uipc_sockbuf.c revision 12041
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34 * $Id: uipc_socket2.c,v 1.5 1995/05/30 08:06:22 rgrimes Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/kernel.h>
40#include <sys/proc.h>
41#include <sys/file.h>
42#include <sys/buf.h>
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/protosw.h>
46#include <sys/stat.h>
47#include <sys/socket.h>
48#include <sys/socketvar.h>
49#include <sys/signalvar.h>
50#include <sys/sysctl.h>
51
52/*
53 * Primitive routines for operating on sockets and socket buffers
54 */
55
56/* strings for sleep message: */
57char	netio[] = "netio";
58char	netcon[] = "netcon";
59char	netcls[] = "netcls";
60
61u_long	sb_max = SB_MAX;		/* XXX should be static */
62SYSCTL_INT(_kern, KERN_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "")
63
64/*
65 * Procedures to manipulate state flags of socket
66 * and do appropriate wakeups.  Normal sequence from the
67 * active (originating) side is that soisconnecting() is
68 * called during processing of connect() call,
69 * resulting in an eventual call to soisconnected() if/when the
70 * connection is established.  When the connection is torn down
71 * soisdisconnecting() is called during processing of disconnect() call,
72 * and soisdisconnected() is called when the connection to the peer
73 * is totally severed.  The semantics of these routines are such that
74 * connectionless protocols can call soisconnected() and soisdisconnected()
75 * only, bypassing the in-progress calls when setting up a ``connection''
76 * takes no time.
77 *
78 * From the passive side, a socket is created with
79 * two queues of sockets: so_q0 for connections in progress
80 * and so_q for connections already made and awaiting user acceptance.
81 * As a protocol is preparing incoming connections, it creates a socket
82 * structure queued on so_q0 by calling sonewconn().  When the connection
83 * is established, soisconnected() is called, and transfers the
84 * socket structure to so_q, making it available to accept().
85 *
86 * If a socket is closed with sockets on either
87 * so_q0 or so_q, these sockets are dropped.
88 *
89 * If higher level protocols are implemented in
90 * the kernel, the wakeups done here will sometimes
91 * cause software-interrupt process scheduling.
92 */
93
94void
95soisconnecting(so)
96	register struct socket *so;
97{
98
99	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
100	so->so_state |= SS_ISCONNECTING;
101}
102
103void
104soisconnected(so)
105	register struct socket *so;
106{
107	register struct socket *head = so->so_head;
108
109	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
110	so->so_state |= SS_ISCONNECTED;
111	if (head && soqremque(so, 0)) {
112		soqinsque(head, so, 1);
113		sorwakeup(head);
114		wakeup((caddr_t)&head->so_timeo);
115	} else {
116		wakeup((caddr_t)&so->so_timeo);
117		sorwakeup(so);
118		sowwakeup(so);
119	}
120}
121
122void
123soisdisconnecting(so)
124	register struct socket *so;
125{
126
127	so->so_state &= ~SS_ISCONNECTING;
128	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
129	wakeup((caddr_t)&so->so_timeo);
130	sowwakeup(so);
131	sorwakeup(so);
132}
133
134void
135soisdisconnected(so)
136	register struct socket *so;
137{
138
139	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
140	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
141	wakeup((caddr_t)&so->so_timeo);
142	sowwakeup(so);
143	sorwakeup(so);
144}
145
146/*
147 * When an attempt at a new connection is noted on a socket
148 * which accepts connections, sonewconn is called.  If the
149 * connection is possible (subject to space constraints, etc.)
150 * then we allocate a new structure, propoerly linked into the
151 * data structure of the original socket, and return this.
152 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
153 *
154 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
155 * to catch calls that are missing the (new) second parameter.
156 */
157struct socket *
158sonewconn1(head, connstatus)
159	register struct socket *head;
160	int connstatus;
161{
162	register struct socket *so;
163	int soqueue = connstatus ? 1 : 0;
164
165	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
166		return ((struct socket *)0);
167	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
168	if (so == NULL)
169		return ((struct socket *)0);
170	bzero((caddr_t)so, sizeof(*so));
171	so->so_type = head->so_type;
172	so->so_options = head->so_options &~ SO_ACCEPTCONN;
173	so->so_linger = head->so_linger;
174	so->so_state = head->so_state | SS_NOFDREF;
175	so->so_proto = head->so_proto;
176	so->so_timeo = head->so_timeo;
177	so->so_pgid = head->so_pgid;
178	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
179	soqinsque(head, so, soqueue);
180	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
181	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
182		(void) soqremque(so, soqueue);
183		(void) free((caddr_t)so, M_SOCKET);
184		return ((struct socket *)0);
185	}
186	if (connstatus) {
187		sorwakeup(head);
188		wakeup((caddr_t)&head->so_timeo);
189		so->so_state |= connstatus;
190	}
191	return (so);
192}
193
194void
195soqinsque(head, so, q)
196	register struct socket *head, *so;
197	int q;
198{
199
200	register struct socket **prev;
201	so->so_head = head;
202	if (q == 0) {
203		head->so_q0len++;
204		so->so_q0 = 0;
205		for (prev = &(head->so_q0); *prev; )
206			prev = &((*prev)->so_q0);
207	} else {
208		head->so_qlen++;
209		so->so_q = 0;
210		for (prev = &(head->so_q); *prev; )
211			prev = &((*prev)->so_q);
212	}
213	*prev = so;
214}
215
216int
217soqremque(so, q)
218	register struct socket *so;
219	int q;
220{
221	register struct socket *head, *prev, *next;
222
223	head = so->so_head;
224	prev = head;
225	for (;;) {
226		next = q ? prev->so_q : prev->so_q0;
227		if (next == so)
228			break;
229		if (next == 0)
230			return (0);
231		prev = next;
232	}
233	if (q == 0) {
234		prev->so_q0 = next->so_q0;
235		head->so_q0len--;
236	} else {
237		prev->so_q = next->so_q;
238		head->so_qlen--;
239	}
240	next->so_q0 = next->so_q = 0;
241	next->so_head = 0;
242	return (1);
243}
244
245/*
246 * Socantsendmore indicates that no more data will be sent on the
247 * socket; it would normally be applied to a socket when the user
248 * informs the system that no more data is to be sent, by the protocol
249 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
250 * will be received, and will normally be applied to the socket by a
251 * protocol when it detects that the peer will send no more data.
252 * Data queued for reading in the socket may yet be read.
253 */
254
255void
256socantsendmore(so)
257	struct socket *so;
258{
259
260	so->so_state |= SS_CANTSENDMORE;
261	sowwakeup(so);
262}
263
264void
265socantrcvmore(so)
266	struct socket *so;
267{
268
269	so->so_state |= SS_CANTRCVMORE;
270	sorwakeup(so);
271}
272
273/*
274 * Wait for data to arrive at/drain from a socket buffer.
275 */
276int
277sbwait(sb)
278	struct sockbuf *sb;
279{
280
281	sb->sb_flags |= SB_WAIT;
282	return (tsleep((caddr_t)&sb->sb_cc,
283	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
284	    sb->sb_timeo));
285}
286
287/*
288 * Lock a sockbuf already known to be locked;
289 * return any error returned from sleep (EINTR).
290 */
291int
292sb_lock(sb)
293	register struct sockbuf *sb;
294{
295	int error;
296
297	while (sb->sb_flags & SB_LOCK) {
298		sb->sb_flags |= SB_WANT;
299		error = tsleep((caddr_t)&sb->sb_flags,
300		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
301		    netio, 0);
302		if (error)
303			return (error);
304	}
305	sb->sb_flags |= SB_LOCK;
306	return (0);
307}
308
309/*
310 * Wakeup processes waiting on a socket buffer.
311 * Do asynchronous notification via SIGIO
312 * if the socket has the SS_ASYNC flag set.
313 */
314void
315sowakeup(so, sb)
316	register struct socket *so;
317	register struct sockbuf *sb;
318{
319	struct proc *p;
320
321	selwakeup(&sb->sb_sel);
322	sb->sb_flags &= ~SB_SEL;
323	if (sb->sb_flags & SB_WAIT) {
324		sb->sb_flags &= ~SB_WAIT;
325		wakeup((caddr_t)&sb->sb_cc);
326	}
327	if (so->so_state & SS_ASYNC) {
328		if (so->so_pgid < 0)
329			gsignal(-so->so_pgid, SIGIO);
330		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
331			psignal(p, SIGIO);
332	}
333}
334
335/*
336 * Socket buffer (struct sockbuf) utility routines.
337 *
338 * Each socket contains two socket buffers: one for sending data and
339 * one for receiving data.  Each buffer contains a queue of mbufs,
340 * information about the number of mbufs and amount of data in the
341 * queue, and other fields allowing select() statements and notification
342 * on data availability to be implemented.
343 *
344 * Data stored in a socket buffer is maintained as a list of records.
345 * Each record is a list of mbufs chained together with the m_next
346 * field.  Records are chained together with the m_nextpkt field. The upper
347 * level routine soreceive() expects the following conventions to be
348 * observed when placing information in the receive buffer:
349 *
350 * 1. If the protocol requires each message be preceded by the sender's
351 *    name, then a record containing that name must be present before
352 *    any associated data (mbuf's must be of type MT_SONAME).
353 * 2. If the protocol supports the exchange of ``access rights'' (really
354 *    just additional data associated with the message), and there are
355 *    ``rights'' to be received, then a record containing this data
356 *    should be present (mbuf's must be of type MT_RIGHTS).
357 * 3. If a name or rights record exists, then it must be followed by
358 *    a data record, perhaps of zero length.
359 *
360 * Before using a new socket structure it is first necessary to reserve
361 * buffer space to the socket, by calling sbreserve().  This should commit
362 * some of the available buffer space in the system buffer pool for the
363 * socket (currently, it does nothing but enforce limits).  The space
364 * should be released by calling sbrelease() when the socket is destroyed.
365 */
366
367int
368soreserve(so, sndcc, rcvcc)
369	register struct socket *so;
370	u_long sndcc, rcvcc;
371{
372
373	if (sbreserve(&so->so_snd, sndcc) == 0)
374		goto bad;
375	if (sbreserve(&so->so_rcv, rcvcc) == 0)
376		goto bad2;
377	if (so->so_rcv.sb_lowat == 0)
378		so->so_rcv.sb_lowat = 1;
379	if (so->so_snd.sb_lowat == 0)
380		so->so_snd.sb_lowat = MCLBYTES;
381	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
382		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
383	return (0);
384bad2:
385	sbrelease(&so->so_snd);
386bad:
387	return (ENOBUFS);
388}
389
390/*
391 * Allot mbufs to a sockbuf.
392 * Attempt to scale mbmax so that mbcnt doesn't become limiting
393 * if buffering efficiency is near the normal case.
394 */
395int
396sbreserve(sb, cc)
397	struct sockbuf *sb;
398	u_long cc;
399{
400
401	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
402		return (0);
403	sb->sb_hiwat = cc;
404	sb->sb_mbmax = min(cc * 2, sb_max);
405	if (sb->sb_lowat > sb->sb_hiwat)
406		sb->sb_lowat = sb->sb_hiwat;
407	return (1);
408}
409
410/*
411 * Free mbufs held by a socket, and reserved mbuf space.
412 */
413void
414sbrelease(sb)
415	struct sockbuf *sb;
416{
417
418	sbflush(sb);
419	sb->sb_hiwat = sb->sb_mbmax = 0;
420}
421
422/*
423 * Routines to add and remove
424 * data from an mbuf queue.
425 *
426 * The routines sbappend() or sbappendrecord() are normally called to
427 * append new mbufs to a socket buffer, after checking that adequate
428 * space is available, comparing the function sbspace() with the amount
429 * of data to be added.  sbappendrecord() differs from sbappend() in
430 * that data supplied is treated as the beginning of a new record.
431 * To place a sender's address, optional access rights, and data in a
432 * socket receive buffer, sbappendaddr() should be used.  To place
433 * access rights and data in a socket receive buffer, sbappendrights()
434 * should be used.  In either case, the new data begins a new record.
435 * Note that unlike sbappend() and sbappendrecord(), these routines check
436 * for the caller that there will be enough space to store the data.
437 * Each fails if there is not enough space, or if it cannot find mbufs
438 * to store additional information in.
439 *
440 * Reliable protocols may use the socket send buffer to hold data
441 * awaiting acknowledgement.  Data is normally copied from a socket
442 * send buffer in a protocol with m_copy for output to a peer,
443 * and then removing the data from the socket buffer with sbdrop()
444 * or sbdroprecord() when the data is acknowledged by the peer.
445 */
446
447/*
448 * Append mbuf chain m to the last record in the
449 * socket buffer sb.  The additional space associated
450 * the mbuf chain is recorded in sb.  Empty mbufs are
451 * discarded and mbufs are compacted where possible.
452 */
453void
454sbappend(sb, m)
455	struct sockbuf *sb;
456	struct mbuf *m;
457{
458	register struct mbuf *n;
459
460	if (m == 0)
461		return;
462	n = sb->sb_mb;
463	if (n) {
464		while (n->m_nextpkt)
465			n = n->m_nextpkt;
466		do {
467			if (n->m_flags & M_EOR) {
468				sbappendrecord(sb, m); /* XXXXXX!!!! */
469				return;
470			}
471		} while (n->m_next && (n = n->m_next));
472	}
473	sbcompress(sb, m, n);
474}
475
476#ifdef SOCKBUF_DEBUG
477void
478sbcheck(sb)
479	register struct sockbuf *sb;
480{
481	register struct mbuf *m;
482	register int len = 0, mbcnt = 0;
483
484	for (m = sb->sb_mb; m; m = m->m_next) {
485		len += m->m_len;
486		mbcnt += MSIZE;
487		if (m->m_flags & M_EXT)
488			mbcnt += m->m_ext.ext_size;
489		if (m->m_nextpkt)
490			panic("sbcheck nextpkt");
491	}
492	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
493		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
494		    mbcnt, sb->sb_mbcnt);
495		panic("sbcheck");
496	}
497}
498#endif
499
500/*
501 * As above, except the mbuf chain
502 * begins a new record.
503 */
504void
505sbappendrecord(sb, m0)
506	register struct sockbuf *sb;
507	register struct mbuf *m0;
508{
509	register struct mbuf *m;
510
511	if (m0 == 0)
512		return;
513	m = sb->sb_mb;
514	if (m)
515		while (m->m_nextpkt)
516			m = m->m_nextpkt;
517	/*
518	 * Put the first mbuf on the queue.
519	 * Note this permits zero length records.
520	 */
521	sballoc(sb, m0);
522	if (m)
523		m->m_nextpkt = m0;
524	else
525		sb->sb_mb = m0;
526	m = m0->m_next;
527	m0->m_next = 0;
528	if (m && (m0->m_flags & M_EOR)) {
529		m0->m_flags &= ~M_EOR;
530		m->m_flags |= M_EOR;
531	}
532	sbcompress(sb, m, m0);
533}
534
535/*
536 * As above except that OOB data
537 * is inserted at the beginning of the sockbuf,
538 * but after any other OOB data.
539 */
540void
541sbinsertoob(sb, m0)
542	register struct sockbuf *sb;
543	register struct mbuf *m0;
544{
545	register struct mbuf *m;
546	register struct mbuf **mp;
547
548	if (m0 == 0)
549		return;
550	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
551	    m = *mp;
552	    again:
553		switch (m->m_type) {
554
555		case MT_OOBDATA:
556			continue;		/* WANT next train */
557
558		case MT_CONTROL:
559			m = m->m_next;
560			if (m)
561				goto again;	/* inspect THIS train further */
562		}
563		break;
564	}
565	/*
566	 * Put the first mbuf on the queue.
567	 * Note this permits zero length records.
568	 */
569	sballoc(sb, m0);
570	m0->m_nextpkt = *mp;
571	*mp = m0;
572	m = m0->m_next;
573	m0->m_next = 0;
574	if (m && (m0->m_flags & M_EOR)) {
575		m0->m_flags &= ~M_EOR;
576		m->m_flags |= M_EOR;
577	}
578	sbcompress(sb, m, m0);
579}
580
581/*
582 * Append address and data, and optionally, control (ancillary) data
583 * to the receive queue of a socket.  If present,
584 * m0 must include a packet header with total length.
585 * Returns 0 if no space in sockbuf or insufficient mbufs.
586 */
587int
588sbappendaddr(sb, asa, m0, control)
589	register struct sockbuf *sb;
590	struct sockaddr *asa;
591	struct mbuf *m0, *control;
592{
593	register struct mbuf *m, *n;
594	int space = asa->sa_len;
595
596if (m0 && (m0->m_flags & M_PKTHDR) == 0)
597panic("sbappendaddr");
598	if (m0)
599		space += m0->m_pkthdr.len;
600	for (n = control; n; n = n->m_next) {
601		space += n->m_len;
602		if (n->m_next == 0)	/* keep pointer to last control buf */
603			break;
604	}
605	if (space > sbspace(sb))
606		return (0);
607	if (asa->sa_len > MLEN)
608		return (0);
609	MGET(m, M_DONTWAIT, MT_SONAME);
610	if (m == 0)
611		return (0);
612	m->m_len = asa->sa_len;
613	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
614	if (n)
615		n->m_next = m0;		/* concatenate data to control */
616	else
617		control = m0;
618	m->m_next = control;
619	for (n = m; n; n = n->m_next)
620		sballoc(sb, n);
621	n = sb->sb_mb;
622	if (n) {
623		while (n->m_nextpkt)
624			n = n->m_nextpkt;
625		n->m_nextpkt = m;
626	} else
627		sb->sb_mb = m;
628	return (1);
629}
630
631int
632sbappendcontrol(sb, m0, control)
633	struct sockbuf *sb;
634	struct mbuf *control, *m0;
635{
636	register struct mbuf *m, *n;
637	int space = 0;
638
639	if (control == 0)
640		panic("sbappendcontrol");
641	for (m = control; ; m = m->m_next) {
642		space += m->m_len;
643		if (m->m_next == 0)
644			break;
645	}
646	n = m;			/* save pointer to last control buffer */
647	for (m = m0; m; m = m->m_next)
648		space += m->m_len;
649	if (space > sbspace(sb))
650		return (0);
651	n->m_next = m0;			/* concatenate data to control */
652	for (m = control; m; m = m->m_next)
653		sballoc(sb, m);
654	n = sb->sb_mb;
655	if (n) {
656		while (n->m_nextpkt)
657			n = n->m_nextpkt;
658		n->m_nextpkt = control;
659	} else
660		sb->sb_mb = control;
661	return (1);
662}
663
664/*
665 * Compress mbuf chain m into the socket
666 * buffer sb following mbuf n.  If n
667 * is null, the buffer is presumed empty.
668 */
669void
670sbcompress(sb, m, n)
671	register struct sockbuf *sb;
672	register struct mbuf *m, *n;
673{
674	register int eor = 0;
675	register struct mbuf *o;
676
677	while (m) {
678		eor |= m->m_flags & M_EOR;
679		if (m->m_len == 0 &&
680		    (eor == 0 ||
681		     (((o = m->m_next) || (o = n)) &&
682		      o->m_type == m->m_type))) {
683			m = m_free(m);
684			continue;
685		}
686		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
687		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
688		    n->m_type == m->m_type) {
689			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
690			    (unsigned)m->m_len);
691			n->m_len += m->m_len;
692			sb->sb_cc += m->m_len;
693			m = m_free(m);
694			continue;
695		}
696		if (n)
697			n->m_next = m;
698		else
699			sb->sb_mb = m;
700		sballoc(sb, m);
701		n = m;
702		m->m_flags &= ~M_EOR;
703		m = m->m_next;
704		n->m_next = 0;
705	}
706	if (eor) {
707		if (n)
708			n->m_flags |= eor;
709		else
710			printf("semi-panic: sbcompress\n");
711	}
712}
713
714/*
715 * Free all mbufs in a sockbuf.
716 * Check that all resources are reclaimed.
717 */
718void
719sbflush(sb)
720	register struct sockbuf *sb;
721{
722
723	if (sb->sb_flags & SB_LOCK)
724		panic("sbflush");
725	while (sb->sb_mbcnt)
726		sbdrop(sb, (int)sb->sb_cc);
727	if (sb->sb_cc || sb->sb_mb)
728		panic("sbflush 2");
729}
730
731/*
732 * Drop data from (the front of) a sockbuf.
733 */
734void
735sbdrop(sb, len)
736	register struct sockbuf *sb;
737	register int len;
738{
739	register struct mbuf *m, *mn;
740	struct mbuf *next;
741
742	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
743	while (len > 0) {
744		if (m == 0) {
745			if (next == 0)
746				panic("sbdrop");
747			m = next;
748			next = m->m_nextpkt;
749			continue;
750		}
751		if (m->m_len > len) {
752			m->m_len -= len;
753			m->m_data += len;
754			sb->sb_cc -= len;
755			break;
756		}
757		len -= m->m_len;
758		sbfree(sb, m);
759		MFREE(m, mn);
760		m = mn;
761	}
762	while (m && m->m_len == 0) {
763		sbfree(sb, m);
764		MFREE(m, mn);
765		m = mn;
766	}
767	if (m) {
768		sb->sb_mb = m;
769		m->m_nextpkt = next;
770	} else
771		sb->sb_mb = next;
772}
773
774/*
775 * Drop a record off the front of a sockbuf
776 * and move the next record to the front.
777 */
778void
779sbdroprecord(sb)
780	register struct sockbuf *sb;
781{
782	register struct mbuf *m, *mn;
783
784	m = sb->sb_mb;
785	if (m) {
786		sb->sb_mb = m->m_nextpkt;
787		do {
788			sbfree(sb, m);
789			MFREE(m, mn);
790			m = mn;
791		} while (m);
792	}
793}
794