uipc_sockbuf.c revision 111119
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34 * $FreeBSD: head/sys/kern/uipc_sockbuf.c 111119 2003-02-19 05:47:46Z imp $
35 */
36
37#include "opt_mac.h"
38#include "opt_param.h"
39
40#include <sys/param.h>
41#include <sys/aio.h> /* for aio_swake proto */
42#include <sys/domain.h>
43#include <sys/event.h>
44#include <sys/file.h>	/* for maxfiles */
45#include <sys/kernel.h>
46#include <sys/lock.h>
47#include <sys/mac.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/protosw.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/socket.h>
56#include <sys/socketvar.h>
57#include <sys/stat.h>
58#include <sys/sysctl.h>
59#include <sys/systm.h>
60
61int	maxsockets;
62
63void (*aio_swake)(struct socket *, struct sockbuf *);
64
65/*
66 * Primitive routines for operating on sockets and socket buffers
67 */
68
69u_long	sb_max = SB_MAX;
70u_long	sb_max_adj =
71    SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
72
73static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
74
75/*
76 * Procedures to manipulate state flags of socket
77 * and do appropriate wakeups.  Normal sequence from the
78 * active (originating) side is that soisconnecting() is
79 * called during processing of connect() call,
80 * resulting in an eventual call to soisconnected() if/when the
81 * connection is established.  When the connection is torn down
82 * soisdisconnecting() is called during processing of disconnect() call,
83 * and soisdisconnected() is called when the connection to the peer
84 * is totally severed.  The semantics of these routines are such that
85 * connectionless protocols can call soisconnected() and soisdisconnected()
86 * only, bypassing the in-progress calls when setting up a ``connection''
87 * takes no time.
88 *
89 * From the passive side, a socket is created with
90 * two queues of sockets: so_incomp for connections in progress
91 * and so_comp for connections already made and awaiting user acceptance.
92 * As a protocol is preparing incoming connections, it creates a socket
93 * structure queued on so_incomp by calling sonewconn().  When the connection
94 * is established, soisconnected() is called, and transfers the
95 * socket structure to so_comp, making it available to accept().
96 *
97 * If a socket is closed with sockets on either
98 * so_incomp or so_comp, these sockets are dropped.
99 *
100 * If higher level protocols are implemented in
101 * the kernel, the wakeups done here will sometimes
102 * cause software-interrupt process scheduling.
103 */
104
105void
106soisconnecting(so)
107	register struct socket *so;
108{
109
110	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
111	so->so_state |= SS_ISCONNECTING;
112}
113
114void
115soisconnected(so)
116	struct socket *so;
117{
118	struct socket *head = so->so_head;
119
120	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
121	so->so_state |= SS_ISCONNECTED;
122	if (head && (so->so_state & SS_INCOMP)) {
123		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
124			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
125			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
126			so->so_rcv.sb_flags |= SB_UPCALL;
127			so->so_options &= ~SO_ACCEPTFILTER;
128			so->so_upcall(so, so->so_upcallarg, 0);
129			return;
130		}
131		TAILQ_REMOVE(&head->so_incomp, so, so_list);
132		head->so_incqlen--;
133		so->so_state &= ~SS_INCOMP;
134		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
135		head->so_qlen++;
136		so->so_state |= SS_COMP;
137		sorwakeup(head);
138		wakeup_one(&head->so_timeo);
139	} else {
140		wakeup(&so->so_timeo);
141		sorwakeup(so);
142		sowwakeup(so);
143	}
144}
145
146void
147soisdisconnecting(so)
148	register struct socket *so;
149{
150
151	so->so_state &= ~SS_ISCONNECTING;
152	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
153	wakeup(&so->so_timeo);
154	sowwakeup(so);
155	sorwakeup(so);
156}
157
158void
159soisdisconnected(so)
160	register struct socket *so;
161{
162
163	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
164	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
165	wakeup(&so->so_timeo);
166	sbdrop(&so->so_snd, so->so_snd.sb_cc);
167	sowwakeup(so);
168	sorwakeup(so);
169}
170
171/*
172 * When an attempt at a new connection is noted on a socket
173 * which accepts connections, sonewconn is called.  If the
174 * connection is possible (subject to space constraints, etc.)
175 * then we allocate a new structure, propoerly linked into the
176 * data structure of the original socket, and return this.
177 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
178 *
179 * note: the ref count on the socket is 0 on return
180 */
181struct socket *
182sonewconn(head, connstatus)
183	register struct socket *head;
184	int connstatus;
185{
186	register struct socket *so;
187
188	if (head->so_qlen > 3 * head->so_qlimit / 2)
189		return ((struct socket *)0);
190	so = soalloc(0);
191	if (so == NULL)
192		return ((struct socket *)0);
193	if ((head->so_options & SO_ACCEPTFILTER) != 0)
194		connstatus = 0;
195	so->so_head = head;
196	so->so_type = head->so_type;
197	so->so_options = head->so_options &~ SO_ACCEPTCONN;
198	so->so_linger = head->so_linger;
199	so->so_state = head->so_state | SS_NOFDREF;
200	so->so_proto = head->so_proto;
201	so->so_timeo = head->so_timeo;
202	so->so_cred = crhold(head->so_cred);
203#ifdef MAC
204	mac_create_socket_from_socket(head, so);
205#endif
206	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
207	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
208		sodealloc(so);
209		return ((struct socket *)0);
210	}
211
212	if (connstatus) {
213		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
214		so->so_state |= SS_COMP;
215		head->so_qlen++;
216	} else {
217		if (head->so_incqlen > head->so_qlimit) {
218			struct socket *sp;
219			sp = TAILQ_FIRST(&head->so_incomp);
220			(void) soabort(sp);
221		}
222		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
223		so->so_state |= SS_INCOMP;
224		head->so_incqlen++;
225	}
226	if (connstatus) {
227		sorwakeup(head);
228		wakeup(&head->so_timeo);
229		so->so_state |= connstatus;
230	}
231	return (so);
232}
233
234/*
235 * Socantsendmore indicates that no more data will be sent on the
236 * socket; it would normally be applied to a socket when the user
237 * informs the system that no more data is to be sent, by the protocol
238 * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
239 * will be received, and will normally be applied to the socket by a
240 * protocol when it detects that the peer will send no more data.
241 * Data queued for reading in the socket may yet be read.
242 */
243
244void
245socantsendmore(so)
246	struct socket *so;
247{
248
249	so->so_state |= SS_CANTSENDMORE;
250	sowwakeup(so);
251}
252
253void
254socantrcvmore(so)
255	struct socket *so;
256{
257
258	so->so_state |= SS_CANTRCVMORE;
259	sorwakeup(so);
260}
261
262/*
263 * Wait for data to arrive at/drain from a socket buffer.
264 */
265int
266sbwait(sb)
267	struct sockbuf *sb;
268{
269
270	sb->sb_flags |= SB_WAIT;
271	return (tsleep(&sb->sb_cc,
272	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
273	    sb->sb_timeo));
274}
275
276/*
277 * Lock a sockbuf already known to be locked;
278 * return any error returned from sleep (EINTR).
279 */
280int
281sb_lock(sb)
282	register struct sockbuf *sb;
283{
284	int error;
285
286	while (sb->sb_flags & SB_LOCK) {
287		sb->sb_flags |= SB_WANT;
288		error = tsleep(&sb->sb_flags,
289		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
290		    "sblock", 0);
291		if (error)
292			return (error);
293	}
294	sb->sb_flags |= SB_LOCK;
295	return (0);
296}
297
298/*
299 * Wakeup processes waiting on a socket buffer.
300 * Do asynchronous notification via SIGIO
301 * if the socket has the SS_ASYNC flag set.
302 */
303void
304sowakeup(so, sb)
305	register struct socket *so;
306	register struct sockbuf *sb;
307{
308
309	selwakeup(&sb->sb_sel);
310	sb->sb_flags &= ~SB_SEL;
311	if (sb->sb_flags & SB_WAIT) {
312		sb->sb_flags &= ~SB_WAIT;
313		wakeup(&sb->sb_cc);
314	}
315	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
316		pgsigio(&so->so_sigio, SIGIO, 0);
317	if (sb->sb_flags & SB_UPCALL)
318		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
319	if (sb->sb_flags & SB_AIO)
320		aio_swake(so, sb);
321	KNOTE(&sb->sb_sel.si_note, 0);
322}
323
324/*
325 * Socket buffer (struct sockbuf) utility routines.
326 *
327 * Each socket contains two socket buffers: one for sending data and
328 * one for receiving data.  Each buffer contains a queue of mbufs,
329 * information about the number of mbufs and amount of data in the
330 * queue, and other fields allowing select() statements and notification
331 * on data availability to be implemented.
332 *
333 * Data stored in a socket buffer is maintained as a list of records.
334 * Each record is a list of mbufs chained together with the m_next
335 * field.  Records are chained together with the m_nextpkt field. The upper
336 * level routine soreceive() expects the following conventions to be
337 * observed when placing information in the receive buffer:
338 *
339 * 1. If the protocol requires each message be preceded by the sender's
340 *    name, then a record containing that name must be present before
341 *    any associated data (mbuf's must be of type MT_SONAME).
342 * 2. If the protocol supports the exchange of ``access rights'' (really
343 *    just additional data associated with the message), and there are
344 *    ``rights'' to be received, then a record containing this data
345 *    should be present (mbuf's must be of type MT_RIGHTS).
346 * 3. If a name or rights record exists, then it must be followed by
347 *    a data record, perhaps of zero length.
348 *
349 * Before using a new socket structure it is first necessary to reserve
350 * buffer space to the socket, by calling sbreserve().  This should commit
351 * some of the available buffer space in the system buffer pool for the
352 * socket (currently, it does nothing but enforce limits).  The space
353 * should be released by calling sbrelease() when the socket is destroyed.
354 */
355
356int
357soreserve(so, sndcc, rcvcc)
358	register struct socket *so;
359	u_long sndcc, rcvcc;
360{
361	struct thread *td = curthread;
362
363	if (sbreserve(&so->so_snd, sndcc, so, td) == 0)
364		goto bad;
365	if (sbreserve(&so->so_rcv, rcvcc, so, td) == 0)
366		goto bad2;
367	if (so->so_rcv.sb_lowat == 0)
368		so->so_rcv.sb_lowat = 1;
369	if (so->so_snd.sb_lowat == 0)
370		so->so_snd.sb_lowat = MCLBYTES;
371	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
372		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
373	return (0);
374bad2:
375	sbrelease(&so->so_snd, so);
376bad:
377	return (ENOBUFS);
378}
379
380static int
381sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
382{
383	int error = 0;
384	u_long old_sb_max = sb_max;
385
386	error = SYSCTL_OUT(req, arg1, sizeof(u_long));
387	if (error || !req->newptr)
388		return (error);
389	error = SYSCTL_IN(req, arg1, sizeof(u_long));
390	if (error)
391		return (error);
392	if (sb_max < MSIZE + MCLBYTES) {
393		sb_max = old_sb_max;
394		return (EINVAL);
395	}
396	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
397	return (0);
398}
399
400/*
401 * Allot mbufs to a sockbuf.
402 * Attempt to scale mbmax so that mbcnt doesn't become limiting
403 * if buffering efficiency is near the normal case.
404 */
405int
406sbreserve(sb, cc, so, td)
407	struct sockbuf *sb;
408	u_long cc;
409	struct socket *so;
410	struct thread *td;
411{
412
413	/*
414	 * td will only be NULL when we're in an interrupt
415	 * (e.g. in tcp_input())
416	 */
417	if (cc > sb_max_adj)
418		return (0);
419	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
420	    td ? td->td_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) {
421		return (0);
422	}
423	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
424	if (sb->sb_lowat > sb->sb_hiwat)
425		sb->sb_lowat = sb->sb_hiwat;
426	return (1);
427}
428
429/*
430 * Free mbufs held by a socket, and reserved mbuf space.
431 */
432void
433sbrelease(sb, so)
434	struct sockbuf *sb;
435	struct socket *so;
436{
437
438	sbflush(sb);
439	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
440	    RLIM_INFINITY);
441	sb->sb_mbmax = 0;
442}
443
444/*
445 * Routines to add and remove
446 * data from an mbuf queue.
447 *
448 * The routines sbappend() or sbappendrecord() are normally called to
449 * append new mbufs to a socket buffer, after checking that adequate
450 * space is available, comparing the function sbspace() with the amount
451 * of data to be added.  sbappendrecord() differs from sbappend() in
452 * that data supplied is treated as the beginning of a new record.
453 * To place a sender's address, optional access rights, and data in a
454 * socket receive buffer, sbappendaddr() should be used.  To place
455 * access rights and data in a socket receive buffer, sbappendrights()
456 * should be used.  In either case, the new data begins a new record.
457 * Note that unlike sbappend() and sbappendrecord(), these routines check
458 * for the caller that there will be enough space to store the data.
459 * Each fails if there is not enough space, or if it cannot find mbufs
460 * to store additional information in.
461 *
462 * Reliable protocols may use the socket send buffer to hold data
463 * awaiting acknowledgement.  Data is normally copied from a socket
464 * send buffer in a protocol with m_copy for output to a peer,
465 * and then removing the data from the socket buffer with sbdrop()
466 * or sbdroprecord() when the data is acknowledged by the peer.
467 */
468
469/*
470 * Append mbuf chain m to the last record in the
471 * socket buffer sb.  The additional space associated
472 * the mbuf chain is recorded in sb.  Empty mbufs are
473 * discarded and mbufs are compacted where possible.
474 */
475void
476sbappend(sb, m)
477	struct sockbuf *sb;
478	struct mbuf *m;
479{
480	register struct mbuf *n;
481
482	if (m == 0)
483		return;
484	n = sb->sb_mb;
485	if (n) {
486		while (n->m_nextpkt)
487			n = n->m_nextpkt;
488		do {
489			if (n->m_flags & M_EOR) {
490				sbappendrecord(sb, m); /* XXXXXX!!!! */
491				return;
492			}
493		} while (n->m_next && (n = n->m_next));
494	}
495	sbcompress(sb, m, n);
496}
497
498#ifdef SOCKBUF_DEBUG
499void
500sbcheck(sb)
501	struct sockbuf *sb;
502{
503	struct mbuf *m;
504	struct mbuf *n = 0;
505	u_long len = 0, mbcnt = 0;
506
507	for (m = sb->sb_mb; m; m = n) {
508	    n = m->m_nextpkt;
509	    for (; m; m = m->m_next) {
510		len += m->m_len;
511		mbcnt += MSIZE;
512		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
513			mbcnt += m->m_ext.ext_size;
514	    }
515	}
516	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
517		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
518		    mbcnt, sb->sb_mbcnt);
519		panic("sbcheck");
520	}
521}
522#endif
523
524/*
525 * As above, except the mbuf chain
526 * begins a new record.
527 */
528void
529sbappendrecord(sb, m0)
530	register struct sockbuf *sb;
531	register struct mbuf *m0;
532{
533	register struct mbuf *m;
534
535	if (m0 == 0)
536		return;
537	m = sb->sb_mb;
538	if (m)
539		while (m->m_nextpkt)
540			m = m->m_nextpkt;
541	/*
542	 * Put the first mbuf on the queue.
543	 * Note this permits zero length records.
544	 */
545	sballoc(sb, m0);
546	if (m)
547		m->m_nextpkt = m0;
548	else
549		sb->sb_mb = m0;
550	m = m0->m_next;
551	m0->m_next = 0;
552	if (m && (m0->m_flags & M_EOR)) {
553		m0->m_flags &= ~M_EOR;
554		m->m_flags |= M_EOR;
555	}
556	sbcompress(sb, m, m0);
557}
558
559/*
560 * As above except that OOB data
561 * is inserted at the beginning of the sockbuf,
562 * but after any other OOB data.
563 */
564void
565sbinsertoob(sb, m0)
566	register struct sockbuf *sb;
567	register struct mbuf *m0;
568{
569	register struct mbuf *m;
570	register struct mbuf **mp;
571
572	if (m0 == 0)
573		return;
574	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
575	    m = *mp;
576	    again:
577		switch (m->m_type) {
578
579		case MT_OOBDATA:
580			continue;		/* WANT next train */
581
582		case MT_CONTROL:
583			m = m->m_next;
584			if (m)
585				goto again;	/* inspect THIS train further */
586		}
587		break;
588	}
589	/*
590	 * Put the first mbuf on the queue.
591	 * Note this permits zero length records.
592	 */
593	sballoc(sb, m0);
594	m0->m_nextpkt = *mp;
595	*mp = m0;
596	m = m0->m_next;
597	m0->m_next = 0;
598	if (m && (m0->m_flags & M_EOR)) {
599		m0->m_flags &= ~M_EOR;
600		m->m_flags |= M_EOR;
601	}
602	sbcompress(sb, m, m0);
603}
604
605/*
606 * Append address and data, and optionally, control (ancillary) data
607 * to the receive queue of a socket.  If present,
608 * m0 must include a packet header with total length.
609 * Returns 0 if no space in sockbuf or insufficient mbufs.
610 */
611int
612sbappendaddr(sb, asa, m0, control)
613	struct sockbuf *sb;
614	struct sockaddr *asa;
615	struct mbuf *m0, *control;
616{
617	struct mbuf *m, *n;
618	int space = asa->sa_len;
619
620	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
621		panic("sbappendaddr");
622	if (m0)
623		space += m0->m_pkthdr.len;
624	space += m_length(control, &n);
625	if (space > sbspace(sb))
626		return (0);
627	if (asa->sa_len > MLEN)
628		return (0);
629	MGET(m, M_DONTWAIT, MT_SONAME);
630	if (m == 0)
631		return (0);
632	m->m_len = asa->sa_len;
633	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
634	if (n)
635		n->m_next = m0;		/* concatenate data to control */
636	else
637		control = m0;
638	m->m_next = control;
639	for (n = m; n; n = n->m_next)
640		sballoc(sb, n);
641	n = sb->sb_mb;
642	if (n) {
643		while (n->m_nextpkt)
644			n = n->m_nextpkt;
645		n->m_nextpkt = m;
646	} else
647		sb->sb_mb = m;
648	return (1);
649}
650
651int
652sbappendcontrol(sb, m0, control)
653	struct sockbuf *sb;
654	struct mbuf *control, *m0;
655{
656	struct mbuf *m, *n;
657	int space;
658
659	if (control == 0)
660		panic("sbappendcontrol");
661	space = m_length(control, &n) + m_length(m0, NULL);
662	if (space > sbspace(sb))
663		return (0);
664	n->m_next = m0;			/* concatenate data to control */
665	for (m = control; m; m = m->m_next)
666		sballoc(sb, m);
667	n = sb->sb_mb;
668	if (n) {
669		while (n->m_nextpkt)
670			n = n->m_nextpkt;
671		n->m_nextpkt = control;
672	} else
673		sb->sb_mb = control;
674	return (1);
675}
676
677/*
678 * Compress mbuf chain m into the socket
679 * buffer sb following mbuf n.  If n
680 * is null, the buffer is presumed empty.
681 */
682void
683sbcompress(sb, m, n)
684	register struct sockbuf *sb;
685	register struct mbuf *m, *n;
686{
687	register int eor = 0;
688	register struct mbuf *o;
689
690	while (m) {
691		eor |= m->m_flags & M_EOR;
692		if (m->m_len == 0 &&
693		    (eor == 0 ||
694		     (((o = m->m_next) || (o = n)) &&
695		      o->m_type == m->m_type))) {
696			m = m_free(m);
697			continue;
698		}
699		if (n && (n->m_flags & M_EOR) == 0 &&
700		    M_WRITABLE(n) &&
701		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
702		    m->m_len <= M_TRAILINGSPACE(n) &&
703		    n->m_type == m->m_type) {
704			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
705			    (unsigned)m->m_len);
706			n->m_len += m->m_len;
707			sb->sb_cc += m->m_len;
708			if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
709			    m->m_type != MT_OOBDATA)
710				/* XXX: Probably don't need.*/
711				sb->sb_ctl += m->m_len;
712			m = m_free(m);
713			continue;
714		}
715		if (n)
716			n->m_next = m;
717		else
718			sb->sb_mb = m;
719		sballoc(sb, m);
720		n = m;
721		m->m_flags &= ~M_EOR;
722		m = m->m_next;
723		n->m_next = 0;
724	}
725	if (eor) {
726		if (n)
727			n->m_flags |= eor;
728		else
729			printf("semi-panic: sbcompress\n");
730	}
731}
732
733/*
734 * Free all mbufs in a sockbuf.
735 * Check that all resources are reclaimed.
736 */
737void
738sbflush(sb)
739	register struct sockbuf *sb;
740{
741
742	if (sb->sb_flags & SB_LOCK)
743		panic("sbflush: locked");
744	while (sb->sb_mbcnt) {
745		/*
746		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
747		 * we would loop forever. Panic instead.
748		 */
749		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
750			break;
751		sbdrop(sb, (int)sb->sb_cc);
752	}
753	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
754		panic("sbflush: cc %u || mb %p || mbcnt %u", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
755}
756
757/*
758 * Drop data from (the front of) a sockbuf.
759 */
760void
761sbdrop(sb, len)
762	register struct sockbuf *sb;
763	register int len;
764{
765	register struct mbuf *m;
766	struct mbuf *next;
767
768	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
769	while (len > 0) {
770		if (m == 0) {
771			if (next == 0)
772				panic("sbdrop");
773			m = next;
774			next = m->m_nextpkt;
775			continue;
776		}
777		if (m->m_len > len) {
778			m->m_len -= len;
779			m->m_data += len;
780			sb->sb_cc -= len;
781			if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
782			    m->m_type != MT_OOBDATA)
783				sb->sb_ctl -= len;
784			break;
785		}
786		len -= m->m_len;
787		sbfree(sb, m);
788		m = m_free(m);
789	}
790	while (m && m->m_len == 0) {
791		sbfree(sb, m);
792		m = m_free(m);
793	}
794	if (m) {
795		sb->sb_mb = m;
796		m->m_nextpkt = next;
797	} else
798		sb->sb_mb = next;
799}
800
801/*
802 * Drop a record off the front of a sockbuf
803 * and move the next record to the front.
804 */
805void
806sbdroprecord(sb)
807	register struct sockbuf *sb;
808{
809	register struct mbuf *m;
810
811	m = sb->sb_mb;
812	if (m) {
813		sb->sb_mb = m->m_nextpkt;
814		do {
815			sbfree(sb, m);
816			m = m_free(m);
817		} while (m);
818	}
819}
820
821/*
822 * Create a "control" mbuf containing the specified data
823 * with the specified type for presentation on a socket buffer.
824 */
825struct mbuf *
826sbcreatecontrol(p, size, type, level)
827	caddr_t p;
828	register int size;
829	int type, level;
830{
831	register struct cmsghdr *cp;
832	struct mbuf *m;
833
834	if (CMSG_SPACE((u_int)size) > MCLBYTES)
835		return ((struct mbuf *) NULL);
836	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
837		return ((struct mbuf *) NULL);
838	if (CMSG_SPACE((u_int)size) > MLEN) {
839		MCLGET(m, M_DONTWAIT);
840		if ((m->m_flags & M_EXT) == 0) {
841			m_free(m);
842			return ((struct mbuf *) NULL);
843		}
844	}
845	cp = mtod(m, struct cmsghdr *);
846	m->m_len = 0;
847	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
848	    ("sbcreatecontrol: short mbuf"));
849	if (p != NULL)
850		(void)memcpy(CMSG_DATA(cp), p, size);
851	m->m_len = CMSG_SPACE(size);
852	cp->cmsg_len = CMSG_LEN(size);
853	cp->cmsg_level = level;
854	cp->cmsg_type = type;
855	return (m);
856}
857
858/*
859 * Some routines that return EOPNOTSUPP for entry points that are not
860 * supported by a protocol.  Fill in as needed.
861 */
862int
863pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
864{
865	return EOPNOTSUPP;
866}
867
868int
869pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
870{
871	return EOPNOTSUPP;
872}
873
874int
875pru_connect2_notsupp(struct socket *so1, struct socket *so2)
876{
877	return EOPNOTSUPP;
878}
879
880int
881pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
882		    struct ifnet *ifp, struct thread *td)
883{
884	return EOPNOTSUPP;
885}
886
887int
888pru_listen_notsupp(struct socket *so, struct thread *td)
889{
890	return EOPNOTSUPP;
891}
892
893int
894pru_rcvd_notsupp(struct socket *so, int flags)
895{
896	return EOPNOTSUPP;
897}
898
899int
900pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
901{
902	return EOPNOTSUPP;
903}
904
905/*
906 * This isn't really a ``null'' operation, but it's the default one
907 * and doesn't do anything destructive.
908 */
909int
910pru_sense_null(struct socket *so, struct stat *sb)
911{
912	sb->st_blksize = so->so_snd.sb_hiwat;
913	return 0;
914}
915
916/*
917 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
918 */
919struct sockaddr *
920dup_sockaddr(sa, canwait)
921	struct sockaddr *sa;
922	int canwait;
923{
924	struct sockaddr *sa2;
925
926	MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
927	       canwait ? M_WAITOK : M_NOWAIT);
928	if (sa2)
929		bcopy(sa, sa2, sa->sa_len);
930	return sa2;
931}
932
933/*
934 * Create an external-format (``xsocket'') structure using the information
935 * in the kernel-format socket structure pointed to by so.  This is done
936 * to reduce the spew of irrelevant information over this interface,
937 * to isolate user code from changes in the kernel structure, and
938 * potentially to provide information-hiding if we decide that
939 * some of this information should be hidden from users.
940 */
941void
942sotoxsocket(struct socket *so, struct xsocket *xso)
943{
944	xso->xso_len = sizeof *xso;
945	xso->xso_so = so;
946	xso->so_type = so->so_type;
947	xso->so_options = so->so_options;
948	xso->so_linger = so->so_linger;
949	xso->so_state = so->so_state;
950	xso->so_pcb = so->so_pcb;
951	xso->xso_protocol = so->so_proto->pr_protocol;
952	xso->xso_family = so->so_proto->pr_domain->dom_family;
953	xso->so_qlen = so->so_qlen;
954	xso->so_incqlen = so->so_incqlen;
955	xso->so_qlimit = so->so_qlimit;
956	xso->so_timeo = so->so_timeo;
957	xso->so_error = so->so_error;
958	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
959	xso->so_oobmark = so->so_oobmark;
960	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
961	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
962	xso->so_uid = so->so_cred->cr_uid;
963}
964
965/*
966 * This does the same for sockbufs.  Note that the xsockbuf structure,
967 * since it is always embedded in a socket, does not include a self
968 * pointer nor a length.  We make this entry point public in case
969 * some other mechanism needs it.
970 */
971void
972sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
973{
974	xsb->sb_cc = sb->sb_cc;
975	xsb->sb_hiwat = sb->sb_hiwat;
976	xsb->sb_mbcnt = sb->sb_mbcnt;
977	xsb->sb_mbmax = sb->sb_mbmax;
978	xsb->sb_lowat = sb->sb_lowat;
979	xsb->sb_flags = sb->sb_flags;
980	xsb->sb_timeo = sb->sb_timeo;
981}
982
983/*
984 * Here is the definition of some of the basic objects in the kern.ipc
985 * branch of the MIB.
986 */
987SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
988
989/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
990static int dummy;
991SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
992SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
993    &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
994SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
995    &maxsockets, 0, "Maximum number of sockets avaliable");
996SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
997    &sb_efficiency, 0, "");
998
999/*
1000 * Initialise maxsockets
1001 */
1002static void init_maxsockets(void *ignored)
1003{
1004	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
1005	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
1006}
1007SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
1008