct socket *so;
97{
98
99	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
100	so->so_state |= SS_ISCONNECTING;
101}
102
103void
104soisconnected(so)
105	register struct socket *so;
106{
107	register struct socket *head = so->so_head;
108
109	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
110	so->so_state |= SS_ISCONNECTED;
111	if (head && (so->so_state & SS_INCOMP)) {
112		TAILQ_REMOVE(&head->so_incomp, so, so_list);
113		head->so_incqlen--;
114		so->so_state &= ~SS_INCOMP;
115		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
116		so->so_state |= SS_COMP;
117		sorwakeup(head);
118		wakeup_one(&head->so_timeo);
119	} else {
120		wakeup(&so->so_timeo);
121		sorwakeup(so);
122		sowwakeup(so);
123	}
124}
125
126void
127soisdisconnecting(so)
128	register struct socket *so;
129{
130
131	so->so_state &= ~SS_ISCONNECTING;
132	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
133	wakeup((caddr_t)&so->so_timeo);
134	sowwakeup(so);
135	sorwakeup(so);
136}
137
138void
139soisdisconnected(so)
140	register struct socket *so;
141{
142
143	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
144	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
145	wakeup((caddr_t)&so->so_timeo);
146	sowwakeup(so);
147	sorwakeup(so);
148}
149
150/*
151 * Return a random connection that hasn't been serviced yet and
152 * is eligible for discard.  There is a one in qlen chance that
153 * we will return a null, saying that there are no dropable
154 * requests.  In this case, the protocol specific code should drop
155 * the new request.  This insures fairness.
156 *
157 * This may be used in conjunction with protocol specific queue
158 * congestion routines.
159 */
160struct socket *
161sodropablereq(head)
162	register struct socket *head;
163{
164	register struct socket *so;
165	unsigned int i, j, qlen;
166	static int rnd;
167	static struct timeval old_runtime;
168	static unsigned int cur_cnt, old_cnt;
169	struct timeval tv;
170
171	getmicrouptime(&tv);
172	if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
173		old_runtime = tv;
174		old_cnt = cur_cnt / i;
175		cur_cnt = 0;
176	}
177
178	so = TAILQ_FIRST(&head->so_incomp);
179	if (!so)
180		return (so);
181
182	qlen = head->so_incqlen;
183	if (++cur_cnt > qlen || old_cnt > qlen) {
184		rnd = (314159 * rnd + 66329) & 0xffff;
185		j = ((qlen + 1) * rnd) >> 16;
186
187		while (j-- && so)
188		    so = TAILQ_NEXT(so, so_list);
189	}
190
191	return (so);
192}
193
194/*
195 * When an attempt at a new connection is noted on a socket
196 * which accepts connections, sonewconn is called.  If the
197 * connection is possible (subject to space constraints, etc.)
198 * then we allocate a new structure, propoerly linked into the
199 * data structure of the original socket, and return this.
200 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
201 */
202struct socket *
203sonewconn(head, connstatus)
204	register struct socket *head;
205	int connstatus;
206{
207
208	return (sonewconn3(head, connstatus, NULL));
209}
210
211struct socket *
212sonewconn3(head, connstatus, p)
213	register struct socket *head;
214	int connstatus;
215	struct proc *p;
216{
217	register struct socket *so;
218
219	if (head->so_qlen > 3 * head->so_qlimit / 2)
220		return ((struct socket *)0);
221	so = soalloc(0);
222	if (so == NULL)
223		return ((struct socket *)0);
224	so->so_head = head;
225	so->so_type = head->so_type;
226	so->so_options = head->so_options &~ SO_ACCEPTCONN;
227	so->so_linger = head->so_linger;
228	so->so_state = head->so_state | SS_NOFDREF;
229	so->so_proto = head->so_proto;
230	so->so_timeo = head->so_timeo;
231	so->so_cred = p ? p->p_ucred : head->so_cred;
232	crhold(so->so_cred);
233	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
234	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
235		sodealloc(so);
236		return ((struct socket *)0);
237	}
238
239	if (connstatus) {
240		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
241		so->so_state |= SS_COMP;
242	} else {
243		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
244		so->so_state |= SS_INCOMP;
245		head->so_incqlen++;
246	}
247	head->so_qlen++;
248	if (connstatus) {
249		sorwakeup(head);
250		wakeup((caddr_t)&head->so_timeo);
251		so->so_state |= connstatus;
252	}
253	return (so);
254}
255
256/*
257 * Socantsendmore indicates that no more data will be sent on the
258 * socket; it would normally be applied to a socket when the user
259 * informs the system that no more data is to be sent, by the protocol
260 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
261 * will be received, and will normally be applied to the socket by a
262 * protocol when it detects that the peer will send no more data.
263 * Data queued for reading in the socket may yet be read.
264 */
265
266void
267socantsendmore(so)
268	struct socket *so;
269{
270
271	so->so_state |= SS_CANTSENDMORE;
272	sowwakeup(so);
273}
274
275void
276socantrcvmore(so)
277	struct socket *so;
278{
279
280	so->so_state |= SS_CANTRCVMORE;
281	sorwakeup(so);
282}
283
284/*
285 * Wait for data to arrive at/drain from a socket buffer.
286 */
287int
288sbwait(sb)
289	struct sockbuf *sb;
290{
291
292	sb->sb_flags |= SB_WAIT;
293	return (tsleep((caddr_t)&sb->sb_cc,
294	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
295	    sb->sb_timeo));
296}
297
298/*
299 * Lock a sockbuf already known to be locked;
300 * return any error returned from sleep (EINTR).
301 */
302int
303sb_lock(sb)
304	register struct sockbuf *sb;
305{
306	int error;
307
308	while (sb->sb_flags & SB_LOCK) {
309		sb->sb_flags |= SB_WANT;
310		error = tsleep((caddr_t)&sb->sb_flags,
311		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
312		    "sblock", 0);
313		if (error)
314			return (error);
315	}
316	sb->sb_flags |= SB_LOCK;
317	return (0);
318}
319
320/*
321 * Wakeup processes waiting on a socket buffer.
322 * Do asynchronous notification via SIGIO
323 * if the socket has the SS_ASYNC flag set.
324 */
325void
326sowakeup(so, sb)
327	register struct socket *so;
328	register struct sockbuf *sb;
329{
330	selwakeup(&sb->sb_sel);
331	sb->sb_flags &= ~SB_SEL;
332	if (sb->sb_flags & SB_WAIT) {
333		sb->sb_flags &= ~SB_WAIT;
334		wakeup((caddr_t)&sb->sb_cc);
335	}
336	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
337		pgsigio(so->so_sigio, SIGIO, 0);
338	if (sb->sb_flags & SB_UPCALL)
339		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
340}
341
342/*
343 * Socket buffer (struct sockbuf) utility routines.
344 *
345 * Each socket contains two socket buffers: one for sending data and
346 * one for receiving data.  Each buffer contains a queue of mbufs,
347 * information about the number of mbufs and amount of data in the
348 * queue, and other fields allowing select() statements and notification
349 * on data availability to be implemented.
350 *
351 * Data stored in a socket buffer is maintained as a list of records.
352 * Each record is a list of mbufs chained together with the m_next
353 * field.  Records are chained together with the m_nextpkt field. The upper
354 * level routine soreceive() expects the following conventions to be
355 * observed when placing information in the receive buffer:
356 *
357 * 1. If the protocol requires each message be preceded by the sender's
358 *    name, then a record containing that name must be present before
359 *    any associated data (mbuf's must be of type MT_SONAME).
360 * 2. If the protocol supports the exchange of ``access rights'' (really
361 *    just additional data associated with the message), and there are
362 *    ``rights'' to be received, then a record containing this data
363 *    should be present (mbuf's must be of type MT_RIGHTS).
364 * 3. If a name or rights record exists, then it must be followed by
365 *    a data record, perhaps of zero length.
366 *
367 * Before using a new socket structure it is first necessary to reserve
368 * buffer space to the socket, by calling sbreserve().  This should commit
369 * some of the available buffer space in the system buffer pool for the
370 * socket (currently, it does nothing but enforce limits).  The space
371 * should be released by calling sbrelease() when the socket is destroyed.
372 */
373
374int
375soreserve(so, sndcc, rcvcc)
376	register struct socket *so;
377	u_long sndcc, rcvcc;
378{
379
380	if (sbreserve(&so->so_snd, sndcc) == 0)
381		goto bad;
382	if (sbreserve(&so->so_rcv, rcvcc) == 0)
383		goto bad2;
384	if (so->so_rcv.sb_lowat == 0)
385		so->so_rcv.sb_lowat = 1;
386	if (so->so_snd.sb_lowat == 0)
387		so->so_snd.sb_lowat = MCLBYTES;
388	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
389		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
390	return (0);
391bad2:
392	sbrelease(&so->so_snd);
393bad:
394	return (ENOBUFS);
395}
396
397/*
398 * Allot mbufs to a sockbuf.
399 * Attempt to scale mbmax so that mbcnt doesn't become limiting
400 * if buffering efficiency is near the normal case.
401 */
402int
403sbreserve(sb, cc)
404	struct sockbuf *sb;
405	u_long cc;
406{
407	if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
408		return (0);
409	sb->sb_hiwat = cc;
410	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
411	if (sb->sb_lowat > sb->sb_hiwat)
412		sb->sb_lowat = sb->sb_hiwat;
413	return (1);
414}
415
416/*
417 * Free mbufs held by a socket, and reserved mbuf space.
418 */
419void
420sbrelease(sb)
421	struct sockbuf *sb;
422{
423
424	sbflush(sb);
425	sb->sb_hiwat = sb->sb_mbmax = 0;
426}
427
428/*
429 * Routines to add and remove
430 * data from an mbuf queue.
431 *
432 * The routines sbappend() or sbappendrecord() are normally called to
433 * append new mbufs to a socket buffer, after checking that adequate
434 * space is available, comparing the function sbspace() with the amount
435 * of data to be added.  sbappendrecord() differs from sbappend() in
436 * that data supplied is treated as the beginning of a new record.
437 * To place a sender's address, optional access rights, and data in a
438 * socket receive buffer, sbappendaddr() should be used.  To place
439 * access rights and data in a socket receive buffer, sbappendrights()
440 * should be used.  In either case, the new data begins a new record.
441 * Note that unlike sbappend() and sbappendrecord(), these routines check
442 * for the caller that there will be enough space to store the data.
443 * Each fails if there is not enough space, or if it cannot find mbufs
444 * to store additional information in.
445 *
446 * Reliable protocols may use the socket send buffer to hold data
447 * awaiting acknowledgement.  Data is normally copied from a socket
448 * send buffer in a protocol with m_copy for output to a peer,
449 * and then removing the data from the socket buffer with sbdrop()
450 * or sbdroprecord() when the data is acknowledged by the peer.
451 */
452
453/*
454 * Append mbuf chain m to the last record in the
455 * socket buffer sb.  The additional space associated
456 * the mbuf chain is recorded in sb.  Empty mbufs are
457 * discarded and mbufs are compacted where possible.
458 */
459void
460sbappend(sb, m)
461	struct sockbuf *sb;
462	struct mbuf *m;
463{
464	register struct mbuf *n;
465
466	if (m == 0)
467		return;
468	n = sb->sb_mb;
469	if (n) {
470		while (n->m_nextpkt)
471			n = n->m_nextpkt;
472		do {
473			if (n->m_flags & M_EOR) {
474				sbappendrecord(sb, m); /* XXXXXX!!!! */
475				return;
476			}
477		} while (n->m_next && (n = n->m_next));
478	}
479	sbcompress(sb, m, n);
480}
481
482#ifdef SOCKBUF_DEBUG
483void
484sbcheck(sb)
485	register struct sockbuf *sb;
486{
487	register struct mbuf *m;
488	register struct mbuf *n = 0;
489	register u_long len = 0, mbcnt = 0;
490
491	for (m = sb->sb_mb; m; m = n) {
492	    n = m->m_nextpkt;
493	    for (; m; m = m->m_next) {
494		len += m->m_len;
495		mbcnt += MSIZE;
496		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
497			mbcnt += m->m_ext.ext_size;
498	    }
499	}
500	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
501		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
502		    mbcnt, sb->sb_mbcnt);
503		panic("sbcheck");
504	}
505}
506#endif
507
508/*
509 * As above, except the mbuf chain
510 * begins a new record.
511 */
512void
513sbappendrecord(sb, m0)
514	register struct sockbuf *sb;
515	register struct mbuf *m0;
516{
517	register struct mbuf *m;
518
519	if (m0 == 0)
520		return;
521	m = sb->sb_mb;
522	if (m)
523		while (m->m_nextpkt)
524			m = m->m_nextpkt;
525	/*
526	 * Put the first mbuf on the queue.
527	 * Note this permits zero length records.
528	 */
529	sballoc(sb, m0);
530	if (m)
531		m->m_nextpkt = m0;
532	else
533		sb->sb_mb = m0;
534	m = m0->m_next;
535	m0->m_next = 0;
536	if (m && (m0->m_flags & M_EOR)) {
537		m0->m_flags &= ~M_EOR;
538		m->m_flags |= M_EOR;
539	}
540	sbcompress(sb, m, m0);
541}
542
543/*
544 * As above except that OOB data
545 * is inserted at the beginning of the sockbuf,
546 * but after any other OOB data.
547 */
548void
549sbinsertoob(sb, m0)
550	register struct sockbuf *sb;
551	register struct mbuf *m0;
552{
553	register struct mbuf *m;
554	register struct mbuf **mp;
555
556	if (m0 == 0)
557		return;
558	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
559	    m = *mp;
560	    again:
561		switch (m->m_type) {
562
563		case MT_OOBDATA:
564			continue;		/* WANT next train */
565
566		case MT_CONTROL:
567			m = m->m_next;
568			if (m)
569				goto again;	/* inspect THIS train further */
570		}
571		break;
572	}
573	/*
574	 * Put the first mbuf on the queue.
575	 * Note this permits zero length records.
576	 */
577	sballoc(sb, m0);
578	m0->m_nextpkt = *mp;
579	*mp = m0;
580	m = m0->m_next;
581	m0->m_next = 0;
582	if (m && (m0->m_flags & M_EOR)) {
583		m0->m_flags &= ~M_EOR;
584		m->m_flags |= M_EOR;
585	}
586	sbcompress(sb, m, m0);
587}
588
589/*
590 * Append address and data, and optionally, control (ancillary) data
591 * to the receive queue of a socket.  If present,
592 * m0 must include a packet header with total length.
593 * Returns 0 if no space in sockbuf or insufficient mbufs.
594 */
595int
596sbappendaddr(sb, asa, m0, control)
597	register struct sockbuf *sb;
598	struct sockaddr *asa;
599	struct mbuf *m0, *control;
600{
601	register struct mbuf *m, *n;
602	int space = asa->sa_len;
603
604if (m0 && (m0->m_flags & M_PKTHDR) == 0)
605panic("sbappendaddr");
606	if (m0)
607		space += m0->m_pkthdr.len;
608	for (n = control; n; n = n->m_next) {
609		space += n->m_len;
610		if (n->m_next == 0)	/* keep pointer to last control buf */
611			break;
612	}
613	if (space > sbspace(sb))
614		return (0);
615	if (asa->sa_len > MLEN)
616		return (0);
617	MGET(m, M_DONTWAIT, MT_SONAME);
618	if (m == 0)
619		return (0);
620	m->m_len = asa->sa_len;
621	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
622	if (n)
623		n->m_next = m0;		/* concatenate data to control */
624	else
625		control = m0;
626	m->m_next = control;
627	for (n = m; n; n = n->m_next)
628		sballoc(sb, n);
629	n = sb->sb_mb;
630	if (n) {
631		while (n->m_nextpkt)
632			n = n->m_nextpkt;
633		n->m_nextpkt = m;
634	} else
635		sb->sb_mb = m;
636	return (1);
637}
638
639int
640sbappendcontrol(sb, m0, control)
641	struct sockbuf *sb;
642	struct mbuf *control, *m0;
643{
644	register struct mbuf *m, *n;
645	int space = 0;
646
647	if (control == 0)
648		panic("sbappendcontrol");
649	for (m = control; ; m = m->m_next) {
650		space += m->m_len;
651		if (m->m_next == 0)
652			break;
653	}
654	n = m;			/* save pointer to last control buffer */
655	for (m = m0; m; m = m->m_next)
656		space += m->m_len;
657	if (space > sbspace(sb))
658		return (0);
659	n->m_next = m0;			/* concatenate data to control */
660	for (m = control; m; m = m->m_next)
661		sballoc(sb, m);
662	n = sb->sb_mb;
663	if (n) {
664		while (n->m_nextpkt)
665			n = n->m_nextpkt;
666		n->m_nextpkt = control;
667	} else
668		sb->sb_mb = control;
669	return (1);
670}
671
672/*
673 * Compress mbuf chain m into the socket
674 * buffer sb following mbuf n.  If n
675 * is null, the buffer is presumed empty.
676 */
677void
678sbcompress(sb, m, n)
679	register struct sockbuf *sb;
680	register struct mbuf *m, *n;
681{
682	register int eor = 0;
683	register struct mbuf *o;
684
685	while (m) {
686		eor |= m->m_flags & M_EOR;
687		if (m->m_len == 0 &&
688		    (eor == 0 ||
689		     (((o = m->m_next) || (o = n)) &&
690		      o->m_type == m->m_type))) {
691			m = m_free(m);
692			continue;
693		}
694		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
695		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
696		    n->m_type == m->m_type) {
697			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
698			    (unsigned)m->m_len);
699			n->m_len += m->m_len;
700			sb->sb_cc += m->m_len;
701			m = m_free(m);
702			continue;
703		}
704		if (n)
705			n->m_next = m;
706		else
707			sb->sb_mb = m;
708		sballoc(sb, m);
709		n = m;
710		m->m_flags &= ~M_EOR;
711		m = m->m_next;
712		n->m_next = 0;
713	}
714	if (eor) {
715		if (n)
716			n->m_flags |= eor;
717		else
718			printf("semi-panic: sbcompress\n");
719	}
720}
721
722/*
723 * Free all mbufs in a sockbuf.
724 * Check that all resources are reclaimed.
725 */
726void
727sbflush(sb)
728	register struct sockbuf *sb;
729{
730
731	if (sb->sb_flags & SB_LOCK)
732		panic("sbflush: locked");
733	while (sb->sb_mbcnt && sb->sb_cc)
734		sbdrop(sb, (int)sb->sb_cc);
735	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
736		panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
737}
738
739/*
740 * Drop data from (the front of) a sockbuf.
741 */
742void
743sbdrop(sb, len)
744	register struct sockbuf *sb;
745	register int len;
746{
747	register struct mbuf *m, *mn;
748	struct mbuf *next;
749
750	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
751	while (len > 0) {
752		if (m == 0) {
753			if (next == 0)
754				panic("sbdrop");
755			m = next;
756			next = m->m_nextpkt;
757			continue;
758		}
759		if (m->m_len > len) {
760			m->m_len -= len;
761			m->m_data += len;
762			sb->sb_cc -= len;
763			break;
764		}
765		len -= m->m_len;
766		sbfree(sb, m);
767		MFREE(m, mn);
768		m = mn;
769	}
770	while (m && m->m_len == 0) {
771		sbfree(sb, m);
772		MFREE(m, mn);
773		m = mn;
774	}
775	if (m) {
776		sb->sb_mb = m;
777		m->m_nextpkt = next;
778	} else
779		sb->sb_mb = next;
780}
781
782/*
783 * Drop a record off the front of a sockbuf
784 * and move the next record to the front.
785 */
786void
787sbdroprecord(sb)
788	register struct sockbuf *sb;
789{
790	register struct mbuf *m, *mn;
791
792	m = sb->sb_mb;
793	if (m) {
794		sb->sb_mb = m->m_nextpkt;
795		do {
796			sbfree(sb, m);
797			MFREE(m, mn);
798			m = mn;
799		} while (m);
800	}
801}
802
803/*
804 * Create a "control" mbuf containing the specified data
805 * with the specified type for presentation on a socket buffer.
806 */
807struct mbuf *
808sbcreatecontrol(p, size, type, level)
809	caddr_t p;
810	register int size;
811	int type, level;
812{
813	register struct cmsghdr *cp;
814	struct mbuf *m;
815
816	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
817		return ((struct mbuf *) NULL);
818	cp = mtod(m, struct cmsghdr *);
819	/* XXX check size? */
820	(void)memcpy(CMSG_DATA(cp), p, size);
821	size += sizeof(*cp);
822	m->m_len = size;
823	cp->cmsg_len = size;
824	cp->cmsg_level = level;
825	cp->cmsg_type = type;
826	return (m);
827}
828
829/*
830 * Some routines that return EOPNOTSUPP for entry points that are not
831 * supported by a protocol.  Fill in as needed.
832 */
833int
834pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
835{
836	return EOPNOTSUPP;
837}
838
839int
840pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
841{
842	return EOPNOTSUPP;
843}
844
845int
846pru_connect2_notsupp(struct socket *so1, struct socket *so2)
847{
848	return EOPNOTSUPP;
849}
850
851int
852pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
853		    struct ifnet *ifp, struct proc *p)
854{
855	return EOPNOTSUPP;
856}
857
858int
859pru_listen_notsupp(struct socket *so, struct proc *p)
860{
861	return EOPNOTSUPP;
862}
863
864int
865pru_rcvd_notsupp(struct socket *so, int flags)
866{
867	return EOPNOTSUPP;
868}
869
870int
871pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
872{
873	return EOPNOTSUPP;
874}
875
876/*
877 * This isn't really a ``null'' operation, but it's the default one
878 * and doesn't do anything destructive.
879 */
880int
881pru_sense_null(struct socket *so, struct stat *sb)
882{
883	sb->st_blksize = so->so_snd.sb_hiwat;
884	return 0;
885}
886
887/*
888 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
889 */
890struct sockaddr *
891dup_sockaddr(sa, canwait)
892	struct sockaddr *sa;
893	int canwait;
894{
895	struct sockaddr *sa2;
896
897	MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
898	       canwait ? M_WAITOK : M_NOWAIT);
899	if (sa2)
900		bcopy(sa, sa2, sa->sa_len);
901	return sa2;
902}
903
904/*
905 * Create an external-format (``xsocket'') structure using the information
906 * in the kernel-format socket structure pointed to by so.  This is done
907 * to reduce the spew of irrelevant information over this interface,
908 * to isolate user code from changes in the kernel structure, and
909 * potentially to provide information-hiding if we decide that
910 * some of this information should be hidden from users.
911 */
912void
913sotoxsocket(struct socket *so, struct xsocket *xso)
914{
915	xso->xso_len = sizeof *xso;
916	xso->xso_so = so;
917	xso->so_type = so->so_type;
918	xso->so_options = so->so_options;
919	xso->so_linger = so->so_linger;
920	xso->so_state = so->so_state;
921	xso->so_pcb = so->so_pcb;
922	xso->xso_protocol = so->so_proto->pr_protocol;
923	xso->xso_family = so->so_proto->pr_domain->dom_family;
924	xso->so_qlen = so->so_qlen;
925	xso->so_incqlen = so->so_incqlen;
926	xso->so_qlimit = so->so_qlimit;
927	xso->so_timeo = so->so_timeo;
928	xso->so_error = so->so_error;
929	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
930	xso->so_oobmark = so->so_oobmark;
931	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
932	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
933	xso->so_uid = so->so_cred->cr_uid;
934}
935
936/*
937 * This does the same for sockbufs.  Note that the xsockbuf structure,
938 * since it is always embedded in a socket, does not include a self
939 * pointer nor a length.  We make this entry point public in case
940 * some other mechanism needs it.
941 */
942void
943sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
944{
945	xsb->sb_cc = sb->sb_cc;
946	xsb->sb_hiwat = sb->sb_hiwat;
947	xsb->sb_mbcnt = sb->sb_mbcnt;
948	xsb->sb_mbmax = sb->sb_mbmax;
949	xsb->sb_lowat = sb->sb_lowat;
950	xsb->sb_flags = sb->sb_flags;
951	xsb->sb_timeo = sb->sb_timeo;
952}
953
954/*
955 * Here is the definition of some of the basic objects in the kern.ipc
956 * branch of the MIB.
957 */
958SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
959
960/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
961static int dummy;
962SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
963
964SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW,
965    &sb_max, 0, "Maximum socket buffer size");
966SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
967    &maxsockets, 0, "Maximum number of sockets avaliable");
968SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
969    &sb_efficiency, 0, "");
970
971/*
972 * Initialise maxsockets
973 */
974static void init_maxsockets(void *ignored)
975{
976    TUNABLE_INT_FETCH("kern.ipc.maxsockets", 0, maxsockets);
977    maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
978}
979SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
980