subr_sleepqueue.c revision 296320
1/*-
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * Implementation of sleep queues used to hold queue of threads blocked on
29 * a wait channel.  Sleep queues different from turnstiles in that wait
30 * channels are not owned by anyone, so there is no priority propagation.
31 * Sleep queues can also provide a timeout and can also be interrupted by
32 * signals.  That said, there are several similarities between the turnstile
33 * and sleep queue implementations.  (Note: turnstiles were implemented
34 * first.)  For example, both use a hash table of the same size where each
35 * bucket is referred to as a "chain" that contains both a spin lock and
36 * a linked list of queues.  An individual queue is located by using a hash
37 * to pick a chain, locking the chain, and then walking the chain searching
38 * for the queue.  This means that a wait channel object does not need to
39 * embed it's queue head just as locks do not embed their turnstile queue
40 * head.  Threads also carry around a sleep queue that they lend to the
41 * wait channel when blocking.  Just as in turnstiles, the queue includes
42 * a free list of the sleep queues of other threads blocked on the same
43 * wait channel in the case of multiple waiters.
44 *
45 * Some additional functionality provided by sleep queues include the
46 * ability to set a timeout.  The timeout is managed using a per-thread
47 * callout that resumes a thread if it is asleep.  A thread may also
48 * catch signals while it is asleep (aka an interruptible sleep).  The
49 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
50 * sleep queues also provide some extra assertions.  One is not allowed to
51 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
52 * must consistently use the same lock to synchronize with a wait channel,
53 * though this check is currently only a warning for sleep/wakeup due to
54 * pre-existing abuse of that API.  The same lock must also be held when
55 * awakening threads, though that is currently only enforced for condition
56 * variables.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/subr_sleepqueue.c 296320 2016-03-02 18:46:17Z kib $");
61
62#include "opt_sleepqueue_profiling.h"
63#include "opt_ddb.h"
64#include "opt_sched.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/lock.h>
69#include <sys/kernel.h>
70#include <sys/ktr.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/sbuf.h>
74#include <sys/sched.h>
75#include <sys/sdt.h>
76#include <sys/signalvar.h>
77#include <sys/sleepqueue.h>
78#include <sys/sysctl.h>
79
80#include <vm/uma.h>
81
82#ifdef DDB
83#include <ddb/ddb.h>
84#endif
85
86/*
87 * Constants for the hash table of sleep queue chains.
88 * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
89 */
90#define	SC_TABLESIZE	256			/* Must be power of 2. */
91#define	SC_MASK		(SC_TABLESIZE - 1)
92#define	SC_SHIFT	8
93#define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
94			    SC_MASK)
95#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
96#define NR_SLEEPQS      2
97/*
98 * There two different lists of sleep queues.  Both lists are connected
99 * via the sq_hash entries.  The first list is the sleep queue chain list
100 * that a sleep queue is on when it is attached to a wait channel.  The
101 * second list is the free list hung off of a sleep queue that is attached
102 * to a wait channel.
103 *
104 * Each sleep queue also contains the wait channel it is attached to, the
105 * list of threads blocked on that wait channel, flags specific to the
106 * wait channel, and the lock used to synchronize with a wait channel.
107 * The flags are used to catch mismatches between the various consumers
108 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
109 * The lock pointer is only used when invariants are enabled for various
110 * debugging checks.
111 *
112 * Locking key:
113 *  c - sleep queue chain lock
114 */
115struct sleepqueue {
116	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
117	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
118	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
119	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
120	void	*sq_wchan;			/* (c) Wait channel. */
121	int	sq_type;			/* (c) Queue type. */
122#ifdef INVARIANTS
123	struct lock_object *sq_lock;		/* (c) Associated lock. */
124#endif
125};
126
127struct sleepqueue_chain {
128	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
129	struct mtx sc_lock;			/* Spin lock for this chain. */
130#ifdef SLEEPQUEUE_PROFILING
131	u_int	sc_depth;			/* Length of sc_queues. */
132	u_int	sc_max_depth;			/* Max length of sc_queues. */
133#endif
134};
135
136#ifdef SLEEPQUEUE_PROFILING
137u_int sleepq_max_depth;
138static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
139static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
140    "sleepq chain stats");
141SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
142    0, "maxmimum depth achieved of a single chain");
143
144static void	sleepq_profile(const char *wmesg);
145static int	prof_enabled;
146#endif
147static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
148static uma_zone_t sleepq_zone;
149
150/*
151 * Prototypes for non-exported routines.
152 */
153static int	sleepq_catch_signals(void *wchan, int pri);
154static int	sleepq_check_signals(void);
155static int	sleepq_check_timeout(void);
156#ifdef INVARIANTS
157static void	sleepq_dtor(void *mem, int size, void *arg);
158#endif
159static int	sleepq_init(void *mem, int size, int flags);
160static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
161		    int pri);
162static void	sleepq_switch(void *wchan, int pri);
163static void	sleepq_timeout(void *arg);
164
165SDT_PROBE_DECLARE(sched, , , sleep);
166SDT_PROBE_DECLARE(sched, , , wakeup);
167
168/*
169 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
170 * Note that it must happen after sleepinit() has been fully executed, so
171 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
172 */
173#ifdef SLEEPQUEUE_PROFILING
174static void
175init_sleepqueue_profiling(void)
176{
177	char chain_name[10];
178	struct sysctl_oid *chain_oid;
179	u_int i;
180
181	for (i = 0; i < SC_TABLESIZE; i++) {
182		snprintf(chain_name, sizeof(chain_name), "%u", i);
183		chain_oid = SYSCTL_ADD_NODE(NULL,
184		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
185		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
186		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
187		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
188		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
189		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
190		    NULL);
191	}
192}
193
194SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
195    init_sleepqueue_profiling, NULL);
196#endif
197
198/*
199 * Early initialization of sleep queues that is called from the sleepinit()
200 * SYSINIT.
201 */
202void
203init_sleepqueues(void)
204{
205	int i;
206
207	for (i = 0; i < SC_TABLESIZE; i++) {
208		LIST_INIT(&sleepq_chains[i].sc_queues);
209		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
210		    MTX_SPIN | MTX_RECURSE);
211	}
212	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
213#ifdef INVARIANTS
214	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
215#else
216	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
217#endif
218
219	thread0.td_sleepqueue = sleepq_alloc();
220}
221
222/*
223 * Get a sleep queue for a new thread.
224 */
225struct sleepqueue *
226sleepq_alloc(void)
227{
228
229	return (uma_zalloc(sleepq_zone, M_WAITOK));
230}
231
232/*
233 * Free a sleep queue when a thread is destroyed.
234 */
235void
236sleepq_free(struct sleepqueue *sq)
237{
238
239	uma_zfree(sleepq_zone, sq);
240}
241
242/*
243 * Lock the sleep queue chain associated with the specified wait channel.
244 */
245void
246sleepq_lock(void *wchan)
247{
248	struct sleepqueue_chain *sc;
249
250	sc = SC_LOOKUP(wchan);
251	mtx_lock_spin(&sc->sc_lock);
252}
253
254/*
255 * Look up the sleep queue associated with a given wait channel in the hash
256 * table locking the associated sleep queue chain.  If no queue is found in
257 * the table, NULL is returned.
258 */
259struct sleepqueue *
260sleepq_lookup(void *wchan)
261{
262	struct sleepqueue_chain *sc;
263	struct sleepqueue *sq;
264
265	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
266	sc = SC_LOOKUP(wchan);
267	mtx_assert(&sc->sc_lock, MA_OWNED);
268	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
269		if (sq->sq_wchan == wchan)
270			return (sq);
271	return (NULL);
272}
273
274/*
275 * Unlock the sleep queue chain associated with a given wait channel.
276 */
277void
278sleepq_release(void *wchan)
279{
280	struct sleepqueue_chain *sc;
281
282	sc = SC_LOOKUP(wchan);
283	mtx_unlock_spin(&sc->sc_lock);
284}
285
286/*
287 * Places the current thread on the sleep queue for the specified wait
288 * channel.  If INVARIANTS is enabled, then it associates the passed in
289 * lock with the sleepq to make sure it is held when that sleep queue is
290 * woken up.
291 */
292void
293sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
294    int queue)
295{
296	struct sleepqueue_chain *sc;
297	struct sleepqueue *sq;
298	struct thread *td;
299
300	td = curthread;
301	sc = SC_LOOKUP(wchan);
302	mtx_assert(&sc->sc_lock, MA_OWNED);
303	MPASS(td->td_sleepqueue != NULL);
304	MPASS(wchan != NULL);
305	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
306
307	/* If this thread is not allowed to sleep, die a horrible death. */
308	KASSERT(td->td_no_sleeping == 0,
309	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
310	    __func__, td, wchan));
311
312	/* Look up the sleep queue associated with the wait channel 'wchan'. */
313	sq = sleepq_lookup(wchan);
314
315	/*
316	 * If the wait channel does not already have a sleep queue, use
317	 * this thread's sleep queue.  Otherwise, insert the current thread
318	 * into the sleep queue already in use by this wait channel.
319	 */
320	if (sq == NULL) {
321#ifdef INVARIANTS
322		int i;
323
324		sq = td->td_sleepqueue;
325		for (i = 0; i < NR_SLEEPQS; i++) {
326			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
327			    ("thread's sleep queue %d is not empty", i));
328			KASSERT(sq->sq_blockedcnt[i] == 0,
329			    ("thread's sleep queue %d count mismatches", i));
330		}
331		KASSERT(LIST_EMPTY(&sq->sq_free),
332		    ("thread's sleep queue has a non-empty free list"));
333		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
334		sq->sq_lock = lock;
335#endif
336#ifdef SLEEPQUEUE_PROFILING
337		sc->sc_depth++;
338		if (sc->sc_depth > sc->sc_max_depth) {
339			sc->sc_max_depth = sc->sc_depth;
340			if (sc->sc_max_depth > sleepq_max_depth)
341				sleepq_max_depth = sc->sc_max_depth;
342		}
343#endif
344		sq = td->td_sleepqueue;
345		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
346		sq->sq_wchan = wchan;
347		sq->sq_type = flags & SLEEPQ_TYPE;
348	} else {
349		MPASS(wchan == sq->sq_wchan);
350		MPASS(lock == sq->sq_lock);
351		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
352		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
353	}
354	thread_lock(td);
355	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
356	sq->sq_blockedcnt[queue]++;
357	td->td_sleepqueue = NULL;
358	td->td_sqqueue = queue;
359	td->td_wchan = wchan;
360	td->td_wmesg = wmesg;
361	if (flags & SLEEPQ_INTERRUPTIBLE) {
362		td->td_flags |= TDF_SINTR;
363		td->td_flags &= ~TDF_SLEEPABORT;
364	}
365	thread_unlock(td);
366}
367
368/*
369 * Sets a timeout that will remove the current thread from the specified
370 * sleep queue after timo ticks if the thread has not already been awakened.
371 */
372void
373sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
374    int flags)
375{
376	struct sleepqueue_chain *sc;
377	struct thread *td;
378
379	td = curthread;
380	sc = SC_LOOKUP(wchan);
381	mtx_assert(&sc->sc_lock, MA_OWNED);
382	MPASS(TD_ON_SLEEPQ(td));
383	MPASS(td->td_sleepqueue == NULL);
384	MPASS(wchan != NULL);
385	callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
386	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
387}
388
389/*
390 * Return the number of actual sleepers for the specified queue.
391 */
392u_int
393sleepq_sleepcnt(void *wchan, int queue)
394{
395	struct sleepqueue *sq;
396
397	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
398	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
399	sq = sleepq_lookup(wchan);
400	if (sq == NULL)
401		return (0);
402	return (sq->sq_blockedcnt[queue]);
403}
404
405/*
406 * Marks the pending sleep of the current thread as interruptible and
407 * makes an initial check for pending signals before putting a thread
408 * to sleep. Enters and exits with the thread lock held.  Thread lock
409 * may have transitioned from the sleepq lock to a run lock.
410 */
411static int
412sleepq_catch_signals(void *wchan, int pri)
413{
414	struct sleepqueue_chain *sc;
415	struct sleepqueue *sq;
416	struct thread *td;
417	struct proc *p;
418	struct sigacts *ps;
419	int sig, ret;
420
421	td = curthread;
422	p = curproc;
423	sc = SC_LOOKUP(wchan);
424	mtx_assert(&sc->sc_lock, MA_OWNED);
425	MPASS(wchan != NULL);
426	if ((td->td_pflags & TDP_WAKEUP) != 0) {
427		td->td_pflags &= ~TDP_WAKEUP;
428		ret = EINTR;
429		thread_lock(td);
430		goto out;
431	}
432
433	/*
434	 * See if there are any pending signals for this thread.  If not
435	 * we can switch immediately.  Otherwise do the signal processing
436	 * directly.
437	 */
438	thread_lock(td);
439	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
440		sleepq_switch(wchan, pri);
441		return (0);
442	}
443	thread_unlock(td);
444	mtx_unlock_spin(&sc->sc_lock);
445	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
446		(void *)td, (long)p->p_pid, td->td_name);
447	PROC_LOCK(p);
448	ps = p->p_sigacts;
449	mtx_lock(&ps->ps_mtx);
450	sig = cursig(td);
451	if (sig == 0) {
452		mtx_unlock(&ps->ps_mtx);
453		ret = thread_suspend_check(1);
454		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
455	} else {
456		if (SIGISMEMBER(ps->ps_sigintr, sig))
457			ret = EINTR;
458		else
459			ret = ERESTART;
460		mtx_unlock(&ps->ps_mtx);
461	}
462	/*
463	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
464	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
465	 * thread_lock() are currently held in tdsendsignal().
466	 */
467	PROC_SLOCK(p);
468	mtx_lock_spin(&sc->sc_lock);
469	PROC_UNLOCK(p);
470	thread_lock(td);
471	PROC_SUNLOCK(p);
472	if (ret == 0) {
473		sleepq_switch(wchan, pri);
474		return (0);
475	}
476out:
477	/*
478	 * There were pending signals and this thread is still
479	 * on the sleep queue, remove it from the sleep queue.
480	 */
481	if (TD_ON_SLEEPQ(td)) {
482		sq = sleepq_lookup(wchan);
483		if (sleepq_resume_thread(sq, td, 0)) {
484#ifdef INVARIANTS
485			/*
486			 * This thread hasn't gone to sleep yet, so it
487			 * should not be swapped out.
488			 */
489			panic("not waking up swapper");
490#endif
491		}
492	}
493	mtx_unlock_spin(&sc->sc_lock);
494	MPASS(td->td_lock != &sc->sc_lock);
495	return (ret);
496}
497
498/*
499 * Switches to another thread if we are still asleep on a sleep queue.
500 * Returns with thread lock.
501 */
502static void
503sleepq_switch(void *wchan, int pri)
504{
505	struct sleepqueue_chain *sc;
506	struct sleepqueue *sq;
507	struct thread *td;
508
509	td = curthread;
510	sc = SC_LOOKUP(wchan);
511	mtx_assert(&sc->sc_lock, MA_OWNED);
512	THREAD_LOCK_ASSERT(td, MA_OWNED);
513
514	/*
515	 * If we have a sleep queue, then we've already been woken up, so
516	 * just return.
517	 */
518	if (td->td_sleepqueue != NULL) {
519		mtx_unlock_spin(&sc->sc_lock);
520		return;
521	}
522
523	/*
524	 * If TDF_TIMEOUT is set, then our sleep has been timed out
525	 * already but we are still on the sleep queue, so dequeue the
526	 * thread and return.
527	 */
528	if (td->td_flags & TDF_TIMEOUT) {
529		MPASS(TD_ON_SLEEPQ(td));
530		sq = sleepq_lookup(wchan);
531		if (sleepq_resume_thread(sq, td, 0)) {
532#ifdef INVARIANTS
533			/*
534			 * This thread hasn't gone to sleep yet, so it
535			 * should not be swapped out.
536			 */
537			panic("not waking up swapper");
538#endif
539		}
540		mtx_unlock_spin(&sc->sc_lock);
541		return;
542	}
543#ifdef SLEEPQUEUE_PROFILING
544	if (prof_enabled)
545		sleepq_profile(td->td_wmesg);
546#endif
547	MPASS(td->td_sleepqueue == NULL);
548	sched_sleep(td, pri);
549	thread_lock_set(td, &sc->sc_lock);
550	SDT_PROBE0(sched, , , sleep);
551	TD_SET_SLEEPING(td);
552	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
553	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
554	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
555	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
556}
557
558/*
559 * Check to see if we timed out.
560 */
561static int
562sleepq_check_timeout(void)
563{
564	struct thread *td;
565
566	td = curthread;
567	THREAD_LOCK_ASSERT(td, MA_OWNED);
568
569	/*
570	 * If TDF_TIMEOUT is set, we timed out.
571	 */
572	if (td->td_flags & TDF_TIMEOUT) {
573		td->td_flags &= ~TDF_TIMEOUT;
574		return (EWOULDBLOCK);
575	}
576
577	/*
578	 * If TDF_TIMOFAIL is set, the timeout ran after we had
579	 * already been woken up.
580	 */
581	if (td->td_flags & TDF_TIMOFAIL)
582		td->td_flags &= ~TDF_TIMOFAIL;
583
584	/*
585	 * If callout_stop() fails, then the timeout is running on
586	 * another CPU, so synchronize with it to avoid having it
587	 * accidentally wake up a subsequent sleep.
588	 */
589	else if (_callout_stop_safe(&td->td_slpcallout, CS_MIGRBLOCK, NULL)
590	    == 0) {
591		td->td_flags |= TDF_TIMEOUT;
592		TD_SET_SLEEPING(td);
593		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
594	}
595	return (0);
596}
597
598/*
599 * Check to see if we were awoken by a signal.
600 */
601static int
602sleepq_check_signals(void)
603{
604	struct thread *td;
605
606	td = curthread;
607	THREAD_LOCK_ASSERT(td, MA_OWNED);
608
609	/* We are no longer in an interruptible sleep. */
610	if (td->td_flags & TDF_SINTR)
611		td->td_flags &= ~TDF_SINTR;
612
613	if (td->td_flags & TDF_SLEEPABORT) {
614		td->td_flags &= ~TDF_SLEEPABORT;
615		return (td->td_intrval);
616	}
617
618	return (0);
619}
620
621/*
622 * Block the current thread until it is awakened from its sleep queue.
623 */
624void
625sleepq_wait(void *wchan, int pri)
626{
627	struct thread *td;
628
629	td = curthread;
630	MPASS(!(td->td_flags & TDF_SINTR));
631	thread_lock(td);
632	sleepq_switch(wchan, pri);
633	thread_unlock(td);
634}
635
636/*
637 * Block the current thread until it is awakened from its sleep queue
638 * or it is interrupted by a signal.
639 */
640int
641sleepq_wait_sig(void *wchan, int pri)
642{
643	int rcatch;
644	int rval;
645
646	rcatch = sleepq_catch_signals(wchan, pri);
647	rval = sleepq_check_signals();
648	thread_unlock(curthread);
649	if (rcatch)
650		return (rcatch);
651	return (rval);
652}
653
654/*
655 * Block the current thread until it is awakened from its sleep queue
656 * or it times out while waiting.
657 */
658int
659sleepq_timedwait(void *wchan, int pri)
660{
661	struct thread *td;
662	int rval;
663
664	td = curthread;
665	MPASS(!(td->td_flags & TDF_SINTR));
666	thread_lock(td);
667	sleepq_switch(wchan, pri);
668	rval = sleepq_check_timeout();
669	thread_unlock(td);
670
671	return (rval);
672}
673
674/*
675 * Block the current thread until it is awakened from its sleep queue,
676 * it is interrupted by a signal, or it times out waiting to be awakened.
677 */
678int
679sleepq_timedwait_sig(void *wchan, int pri)
680{
681	int rcatch, rvalt, rvals;
682
683	rcatch = sleepq_catch_signals(wchan, pri);
684	rvalt = sleepq_check_timeout();
685	rvals = sleepq_check_signals();
686	thread_unlock(curthread);
687	if (rcatch)
688		return (rcatch);
689	if (rvals)
690		return (rvals);
691	return (rvalt);
692}
693
694/*
695 * Returns the type of sleepqueue given a waitchannel.
696 */
697int
698sleepq_type(void *wchan)
699{
700	struct sleepqueue *sq;
701	int type;
702
703	MPASS(wchan != NULL);
704
705	sleepq_lock(wchan);
706	sq = sleepq_lookup(wchan);
707	if (sq == NULL) {
708		sleepq_release(wchan);
709		return (-1);
710	}
711	type = sq->sq_type;
712	sleepq_release(wchan);
713	return (type);
714}
715
716/*
717 * Removes a thread from a sleep queue and makes it
718 * runnable.
719 */
720static int
721sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
722{
723	struct sleepqueue_chain *sc;
724
725	MPASS(td != NULL);
726	MPASS(sq->sq_wchan != NULL);
727	MPASS(td->td_wchan == sq->sq_wchan);
728	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
729	THREAD_LOCK_ASSERT(td, MA_OWNED);
730	sc = SC_LOOKUP(sq->sq_wchan);
731	mtx_assert(&sc->sc_lock, MA_OWNED);
732
733	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
734
735	/* Remove the thread from the queue. */
736	sq->sq_blockedcnt[td->td_sqqueue]--;
737	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
738
739	/*
740	 * Get a sleep queue for this thread.  If this is the last waiter,
741	 * use the queue itself and take it out of the chain, otherwise,
742	 * remove a queue from the free list.
743	 */
744	if (LIST_EMPTY(&sq->sq_free)) {
745		td->td_sleepqueue = sq;
746#ifdef INVARIANTS
747		sq->sq_wchan = NULL;
748#endif
749#ifdef SLEEPQUEUE_PROFILING
750		sc->sc_depth--;
751#endif
752	} else
753		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
754	LIST_REMOVE(td->td_sleepqueue, sq_hash);
755
756	td->td_wmesg = NULL;
757	td->td_wchan = NULL;
758	td->td_flags &= ~TDF_SINTR;
759
760	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
761	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
762
763	/* Adjust priority if requested. */
764	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
765	if (pri != 0 && td->td_priority > pri &&
766	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
767		sched_prio(td, pri);
768
769	/*
770	 * Note that thread td might not be sleeping if it is running
771	 * sleepq_catch_signals() on another CPU or is blocked on its
772	 * proc lock to check signals.  There's no need to mark the
773	 * thread runnable in that case.
774	 */
775	if (TD_IS_SLEEPING(td)) {
776		TD_CLR_SLEEPING(td);
777		return (setrunnable(td));
778	}
779	return (0);
780}
781
782#ifdef INVARIANTS
783/*
784 * UMA zone item deallocator.
785 */
786static void
787sleepq_dtor(void *mem, int size, void *arg)
788{
789	struct sleepqueue *sq;
790	int i;
791
792	sq = mem;
793	for (i = 0; i < NR_SLEEPQS; i++) {
794		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
795		MPASS(sq->sq_blockedcnt[i] == 0);
796	}
797}
798#endif
799
800/*
801 * UMA zone item initializer.
802 */
803static int
804sleepq_init(void *mem, int size, int flags)
805{
806	struct sleepqueue *sq;
807	int i;
808
809	bzero(mem, size);
810	sq = mem;
811	for (i = 0; i < NR_SLEEPQS; i++) {
812		TAILQ_INIT(&sq->sq_blocked[i]);
813		sq->sq_blockedcnt[i] = 0;
814	}
815	LIST_INIT(&sq->sq_free);
816	return (0);
817}
818
819/*
820 * Find the highest priority thread sleeping on a wait channel and resume it.
821 */
822int
823sleepq_signal(void *wchan, int flags, int pri, int queue)
824{
825	struct sleepqueue *sq;
826	struct thread *td, *besttd;
827	int wakeup_swapper;
828
829	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
830	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
831	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
832	sq = sleepq_lookup(wchan);
833	if (sq == NULL)
834		return (0);
835	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
836	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
837
838	/*
839	 * Find the highest priority thread on the queue.  If there is a
840	 * tie, use the thread that first appears in the queue as it has
841	 * been sleeping the longest since threads are always added to
842	 * the tail of sleep queues.
843	 */
844	besttd = NULL;
845	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
846		if (besttd == NULL || td->td_priority < besttd->td_priority)
847			besttd = td;
848	}
849	MPASS(besttd != NULL);
850	thread_lock(besttd);
851	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
852	thread_unlock(besttd);
853	return (wakeup_swapper);
854}
855
856/*
857 * Resume all threads sleeping on a specified wait channel.
858 */
859int
860sleepq_broadcast(void *wchan, int flags, int pri, int queue)
861{
862	struct sleepqueue *sq;
863	struct thread *td, *tdn;
864	int wakeup_swapper;
865
866	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
867	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
868	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
869	sq = sleepq_lookup(wchan);
870	if (sq == NULL)
871		return (0);
872	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
873	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
874
875	/* Resume all blocked threads on the sleep queue. */
876	wakeup_swapper = 0;
877	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
878		thread_lock(td);
879		if (sleepq_resume_thread(sq, td, pri))
880			wakeup_swapper = 1;
881		thread_unlock(td);
882	}
883	return (wakeup_swapper);
884}
885
886/*
887 * Time sleeping threads out.  When the timeout expires, the thread is
888 * removed from the sleep queue and made runnable if it is still asleep.
889 */
890static void
891sleepq_timeout(void *arg)
892{
893	struct sleepqueue_chain *sc;
894	struct sleepqueue *sq;
895	struct thread *td;
896	void *wchan;
897	int wakeup_swapper;
898
899	td = arg;
900	wakeup_swapper = 0;
901	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
902	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
903
904	/*
905	 * First, see if the thread is asleep and get the wait channel if
906	 * it is.
907	 */
908	thread_lock(td);
909	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
910		wchan = td->td_wchan;
911		sc = SC_LOOKUP(wchan);
912		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
913		sq = sleepq_lookup(wchan);
914		MPASS(sq != NULL);
915		td->td_flags |= TDF_TIMEOUT;
916		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
917		thread_unlock(td);
918		if (wakeup_swapper)
919			kick_proc0();
920		return;
921	}
922
923	/*
924	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
925	 * can either be on another CPU in between sleepq_add() and
926	 * one of the sleepq_*wait*() routines or it can be in
927	 * sleepq_catch_signals().
928	 */
929	if (TD_ON_SLEEPQ(td)) {
930		td->td_flags |= TDF_TIMEOUT;
931		thread_unlock(td);
932		return;
933	}
934
935	/*
936	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
937	 * then the other thread has already yielded to us, so clear
938	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
939	 * we know that the other thread is not on a sleep queue, but it
940	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
941	 * to let it know that the timeout has already run and doesn't
942	 * need to be canceled.
943	 */
944	if (td->td_flags & TDF_TIMEOUT) {
945		MPASS(TD_IS_SLEEPING(td));
946		td->td_flags &= ~TDF_TIMEOUT;
947		TD_CLR_SLEEPING(td);
948		wakeup_swapper = setrunnable(td);
949	} else
950		td->td_flags |= TDF_TIMOFAIL;
951	thread_unlock(td);
952	if (wakeup_swapper)
953		kick_proc0();
954}
955
956/*
957 * Resumes a specific thread from the sleep queue associated with a specific
958 * wait channel if it is on that queue.
959 */
960void
961sleepq_remove(struct thread *td, void *wchan)
962{
963	struct sleepqueue *sq;
964	int wakeup_swapper;
965
966	/*
967	 * Look up the sleep queue for this wait channel, then re-check
968	 * that the thread is asleep on that channel, if it is not, then
969	 * bail.
970	 */
971	MPASS(wchan != NULL);
972	sleepq_lock(wchan);
973	sq = sleepq_lookup(wchan);
974	/*
975	 * We can not lock the thread here as it may be sleeping on a
976	 * different sleepq.  However, holding the sleepq lock for this
977	 * wchan can guarantee that we do not miss a wakeup for this
978	 * channel.  The asserts below will catch any false positives.
979	 */
980	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
981		sleepq_release(wchan);
982		return;
983	}
984	/* Thread is asleep on sleep queue sq, so wake it up. */
985	thread_lock(td);
986	MPASS(sq != NULL);
987	MPASS(td->td_wchan == wchan);
988	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
989	thread_unlock(td);
990	sleepq_release(wchan);
991	if (wakeup_swapper)
992		kick_proc0();
993}
994
995/*
996 * Abort a thread as if an interrupt had occurred.  Only abort
997 * interruptible waits (unfortunately it isn't safe to abort others).
998 */
999int
1000sleepq_abort(struct thread *td, int intrval)
1001{
1002	struct sleepqueue *sq;
1003	void *wchan;
1004
1005	THREAD_LOCK_ASSERT(td, MA_OWNED);
1006	MPASS(TD_ON_SLEEPQ(td));
1007	MPASS(td->td_flags & TDF_SINTR);
1008	MPASS(intrval == EINTR || intrval == ERESTART);
1009
1010	/*
1011	 * If the TDF_TIMEOUT flag is set, just leave. A
1012	 * timeout is scheduled anyhow.
1013	 */
1014	if (td->td_flags & TDF_TIMEOUT)
1015		return (0);
1016
1017	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1018	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1019	td->td_intrval = intrval;
1020	td->td_flags |= TDF_SLEEPABORT;
1021	/*
1022	 * If the thread has not slept yet it will find the signal in
1023	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1024	 * we have to do it here.
1025	 */
1026	if (!TD_IS_SLEEPING(td))
1027		return (0);
1028	wchan = td->td_wchan;
1029	MPASS(wchan != NULL);
1030	sq = sleepq_lookup(wchan);
1031	MPASS(sq != NULL);
1032
1033	/* Thread is asleep on sleep queue sq, so wake it up. */
1034	return (sleepq_resume_thread(sq, td, 0));
1035}
1036
1037#ifdef SLEEPQUEUE_PROFILING
1038#define	SLEEPQ_PROF_LOCATIONS	1024
1039#define	SLEEPQ_SBUFSIZE		512
1040struct sleepq_prof {
1041	LIST_ENTRY(sleepq_prof) sp_link;
1042	const char	*sp_wmesg;
1043	long		sp_count;
1044};
1045
1046LIST_HEAD(sqphead, sleepq_prof);
1047
1048struct sqphead sleepq_prof_free;
1049struct sqphead sleepq_hash[SC_TABLESIZE];
1050static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1051static struct mtx sleepq_prof_lock;
1052MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1053
1054static void
1055sleepq_profile(const char *wmesg)
1056{
1057	struct sleepq_prof *sp;
1058
1059	mtx_lock_spin(&sleepq_prof_lock);
1060	if (prof_enabled == 0)
1061		goto unlock;
1062	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1063		if (sp->sp_wmesg == wmesg)
1064			goto done;
1065	sp = LIST_FIRST(&sleepq_prof_free);
1066	if (sp == NULL)
1067		goto unlock;
1068	sp->sp_wmesg = wmesg;
1069	LIST_REMOVE(sp, sp_link);
1070	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1071done:
1072	sp->sp_count++;
1073unlock:
1074	mtx_unlock_spin(&sleepq_prof_lock);
1075	return;
1076}
1077
1078static void
1079sleepq_prof_reset(void)
1080{
1081	struct sleepq_prof *sp;
1082	int enabled;
1083	int i;
1084
1085	mtx_lock_spin(&sleepq_prof_lock);
1086	enabled = prof_enabled;
1087	prof_enabled = 0;
1088	for (i = 0; i < SC_TABLESIZE; i++)
1089		LIST_INIT(&sleepq_hash[i]);
1090	LIST_INIT(&sleepq_prof_free);
1091	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1092		sp = &sleepq_profent[i];
1093		sp->sp_wmesg = NULL;
1094		sp->sp_count = 0;
1095		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1096	}
1097	prof_enabled = enabled;
1098	mtx_unlock_spin(&sleepq_prof_lock);
1099}
1100
1101static int
1102enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1103{
1104	int error, v;
1105
1106	v = prof_enabled;
1107	error = sysctl_handle_int(oidp, &v, v, req);
1108	if (error)
1109		return (error);
1110	if (req->newptr == NULL)
1111		return (error);
1112	if (v == prof_enabled)
1113		return (0);
1114	if (v == 1)
1115		sleepq_prof_reset();
1116	mtx_lock_spin(&sleepq_prof_lock);
1117	prof_enabled = !!v;
1118	mtx_unlock_spin(&sleepq_prof_lock);
1119
1120	return (0);
1121}
1122
1123static int
1124reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1125{
1126	int error, v;
1127
1128	v = 0;
1129	error = sysctl_handle_int(oidp, &v, 0, req);
1130	if (error)
1131		return (error);
1132	if (req->newptr == NULL)
1133		return (error);
1134	if (v == 0)
1135		return (0);
1136	sleepq_prof_reset();
1137
1138	return (0);
1139}
1140
1141static int
1142dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1143{
1144	struct sleepq_prof *sp;
1145	struct sbuf *sb;
1146	int enabled;
1147	int error;
1148	int i;
1149
1150	error = sysctl_wire_old_buffer(req, 0);
1151	if (error != 0)
1152		return (error);
1153	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1154	sbuf_printf(sb, "\nwmesg\tcount\n");
1155	enabled = prof_enabled;
1156	mtx_lock_spin(&sleepq_prof_lock);
1157	prof_enabled = 0;
1158	mtx_unlock_spin(&sleepq_prof_lock);
1159	for (i = 0; i < SC_TABLESIZE; i++) {
1160		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1161			sbuf_printf(sb, "%s\t%ld\n",
1162			    sp->sp_wmesg, sp->sp_count);
1163		}
1164	}
1165	mtx_lock_spin(&sleepq_prof_lock);
1166	prof_enabled = enabled;
1167	mtx_unlock_spin(&sleepq_prof_lock);
1168
1169	error = sbuf_finish(sb);
1170	sbuf_delete(sb);
1171	return (error);
1172}
1173
1174SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1175    NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1176SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1177    NULL, 0, reset_sleepq_prof_stats, "I",
1178    "Reset sleepqueue profiling statistics");
1179SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1180    NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1181#endif
1182
1183#ifdef DDB
1184DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1185{
1186	struct sleepqueue_chain *sc;
1187	struct sleepqueue *sq;
1188#ifdef INVARIANTS
1189	struct lock_object *lock;
1190#endif
1191	struct thread *td;
1192	void *wchan;
1193	int i;
1194
1195	if (!have_addr)
1196		return;
1197
1198	/*
1199	 * First, see if there is an active sleep queue for the wait channel
1200	 * indicated by the address.
1201	 */
1202	wchan = (void *)addr;
1203	sc = SC_LOOKUP(wchan);
1204	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1205		if (sq->sq_wchan == wchan)
1206			goto found;
1207
1208	/*
1209	 * Second, see if there is an active sleep queue at the address
1210	 * indicated.
1211	 */
1212	for (i = 0; i < SC_TABLESIZE; i++)
1213		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1214			if (sq == (struct sleepqueue *)addr)
1215				goto found;
1216		}
1217
1218	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1219	return;
1220found:
1221	db_printf("Wait channel: %p\n", sq->sq_wchan);
1222	db_printf("Queue type: %d\n", sq->sq_type);
1223#ifdef INVARIANTS
1224	if (sq->sq_lock) {
1225		lock = sq->sq_lock;
1226		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1227		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1228	}
1229#endif
1230	db_printf("Blocked threads:\n");
1231	for (i = 0; i < NR_SLEEPQS; i++) {
1232		db_printf("\nQueue[%d]:\n", i);
1233		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1234			db_printf("\tempty\n");
1235		else
1236			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1237				      td_slpq) {
1238				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1239					  td->td_tid, td->td_proc->p_pid,
1240					  td->td_name);
1241			}
1242		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1243	}
1244}
1245
1246/* Alias 'show sleepqueue' to 'show sleepq'. */
1247DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1248#endif
1249