subr_vmem.c revision 280797
1/*-
2 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
3 * Copyright (c) 2013 EMC Corp.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * From:
30 *	$NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $
31 *	$NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $
32 */
33
34/*
35 * reference:
36 * -	Magazines and Vmem: Extending the Slab Allocator
37 *	to Many CPUs and Arbitrary Resources
38 *	http://www.usenix.org/event/usenix01/bonwick.html
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/subr_vmem.c 280797 2015-03-28 23:30:51Z kib $");
43
44#include "opt_ddb.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/kernel.h>
49#include <sys/queue.h>
50#include <sys/callout.h>
51#include <sys/hash.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mutex.h>
55#include <sys/smp.h>
56#include <sys/condvar.h>
57#include <sys/sysctl.h>
58#include <sys/taskqueue.h>
59#include <sys/vmem.h>
60
61#include "opt_vm.h"
62
63#include <vm/uma.h>
64#include <vm/vm.h>
65#include <vm/pmap.h>
66#include <vm/vm_map.h>
67#include <vm/vm_object.h>
68#include <vm/vm_kern.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_param.h>
71#include <vm/vm_pageout.h>
72
73#define	VMEM_OPTORDER		5
74#define	VMEM_OPTVALUE		(1 << VMEM_OPTORDER)
75#define	VMEM_MAXORDER						\
76    (VMEM_OPTVALUE - 1 + sizeof(vmem_size_t) * NBBY - VMEM_OPTORDER)
77
78#define	VMEM_HASHSIZE_MIN	16
79#define	VMEM_HASHSIZE_MAX	131072
80
81#define	VMEM_QCACHE_IDX_MAX	16
82
83#define	VMEM_FITMASK	(M_BESTFIT | M_FIRSTFIT)
84
85#define	VMEM_FLAGS						\
86    (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM | M_BESTFIT | M_FIRSTFIT)
87
88#define	BT_FLAGS	(M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM)
89
90#define	QC_NAME_MAX	16
91
92/*
93 * Data structures private to vmem.
94 */
95MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures");
96
97typedef struct vmem_btag bt_t;
98
99TAILQ_HEAD(vmem_seglist, vmem_btag);
100LIST_HEAD(vmem_freelist, vmem_btag);
101LIST_HEAD(vmem_hashlist, vmem_btag);
102
103struct qcache {
104	uma_zone_t	qc_cache;
105	vmem_t 		*qc_vmem;
106	vmem_size_t	qc_size;
107	char		qc_name[QC_NAME_MAX];
108};
109typedef struct qcache qcache_t;
110#define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
111
112#define	VMEM_NAME_MAX	16
113
114/* vmem arena */
115struct vmem {
116	struct mtx_padalign	vm_lock;
117	struct cv		vm_cv;
118	char			vm_name[VMEM_NAME_MAX+1];
119	LIST_ENTRY(vmem)	vm_alllist;
120	struct vmem_hashlist	vm_hash0[VMEM_HASHSIZE_MIN];
121	struct vmem_freelist	vm_freelist[VMEM_MAXORDER];
122	struct vmem_seglist	vm_seglist;
123	struct vmem_hashlist	*vm_hashlist;
124	vmem_size_t		vm_hashsize;
125
126	/* Constant after init */
127	vmem_size_t		vm_qcache_max;
128	vmem_size_t		vm_quantum_mask;
129	vmem_size_t		vm_import_quantum;
130	int			vm_quantum_shift;
131
132	/* Written on alloc/free */
133	LIST_HEAD(, vmem_btag)	vm_freetags;
134	int			vm_nfreetags;
135	int			vm_nbusytag;
136	vmem_size_t		vm_inuse;
137	vmem_size_t		vm_size;
138
139	/* Used on import. */
140	vmem_import_t		*vm_importfn;
141	vmem_release_t		*vm_releasefn;
142	void			*vm_arg;
143
144	/* Space exhaustion callback. */
145	vmem_reclaim_t		*vm_reclaimfn;
146
147	/* quantum cache */
148	qcache_t		vm_qcache[VMEM_QCACHE_IDX_MAX];
149};
150
151/* boundary tag */
152struct vmem_btag {
153	TAILQ_ENTRY(vmem_btag) bt_seglist;
154	union {
155		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
156		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
157	} bt_u;
158#define	bt_hashlist	bt_u.u_hashlist
159#define	bt_freelist	bt_u.u_freelist
160	vmem_addr_t	bt_start;
161	vmem_size_t	bt_size;
162	int		bt_type;
163};
164
165#define	BT_TYPE_SPAN		1	/* Allocated from importfn */
166#define	BT_TYPE_SPAN_STATIC	2	/* vmem_add() or create. */
167#define	BT_TYPE_FREE		3	/* Available space. */
168#define	BT_TYPE_BUSY		4	/* Used space. */
169#define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
170
171#define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)
172
173#if defined(DIAGNOSTIC)
174static int enable_vmem_check = 1;
175SYSCTL_INT(_debug, OID_AUTO, vmem_check, CTLFLAG_RWTUN,
176    &enable_vmem_check, 0, "Enable vmem check");
177static void vmem_check(vmem_t *);
178#endif
179
180static struct callout	vmem_periodic_ch;
181static int		vmem_periodic_interval;
182static struct task	vmem_periodic_wk;
183
184static struct mtx_padalign vmem_list_lock;
185static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
186
187/* ---- misc */
188#define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
189#define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
190#define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
191#define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)
192
193
194#define	VMEM_LOCK(vm)		mtx_lock(&vm->vm_lock)
195#define	VMEM_TRYLOCK(vm)	mtx_trylock(&vm->vm_lock)
196#define	VMEM_UNLOCK(vm)		mtx_unlock(&vm->vm_lock)
197#define	VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF)
198#define	VMEM_LOCK_DESTROY(vm)	mtx_destroy(&vm->vm_lock)
199#define	VMEM_ASSERT_LOCKED(vm)	mtx_assert(&vm->vm_lock, MA_OWNED);
200
201#define	VMEM_ALIGNUP(addr, align)	(-(-(addr) & -(align)))
202
203#define	VMEM_CROSS_P(addr1, addr2, boundary) \
204	((((addr1) ^ (addr2)) & -(boundary)) != 0)
205
206#define	ORDER2SIZE(order)	((order) < VMEM_OPTVALUE ? ((order) + 1) : \
207    (vmem_size_t)1 << ((order) - (VMEM_OPTVALUE - VMEM_OPTORDER - 1)))
208#define	SIZE2ORDER(size)	((size) <= VMEM_OPTVALUE ? ((size) - 1) : \
209    (flsl(size) + (VMEM_OPTVALUE - VMEM_OPTORDER - 2)))
210
211/*
212 * Maximum number of boundary tags that may be required to satisfy an
213 * allocation.  Two may be required to import.  Another two may be
214 * required to clip edges.
215 */
216#define	BT_MAXALLOC	4
217
218/*
219 * Max free limits the number of locally cached boundary tags.  We
220 * just want to avoid hitting the zone allocator for every call.
221 */
222#define BT_MAXFREE	(BT_MAXALLOC * 8)
223
224/* Allocator for boundary tags. */
225static uma_zone_t vmem_bt_zone;
226
227/* boot time arena storage. */
228static struct vmem kernel_arena_storage;
229static struct vmem kmem_arena_storage;
230static struct vmem buffer_arena_storage;
231static struct vmem transient_arena_storage;
232vmem_t *kernel_arena = &kernel_arena_storage;
233vmem_t *kmem_arena = &kmem_arena_storage;
234vmem_t *buffer_arena = &buffer_arena_storage;
235vmem_t *transient_arena = &transient_arena_storage;
236
237#ifdef DEBUG_MEMGUARD
238static struct vmem memguard_arena_storage;
239vmem_t *memguard_arena = &memguard_arena_storage;
240#endif
241
242/*
243 * Fill the vmem's boundary tag cache.  We guarantee that boundary tag
244 * allocation will not fail once bt_fill() passes.  To do so we cache
245 * at least the maximum possible tag allocations in the arena.
246 */
247static int
248bt_fill(vmem_t *vm, int flags)
249{
250	bt_t *bt;
251
252	VMEM_ASSERT_LOCKED(vm);
253
254	/*
255	 * Only allow the kmem arena to dip into reserve tags.  It is the
256	 * vmem where new tags come from.
257	 */
258	flags &= BT_FLAGS;
259	if (vm != kmem_arena)
260		flags &= ~M_USE_RESERVE;
261
262	/*
263	 * Loop until we meet the reserve.  To minimize the lock shuffle
264	 * and prevent simultaneous fills we first try a NOWAIT regardless
265	 * of the caller's flags.  Specify M_NOVM so we don't recurse while
266	 * holding a vmem lock.
267	 */
268	while (vm->vm_nfreetags < BT_MAXALLOC) {
269		bt = uma_zalloc(vmem_bt_zone,
270		    (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM);
271		if (bt == NULL) {
272			VMEM_UNLOCK(vm);
273			bt = uma_zalloc(vmem_bt_zone, flags);
274			VMEM_LOCK(vm);
275			if (bt == NULL && (flags & M_NOWAIT) != 0)
276				break;
277		}
278		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
279		vm->vm_nfreetags++;
280	}
281
282	if (vm->vm_nfreetags < BT_MAXALLOC)
283		return ENOMEM;
284
285	return 0;
286}
287
288/*
289 * Pop a tag off of the freetag stack.
290 */
291static bt_t *
292bt_alloc(vmem_t *vm)
293{
294	bt_t *bt;
295
296	VMEM_ASSERT_LOCKED(vm);
297	bt = LIST_FIRST(&vm->vm_freetags);
298	MPASS(bt != NULL);
299	LIST_REMOVE(bt, bt_freelist);
300	vm->vm_nfreetags--;
301
302	return bt;
303}
304
305/*
306 * Trim the per-vmem free list.  Returns with the lock released to
307 * avoid allocator recursions.
308 */
309static void
310bt_freetrim(vmem_t *vm, int freelimit)
311{
312	LIST_HEAD(, vmem_btag) freetags;
313	bt_t *bt;
314
315	LIST_INIT(&freetags);
316	VMEM_ASSERT_LOCKED(vm);
317	while (vm->vm_nfreetags > freelimit) {
318		bt = LIST_FIRST(&vm->vm_freetags);
319		LIST_REMOVE(bt, bt_freelist);
320		vm->vm_nfreetags--;
321		LIST_INSERT_HEAD(&freetags, bt, bt_freelist);
322	}
323	VMEM_UNLOCK(vm);
324	while ((bt = LIST_FIRST(&freetags)) != NULL) {
325		LIST_REMOVE(bt, bt_freelist);
326		uma_zfree(vmem_bt_zone, bt);
327	}
328}
329
330static inline void
331bt_free(vmem_t *vm, bt_t *bt)
332{
333
334	VMEM_ASSERT_LOCKED(vm);
335	MPASS(LIST_FIRST(&vm->vm_freetags) != bt);
336	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
337	vm->vm_nfreetags++;
338}
339
340/*
341 * freelist[0] ... [1, 1]
342 * freelist[1] ... [2, 2]
343 *  :
344 * freelist[29] ... [30, 30]
345 * freelist[30] ... [31, 31]
346 * freelist[31] ... [32, 63]
347 * freelist[33] ... [64, 127]
348 *  :
349 * freelist[n] ... [(1 << (n - 26)), (1 << (n - 25)) - 1]
350 *  :
351 */
352
353static struct vmem_freelist *
354bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
355{
356	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
357	const int idx = SIZE2ORDER(qsize);
358
359	MPASS(size != 0 && qsize != 0);
360	MPASS((size & vm->vm_quantum_mask) == 0);
361	MPASS(idx >= 0);
362	MPASS(idx < VMEM_MAXORDER);
363
364	return &vm->vm_freelist[idx];
365}
366
367/*
368 * bt_freehead_toalloc: return the freelist for the given size and allocation
369 * strategy.
370 *
371 * For M_FIRSTFIT, return the list in which any blocks are large enough
372 * for the requested size.  otherwise, return the list which can have blocks
373 * large enough for the requested size.
374 */
375static struct vmem_freelist *
376bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat)
377{
378	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
379	int idx = SIZE2ORDER(qsize);
380
381	MPASS(size != 0 && qsize != 0);
382	MPASS((size & vm->vm_quantum_mask) == 0);
383
384	if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) {
385		idx++;
386		/* check too large request? */
387	}
388	MPASS(idx >= 0);
389	MPASS(idx < VMEM_MAXORDER);
390
391	return &vm->vm_freelist[idx];
392}
393
394/* ---- boundary tag hash */
395
396static struct vmem_hashlist *
397bt_hashhead(vmem_t *vm, vmem_addr_t addr)
398{
399	struct vmem_hashlist *list;
400	unsigned int hash;
401
402	hash = hash32_buf(&addr, sizeof(addr), 0);
403	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
404
405	return list;
406}
407
408static bt_t *
409bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
410{
411	struct vmem_hashlist *list;
412	bt_t *bt;
413
414	VMEM_ASSERT_LOCKED(vm);
415	list = bt_hashhead(vm, addr);
416	LIST_FOREACH(bt, list, bt_hashlist) {
417		if (bt->bt_start == addr) {
418			break;
419		}
420	}
421
422	return bt;
423}
424
425static void
426bt_rembusy(vmem_t *vm, bt_t *bt)
427{
428
429	VMEM_ASSERT_LOCKED(vm);
430	MPASS(vm->vm_nbusytag > 0);
431	vm->vm_inuse -= bt->bt_size;
432	vm->vm_nbusytag--;
433	LIST_REMOVE(bt, bt_hashlist);
434}
435
436static void
437bt_insbusy(vmem_t *vm, bt_t *bt)
438{
439	struct vmem_hashlist *list;
440
441	VMEM_ASSERT_LOCKED(vm);
442	MPASS(bt->bt_type == BT_TYPE_BUSY);
443
444	list = bt_hashhead(vm, bt->bt_start);
445	LIST_INSERT_HEAD(list, bt, bt_hashlist);
446	vm->vm_nbusytag++;
447	vm->vm_inuse += bt->bt_size;
448}
449
450/* ---- boundary tag list */
451
452static void
453bt_remseg(vmem_t *vm, bt_t *bt)
454{
455
456	TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
457	bt_free(vm, bt);
458}
459
460static void
461bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
462{
463
464	TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
465}
466
467static void
468bt_insseg_tail(vmem_t *vm, bt_t *bt)
469{
470
471	TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
472}
473
474static void
475bt_remfree(vmem_t *vm, bt_t *bt)
476{
477
478	MPASS(bt->bt_type == BT_TYPE_FREE);
479
480	LIST_REMOVE(bt, bt_freelist);
481}
482
483static void
484bt_insfree(vmem_t *vm, bt_t *bt)
485{
486	struct vmem_freelist *list;
487
488	list = bt_freehead_tofree(vm, bt->bt_size);
489	LIST_INSERT_HEAD(list, bt, bt_freelist);
490}
491
492/* ---- vmem internal functions */
493
494/*
495 * Import from the arena into the quantum cache in UMA.
496 */
497static int
498qc_import(void *arg, void **store, int cnt, int flags)
499{
500	qcache_t *qc;
501	vmem_addr_t addr;
502	int i;
503
504	qc = arg;
505	if ((flags & VMEM_FITMASK) == 0)
506		flags |= M_BESTFIT;
507	for (i = 0; i < cnt; i++) {
508		if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0,
509		    VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags, &addr) != 0)
510			break;
511		store[i] = (void *)addr;
512		/* Only guarantee one allocation. */
513		flags &= ~M_WAITOK;
514		flags |= M_NOWAIT;
515	}
516	return i;
517}
518
519/*
520 * Release memory from the UMA cache to the arena.
521 */
522static void
523qc_release(void *arg, void **store, int cnt)
524{
525	qcache_t *qc;
526	int i;
527
528	qc = arg;
529	for (i = 0; i < cnt; i++)
530		vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size);
531}
532
533static void
534qc_init(vmem_t *vm, vmem_size_t qcache_max)
535{
536	qcache_t *qc;
537	vmem_size_t size;
538	int qcache_idx_max;
539	int i;
540
541	MPASS((qcache_max & vm->vm_quantum_mask) == 0);
542	qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift,
543	    VMEM_QCACHE_IDX_MAX);
544	vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift;
545	for (i = 0; i < qcache_idx_max; i++) {
546		qc = &vm->vm_qcache[i];
547		size = (i + 1) << vm->vm_quantum_shift;
548		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
549		    vm->vm_name, size);
550		qc->qc_vmem = vm;
551		qc->qc_size = size;
552		qc->qc_cache = uma_zcache_create(qc->qc_name, size,
553		    NULL, NULL, NULL, NULL, qc_import, qc_release, qc,
554		    UMA_ZONE_VM);
555		MPASS(qc->qc_cache);
556	}
557}
558
559static void
560qc_destroy(vmem_t *vm)
561{
562	int qcache_idx_max;
563	int i;
564
565	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
566	for (i = 0; i < qcache_idx_max; i++)
567		uma_zdestroy(vm->vm_qcache[i].qc_cache);
568}
569
570static void
571qc_drain(vmem_t *vm)
572{
573	int qcache_idx_max;
574	int i;
575
576	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
577	for (i = 0; i < qcache_idx_max; i++)
578		zone_drain(vm->vm_qcache[i].qc_cache);
579}
580
581#ifndef UMA_MD_SMALL_ALLOC
582
583static struct mtx_padalign vmem_bt_lock;
584
585/*
586 * vmem_bt_alloc:  Allocate a new page of boundary tags.
587 *
588 * On architectures with uma_small_alloc there is no recursion; no address
589 * space need be allocated to allocate boundary tags.  For the others, we
590 * must handle recursion.  Boundary tags are necessary to allocate new
591 * boundary tags.
592 *
593 * UMA guarantees that enough tags are held in reserve to allocate a new
594 * page of kva.  We dip into this reserve by specifying M_USE_RESERVE only
595 * when allocating the page to hold new boundary tags.  In this way the
596 * reserve is automatically filled by the allocation that uses the reserve.
597 *
598 * We still have to guarantee that the new tags are allocated atomically since
599 * many threads may try concurrently.  The bt_lock provides this guarantee.
600 * We convert WAITOK allocations to NOWAIT and then handle the blocking here
601 * on failure.  It's ok to return NULL for a WAITOK allocation as UMA will
602 * loop again after checking to see if we lost the race to allocate.
603 *
604 * There is a small race between vmem_bt_alloc() returning the page and the
605 * zone lock being acquired to add the page to the zone.  For WAITOK
606 * allocations we just pause briefly.  NOWAIT may experience a transient
607 * failure.  To alleviate this we permit a small number of simultaneous
608 * fills to proceed concurrently so NOWAIT is less likely to fail unless
609 * we are really out of KVA.
610 */
611static void *
612vmem_bt_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
613{
614	vmem_addr_t addr;
615
616	*pflag = UMA_SLAB_KMEM;
617
618	/*
619	 * Single thread boundary tag allocation so that the address space
620	 * and memory are added in one atomic operation.
621	 */
622	mtx_lock(&vmem_bt_lock);
623	if (vmem_xalloc(kmem_arena, bytes, 0, 0, 0, VMEM_ADDR_MIN,
624	    VMEM_ADDR_MAX, M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT,
625	    &addr) == 0) {
626		if (kmem_back(kmem_object, addr, bytes,
627		    M_NOWAIT | M_USE_RESERVE) == 0) {
628			mtx_unlock(&vmem_bt_lock);
629			return ((void *)addr);
630		}
631		vmem_xfree(kmem_arena, addr, bytes);
632		mtx_unlock(&vmem_bt_lock);
633		/*
634		 * Out of memory, not address space.  This may not even be
635		 * possible due to M_USE_RESERVE page allocation.
636		 */
637		if (wait & M_WAITOK)
638			VM_WAIT;
639		return (NULL);
640	}
641	mtx_unlock(&vmem_bt_lock);
642	/*
643	 * We're either out of address space or lost a fill race.
644	 */
645	if (wait & M_WAITOK)
646		pause("btalloc", 1);
647
648	return (NULL);
649}
650#endif
651
652void
653vmem_startup(void)
654{
655
656	mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF);
657	vmem_bt_zone = uma_zcreate("vmem btag",
658	    sizeof(struct vmem_btag), NULL, NULL, NULL, NULL,
659	    UMA_ALIGN_PTR, UMA_ZONE_VM);
660#ifndef UMA_MD_SMALL_ALLOC
661	mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF);
662	uma_prealloc(vmem_bt_zone, BT_MAXALLOC);
663	/*
664	 * Reserve enough tags to allocate new tags.  We allow multiple
665	 * CPUs to attempt to allocate new tags concurrently to limit
666	 * false restarts in UMA.
667	 */
668	uma_zone_reserve(vmem_bt_zone, BT_MAXALLOC * (mp_ncpus + 1) / 2);
669	uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc);
670#endif
671}
672
673/* ---- rehash */
674
675static int
676vmem_rehash(vmem_t *vm, vmem_size_t newhashsize)
677{
678	bt_t *bt;
679	int i;
680	struct vmem_hashlist *newhashlist;
681	struct vmem_hashlist *oldhashlist;
682	vmem_size_t oldhashsize;
683
684	MPASS(newhashsize > 0);
685
686	newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize,
687	    M_VMEM, M_NOWAIT);
688	if (newhashlist == NULL)
689		return ENOMEM;
690	for (i = 0; i < newhashsize; i++) {
691		LIST_INIT(&newhashlist[i]);
692	}
693
694	VMEM_LOCK(vm);
695	oldhashlist = vm->vm_hashlist;
696	oldhashsize = vm->vm_hashsize;
697	vm->vm_hashlist = newhashlist;
698	vm->vm_hashsize = newhashsize;
699	if (oldhashlist == NULL) {
700		VMEM_UNLOCK(vm);
701		return 0;
702	}
703	for (i = 0; i < oldhashsize; i++) {
704		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
705			bt_rembusy(vm, bt);
706			bt_insbusy(vm, bt);
707		}
708	}
709	VMEM_UNLOCK(vm);
710
711	if (oldhashlist != vm->vm_hash0) {
712		free(oldhashlist, M_VMEM);
713	}
714
715	return 0;
716}
717
718static void
719vmem_periodic_kick(void *dummy)
720{
721
722	taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk);
723}
724
725static void
726vmem_periodic(void *unused, int pending)
727{
728	vmem_t *vm;
729	vmem_size_t desired;
730	vmem_size_t current;
731
732	mtx_lock(&vmem_list_lock);
733	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
734#ifdef DIAGNOSTIC
735		/* Convenient time to verify vmem state. */
736		if (enable_vmem_check == 1) {
737			VMEM_LOCK(vm);
738			vmem_check(vm);
739			VMEM_UNLOCK(vm);
740		}
741#endif
742		desired = 1 << flsl(vm->vm_nbusytag);
743		desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN),
744		    VMEM_HASHSIZE_MAX);
745		current = vm->vm_hashsize;
746
747		/* Grow in powers of two.  Shrink less aggressively. */
748		if (desired >= current * 2 || desired * 4 <= current)
749			vmem_rehash(vm, desired);
750	}
751	mtx_unlock(&vmem_list_lock);
752
753	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
754	    vmem_periodic_kick, NULL);
755}
756
757static void
758vmem_start_callout(void *unused)
759{
760
761	TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL);
762	vmem_periodic_interval = hz * 10;
763	callout_init(&vmem_periodic_ch, CALLOUT_MPSAFE);
764	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
765	    vmem_periodic_kick, NULL);
766}
767SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL);
768
769static void
770vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type)
771{
772	bt_t *btspan;
773	bt_t *btfree;
774
775	MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC);
776	MPASS((size & vm->vm_quantum_mask) == 0);
777
778	btspan = bt_alloc(vm);
779	btspan->bt_type = type;
780	btspan->bt_start = addr;
781	btspan->bt_size = size;
782	bt_insseg_tail(vm, btspan);
783
784	btfree = bt_alloc(vm);
785	btfree->bt_type = BT_TYPE_FREE;
786	btfree->bt_start = addr;
787	btfree->bt_size = size;
788	bt_insseg(vm, btfree, btspan);
789	bt_insfree(vm, btfree);
790
791	vm->vm_size += size;
792}
793
794static void
795vmem_destroy1(vmem_t *vm)
796{
797	bt_t *bt;
798
799	/*
800	 * Drain per-cpu quantum caches.
801	 */
802	qc_destroy(vm);
803
804	/*
805	 * The vmem should now only contain empty segments.
806	 */
807	VMEM_LOCK(vm);
808	MPASS(vm->vm_nbusytag == 0);
809
810	while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL)
811		bt_remseg(vm, bt);
812
813	if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0)
814		free(vm->vm_hashlist, M_VMEM);
815
816	bt_freetrim(vm, 0);
817
818	VMEM_CONDVAR_DESTROY(vm);
819	VMEM_LOCK_DESTROY(vm);
820	free(vm, M_VMEM);
821}
822
823static int
824vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags)
825{
826	vmem_addr_t addr;
827	int error;
828
829	if (vm->vm_importfn == NULL)
830		return EINVAL;
831
832	/*
833	 * To make sure we get a span that meets the alignment we double it
834	 * and add the size to the tail.  This slightly overestimates.
835	 */
836	if (align != vm->vm_quantum_mask + 1)
837		size = (align * 2) + size;
838	size = roundup(size, vm->vm_import_quantum);
839
840	/*
841	 * Hide MAXALLOC tags so we're guaranteed to be able to add this
842	 * span and the tag we want to allocate from it.
843	 */
844	MPASS(vm->vm_nfreetags >= BT_MAXALLOC);
845	vm->vm_nfreetags -= BT_MAXALLOC;
846	VMEM_UNLOCK(vm);
847	error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
848	VMEM_LOCK(vm);
849	vm->vm_nfreetags += BT_MAXALLOC;
850	if (error)
851		return ENOMEM;
852
853	vmem_add1(vm, addr, size, BT_TYPE_SPAN);
854
855	return 0;
856}
857
858/*
859 * vmem_fit: check if a bt can satisfy the given restrictions.
860 *
861 * it's a caller's responsibility to ensure the region is big enough
862 * before calling us.
863 */
864static int
865vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
866    vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr,
867    vmem_addr_t maxaddr, vmem_addr_t *addrp)
868{
869	vmem_addr_t start;
870	vmem_addr_t end;
871
872	MPASS(size > 0);
873	MPASS(bt->bt_size >= size); /* caller's responsibility */
874
875	/*
876	 * XXX assumption: vmem_addr_t and vmem_size_t are
877	 * unsigned integer of the same size.
878	 */
879
880	start = bt->bt_start;
881	if (start < minaddr) {
882		start = minaddr;
883	}
884	end = BT_END(bt);
885	if (end > maxaddr)
886		end = maxaddr;
887	if (start > end)
888		return (ENOMEM);
889
890	start = VMEM_ALIGNUP(start - phase, align) + phase;
891	if (start < bt->bt_start)
892		start += align;
893	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
894		MPASS(align < nocross);
895		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
896	}
897	if (start <= end && end - start >= size - 1) {
898		MPASS((start & (align - 1)) == phase);
899		MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross));
900		MPASS(minaddr <= start);
901		MPASS(maxaddr == 0 || start + size - 1 <= maxaddr);
902		MPASS(bt->bt_start <= start);
903		MPASS(BT_END(bt) - start >= size - 1);
904		*addrp = start;
905
906		return (0);
907	}
908	return (ENOMEM);
909}
910
911/*
912 * vmem_clip:  Trim the boundary tag edges to the requested start and size.
913 */
914static void
915vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size)
916{
917	bt_t *btnew;
918	bt_t *btprev;
919
920	VMEM_ASSERT_LOCKED(vm);
921	MPASS(bt->bt_type == BT_TYPE_FREE);
922	MPASS(bt->bt_size >= size);
923	bt_remfree(vm, bt);
924	if (bt->bt_start != start) {
925		btprev = bt_alloc(vm);
926		btprev->bt_type = BT_TYPE_FREE;
927		btprev->bt_start = bt->bt_start;
928		btprev->bt_size = start - bt->bt_start;
929		bt->bt_start = start;
930		bt->bt_size -= btprev->bt_size;
931		bt_insfree(vm, btprev);
932		bt_insseg(vm, btprev,
933		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
934	}
935	MPASS(bt->bt_start == start);
936	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
937		/* split */
938		btnew = bt_alloc(vm);
939		btnew->bt_type = BT_TYPE_BUSY;
940		btnew->bt_start = bt->bt_start;
941		btnew->bt_size = size;
942		bt->bt_start = bt->bt_start + size;
943		bt->bt_size -= size;
944		bt_insfree(vm, bt);
945		bt_insseg(vm, btnew,
946		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
947		bt_insbusy(vm, btnew);
948		bt = btnew;
949	} else {
950		bt->bt_type = BT_TYPE_BUSY;
951		bt_insbusy(vm, bt);
952	}
953	MPASS(bt->bt_size >= size);
954	bt->bt_type = BT_TYPE_BUSY;
955}
956
957/* ---- vmem API */
958
959void
960vmem_set_import(vmem_t *vm, vmem_import_t *importfn,
961     vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum)
962{
963
964	VMEM_LOCK(vm);
965	vm->vm_importfn = importfn;
966	vm->vm_releasefn = releasefn;
967	vm->vm_arg = arg;
968	vm->vm_import_quantum = import_quantum;
969	VMEM_UNLOCK(vm);
970}
971
972void
973vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn)
974{
975
976	VMEM_LOCK(vm);
977	vm->vm_reclaimfn = reclaimfn;
978	VMEM_UNLOCK(vm);
979}
980
981/*
982 * vmem_init: Initializes vmem arena.
983 */
984vmem_t *
985vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size,
986    vmem_size_t quantum, vmem_size_t qcache_max, int flags)
987{
988	int i;
989
990	MPASS(quantum > 0);
991	MPASS((quantum & (quantum - 1)) == 0);
992
993	bzero(vm, sizeof(*vm));
994
995	VMEM_CONDVAR_INIT(vm, name);
996	VMEM_LOCK_INIT(vm, name);
997	vm->vm_nfreetags = 0;
998	LIST_INIT(&vm->vm_freetags);
999	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
1000	vm->vm_quantum_mask = quantum - 1;
1001	vm->vm_quantum_shift = flsl(quantum) - 1;
1002	vm->vm_nbusytag = 0;
1003	vm->vm_size = 0;
1004	vm->vm_inuse = 0;
1005	qc_init(vm, qcache_max);
1006
1007	TAILQ_INIT(&vm->vm_seglist);
1008	for (i = 0; i < VMEM_MAXORDER; i++) {
1009		LIST_INIT(&vm->vm_freelist[i]);
1010	}
1011	memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
1012	vm->vm_hashsize = VMEM_HASHSIZE_MIN;
1013	vm->vm_hashlist = vm->vm_hash0;
1014
1015	if (size != 0) {
1016		if (vmem_add(vm, base, size, flags) != 0) {
1017			vmem_destroy1(vm);
1018			return NULL;
1019		}
1020	}
1021
1022	mtx_lock(&vmem_list_lock);
1023	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1024	mtx_unlock(&vmem_list_lock);
1025
1026	return vm;
1027}
1028
1029/*
1030 * vmem_create: create an arena.
1031 */
1032vmem_t *
1033vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1034    vmem_size_t quantum, vmem_size_t qcache_max, int flags)
1035{
1036
1037	vmem_t *vm;
1038
1039	vm = malloc(sizeof(*vm), M_VMEM, flags & (M_WAITOK|M_NOWAIT));
1040	if (vm == NULL)
1041		return (NULL);
1042	if (vmem_init(vm, name, base, size, quantum, qcache_max,
1043	    flags) == NULL) {
1044		free(vm, M_VMEM);
1045		return (NULL);
1046	}
1047	return (vm);
1048}
1049
1050void
1051vmem_destroy(vmem_t *vm)
1052{
1053
1054	mtx_lock(&vmem_list_lock);
1055	LIST_REMOVE(vm, vm_alllist);
1056	mtx_unlock(&vmem_list_lock);
1057
1058	vmem_destroy1(vm);
1059}
1060
1061vmem_size_t
1062vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1063{
1064
1065	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1066}
1067
1068/*
1069 * vmem_alloc: allocate resource from the arena.
1070 */
1071int
1072vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp)
1073{
1074	const int strat __unused = flags & VMEM_FITMASK;
1075	qcache_t *qc;
1076
1077	flags &= VMEM_FLAGS;
1078	MPASS(size > 0);
1079	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
1080	if ((flags & M_NOWAIT) == 0)
1081		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc");
1082
1083	if (size <= vm->vm_qcache_max) {
1084		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1085		*addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache, flags);
1086		if (*addrp == 0)
1087			return (ENOMEM);
1088		return (0);
1089	}
1090
1091	return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1092	    flags, addrp);
1093}
1094
1095int
1096vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1097    const vmem_size_t phase, const vmem_size_t nocross,
1098    const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags,
1099    vmem_addr_t *addrp)
1100{
1101	const vmem_size_t size = vmem_roundup_size(vm, size0);
1102	struct vmem_freelist *list;
1103	struct vmem_freelist *first;
1104	struct vmem_freelist *end;
1105	vmem_size_t avail;
1106	bt_t *bt;
1107	int error;
1108	int strat;
1109
1110	flags &= VMEM_FLAGS;
1111	strat = flags & VMEM_FITMASK;
1112	MPASS(size0 > 0);
1113	MPASS(size > 0);
1114	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
1115	MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK));
1116	if ((flags & M_NOWAIT) == 0)
1117		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc");
1118	MPASS((align & vm->vm_quantum_mask) == 0);
1119	MPASS((align & (align - 1)) == 0);
1120	MPASS((phase & vm->vm_quantum_mask) == 0);
1121	MPASS((nocross & vm->vm_quantum_mask) == 0);
1122	MPASS((nocross & (nocross - 1)) == 0);
1123	MPASS((align == 0 && phase == 0) || phase < align);
1124	MPASS(nocross == 0 || nocross >= size);
1125	MPASS(minaddr <= maxaddr);
1126	MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1127
1128	if (align == 0)
1129		align = vm->vm_quantum_mask + 1;
1130
1131	*addrp = 0;
1132	end = &vm->vm_freelist[VMEM_MAXORDER];
1133	/*
1134	 * choose a free block from which we allocate.
1135	 */
1136	first = bt_freehead_toalloc(vm, size, strat);
1137	VMEM_LOCK(vm);
1138	for (;;) {
1139		/*
1140		 * Make sure we have enough tags to complete the
1141		 * operation.
1142		 */
1143		if (vm->vm_nfreetags < BT_MAXALLOC &&
1144		    bt_fill(vm, flags) != 0) {
1145			error = ENOMEM;
1146			break;
1147		}
1148		/*
1149	 	 * Scan freelists looking for a tag that satisfies the
1150		 * allocation.  If we're doing BESTFIT we may encounter
1151		 * sizes below the request.  If we're doing FIRSTFIT we
1152		 * inspect only the first element from each list.
1153		 */
1154		for (list = first; list < end; list++) {
1155			LIST_FOREACH(bt, list, bt_freelist) {
1156				if (bt->bt_size >= size) {
1157					error = vmem_fit(bt, size, align, phase,
1158					    nocross, minaddr, maxaddr, addrp);
1159					if (error == 0) {
1160						vmem_clip(vm, bt, *addrp, size);
1161						goto out;
1162					}
1163				}
1164				/* FIRST skips to the next list. */
1165				if (strat == M_FIRSTFIT)
1166					break;
1167			}
1168		}
1169		/*
1170		 * Retry if the fast algorithm failed.
1171		 */
1172		if (strat == M_FIRSTFIT) {
1173			strat = M_BESTFIT;
1174			first = bt_freehead_toalloc(vm, size, strat);
1175			continue;
1176		}
1177		/*
1178		 * XXX it is possible to fail to meet restrictions with the
1179		 * imported region.  It is up to the user to specify the
1180		 * import quantum such that it can satisfy any allocation.
1181		 */
1182		if (vmem_import(vm, size, align, flags) == 0)
1183			continue;
1184
1185		/*
1186		 * Try to free some space from the quantum cache or reclaim
1187		 * functions if available.
1188		 */
1189		if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) {
1190			avail = vm->vm_size - vm->vm_inuse;
1191			VMEM_UNLOCK(vm);
1192			if (vm->vm_qcache_max != 0)
1193				qc_drain(vm);
1194			if (vm->vm_reclaimfn != NULL)
1195				vm->vm_reclaimfn(vm, flags);
1196			VMEM_LOCK(vm);
1197			/* If we were successful retry even NOWAIT. */
1198			if (vm->vm_size - vm->vm_inuse > avail)
1199				continue;
1200		}
1201		if ((flags & M_NOWAIT) != 0) {
1202			error = ENOMEM;
1203			break;
1204		}
1205		VMEM_CONDVAR_WAIT(vm);
1206	}
1207out:
1208	VMEM_UNLOCK(vm);
1209	if (error != 0 && (flags & M_NOWAIT) == 0)
1210		panic("failed to allocate waiting allocation\n");
1211
1212	return (error);
1213}
1214
1215/*
1216 * vmem_free: free the resource to the arena.
1217 */
1218void
1219vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1220{
1221	qcache_t *qc;
1222	MPASS(size > 0);
1223
1224	if (size <= vm->vm_qcache_max) {
1225		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1226		uma_zfree(qc->qc_cache, (void *)addr);
1227	} else
1228		vmem_xfree(vm, addr, size);
1229}
1230
1231void
1232vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1233{
1234	bt_t *bt;
1235	bt_t *t;
1236
1237	MPASS(size > 0);
1238
1239	VMEM_LOCK(vm);
1240	bt = bt_lookupbusy(vm, addr);
1241	MPASS(bt != NULL);
1242	MPASS(bt->bt_start == addr);
1243	MPASS(bt->bt_size == vmem_roundup_size(vm, size) ||
1244	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1245	MPASS(bt->bt_type == BT_TYPE_BUSY);
1246	bt_rembusy(vm, bt);
1247	bt->bt_type = BT_TYPE_FREE;
1248
1249	/* coalesce */
1250	t = TAILQ_NEXT(bt, bt_seglist);
1251	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1252		MPASS(BT_END(bt) < t->bt_start);	/* YYY */
1253		bt->bt_size += t->bt_size;
1254		bt_remfree(vm, t);
1255		bt_remseg(vm, t);
1256	}
1257	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1258	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1259		MPASS(BT_END(t) < bt->bt_start);	/* YYY */
1260		bt->bt_size += t->bt_size;
1261		bt->bt_start = t->bt_start;
1262		bt_remfree(vm, t);
1263		bt_remseg(vm, t);
1264	}
1265
1266	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1267	MPASS(t != NULL);
1268	MPASS(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1269	if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1270	    t->bt_size == bt->bt_size) {
1271		vmem_addr_t spanaddr;
1272		vmem_size_t spansize;
1273
1274		MPASS(t->bt_start == bt->bt_start);
1275		spanaddr = bt->bt_start;
1276		spansize = bt->bt_size;
1277		bt_remseg(vm, bt);
1278		bt_remseg(vm, t);
1279		vm->vm_size -= spansize;
1280		VMEM_CONDVAR_BROADCAST(vm);
1281		bt_freetrim(vm, BT_MAXFREE);
1282		(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1283	} else {
1284		bt_insfree(vm, bt);
1285		VMEM_CONDVAR_BROADCAST(vm);
1286		bt_freetrim(vm, BT_MAXFREE);
1287	}
1288}
1289
1290/*
1291 * vmem_add:
1292 *
1293 */
1294int
1295vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags)
1296{
1297	int error;
1298
1299	error = 0;
1300	flags &= VMEM_FLAGS;
1301	VMEM_LOCK(vm);
1302	if (vm->vm_nfreetags >= BT_MAXALLOC || bt_fill(vm, flags) == 0)
1303		vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC);
1304	else
1305		error = ENOMEM;
1306	VMEM_UNLOCK(vm);
1307
1308	return (error);
1309}
1310
1311/*
1312 * vmem_size: information about arenas size
1313 */
1314vmem_size_t
1315vmem_size(vmem_t *vm, int typemask)
1316{
1317
1318	switch (typemask) {
1319	case VMEM_ALLOC:
1320		return vm->vm_inuse;
1321	case VMEM_FREE:
1322		return vm->vm_size - vm->vm_inuse;
1323	case VMEM_FREE|VMEM_ALLOC:
1324		return vm->vm_size;
1325	default:
1326		panic("vmem_size");
1327	}
1328}
1329
1330/* ---- debug */
1331
1332#if defined(DDB) || defined(DIAGNOSTIC)
1333
1334static void bt_dump(const bt_t *, int (*)(const char *, ...)
1335    __printflike(1, 2));
1336
1337static const char *
1338bt_type_string(int type)
1339{
1340
1341	switch (type) {
1342	case BT_TYPE_BUSY:
1343		return "busy";
1344	case BT_TYPE_FREE:
1345		return "free";
1346	case BT_TYPE_SPAN:
1347		return "span";
1348	case BT_TYPE_SPAN_STATIC:
1349		return "static span";
1350	default:
1351		break;
1352	}
1353	return "BOGUS";
1354}
1355
1356static void
1357bt_dump(const bt_t *bt, int (*pr)(const char *, ...))
1358{
1359
1360	(*pr)("\t%p: %jx %jx, %d(%s)\n",
1361	    bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size,
1362	    bt->bt_type, bt_type_string(bt->bt_type));
1363}
1364
1365static void
1366vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2))
1367{
1368	const bt_t *bt;
1369	int i;
1370
1371	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1372	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1373		bt_dump(bt, pr);
1374	}
1375
1376	for (i = 0; i < VMEM_MAXORDER; i++) {
1377		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1378
1379		if (LIST_EMPTY(fl)) {
1380			continue;
1381		}
1382
1383		(*pr)("freelist[%d]\n", i);
1384		LIST_FOREACH(bt, fl, bt_freelist) {
1385			bt_dump(bt, pr);
1386		}
1387	}
1388}
1389
1390#endif /* defined(DDB) || defined(DIAGNOSTIC) */
1391
1392#if defined(DDB)
1393static bt_t *
1394vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr)
1395{
1396	bt_t *bt;
1397
1398	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1399		if (BT_ISSPAN_P(bt)) {
1400			continue;
1401		}
1402		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1403			return bt;
1404		}
1405	}
1406
1407	return NULL;
1408}
1409
1410void
1411vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...))
1412{
1413	vmem_t *vm;
1414
1415	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1416		bt_t *bt;
1417
1418		bt = vmem_whatis_lookup(vm, addr);
1419		if (bt == NULL) {
1420			continue;
1421		}
1422		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1423		    (void *)addr, (void *)bt->bt_start,
1424		    (vmem_size_t)(addr - bt->bt_start), vm->vm_name,
1425		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1426	}
1427}
1428
1429void
1430vmem_printall(const char *modif, int (*pr)(const char *, ...))
1431{
1432	const vmem_t *vm;
1433
1434	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1435		vmem_dump(vm, pr);
1436	}
1437}
1438
1439void
1440vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...))
1441{
1442	const vmem_t *vm = (const void *)addr;
1443
1444	vmem_dump(vm, pr);
1445}
1446#endif /* defined(DDB) */
1447
1448#define vmem_printf printf
1449
1450#if defined(DIAGNOSTIC)
1451
1452static bool
1453vmem_check_sanity(vmem_t *vm)
1454{
1455	const bt_t *bt, *bt2;
1456
1457	MPASS(vm != NULL);
1458
1459	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1460		if (bt->bt_start > BT_END(bt)) {
1461			printf("corrupted tag\n");
1462			bt_dump(bt, vmem_printf);
1463			return false;
1464		}
1465	}
1466	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1467		TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1468			if (bt == bt2) {
1469				continue;
1470			}
1471			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1472				continue;
1473			}
1474			if (bt->bt_start <= BT_END(bt2) &&
1475			    bt2->bt_start <= BT_END(bt)) {
1476				printf("overwrapped tags\n");
1477				bt_dump(bt, vmem_printf);
1478				bt_dump(bt2, vmem_printf);
1479				return false;
1480			}
1481		}
1482	}
1483
1484	return true;
1485}
1486
1487static void
1488vmem_check(vmem_t *vm)
1489{
1490
1491	if (!vmem_check_sanity(vm)) {
1492		panic("insanity vmem %p", vm);
1493	}
1494}
1495
1496#endif /* defined(DIAGNOSTIC) */
1497