uipc_sockbuf.c revision 1541
15483Swollman/*
250476Speter * Copyright (c) 1982, 1986, 1988, 1990, 1993
31638Srgrimes *	The Regents of the University of California.  All rights reserved.
4106146Sru *
5106146Sru * Redistribution and use in source and binary forms, with or without
6106146Sru * modification, are permitted provided that the following conditions
7106146Sru * are met:
8136910Sru * 1. Redistributions of source code must retain the above copyright
91638Srgrimes *    notice, this list of conditions and the following disclaimer.
101638Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34 */
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/file.h>
40#include <sys/buf.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/protosw.h>
44#include <sys/socket.h>
45#include <sys/socketvar.h>
46
47/*
48 * Primitive routines for operating on sockets and socket buffers
49 */
50
51/* strings for sleep message: */
52char	netio[] = "netio";
53char	netcon[] = "netcon";
54char	netcls[] = "netcls";
55
56u_long	sb_max = SB_MAX;		/* patchable */
57
58/*
59 * Procedures to manipulate state flags of socket
60 * and do appropriate wakeups.  Normal sequence from the
61 * active (originating) side is that soisconnecting() is
62 * called during processing of connect() call,
63 * resulting in an eventual call to soisconnected() if/when the
64 * connection is established.  When the connection is torn down
65 * soisdisconnecting() is called during processing of disconnect() call,
66 * and soisdisconnected() is called when the connection to the peer
67 * is totally severed.  The semantics of these routines are such that
68 * connectionless protocols can call soisconnected() and soisdisconnected()
69 * only, bypassing the in-progress calls when setting up a ``connection''
70 * takes no time.
71 *
72 * From the passive side, a socket is created with
73 * two queues of sockets: so_q0 for connections in progress
74 * and so_q for connections already made and awaiting user acceptance.
75 * As a protocol is preparing incoming connections, it creates a socket
76 * structure queued on so_q0 by calling sonewconn().  When the connection
77 * is established, soisconnected() is called, and transfers the
78 * socket structure to so_q, making it available to accept().
79 *
80 * If a socket is closed with sockets on either
81 * so_q0 or so_q, these sockets are dropped.
82 *
83 * If higher level protocols are implemented in
84 * the kernel, the wakeups done here will sometimes
85 * cause software-interrupt process scheduling.
86 */
87
88soisconnecting(so)
89	register struct socket *so;
90{
91
92	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
93	so->so_state |= SS_ISCONNECTING;
94}
95
96soisconnected(so)
97	register struct socket *so;
98{
99	register struct socket *head = so->so_head;
100
101	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
102	so->so_state |= SS_ISCONNECTED;
103	if (head && soqremque(so, 0)) {
104		soqinsque(head, so, 1);
105		sorwakeup(head);
106		wakeup((caddr_t)&head->so_timeo);
107	} else {
108		wakeup((caddr_t)&so->so_timeo);
109		sorwakeup(so);
110		sowwakeup(so);
111	}
112}
113
114soisdisconnecting(so)
115	register struct socket *so;
116{
117
118	so->so_state &= ~SS_ISCONNECTING;
119	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
120	wakeup((caddr_t)&so->so_timeo);
121	sowwakeup(so);
122	sorwakeup(so);
123}
124
125soisdisconnected(so)
126	register struct socket *so;
127{
128
129	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
130	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
131	wakeup((caddr_t)&so->so_timeo);
132	sowwakeup(so);
133	sorwakeup(so);
134}
135
136/*
137 * When an attempt at a new connection is noted on a socket
138 * which accepts connections, sonewconn is called.  If the
139 * connection is possible (subject to space constraints, etc.)
140 * then we allocate a new structure, propoerly linked into the
141 * data structure of the original socket, and return this.
142 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
143 *
144 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
145 * to catch calls that are missing the (new) second parameter.
146 */
147struct socket *
148sonewconn1(head, connstatus)
149	register struct socket *head;
150	int connstatus;
151{
152	register struct socket *so;
153	int soqueue = connstatus ? 1 : 0;
154
155	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
156		return ((struct socket *)0);
157	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
158	if (so == NULL)
159		return ((struct socket *)0);
160	bzero((caddr_t)so, sizeof(*so));
161	so->so_type = head->so_type;
162	so->so_options = head->so_options &~ SO_ACCEPTCONN;
163	so->so_linger = head->so_linger;
164	so->so_state = head->so_state | SS_NOFDREF;
165	so->so_proto = head->so_proto;
166	so->so_timeo = head->so_timeo;
167	so->so_pgid = head->so_pgid;
168	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
169	soqinsque(head, so, soqueue);
170	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
171	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
172		(void) soqremque(so, soqueue);
173		(void) free((caddr_t)so, M_SOCKET);
174		return ((struct socket *)0);
175	}
176	if (connstatus) {
177		sorwakeup(head);
178		wakeup((caddr_t)&head->so_timeo);
179		so->so_state |= connstatus;
180	}
181	return (so);
182}
183
184soqinsque(head, so, q)
185	register struct socket *head, *so;
186	int q;
187{
188
189	register struct socket **prev;
190	so->so_head = head;
191	if (q == 0) {
192		head->so_q0len++;
193		so->so_q0 = 0;
194		for (prev = &(head->so_q0); *prev; )
195			prev = &((*prev)->so_q0);
196	} else {
197		head->so_qlen++;
198		so->so_q = 0;
199		for (prev = &(head->so_q); *prev; )
200			prev = &((*prev)->so_q);
201	}
202	*prev = so;
203}
204
205soqremque(so, q)
206	register struct socket *so;
207	int q;
208{
209	register struct socket *head, *prev, *next;
210
211	head = so->so_head;
212	prev = head;
213	for (;;) {
214		next = q ? prev->so_q : prev->so_q0;
215		if (next == so)
216			break;
217		if (next == 0)
218			return (0);
219		prev = next;
220	}
221	if (q == 0) {
222		prev->so_q0 = next->so_q0;
223		head->so_q0len--;
224	} else {
225		prev->so_q = next->so_q;
226		head->so_qlen--;
227	}
228	next->so_q0 = next->so_q = 0;
229	next->so_head = 0;
230	return (1);
231}
232
233/*
234 * Socantsendmore indicates that no more data will be sent on the
235 * socket; it would normally be applied to a socket when the user
236 * informs the system that no more data is to be sent, by the protocol
237 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
238 * will be received, and will normally be applied to the socket by a
239 * protocol when it detects that the peer will send no more data.
240 * Data queued for reading in the socket may yet be read.
241 */
242
243socantsendmore(so)
244	struct socket *so;
245{
246
247	so->so_state |= SS_CANTSENDMORE;
248	sowwakeup(so);
249}
250
251socantrcvmore(so)
252	struct socket *so;
253{
254
255	so->so_state |= SS_CANTRCVMORE;
256	sorwakeup(so);
257}
258
259/*
260 * Wait for data to arrive at/drain from a socket buffer.
261 */
262sbwait(sb)
263	struct sockbuf *sb;
264{
265
266	sb->sb_flags |= SB_WAIT;
267	return (tsleep((caddr_t)&sb->sb_cc,
268	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
269	    sb->sb_timeo));
270}
271
272/*
273 * Lock a sockbuf already known to be locked;
274 * return any error returned from sleep (EINTR).
275 */
276sb_lock(sb)
277	register struct sockbuf *sb;
278{
279	int error;
280
281	while (sb->sb_flags & SB_LOCK) {
282		sb->sb_flags |= SB_WANT;
283		if (error = tsleep((caddr_t)&sb->sb_flags,
284		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
285		    netio, 0))
286			return (error);
287	}
288	sb->sb_flags |= SB_LOCK;
289	return (0);
290}
291
292/*
293 * Wakeup processes waiting on a socket buffer.
294 * Do asynchronous notification via SIGIO
295 * if the socket has the SS_ASYNC flag set.
296 */
297sowakeup(so, sb)
298	register struct socket *so;
299	register struct sockbuf *sb;
300{
301	struct proc *p;
302
303	selwakeup(&sb->sb_sel);
304	sb->sb_flags &= ~SB_SEL;
305	if (sb->sb_flags & SB_WAIT) {
306		sb->sb_flags &= ~SB_WAIT;
307		wakeup((caddr_t)&sb->sb_cc);
308	}
309	if (so->so_state & SS_ASYNC) {
310		if (so->so_pgid < 0)
311			gsignal(-so->so_pgid, SIGIO);
312		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
313			psignal(p, SIGIO);
314	}
315}
316
317/*
318 * Socket buffer (struct sockbuf) utility routines.
319 *
320 * Each socket contains two socket buffers: one for sending data and
321 * one for receiving data.  Each buffer contains a queue of mbufs,
322 * information about the number of mbufs and amount of data in the
323 * queue, and other fields allowing select() statements and notification
324 * on data availability to be implemented.
325 *
326 * Data stored in a socket buffer is maintained as a list of records.
327 * Each record is a list of mbufs chained together with the m_next
328 * field.  Records are chained together with the m_nextpkt field. The upper
329 * level routine soreceive() expects the following conventions to be
330 * observed when placing information in the receive buffer:
331 *
332 * 1. If the protocol requires each message be preceded by the sender's
333 *    name, then a record containing that name must be present before
334 *    any associated data (mbuf's must be of type MT_SONAME).
335 * 2. If the protocol supports the exchange of ``access rights'' (really
336 *    just additional data associated with the message), and there are
337 *    ``rights'' to be received, then a record containing this data
338 *    should be present (mbuf's must be of type MT_RIGHTS).
339 * 3. If a name or rights record exists, then it must be followed by
340 *    a data record, perhaps of zero length.
341 *
342 * Before using a new socket structure it is first necessary to reserve
343 * buffer space to the socket, by calling sbreserve().  This should commit
344 * some of the available buffer space in the system buffer pool for the
345 * socket (currently, it does nothing but enforce limits).  The space
346 * should be released by calling sbrelease() when the socket is destroyed.
347 */
348
349soreserve(so, sndcc, rcvcc)
350	register struct socket *so;
351	u_long sndcc, rcvcc;
352{
353
354	if (sbreserve(&so->so_snd, sndcc) == 0)
355		goto bad;
356	if (sbreserve(&so->so_rcv, rcvcc) == 0)
357		goto bad2;
358	if (so->so_rcv.sb_lowat == 0)
359		so->so_rcv.sb_lowat = 1;
360	if (so->so_snd.sb_lowat == 0)
361		so->so_snd.sb_lowat = MCLBYTES;
362	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
363		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
364	return (0);
365bad2:
366	sbrelease(&so->so_snd);
367bad:
368	return (ENOBUFS);
369}
370
371/*
372 * Allot mbufs to a sockbuf.
373 * Attempt to scale mbmax so that mbcnt doesn't become limiting
374 * if buffering efficiency is near the normal case.
375 */
376sbreserve(sb, cc)
377	struct sockbuf *sb;
378	u_long cc;
379{
380
381	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
382		return (0);
383	sb->sb_hiwat = cc;
384	sb->sb_mbmax = min(cc * 2, sb_max);
385	if (sb->sb_lowat > sb->sb_hiwat)
386		sb->sb_lowat = sb->sb_hiwat;
387	return (1);
388}
389
390/*
391 * Free mbufs held by a socket, and reserved mbuf space.
392 */
393sbrelease(sb)
394	struct sockbuf *sb;
395{
396
397	sbflush(sb);
398	sb->sb_hiwat = sb->sb_mbmax = 0;
399}
400
401/*
402 * Routines to add and remove
403 * data from an mbuf queue.
404 *
405 * The routines sbappend() or sbappendrecord() are normally called to
406 * append new mbufs to a socket buffer, after checking that adequate
407 * space is available, comparing the function sbspace() with the amount
408 * of data to be added.  sbappendrecord() differs from sbappend() in
409 * that data supplied is treated as the beginning of a new record.
410 * To place a sender's address, optional access rights, and data in a
411 * socket receive buffer, sbappendaddr() should be used.  To place
412 * access rights and data in a socket receive buffer, sbappendrights()
413 * should be used.  In either case, the new data begins a new record.
414 * Note that unlike sbappend() and sbappendrecord(), these routines check
415 * for the caller that there will be enough space to store the data.
416 * Each fails if there is not enough space, or if it cannot find mbufs
417 * to store additional information in.
418 *
419 * Reliable protocols may use the socket send buffer to hold data
420 * awaiting acknowledgement.  Data is normally copied from a socket
421 * send buffer in a protocol with m_copy for output to a peer,
422 * and then removing the data from the socket buffer with sbdrop()
423 * or sbdroprecord() when the data is acknowledged by the peer.
424 */
425
426/*
427 * Append mbuf chain m to the last record in the
428 * socket buffer sb.  The additional space associated
429 * the mbuf chain is recorded in sb.  Empty mbufs are
430 * discarded and mbufs are compacted where possible.
431 */
432sbappend(sb, m)
433	struct sockbuf *sb;
434	struct mbuf *m;
435{
436	register struct mbuf *n;
437
438	if (m == 0)
439		return;
440	if (n = sb->sb_mb) {
441		while (n->m_nextpkt)
442			n = n->m_nextpkt;
443		do {
444			if (n->m_flags & M_EOR) {
445				sbappendrecord(sb, m); /* XXXXXX!!!! */
446				return;
447			}
448		} while (n->m_next && (n = n->m_next));
449	}
450	sbcompress(sb, m, n);
451}
452
453#ifdef SOCKBUF_DEBUG
454sbcheck(sb)
455	register struct sockbuf *sb;
456{
457	register struct mbuf *m;
458	register int len = 0, mbcnt = 0;
459
460	for (m = sb->sb_mb; m; m = m->m_next) {
461		len += m->m_len;
462		mbcnt += MSIZE;
463		if (m->m_flags & M_EXT)
464			mbcnt += m->m_ext.ext_size;
465		if (m->m_nextpkt)
466			panic("sbcheck nextpkt");
467	}
468	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
469		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
470		    mbcnt, sb->sb_mbcnt);
471		panic("sbcheck");
472	}
473}
474#endif
475
476/*
477 * As above, except the mbuf chain
478 * begins a new record.
479 */
480sbappendrecord(sb, m0)
481	register struct sockbuf *sb;
482	register struct mbuf *m0;
483{
484	register struct mbuf *m;
485
486	if (m0 == 0)
487		return;
488	if (m = sb->sb_mb)
489		while (m->m_nextpkt)
490			m = m->m_nextpkt;
491	/*
492	 * Put the first mbuf on the queue.
493	 * Note this permits zero length records.
494	 */
495	sballoc(sb, m0);
496	if (m)
497		m->m_nextpkt = m0;
498	else
499		sb->sb_mb = m0;
500	m = m0->m_next;
501	m0->m_next = 0;
502	if (m && (m0->m_flags & M_EOR)) {
503		m0->m_flags &= ~M_EOR;
504		m->m_flags |= M_EOR;
505	}
506	sbcompress(sb, m, m0);
507}
508
509/*
510 * As above except that OOB data
511 * is inserted at the beginning of the sockbuf,
512 * but after any other OOB data.
513 */
514sbinsertoob(sb, m0)
515	register struct sockbuf *sb;
516	register struct mbuf *m0;
517{
518	register struct mbuf *m;
519	register struct mbuf **mp;
520
521	if (m0 == 0)
522		return;
523	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
524	    again:
525		switch (m->m_type) {
526
527		case MT_OOBDATA:
528			continue;		/* WANT next train */
529
530		case MT_CONTROL:
531			if (m = m->m_next)
532				goto again;	/* inspect THIS train further */
533		}
534		break;
535	}
536	/*
537	 * Put the first mbuf on the queue.
538	 * Note this permits zero length records.
539	 */
540	sballoc(sb, m0);
541	m0->m_nextpkt = *mp;
542	*mp = m0;
543	m = m0->m_next;
544	m0->m_next = 0;
545	if (m && (m0->m_flags & M_EOR)) {
546		m0->m_flags &= ~M_EOR;
547		m->m_flags |= M_EOR;
548	}
549	sbcompress(sb, m, m0);
550}
551
552/*
553 * Append address and data, and optionally, control (ancillary) data
554 * to the receive queue of a socket.  If present,
555 * m0 must include a packet header with total length.
556 * Returns 0 if no space in sockbuf or insufficient mbufs.
557 */
558sbappendaddr(sb, asa, m0, control)
559	register struct sockbuf *sb;
560	struct sockaddr *asa;
561	struct mbuf *m0, *control;
562{
563	register struct mbuf *m, *n;
564	int space = asa->sa_len;
565
566if (m0 && (m0->m_flags & M_PKTHDR) == 0)
567panic("sbappendaddr");
568	if (m0)
569		space += m0->m_pkthdr.len;
570	for (n = control; n; n = n->m_next) {
571		space += n->m_len;
572		if (n->m_next == 0)	/* keep pointer to last control buf */
573			break;
574	}
575	if (space > sbspace(sb))
576		return (0);
577	if (asa->sa_len > MLEN)
578		return (0);
579	MGET(m, M_DONTWAIT, MT_SONAME);
580	if (m == 0)
581		return (0);
582	m->m_len = asa->sa_len;
583	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
584	if (n)
585		n->m_next = m0;		/* concatenate data to control */
586	else
587		control = m0;
588	m->m_next = control;
589	for (n = m; n; n = n->m_next)
590		sballoc(sb, n);
591	if (n = sb->sb_mb) {
592		while (n->m_nextpkt)
593			n = n->m_nextpkt;
594		n->m_nextpkt = m;
595	} else
596		sb->sb_mb = m;
597	return (1);
598}
599
600sbappendcontrol(sb, m0, control)
601	struct sockbuf *sb;
602	struct mbuf *control, *m0;
603{
604	register struct mbuf *m, *n;
605	int space = 0;
606
607	if (control == 0)
608		panic("sbappendcontrol");
609	for (m = control; ; m = m->m_next) {
610		space += m->m_len;
611		if (m->m_next == 0)
612			break;
613	}
614	n = m;			/* save pointer to last control buffer */
615	for (m = m0; m; m = m->m_next)
616		space += m->m_len;
617	if (space > sbspace(sb))
618		return (0);
619	n->m_next = m0;			/* concatenate data to control */
620	for (m = control; m; m = m->m_next)
621		sballoc(sb, m);
622	if (n = sb->sb_mb) {
623		while (n->m_nextpkt)
624			n = n->m_nextpkt;
625		n->m_nextpkt = control;
626	} else
627		sb->sb_mb = control;
628	return (1);
629}
630
631/*
632 * Compress mbuf chain m into the socket
633 * buffer sb following mbuf n.  If n
634 * is null, the buffer is presumed empty.
635 */
636sbcompress(sb, m, n)
637	register struct sockbuf *sb;
638	register struct mbuf *m, *n;
639{
640	register int eor = 0;
641	register struct mbuf *o;
642
643	while (m) {
644		eor |= m->m_flags & M_EOR;
645		if (m->m_len == 0 &&
646		    (eor == 0 ||
647		     (((o = m->m_next) || (o = n)) &&
648		      o->m_type == m->m_type))) {
649			m = m_free(m);
650			continue;
651		}
652		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
653		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
654		    n->m_type == m->m_type) {
655			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
656			    (unsigned)m->m_len);
657			n->m_len += m->m_len;
658			sb->sb_cc += m->m_len;
659			m = m_free(m);
660			continue;
661		}
662		if (n)
663			n->m_next = m;
664		else
665			sb->sb_mb = m;
666		sballoc(sb, m);
667		n = m;
668		m->m_flags &= ~M_EOR;
669		m = m->m_next;
670		n->m_next = 0;
671	}
672	if (eor) {
673		if (n)
674			n->m_flags |= eor;
675		else
676			printf("semi-panic: sbcompress\n");
677	}
678}
679
680/*
681 * Free all mbufs in a sockbuf.
682 * Check that all resources are reclaimed.
683 */
684sbflush(sb)
685	register struct sockbuf *sb;
686{
687
688	if (sb->sb_flags & SB_LOCK)
689		panic("sbflush");
690	while (sb->sb_mbcnt)
691		sbdrop(sb, (int)sb->sb_cc);
692	if (sb->sb_cc || sb->sb_mb)
693		panic("sbflush 2");
694}
695
696/*
697 * Drop data from (the front of) a sockbuf.
698 */
699sbdrop(sb, len)
700	register struct sockbuf *sb;
701	register int len;
702{
703	register struct mbuf *m, *mn;
704	struct mbuf *next;
705
706	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
707	while (len > 0) {
708		if (m == 0) {
709			if (next == 0)
710				panic("sbdrop");
711			m = next;
712			next = m->m_nextpkt;
713			continue;
714		}
715		if (m->m_len > len) {
716			m->m_len -= len;
717			m->m_data += len;
718			sb->sb_cc -= len;
719			break;
720		}
721		len -= m->m_len;
722		sbfree(sb, m);
723		MFREE(m, mn);
724		m = mn;
725	}
726	while (m && m->m_len == 0) {
727		sbfree(sb, m);
728		MFREE(m, mn);
729		m = mn;
730	}
731	if (m) {
732		sb->sb_mb = m;
733		m->m_nextpkt = next;
734	} else
735		sb->sb_mb = next;
736}
737
738/*
739 * Drop a record off the front of a sockbuf
740 * and move the next record to the front.
741 */
742sbdroprecord(sb)
743	register struct sockbuf *sb;
744{
745	register struct mbuf *m, *mn;
746
747	m = sb->sb_mb;
748	if (m) {
749		sb->sb_mb = m->m_nextpkt;
750		do {
751			sbfree(sb, m);
752			MFREE(m, mn);
753		} while (m = mn);
754	}
755}
756