sched_ule.c revision 279349
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 279349 2015-02-27 02:56:58Z imp $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_sched.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/limits.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtx.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int				dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#define	KTR_ULE	0
81
82#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
83#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
84#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
85
86/*
87 * Thread scheduler specific section.  All fields are protected
88 * by the thread lock.
89 */
90struct td_sched {
91	struct runq	*ts_runq;	/* Run-queue we're queued on. */
92	short		ts_flags;	/* TSF_* flags. */
93	int		ts_cpu;		/* CPU that we have affinity for. */
94	int		ts_rltick;	/* Real last tick, for affinity. */
95	int		ts_slice;	/* Ticks of slice remaining. */
96	u_int		ts_slptime;	/* Number of ticks we vol. slept */
97	u_int		ts_runtime;	/* Number of ticks we were running */
98	int		ts_ltick;	/* Last tick that we were running on */
99	int		ts_ftick;	/* First tick that we were running on */
100	int		ts_ticks;	/* Tick count */
101#ifdef KTR
102	char		ts_name[TS_NAME_LEN];
103#endif
104};
105/* flags kept in ts_flags */
106#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
107#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
108
109static struct td_sched td_sched0;
110
111#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
112#define	THREAD_CAN_SCHED(td, cpu)	\
113    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
114
115/*
116 * Priority ranges used for interactive and non-interactive timeshare
117 * threads.  The timeshare priorities are split up into four ranges.
118 * The first range handles interactive threads.  The last three ranges
119 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
120 * ranges supporting nice values.
121 */
122#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
123#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
124#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
125
126#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
127#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
128#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
129#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
130
131/*
132 * Cpu percentage computation macros and defines.
133 *
134 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
135 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
136 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
137 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
138 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
139 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
140 */
141#define	SCHED_TICK_SECS		10
142#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
143#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
144#define	SCHED_TICK_SHIFT	10
145#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
146#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
147
148/*
149 * These macros determine priorities for non-interactive threads.  They are
150 * assigned a priority based on their recent cpu utilization as expressed
151 * by the ratio of ticks to the tick total.  NHALF priorities at the start
152 * and end of the MIN to MAX timeshare range are only reachable with negative
153 * or positive nice respectively.
154 *
155 * PRI_RANGE:	Priority range for utilization dependent priorities.
156 * PRI_NRESV:	Number of nice values.
157 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
158 * PRI_NICE:	Determines the part of the priority inherited from nice.
159 */
160#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
161#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
162#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
163#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
164#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
165#define	SCHED_PRI_TICKS(ts)						\
166    (SCHED_TICK_HZ((ts)) /						\
167    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
168#define	SCHED_PRI_NICE(nice)	(nice)
169
170/*
171 * These determine the interactivity of a process.  Interactivity differs from
172 * cpu utilization in that it expresses the voluntary time slept vs time ran
173 * while cpu utilization includes all time not running.  This more accurately
174 * models the intent of the thread.
175 *
176 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
177 *		before throttling back.
178 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
179 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
180 * INTERACT_THRESH:	Threshold for placement on the current runq.
181 */
182#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
183#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
184#define	SCHED_INTERACT_MAX	(100)
185#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
186#define	SCHED_INTERACT_THRESH	(30)
187
188/*
189 * These parameters determine the slice behavior for batch work.
190 */
191#define	SCHED_SLICE_DEFAULT_DIVISOR	10	/* ~94 ms, 12 stathz ticks. */
192#define	SCHED_SLICE_MIN_DIVISOR		6	/* DEFAULT/MIN = ~16 ms. */
193
194/* Flags kept in td_flags. */
195#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
196
197/*
198 * tickincr:		Converts a stathz tick into a hz domain scaled by
199 *			the shift factor.  Without the shift the error rate
200 *			due to rounding would be unacceptably high.
201 * realstathz:		stathz is sometimes 0 and run off of hz.
202 * sched_slice:		Runtime of each thread before rescheduling.
203 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
204 */
205static int sched_interact = SCHED_INTERACT_THRESH;
206static int tickincr = 8 << SCHED_TICK_SHIFT;
207static int realstathz = 127;	/* reset during boot. */
208static int sched_slice = 10;	/* reset during boot. */
209static int sched_slice_min = 1;	/* reset during boot. */
210#ifdef PREEMPTION
211#ifdef FULL_PREEMPTION
212static int preempt_thresh = PRI_MAX_IDLE;
213#else
214static int preempt_thresh = PRI_MIN_KERN;
215#endif
216#else
217static int preempt_thresh = 0;
218#endif
219static int static_boost = PRI_MIN_BATCH;
220static int sched_idlespins = 10000;
221static int sched_idlespinthresh = -1;
222
223/*
224 * tdq - per processor runqs and statistics.  All fields are protected by the
225 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
226 * locking in sched_pickcpu();
227 */
228struct tdq {
229	/*
230	 * Ordered to improve efficiency of cpu_search() and switch().
231	 * tdq_lock is padded to avoid false sharing with tdq_load and
232	 * tdq_cpu_idle.
233	 */
234	struct mtx_padalign tdq_lock;		/* run queue lock. */
235	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
236	volatile int	tdq_load;		/* Aggregate load. */
237	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
238	int		tdq_sysload;		/* For loadavg, !ITHD load. */
239	int		tdq_transferable;	/* Transferable thread count. */
240	short		tdq_switchcnt;		/* Switches this tick. */
241	short		tdq_oldswitchcnt;	/* Switches last tick. */
242	u_char		tdq_lowpri;		/* Lowest priority thread. */
243	u_char		tdq_ipipending;		/* IPI pending. */
244	u_char		tdq_idx;		/* Current insert index. */
245	u_char		tdq_ridx;		/* Current removal index. */
246	struct runq	tdq_realtime;		/* real-time run queue. */
247	struct runq	tdq_timeshare;		/* timeshare run queue. */
248	struct runq	tdq_idle;		/* Queue of IDLE threads. */
249	char		tdq_name[TDQ_NAME_LEN];
250#ifdef KTR
251	char		tdq_loadname[TDQ_LOADNAME_LEN];
252#endif
253} __aligned(64);
254
255/* Idle thread states and config. */
256#define	TDQ_RUNNING	1
257#define	TDQ_IDLE	2
258
259#ifdef SMP
260struct cpu_group *cpu_top;		/* CPU topology */
261
262#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
263#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
264
265/*
266 * Run-time tunables.
267 */
268static int rebalance = 1;
269static int balance_interval = 128;	/* Default set in sched_initticks(). */
270static int affinity;
271static int steal_idle = 1;
272static int steal_thresh = 2;
273
274/*
275 * One thread queue per processor.
276 */
277static struct tdq	tdq_cpu[MAXCPU];
278static struct tdq	*balance_tdq;
279static int balance_ticks;
280static DPCPU_DEFINE(uint32_t, randomval);
281
282#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
283#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
284#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
285#else	/* !SMP */
286static struct tdq	tdq_cpu;
287
288#define	TDQ_ID(x)	(0)
289#define	TDQ_SELF()	(&tdq_cpu)
290#define	TDQ_CPU(x)	(&tdq_cpu)
291#endif
292
293#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
294#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
295#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
296#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
297#define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
298
299static void sched_priority(struct thread *);
300static void sched_thread_priority(struct thread *, u_char);
301static int sched_interact_score(struct thread *);
302static void sched_interact_update(struct thread *);
303static void sched_interact_fork(struct thread *);
304static void sched_pctcpu_update(struct td_sched *, int);
305static int sched_random(void);
306
307/* Operations on per processor queues */
308static struct thread *tdq_choose(struct tdq *);
309static void tdq_setup(struct tdq *);
310static void tdq_load_add(struct tdq *, struct thread *);
311static void tdq_load_rem(struct tdq *, struct thread *);
312static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
313static __inline void tdq_runq_rem(struct tdq *, struct thread *);
314static inline int sched_shouldpreempt(int, int, int);
315void tdq_print(int cpu);
316static void runq_print(struct runq *rq);
317static void tdq_add(struct tdq *, struct thread *, int);
318#ifdef SMP
319static int tdq_move(struct tdq *, struct tdq *);
320static int tdq_idled(struct tdq *);
321static void tdq_notify(struct tdq *, struct thread *);
322static struct thread *tdq_steal(struct tdq *, int);
323static struct thread *runq_steal(struct runq *, int);
324static int sched_pickcpu(struct thread *, int);
325static void sched_balance(void);
326static int sched_balance_pair(struct tdq *, struct tdq *);
327static inline struct tdq *sched_setcpu(struct thread *, int, int);
328static inline void thread_unblock_switch(struct thread *, struct mtx *);
329static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
330static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
331static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
332    struct cpu_group *cg, int indent);
333#endif
334
335static void sched_setup(void *dummy);
336SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
337
338static void sched_initticks(void *dummy);
339SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
340    NULL);
341
342SDT_PROVIDER_DEFINE(sched);
343
344SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
345    "struct proc *", "uint8_t");
346SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
347    "struct proc *", "void *");
348SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
349    "struct proc *", "void *", "int");
350SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
351    "struct proc *", "uint8_t", "struct thread *");
352SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
353SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
354    "struct proc *");
355SDT_PROBE_DEFINE(sched, , , on__cpu);
356SDT_PROBE_DEFINE(sched, , , remain__cpu);
357SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
358    "struct proc *");
359
360/*
361 * We need some randomness. Implement the classic Linear Congruential
362 * generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
363 * m = 2^32, a = 69069 and c = 5. This is signed so that we can get
364 * both positive and negative values from it by shifting the value
365 * right.
366 */
367static int sched_random()
368{
369        int rnd, *rndptr;
370        rndptr = DPCPU_PTR(randomval);
371        rnd = *rndptr * 69069 + 5;
372        *rndptr = rnd;
373        return(rnd);
374}
375
376/*
377 * Print the threads waiting on a run-queue.
378 */
379static void
380runq_print(struct runq *rq)
381{
382	struct rqhead *rqh;
383	struct thread *td;
384	int pri;
385	int j;
386	int i;
387
388	for (i = 0; i < RQB_LEN; i++) {
389		printf("\t\trunq bits %d 0x%zx\n",
390		    i, rq->rq_status.rqb_bits[i]);
391		for (j = 0; j < RQB_BPW; j++)
392			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
393				pri = j + (i << RQB_L2BPW);
394				rqh = &rq->rq_queues[pri];
395				TAILQ_FOREACH(td, rqh, td_runq) {
396					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
397					    td, td->td_name, td->td_priority,
398					    td->td_rqindex, pri);
399				}
400			}
401	}
402}
403
404/*
405 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
406 */
407void
408tdq_print(int cpu)
409{
410	struct tdq *tdq;
411
412	tdq = TDQ_CPU(cpu);
413
414	printf("tdq %d:\n", TDQ_ID(tdq));
415	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
416	printf("\tLock name:      %s\n", tdq->tdq_name);
417	printf("\tload:           %d\n", tdq->tdq_load);
418	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
419	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
420	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
421	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
422	printf("\tload transferable: %d\n", tdq->tdq_transferable);
423	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
424	printf("\trealtime runq:\n");
425	runq_print(&tdq->tdq_realtime);
426	printf("\ttimeshare runq:\n");
427	runq_print(&tdq->tdq_timeshare);
428	printf("\tidle runq:\n");
429	runq_print(&tdq->tdq_idle);
430}
431
432static inline int
433sched_shouldpreempt(int pri, int cpri, int remote)
434{
435	/*
436	 * If the new priority is not better than the current priority there is
437	 * nothing to do.
438	 */
439	if (pri >= cpri)
440		return (0);
441	/*
442	 * Always preempt idle.
443	 */
444	if (cpri >= PRI_MIN_IDLE)
445		return (1);
446	/*
447	 * If preemption is disabled don't preempt others.
448	 */
449	if (preempt_thresh == 0)
450		return (0);
451	/*
452	 * Preempt if we exceed the threshold.
453	 */
454	if (pri <= preempt_thresh)
455		return (1);
456	/*
457	 * If we're interactive or better and there is non-interactive
458	 * or worse running preempt only remote processors.
459	 */
460	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
461		return (1);
462	return (0);
463}
464
465/*
466 * Add a thread to the actual run-queue.  Keeps transferable counts up to
467 * date with what is actually on the run-queue.  Selects the correct
468 * queue position for timeshare threads.
469 */
470static __inline void
471tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
472{
473	struct td_sched *ts;
474	u_char pri;
475
476	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
477	THREAD_LOCK_ASSERT(td, MA_OWNED);
478
479	pri = td->td_priority;
480	ts = td->td_sched;
481	TD_SET_RUNQ(td);
482	if (THREAD_CAN_MIGRATE(td)) {
483		tdq->tdq_transferable++;
484		ts->ts_flags |= TSF_XFERABLE;
485	}
486	if (pri < PRI_MIN_BATCH) {
487		ts->ts_runq = &tdq->tdq_realtime;
488	} else if (pri <= PRI_MAX_BATCH) {
489		ts->ts_runq = &tdq->tdq_timeshare;
490		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
491			("Invalid priority %d on timeshare runq", pri));
492		/*
493		 * This queue contains only priorities between MIN and MAX
494		 * realtime.  Use the whole queue to represent these values.
495		 */
496		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
497			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
498			pri = (pri + tdq->tdq_idx) % RQ_NQS;
499			/*
500			 * This effectively shortens the queue by one so we
501			 * can have a one slot difference between idx and
502			 * ridx while we wait for threads to drain.
503			 */
504			if (tdq->tdq_ridx != tdq->tdq_idx &&
505			    pri == tdq->tdq_ridx)
506				pri = (unsigned char)(pri - 1) % RQ_NQS;
507		} else
508			pri = tdq->tdq_ridx;
509		runq_add_pri(ts->ts_runq, td, pri, flags);
510		return;
511	} else
512		ts->ts_runq = &tdq->tdq_idle;
513	runq_add(ts->ts_runq, td, flags);
514}
515
516/*
517 * Remove a thread from a run-queue.  This typically happens when a thread
518 * is selected to run.  Running threads are not on the queue and the
519 * transferable count does not reflect them.
520 */
521static __inline void
522tdq_runq_rem(struct tdq *tdq, struct thread *td)
523{
524	struct td_sched *ts;
525
526	ts = td->td_sched;
527	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
528	KASSERT(ts->ts_runq != NULL,
529	    ("tdq_runq_remove: thread %p null ts_runq", td));
530	if (ts->ts_flags & TSF_XFERABLE) {
531		tdq->tdq_transferable--;
532		ts->ts_flags &= ~TSF_XFERABLE;
533	}
534	if (ts->ts_runq == &tdq->tdq_timeshare) {
535		if (tdq->tdq_idx != tdq->tdq_ridx)
536			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
537		else
538			runq_remove_idx(ts->ts_runq, td, NULL);
539	} else
540		runq_remove(ts->ts_runq, td);
541}
542
543/*
544 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
545 * for this thread to the referenced thread queue.
546 */
547static void
548tdq_load_add(struct tdq *tdq, struct thread *td)
549{
550
551	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
552	THREAD_LOCK_ASSERT(td, MA_OWNED);
553
554	tdq->tdq_load++;
555	if ((td->td_flags & TDF_NOLOAD) == 0)
556		tdq->tdq_sysload++;
557	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
558	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
559}
560
561/*
562 * Remove the load from a thread that is transitioning to a sleep state or
563 * exiting.
564 */
565static void
566tdq_load_rem(struct tdq *tdq, struct thread *td)
567{
568
569	THREAD_LOCK_ASSERT(td, MA_OWNED);
570	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
571	KASSERT(tdq->tdq_load != 0,
572	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
573
574	tdq->tdq_load--;
575	if ((td->td_flags & TDF_NOLOAD) == 0)
576		tdq->tdq_sysload--;
577	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
578	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
579}
580
581/*
582 * Bound timeshare latency by decreasing slice size as load increases.  We
583 * consider the maximum latency as the sum of the threads waiting to run
584 * aside from curthread and target no more than sched_slice latency but
585 * no less than sched_slice_min runtime.
586 */
587static inline int
588tdq_slice(struct tdq *tdq)
589{
590	int load;
591
592	/*
593	 * It is safe to use sys_load here because this is called from
594	 * contexts where timeshare threads are running and so there
595	 * cannot be higher priority load in the system.
596	 */
597	load = tdq->tdq_sysload - 1;
598	if (load >= SCHED_SLICE_MIN_DIVISOR)
599		return (sched_slice_min);
600	if (load <= 1)
601		return (sched_slice);
602	return (sched_slice / load);
603}
604
605/*
606 * Set lowpri to its exact value by searching the run-queue and
607 * evaluating curthread.  curthread may be passed as an optimization.
608 */
609static void
610tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
611{
612	struct thread *td;
613
614	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
615	if (ctd == NULL)
616		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
617	td = tdq_choose(tdq);
618	if (td == NULL || td->td_priority > ctd->td_priority)
619		tdq->tdq_lowpri = ctd->td_priority;
620	else
621		tdq->tdq_lowpri = td->td_priority;
622}
623
624#ifdef SMP
625struct cpu_search {
626	cpuset_t cs_mask;
627	u_int	cs_prefer;
628	int	cs_pri;		/* Min priority for low. */
629	int	cs_limit;	/* Max load for low, min load for high. */
630	int	cs_cpu;
631	int	cs_load;
632};
633
634#define	CPU_SEARCH_LOWEST	0x1
635#define	CPU_SEARCH_HIGHEST	0x2
636#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
637
638#define	CPUSET_FOREACH(cpu, mask)				\
639	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
640		if (CPU_ISSET(cpu, &mask))
641
642static __always_inline int cpu_search(const struct cpu_group *cg,
643    struct cpu_search *low, struct cpu_search *high, const int match);
644int __noinline cpu_search_lowest(const struct cpu_group *cg,
645    struct cpu_search *low);
646int __noinline cpu_search_highest(const struct cpu_group *cg,
647    struct cpu_search *high);
648int __noinline cpu_search_both(const struct cpu_group *cg,
649    struct cpu_search *low, struct cpu_search *high);
650
651/*
652 * Search the tree of cpu_groups for the lowest or highest loaded cpu
653 * according to the match argument.  This routine actually compares the
654 * load on all paths through the tree and finds the least loaded cpu on
655 * the least loaded path, which may differ from the least loaded cpu in
656 * the system.  This balances work among caches and busses.
657 *
658 * This inline is instantiated in three forms below using constants for the
659 * match argument.  It is reduced to the minimum set for each case.  It is
660 * also recursive to the depth of the tree.
661 */
662static __always_inline int
663cpu_search(const struct cpu_group *cg, struct cpu_search *low,
664    struct cpu_search *high, const int match)
665{
666	struct cpu_search lgroup;
667	struct cpu_search hgroup;
668	cpuset_t cpumask;
669	struct cpu_group *child;
670	struct tdq *tdq;
671	int cpu, i, hload, lload, load, total, rnd;
672
673	total = 0;
674	cpumask = cg->cg_mask;
675	if (match & CPU_SEARCH_LOWEST) {
676		lload = INT_MAX;
677		lgroup = *low;
678	}
679	if (match & CPU_SEARCH_HIGHEST) {
680		hload = INT_MIN;
681		hgroup = *high;
682	}
683
684	/* Iterate through the child CPU groups and then remaining CPUs. */
685	for (i = cg->cg_children, cpu = mp_maxid; ; ) {
686		if (i == 0) {
687#ifdef HAVE_INLINE_FFSL
688			cpu = CPU_FFS(&cpumask) - 1;
689#else
690			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
691				cpu--;
692#endif
693			if (cpu < 0)
694				break;
695			child = NULL;
696		} else
697			child = &cg->cg_child[i - 1];
698
699		if (match & CPU_SEARCH_LOWEST)
700			lgroup.cs_cpu = -1;
701		if (match & CPU_SEARCH_HIGHEST)
702			hgroup.cs_cpu = -1;
703		if (child) {			/* Handle child CPU group. */
704			CPU_NAND(&cpumask, &child->cg_mask);
705			switch (match) {
706			case CPU_SEARCH_LOWEST:
707				load = cpu_search_lowest(child, &lgroup);
708				break;
709			case CPU_SEARCH_HIGHEST:
710				load = cpu_search_highest(child, &hgroup);
711				break;
712			case CPU_SEARCH_BOTH:
713				load = cpu_search_both(child, &lgroup, &hgroup);
714				break;
715			}
716		} else {			/* Handle child CPU. */
717			CPU_CLR(cpu, &cpumask);
718			tdq = TDQ_CPU(cpu);
719			load = tdq->tdq_load * 256;
720			rnd = sched_random() >> 26;	/* -32 to +31 */
721			if (match & CPU_SEARCH_LOWEST) {
722				if (cpu == low->cs_prefer)
723					load -= 64;
724				/* If that CPU is allowed and get data. */
725				if (tdq->tdq_lowpri > lgroup.cs_pri &&
726				    tdq->tdq_load <= lgroup.cs_limit &&
727				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
728					lgroup.cs_cpu = cpu;
729					lgroup.cs_load = load - rnd;
730				}
731			}
732			if (match & CPU_SEARCH_HIGHEST)
733				if (tdq->tdq_load >= hgroup.cs_limit &&
734				    tdq->tdq_transferable &&
735				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
736					hgroup.cs_cpu = cpu;
737					hgroup.cs_load = load - rnd;
738				}
739		}
740		total += load;
741
742		/* We have info about child item. Compare it. */
743		if (match & CPU_SEARCH_LOWEST) {
744			if (lgroup.cs_cpu >= 0 &&
745			    (load < lload ||
746			     (load == lload && lgroup.cs_load < low->cs_load))) {
747				lload = load;
748				low->cs_cpu = lgroup.cs_cpu;
749				low->cs_load = lgroup.cs_load;
750			}
751		}
752		if (match & CPU_SEARCH_HIGHEST)
753			if (hgroup.cs_cpu >= 0 &&
754			    (load > hload ||
755			     (load == hload && hgroup.cs_load > high->cs_load))) {
756				hload = load;
757				high->cs_cpu = hgroup.cs_cpu;
758				high->cs_load = hgroup.cs_load;
759			}
760		if (child) {
761			i--;
762			if (i == 0 && CPU_EMPTY(&cpumask))
763				break;
764		}
765#ifndef HAVE_INLINE_FFSL
766		else
767			cpu--;
768#endif
769	}
770	return (total);
771}
772
773/*
774 * cpu_search instantiations must pass constants to maintain the inline
775 * optimization.
776 */
777int
778cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
779{
780	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
781}
782
783int
784cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
785{
786	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
787}
788
789int
790cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
791    struct cpu_search *high)
792{
793	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
794}
795
796/*
797 * Find the cpu with the least load via the least loaded path that has a
798 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
799 * acceptable.
800 */
801static inline int
802sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
803    int prefer)
804{
805	struct cpu_search low;
806
807	low.cs_cpu = -1;
808	low.cs_prefer = prefer;
809	low.cs_mask = mask;
810	low.cs_pri = pri;
811	low.cs_limit = maxload;
812	cpu_search_lowest(cg, &low);
813	return low.cs_cpu;
814}
815
816/*
817 * Find the cpu with the highest load via the highest loaded path.
818 */
819static inline int
820sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
821{
822	struct cpu_search high;
823
824	high.cs_cpu = -1;
825	high.cs_mask = mask;
826	high.cs_limit = minload;
827	cpu_search_highest(cg, &high);
828	return high.cs_cpu;
829}
830
831static void
832sched_balance_group(struct cpu_group *cg)
833{
834	cpuset_t hmask, lmask;
835	int high, low, anylow;
836
837	CPU_FILL(&hmask);
838	for (;;) {
839		high = sched_highest(cg, hmask, 1);
840		/* Stop if there is no more CPU with transferrable threads. */
841		if (high == -1)
842			break;
843		CPU_CLR(high, &hmask);
844		CPU_COPY(&hmask, &lmask);
845		/* Stop if there is no more CPU left for low. */
846		if (CPU_EMPTY(&lmask))
847			break;
848		anylow = 1;
849nextlow:
850		low = sched_lowest(cg, lmask, -1,
851		    TDQ_CPU(high)->tdq_load - 1, high);
852		/* Stop if we looked well and found no less loaded CPU. */
853		if (anylow && low == -1)
854			break;
855		/* Go to next high if we found no less loaded CPU. */
856		if (low == -1)
857			continue;
858		/* Transfer thread from high to low. */
859		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
860			/* CPU that got thread can no longer be a donor. */
861			CPU_CLR(low, &hmask);
862		} else {
863			/*
864			 * If failed, then there is no threads on high
865			 * that can run on this low. Drop low from low
866			 * mask and look for different one.
867			 */
868			CPU_CLR(low, &lmask);
869			anylow = 0;
870			goto nextlow;
871		}
872	}
873}
874
875static void
876sched_balance(void)
877{
878	struct tdq *tdq;
879
880	if (smp_started == 0 || rebalance == 0)
881		return;
882
883	balance_ticks = max(balance_interval / 2, 1) +
884            ((sched_random() >> 16) % balance_interval);
885	tdq = TDQ_SELF();
886	TDQ_UNLOCK(tdq);
887	sched_balance_group(cpu_top);
888	TDQ_LOCK(tdq);
889}
890
891/*
892 * Lock two thread queues using their address to maintain lock order.
893 */
894static void
895tdq_lock_pair(struct tdq *one, struct tdq *two)
896{
897	if (one < two) {
898		TDQ_LOCK(one);
899		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
900	} else {
901		TDQ_LOCK(two);
902		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
903	}
904}
905
906/*
907 * Unlock two thread queues.  Order is not important here.
908 */
909static void
910tdq_unlock_pair(struct tdq *one, struct tdq *two)
911{
912	TDQ_UNLOCK(one);
913	TDQ_UNLOCK(two);
914}
915
916/*
917 * Transfer load between two imbalanced thread queues.
918 */
919static int
920sched_balance_pair(struct tdq *high, struct tdq *low)
921{
922	int moved;
923	int cpu;
924
925	tdq_lock_pair(high, low);
926	moved = 0;
927	/*
928	 * Determine what the imbalance is and then adjust that to how many
929	 * threads we actually have to give up (transferable).
930	 */
931	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
932	    (moved = tdq_move(high, low)) > 0) {
933		/*
934		 * In case the target isn't the current cpu IPI it to force a
935		 * reschedule with the new workload.
936		 */
937		cpu = TDQ_ID(low);
938		if (cpu != PCPU_GET(cpuid))
939			ipi_cpu(cpu, IPI_PREEMPT);
940	}
941	tdq_unlock_pair(high, low);
942	return (moved);
943}
944
945/*
946 * Move a thread from one thread queue to another.
947 */
948static int
949tdq_move(struct tdq *from, struct tdq *to)
950{
951	struct td_sched *ts;
952	struct thread *td;
953	struct tdq *tdq;
954	int cpu;
955
956	TDQ_LOCK_ASSERT(from, MA_OWNED);
957	TDQ_LOCK_ASSERT(to, MA_OWNED);
958
959	tdq = from;
960	cpu = TDQ_ID(to);
961	td = tdq_steal(tdq, cpu);
962	if (td == NULL)
963		return (0);
964	ts = td->td_sched;
965	/*
966	 * Although the run queue is locked the thread may be blocked.  Lock
967	 * it to clear this and acquire the run-queue lock.
968	 */
969	thread_lock(td);
970	/* Drop recursive lock on from acquired via thread_lock(). */
971	TDQ_UNLOCK(from);
972	sched_rem(td);
973	ts->ts_cpu = cpu;
974	td->td_lock = TDQ_LOCKPTR(to);
975	tdq_add(to, td, SRQ_YIELDING);
976	return (1);
977}
978
979/*
980 * This tdq has idled.  Try to steal a thread from another cpu and switch
981 * to it.
982 */
983static int
984tdq_idled(struct tdq *tdq)
985{
986	struct cpu_group *cg;
987	struct tdq *steal;
988	cpuset_t mask;
989	int thresh;
990	int cpu;
991
992	if (smp_started == 0 || steal_idle == 0)
993		return (1);
994	CPU_FILL(&mask);
995	CPU_CLR(PCPU_GET(cpuid), &mask);
996	/* We don't want to be preempted while we're iterating. */
997	spinlock_enter();
998	for (cg = tdq->tdq_cg; cg != NULL; ) {
999		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
1000			thresh = steal_thresh;
1001		else
1002			thresh = 1;
1003		cpu = sched_highest(cg, mask, thresh);
1004		if (cpu == -1) {
1005			cg = cg->cg_parent;
1006			continue;
1007		}
1008		steal = TDQ_CPU(cpu);
1009		CPU_CLR(cpu, &mask);
1010		tdq_lock_pair(tdq, steal);
1011		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
1012			tdq_unlock_pair(tdq, steal);
1013			continue;
1014		}
1015		/*
1016		 * If a thread was added while interrupts were disabled don't
1017		 * steal one here.  If we fail to acquire one due to affinity
1018		 * restrictions loop again with this cpu removed from the
1019		 * set.
1020		 */
1021		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
1022			tdq_unlock_pair(tdq, steal);
1023			continue;
1024		}
1025		spinlock_exit();
1026		TDQ_UNLOCK(steal);
1027		mi_switch(SW_VOL | SWT_IDLE, NULL);
1028		thread_unlock(curthread);
1029
1030		return (0);
1031	}
1032	spinlock_exit();
1033	return (1);
1034}
1035
1036/*
1037 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1038 */
1039static void
1040tdq_notify(struct tdq *tdq, struct thread *td)
1041{
1042	struct thread *ctd;
1043	int pri;
1044	int cpu;
1045
1046	if (tdq->tdq_ipipending)
1047		return;
1048	cpu = td->td_sched->ts_cpu;
1049	pri = td->td_priority;
1050	ctd = pcpu_find(cpu)->pc_curthread;
1051	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1052		return;
1053
1054	/*
1055	 * Make sure that our caller's earlier update to tdq_load is
1056	 * globally visible before we read tdq_cpu_idle.  Idle thread
1057	 * accesses both of them without locks, and the order is important.
1058	 */
1059	mb();
1060
1061	if (TD_IS_IDLETHREAD(ctd)) {
1062		/*
1063		 * If the MD code has an idle wakeup routine try that before
1064		 * falling back to IPI.
1065		 */
1066		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1067			return;
1068	}
1069	tdq->tdq_ipipending = 1;
1070	ipi_cpu(cpu, IPI_PREEMPT);
1071}
1072
1073/*
1074 * Steals load from a timeshare queue.  Honors the rotating queue head
1075 * index.
1076 */
1077static struct thread *
1078runq_steal_from(struct runq *rq, int cpu, u_char start)
1079{
1080	struct rqbits *rqb;
1081	struct rqhead *rqh;
1082	struct thread *td, *first;
1083	int bit;
1084	int i;
1085
1086	rqb = &rq->rq_status;
1087	bit = start & (RQB_BPW -1);
1088	first = NULL;
1089again:
1090	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1091		if (rqb->rqb_bits[i] == 0)
1092			continue;
1093		if (bit == 0)
1094			bit = RQB_FFS(rqb->rqb_bits[i]);
1095		for (; bit < RQB_BPW; bit++) {
1096			if ((rqb->rqb_bits[i] & (1ul << bit)) == 0)
1097				continue;
1098			rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)];
1099			TAILQ_FOREACH(td, rqh, td_runq) {
1100				if (first && THREAD_CAN_MIGRATE(td) &&
1101				    THREAD_CAN_SCHED(td, cpu))
1102					return (td);
1103				first = td;
1104			}
1105		}
1106	}
1107	if (start != 0) {
1108		start = 0;
1109		goto again;
1110	}
1111
1112	if (first && THREAD_CAN_MIGRATE(first) &&
1113	    THREAD_CAN_SCHED(first, cpu))
1114		return (first);
1115	return (NULL);
1116}
1117
1118/*
1119 * Steals load from a standard linear queue.
1120 */
1121static struct thread *
1122runq_steal(struct runq *rq, int cpu)
1123{
1124	struct rqhead *rqh;
1125	struct rqbits *rqb;
1126	struct thread *td;
1127	int word;
1128	int bit;
1129
1130	rqb = &rq->rq_status;
1131	for (word = 0; word < RQB_LEN; word++) {
1132		if (rqb->rqb_bits[word] == 0)
1133			continue;
1134		for (bit = 0; bit < RQB_BPW; bit++) {
1135			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1136				continue;
1137			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1138			TAILQ_FOREACH(td, rqh, td_runq)
1139				if (THREAD_CAN_MIGRATE(td) &&
1140				    THREAD_CAN_SCHED(td, cpu))
1141					return (td);
1142		}
1143	}
1144	return (NULL);
1145}
1146
1147/*
1148 * Attempt to steal a thread in priority order from a thread queue.
1149 */
1150static struct thread *
1151tdq_steal(struct tdq *tdq, int cpu)
1152{
1153	struct thread *td;
1154
1155	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1156	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1157		return (td);
1158	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1159	    cpu, tdq->tdq_ridx)) != NULL)
1160		return (td);
1161	return (runq_steal(&tdq->tdq_idle, cpu));
1162}
1163
1164/*
1165 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1166 * current lock and returns with the assigned queue locked.
1167 */
1168static inline struct tdq *
1169sched_setcpu(struct thread *td, int cpu, int flags)
1170{
1171
1172	struct tdq *tdq;
1173
1174	THREAD_LOCK_ASSERT(td, MA_OWNED);
1175	tdq = TDQ_CPU(cpu);
1176	td->td_sched->ts_cpu = cpu;
1177	/*
1178	 * If the lock matches just return the queue.
1179	 */
1180	if (td->td_lock == TDQ_LOCKPTR(tdq))
1181		return (tdq);
1182#ifdef notyet
1183	/*
1184	 * If the thread isn't running its lockptr is a
1185	 * turnstile or a sleepqueue.  We can just lock_set without
1186	 * blocking.
1187	 */
1188	if (TD_CAN_RUN(td)) {
1189		TDQ_LOCK(tdq);
1190		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1191		return (tdq);
1192	}
1193#endif
1194	/*
1195	 * The hard case, migration, we need to block the thread first to
1196	 * prevent order reversals with other cpus locks.
1197	 */
1198	spinlock_enter();
1199	thread_lock_block(td);
1200	TDQ_LOCK(tdq);
1201	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1202	spinlock_exit();
1203	return (tdq);
1204}
1205
1206SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1207SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1208SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1209SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1210SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1211SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1212
1213static int
1214sched_pickcpu(struct thread *td, int flags)
1215{
1216	struct cpu_group *cg, *ccg;
1217	struct td_sched *ts;
1218	struct tdq *tdq;
1219	cpuset_t mask;
1220	int cpu, pri, self;
1221
1222	self = PCPU_GET(cpuid);
1223	ts = td->td_sched;
1224	if (smp_started == 0)
1225		return (self);
1226	/*
1227	 * Don't migrate a running thread from sched_switch().
1228	 */
1229	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1230		return (ts->ts_cpu);
1231	/*
1232	 * Prefer to run interrupt threads on the processors that generate
1233	 * the interrupt.
1234	 */
1235	pri = td->td_priority;
1236	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1237	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1238		SCHED_STAT_INC(pickcpu_intrbind);
1239		ts->ts_cpu = self;
1240		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1241			SCHED_STAT_INC(pickcpu_affinity);
1242			return (ts->ts_cpu);
1243		}
1244	}
1245	/*
1246	 * If the thread can run on the last cpu and the affinity has not
1247	 * expired or it is idle run it there.
1248	 */
1249	tdq = TDQ_CPU(ts->ts_cpu);
1250	cg = tdq->tdq_cg;
1251	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1252	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1253	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1254		if (cg->cg_flags & CG_FLAG_THREAD) {
1255			CPUSET_FOREACH(cpu, cg->cg_mask) {
1256				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1257					break;
1258			}
1259		} else
1260			cpu = INT_MAX;
1261		if (cpu > mp_maxid) {
1262			SCHED_STAT_INC(pickcpu_idle_affinity);
1263			return (ts->ts_cpu);
1264		}
1265	}
1266	/*
1267	 * Search for the last level cache CPU group in the tree.
1268	 * Skip caches with expired affinity time and SMT groups.
1269	 * Affinity to higher level caches will be handled less aggressively.
1270	 */
1271	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1272		if (cg->cg_flags & CG_FLAG_THREAD)
1273			continue;
1274		if (!SCHED_AFFINITY(ts, cg->cg_level))
1275			continue;
1276		ccg = cg;
1277	}
1278	if (ccg != NULL)
1279		cg = ccg;
1280	cpu = -1;
1281	/* Search the group for the less loaded idle CPU we can run now. */
1282	mask = td->td_cpuset->cs_mask;
1283	if (cg != NULL && cg != cpu_top &&
1284	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1285		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1286		    INT_MAX, ts->ts_cpu);
1287	/* Search globally for the less loaded CPU we can run now. */
1288	if (cpu == -1)
1289		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1290	/* Search globally for the less loaded CPU. */
1291	if (cpu == -1)
1292		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1293	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1294	/*
1295	 * Compare the lowest loaded cpu to current cpu.
1296	 */
1297	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1298	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1299	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1300		SCHED_STAT_INC(pickcpu_local);
1301		cpu = self;
1302	} else
1303		SCHED_STAT_INC(pickcpu_lowest);
1304	if (cpu != ts->ts_cpu)
1305		SCHED_STAT_INC(pickcpu_migration);
1306	return (cpu);
1307}
1308#endif
1309
1310/*
1311 * Pick the highest priority task we have and return it.
1312 */
1313static struct thread *
1314tdq_choose(struct tdq *tdq)
1315{
1316	struct thread *td;
1317
1318	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1319	td = runq_choose(&tdq->tdq_realtime);
1320	if (td != NULL)
1321		return (td);
1322	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1323	if (td != NULL) {
1324		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1325		    ("tdq_choose: Invalid priority on timeshare queue %d",
1326		    td->td_priority));
1327		return (td);
1328	}
1329	td = runq_choose(&tdq->tdq_idle);
1330	if (td != NULL) {
1331		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1332		    ("tdq_choose: Invalid priority on idle queue %d",
1333		    td->td_priority));
1334		return (td);
1335	}
1336
1337	return (NULL);
1338}
1339
1340/*
1341 * Initialize a thread queue.
1342 */
1343static void
1344tdq_setup(struct tdq *tdq)
1345{
1346
1347	if (bootverbose)
1348		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1349	runq_init(&tdq->tdq_realtime);
1350	runq_init(&tdq->tdq_timeshare);
1351	runq_init(&tdq->tdq_idle);
1352	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1353	    "sched lock %d", (int)TDQ_ID(tdq));
1354	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1355	    MTX_SPIN | MTX_RECURSE);
1356#ifdef KTR
1357	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1358	    "CPU %d load", (int)TDQ_ID(tdq));
1359#endif
1360}
1361
1362#ifdef SMP
1363static void
1364sched_setup_smp(void)
1365{
1366	struct tdq *tdq;
1367	int i;
1368
1369	cpu_top = smp_topo();
1370	CPU_FOREACH(i) {
1371		tdq = TDQ_CPU(i);
1372		tdq_setup(tdq);
1373		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1374		if (tdq->tdq_cg == NULL)
1375			panic("Can't find cpu group for %d\n", i);
1376	}
1377	balance_tdq = TDQ_SELF();
1378	sched_balance();
1379}
1380#endif
1381
1382/*
1383 * Setup the thread queues and initialize the topology based on MD
1384 * information.
1385 */
1386static void
1387sched_setup(void *dummy)
1388{
1389	struct tdq *tdq;
1390
1391	tdq = TDQ_SELF();
1392#ifdef SMP
1393	sched_setup_smp();
1394#else
1395	tdq_setup(tdq);
1396#endif
1397
1398	/* Add thread0's load since it's running. */
1399	TDQ_LOCK(tdq);
1400	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1401	tdq_load_add(tdq, &thread0);
1402	tdq->tdq_lowpri = thread0.td_priority;
1403	TDQ_UNLOCK(tdq);
1404}
1405
1406/*
1407 * This routine determines time constants after stathz and hz are setup.
1408 */
1409/* ARGSUSED */
1410static void
1411sched_initticks(void *dummy)
1412{
1413	int incr;
1414
1415	realstathz = stathz ? stathz : hz;
1416	sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
1417	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
1418	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1419	    realstathz);
1420
1421	/*
1422	 * tickincr is shifted out by 10 to avoid rounding errors due to
1423	 * hz not being evenly divisible by stathz on all platforms.
1424	 */
1425	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1426	/*
1427	 * This does not work for values of stathz that are more than
1428	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1429	 */
1430	if (incr == 0)
1431		incr = 1;
1432	tickincr = incr;
1433#ifdef SMP
1434	/*
1435	 * Set the default balance interval now that we know
1436	 * what realstathz is.
1437	 */
1438	balance_interval = realstathz;
1439	affinity = SCHED_AFFINITY_DEFAULT;
1440#endif
1441	if (sched_idlespinthresh < 0)
1442		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1443}
1444
1445
1446/*
1447 * This is the core of the interactivity algorithm.  Determines a score based
1448 * on past behavior.  It is the ratio of sleep time to run time scaled to
1449 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1450 * differs from the cpu usage because it does not account for time spent
1451 * waiting on a run-queue.  Would be prettier if we had floating point.
1452 */
1453static int
1454sched_interact_score(struct thread *td)
1455{
1456	struct td_sched *ts;
1457	int div;
1458
1459	ts = td->td_sched;
1460	/*
1461	 * The score is only needed if this is likely to be an interactive
1462	 * task.  Don't go through the expense of computing it if there's
1463	 * no chance.
1464	 */
1465	if (sched_interact <= SCHED_INTERACT_HALF &&
1466		ts->ts_runtime >= ts->ts_slptime)
1467			return (SCHED_INTERACT_HALF);
1468
1469	if (ts->ts_runtime > ts->ts_slptime) {
1470		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1471		return (SCHED_INTERACT_HALF +
1472		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1473	}
1474	if (ts->ts_slptime > ts->ts_runtime) {
1475		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1476		return (ts->ts_runtime / div);
1477	}
1478	/* runtime == slptime */
1479	if (ts->ts_runtime)
1480		return (SCHED_INTERACT_HALF);
1481
1482	/*
1483	 * This can happen if slptime and runtime are 0.
1484	 */
1485	return (0);
1486
1487}
1488
1489/*
1490 * Scale the scheduling priority according to the "interactivity" of this
1491 * process.
1492 */
1493static void
1494sched_priority(struct thread *td)
1495{
1496	int score;
1497	int pri;
1498
1499	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1500		return;
1501	/*
1502	 * If the score is interactive we place the thread in the realtime
1503	 * queue with a priority that is less than kernel and interrupt
1504	 * priorities.  These threads are not subject to nice restrictions.
1505	 *
1506	 * Scores greater than this are placed on the normal timeshare queue
1507	 * where the priority is partially decided by the most recent cpu
1508	 * utilization and the rest is decided by nice value.
1509	 *
1510	 * The nice value of the process has a linear effect on the calculated
1511	 * score.  Negative nice values make it easier for a thread to be
1512	 * considered interactive.
1513	 */
1514	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1515	if (score < sched_interact) {
1516		pri = PRI_MIN_INTERACT;
1517		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1518		    sched_interact) * score;
1519		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1520		    ("sched_priority: invalid interactive priority %d score %d",
1521		    pri, score));
1522	} else {
1523		pri = SCHED_PRI_MIN;
1524		if (td->td_sched->ts_ticks)
1525			pri += min(SCHED_PRI_TICKS(td->td_sched),
1526			    SCHED_PRI_RANGE - 1);
1527		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1528		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1529		    ("sched_priority: invalid priority %d: nice %d, "
1530		    "ticks %d ftick %d ltick %d tick pri %d",
1531		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1532		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1533		    SCHED_PRI_TICKS(td->td_sched)));
1534	}
1535	sched_user_prio(td, pri);
1536
1537	return;
1538}
1539
1540/*
1541 * This routine enforces a maximum limit on the amount of scheduling history
1542 * kept.  It is called after either the slptime or runtime is adjusted.  This
1543 * function is ugly due to integer math.
1544 */
1545static void
1546sched_interact_update(struct thread *td)
1547{
1548	struct td_sched *ts;
1549	u_int sum;
1550
1551	ts = td->td_sched;
1552	sum = ts->ts_runtime + ts->ts_slptime;
1553	if (sum < SCHED_SLP_RUN_MAX)
1554		return;
1555	/*
1556	 * This only happens from two places:
1557	 * 1) We have added an unusual amount of run time from fork_exit.
1558	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1559	 */
1560	if (sum > SCHED_SLP_RUN_MAX * 2) {
1561		if (ts->ts_runtime > ts->ts_slptime) {
1562			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1563			ts->ts_slptime = 1;
1564		} else {
1565			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1566			ts->ts_runtime = 1;
1567		}
1568		return;
1569	}
1570	/*
1571	 * If we have exceeded by more than 1/5th then the algorithm below
1572	 * will not bring us back into range.  Dividing by two here forces
1573	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1574	 */
1575	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1576		ts->ts_runtime /= 2;
1577		ts->ts_slptime /= 2;
1578		return;
1579	}
1580	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1581	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1582}
1583
1584/*
1585 * Scale back the interactivity history when a child thread is created.  The
1586 * history is inherited from the parent but the thread may behave totally
1587 * differently.  For example, a shell spawning a compiler process.  We want
1588 * to learn that the compiler is behaving badly very quickly.
1589 */
1590static void
1591sched_interact_fork(struct thread *td)
1592{
1593	int ratio;
1594	int sum;
1595
1596	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1597	if (sum > SCHED_SLP_RUN_FORK) {
1598		ratio = sum / SCHED_SLP_RUN_FORK;
1599		td->td_sched->ts_runtime /= ratio;
1600		td->td_sched->ts_slptime /= ratio;
1601	}
1602}
1603
1604/*
1605 * Called from proc0_init() to setup the scheduler fields.
1606 */
1607void
1608schedinit(void)
1609{
1610
1611	/*
1612	 * Set up the scheduler specific parts of proc0.
1613	 */
1614	proc0.p_sched = NULL; /* XXX */
1615	thread0.td_sched = &td_sched0;
1616	td_sched0.ts_ltick = ticks;
1617	td_sched0.ts_ftick = ticks;
1618	td_sched0.ts_slice = 0;
1619}
1620
1621/*
1622 * This is only somewhat accurate since given many processes of the same
1623 * priority they will switch when their slices run out, which will be
1624 * at most sched_slice stathz ticks.
1625 */
1626int
1627sched_rr_interval(void)
1628{
1629
1630	/* Convert sched_slice from stathz to hz. */
1631	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1632}
1633
1634/*
1635 * Update the percent cpu tracking information when it is requested or
1636 * the total history exceeds the maximum.  We keep a sliding history of
1637 * tick counts that slowly decays.  This is less precise than the 4BSD
1638 * mechanism since it happens with less regular and frequent events.
1639 */
1640static void
1641sched_pctcpu_update(struct td_sched *ts, int run)
1642{
1643	int t = ticks;
1644
1645	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1646		ts->ts_ticks = 0;
1647		ts->ts_ftick = t - SCHED_TICK_TARG;
1648	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1649		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1650		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1651		ts->ts_ftick = t - SCHED_TICK_TARG;
1652	}
1653	if (run)
1654		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1655	ts->ts_ltick = t;
1656}
1657
1658/*
1659 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1660 * if necessary.  This is the back-end for several priority related
1661 * functions.
1662 */
1663static void
1664sched_thread_priority(struct thread *td, u_char prio)
1665{
1666	struct td_sched *ts;
1667	struct tdq *tdq;
1668	int oldpri;
1669
1670	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1671	    "prio:%d", td->td_priority, "new prio:%d", prio,
1672	    KTR_ATTR_LINKED, sched_tdname(curthread));
1673	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
1674	if (td != curthread && prio < td->td_priority) {
1675		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1676		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1677		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1678		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
1679		    curthread);
1680	}
1681	ts = td->td_sched;
1682	THREAD_LOCK_ASSERT(td, MA_OWNED);
1683	if (td->td_priority == prio)
1684		return;
1685	/*
1686	 * If the priority has been elevated due to priority
1687	 * propagation, we may have to move ourselves to a new
1688	 * queue.  This could be optimized to not re-add in some
1689	 * cases.
1690	 */
1691	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1692		sched_rem(td);
1693		td->td_priority = prio;
1694		sched_add(td, SRQ_BORROWING);
1695		return;
1696	}
1697	/*
1698	 * If the thread is currently running we may have to adjust the lowpri
1699	 * information so other cpus are aware of our current priority.
1700	 */
1701	if (TD_IS_RUNNING(td)) {
1702		tdq = TDQ_CPU(ts->ts_cpu);
1703		oldpri = td->td_priority;
1704		td->td_priority = prio;
1705		if (prio < tdq->tdq_lowpri)
1706			tdq->tdq_lowpri = prio;
1707		else if (tdq->tdq_lowpri == oldpri)
1708			tdq_setlowpri(tdq, td);
1709		return;
1710	}
1711	td->td_priority = prio;
1712}
1713
1714/*
1715 * Update a thread's priority when it is lent another thread's
1716 * priority.
1717 */
1718void
1719sched_lend_prio(struct thread *td, u_char prio)
1720{
1721
1722	td->td_flags |= TDF_BORROWING;
1723	sched_thread_priority(td, prio);
1724}
1725
1726/*
1727 * Restore a thread's priority when priority propagation is
1728 * over.  The prio argument is the minimum priority the thread
1729 * needs to have to satisfy other possible priority lending
1730 * requests.  If the thread's regular priority is less
1731 * important than prio, the thread will keep a priority boost
1732 * of prio.
1733 */
1734void
1735sched_unlend_prio(struct thread *td, u_char prio)
1736{
1737	u_char base_pri;
1738
1739	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1740	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1741		base_pri = td->td_user_pri;
1742	else
1743		base_pri = td->td_base_pri;
1744	if (prio >= base_pri) {
1745		td->td_flags &= ~TDF_BORROWING;
1746		sched_thread_priority(td, base_pri);
1747	} else
1748		sched_lend_prio(td, prio);
1749}
1750
1751/*
1752 * Standard entry for setting the priority to an absolute value.
1753 */
1754void
1755sched_prio(struct thread *td, u_char prio)
1756{
1757	u_char oldprio;
1758
1759	/* First, update the base priority. */
1760	td->td_base_pri = prio;
1761
1762	/*
1763	 * If the thread is borrowing another thread's priority, don't
1764	 * ever lower the priority.
1765	 */
1766	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1767		return;
1768
1769	/* Change the real priority. */
1770	oldprio = td->td_priority;
1771	sched_thread_priority(td, prio);
1772
1773	/*
1774	 * If the thread is on a turnstile, then let the turnstile update
1775	 * its state.
1776	 */
1777	if (TD_ON_LOCK(td) && oldprio != prio)
1778		turnstile_adjust(td, oldprio);
1779}
1780
1781/*
1782 * Set the base user priority, does not effect current running priority.
1783 */
1784void
1785sched_user_prio(struct thread *td, u_char prio)
1786{
1787
1788	td->td_base_user_pri = prio;
1789	if (td->td_lend_user_pri <= prio)
1790		return;
1791	td->td_user_pri = prio;
1792}
1793
1794void
1795sched_lend_user_prio(struct thread *td, u_char prio)
1796{
1797
1798	THREAD_LOCK_ASSERT(td, MA_OWNED);
1799	td->td_lend_user_pri = prio;
1800	td->td_user_pri = min(prio, td->td_base_user_pri);
1801	if (td->td_priority > td->td_user_pri)
1802		sched_prio(td, td->td_user_pri);
1803	else if (td->td_priority != td->td_user_pri)
1804		td->td_flags |= TDF_NEEDRESCHED;
1805}
1806
1807/*
1808 * Handle migration from sched_switch().  This happens only for
1809 * cpu binding.
1810 */
1811static struct mtx *
1812sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1813{
1814	struct tdq *tdn;
1815
1816	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1817#ifdef SMP
1818	tdq_load_rem(tdq, td);
1819	/*
1820	 * Do the lock dance required to avoid LOR.  We grab an extra
1821	 * spinlock nesting to prevent preemption while we're
1822	 * not holding either run-queue lock.
1823	 */
1824	spinlock_enter();
1825	thread_lock_block(td);	/* This releases the lock on tdq. */
1826
1827	/*
1828	 * Acquire both run-queue locks before placing the thread on the new
1829	 * run-queue to avoid deadlocks created by placing a thread with a
1830	 * blocked lock on the run-queue of a remote processor.  The deadlock
1831	 * occurs when a third processor attempts to lock the two queues in
1832	 * question while the target processor is spinning with its own
1833	 * run-queue lock held while waiting for the blocked lock to clear.
1834	 */
1835	tdq_lock_pair(tdn, tdq);
1836	tdq_add(tdn, td, flags);
1837	tdq_notify(tdn, td);
1838	TDQ_UNLOCK(tdn);
1839	spinlock_exit();
1840#endif
1841	return (TDQ_LOCKPTR(tdn));
1842}
1843
1844/*
1845 * Variadic version of thread_lock_unblock() that does not assume td_lock
1846 * is blocked.
1847 */
1848static inline void
1849thread_unblock_switch(struct thread *td, struct mtx *mtx)
1850{
1851	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1852	    (uintptr_t)mtx);
1853}
1854
1855/*
1856 * Switch threads.  This function has to handle threads coming in while
1857 * blocked for some reason, running, or idle.  It also must deal with
1858 * migrating a thread from one queue to another as running threads may
1859 * be assigned elsewhere via binding.
1860 */
1861void
1862sched_switch(struct thread *td, struct thread *newtd, int flags)
1863{
1864	struct tdq *tdq;
1865	struct td_sched *ts;
1866	struct mtx *mtx;
1867	int srqflag;
1868	int cpuid, preempted;
1869
1870	THREAD_LOCK_ASSERT(td, MA_OWNED);
1871	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1872
1873	cpuid = PCPU_GET(cpuid);
1874	tdq = TDQ_CPU(cpuid);
1875	ts = td->td_sched;
1876	mtx = td->td_lock;
1877	sched_pctcpu_update(ts, 1);
1878	ts->ts_rltick = ticks;
1879	td->td_lastcpu = td->td_oncpu;
1880	td->td_oncpu = NOCPU;
1881	preempted = !((td->td_flags & TDF_SLICEEND) ||
1882	    (flags & SWT_RELINQUISH));
1883	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1884	td->td_owepreempt = 0;
1885	if (!TD_IS_IDLETHREAD(td))
1886		tdq->tdq_switchcnt++;
1887	/*
1888	 * The lock pointer in an idle thread should never change.  Reset it
1889	 * to CAN_RUN as well.
1890	 */
1891	if (TD_IS_IDLETHREAD(td)) {
1892		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1893		TD_SET_CAN_RUN(td);
1894	} else if (TD_IS_RUNNING(td)) {
1895		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1896		srqflag = preempted ?
1897		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1898		    SRQ_OURSELF|SRQ_YIELDING;
1899#ifdef SMP
1900		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1901			ts->ts_cpu = sched_pickcpu(td, 0);
1902#endif
1903		if (ts->ts_cpu == cpuid)
1904			tdq_runq_add(tdq, td, srqflag);
1905		else {
1906			KASSERT(THREAD_CAN_MIGRATE(td) ||
1907			    (ts->ts_flags & TSF_BOUND) != 0,
1908			    ("Thread %p shouldn't migrate", td));
1909			mtx = sched_switch_migrate(tdq, td, srqflag);
1910		}
1911	} else {
1912		/* This thread must be going to sleep. */
1913		TDQ_LOCK(tdq);
1914		mtx = thread_lock_block(td);
1915		tdq_load_rem(tdq, td);
1916	}
1917	/*
1918	 * We enter here with the thread blocked and assigned to the
1919	 * appropriate cpu run-queue or sleep-queue and with the current
1920	 * thread-queue locked.
1921	 */
1922	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1923	newtd = choosethread();
1924	/*
1925	 * Call the MD code to switch contexts if necessary.
1926	 */
1927	if (td != newtd) {
1928#ifdef	HWPMC_HOOKS
1929		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1930			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1931#endif
1932		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1933		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1934		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1935		sched_pctcpu_update(newtd->td_sched, 0);
1936
1937#ifdef KDTRACE_HOOKS
1938		/*
1939		 * If DTrace has set the active vtime enum to anything
1940		 * other than INACTIVE (0), then it should have set the
1941		 * function to call.
1942		 */
1943		if (dtrace_vtime_active)
1944			(*dtrace_vtime_switch_func)(newtd);
1945#endif
1946
1947		cpu_switch(td, newtd, mtx);
1948		/*
1949		 * We may return from cpu_switch on a different cpu.  However,
1950		 * we always return with td_lock pointing to the current cpu's
1951		 * run queue lock.
1952		 */
1953		cpuid = PCPU_GET(cpuid);
1954		tdq = TDQ_CPU(cpuid);
1955		lock_profile_obtain_lock_success(
1956		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1957
1958		SDT_PROBE0(sched, , , on__cpu);
1959#ifdef	HWPMC_HOOKS
1960		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1961			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1962#endif
1963	} else {
1964		thread_unblock_switch(td, mtx);
1965		SDT_PROBE0(sched, , , remain__cpu);
1966	}
1967	/*
1968	 * Assert that all went well and return.
1969	 */
1970	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1971	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1972	td->td_oncpu = cpuid;
1973}
1974
1975/*
1976 * Adjust thread priorities as a result of a nice request.
1977 */
1978void
1979sched_nice(struct proc *p, int nice)
1980{
1981	struct thread *td;
1982
1983	PROC_LOCK_ASSERT(p, MA_OWNED);
1984
1985	p->p_nice = nice;
1986	FOREACH_THREAD_IN_PROC(p, td) {
1987		thread_lock(td);
1988		sched_priority(td);
1989		sched_prio(td, td->td_base_user_pri);
1990		thread_unlock(td);
1991	}
1992}
1993
1994/*
1995 * Record the sleep time for the interactivity scorer.
1996 */
1997void
1998sched_sleep(struct thread *td, int prio)
1999{
2000
2001	THREAD_LOCK_ASSERT(td, MA_OWNED);
2002
2003	td->td_slptick = ticks;
2004	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
2005		td->td_flags |= TDF_CANSWAP;
2006	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
2007		return;
2008	if (static_boost == 1 && prio)
2009		sched_prio(td, prio);
2010	else if (static_boost && td->td_priority > static_boost)
2011		sched_prio(td, static_boost);
2012}
2013
2014/*
2015 * Schedule a thread to resume execution and record how long it voluntarily
2016 * slept.  We also update the pctcpu, interactivity, and priority.
2017 */
2018void
2019sched_wakeup(struct thread *td)
2020{
2021	struct td_sched *ts;
2022	int slptick;
2023
2024	THREAD_LOCK_ASSERT(td, MA_OWNED);
2025	ts = td->td_sched;
2026	td->td_flags &= ~TDF_CANSWAP;
2027	/*
2028	 * If we slept for more than a tick update our interactivity and
2029	 * priority.
2030	 */
2031	slptick = td->td_slptick;
2032	td->td_slptick = 0;
2033	if (slptick && slptick != ticks) {
2034		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2035		sched_interact_update(td);
2036		sched_pctcpu_update(ts, 0);
2037	}
2038	/*
2039	 * Reset the slice value since we slept and advanced the round-robin.
2040	 */
2041	ts->ts_slice = 0;
2042	sched_add(td, SRQ_BORING);
2043}
2044
2045/*
2046 * Penalize the parent for creating a new child and initialize the child's
2047 * priority.
2048 */
2049void
2050sched_fork(struct thread *td, struct thread *child)
2051{
2052	THREAD_LOCK_ASSERT(td, MA_OWNED);
2053	sched_pctcpu_update(td->td_sched, 1);
2054	sched_fork_thread(td, child);
2055	/*
2056	 * Penalize the parent and child for forking.
2057	 */
2058	sched_interact_fork(child);
2059	sched_priority(child);
2060	td->td_sched->ts_runtime += tickincr;
2061	sched_interact_update(td);
2062	sched_priority(td);
2063}
2064
2065/*
2066 * Fork a new thread, may be within the same process.
2067 */
2068void
2069sched_fork_thread(struct thread *td, struct thread *child)
2070{
2071	struct td_sched *ts;
2072	struct td_sched *ts2;
2073	struct tdq *tdq;
2074
2075	tdq = TDQ_SELF();
2076	THREAD_LOCK_ASSERT(td, MA_OWNED);
2077	/*
2078	 * Initialize child.
2079	 */
2080	ts = td->td_sched;
2081	ts2 = child->td_sched;
2082	child->td_lock = TDQ_LOCKPTR(tdq);
2083	child->td_cpuset = cpuset_ref(td->td_cpuset);
2084	ts2->ts_cpu = ts->ts_cpu;
2085	ts2->ts_flags = 0;
2086	/*
2087	 * Grab our parents cpu estimation information.
2088	 */
2089	ts2->ts_ticks = ts->ts_ticks;
2090	ts2->ts_ltick = ts->ts_ltick;
2091	ts2->ts_ftick = ts->ts_ftick;
2092	/*
2093	 * Do not inherit any borrowed priority from the parent.
2094	 */
2095	child->td_priority = child->td_base_pri;
2096	/*
2097	 * And update interactivity score.
2098	 */
2099	ts2->ts_slptime = ts->ts_slptime;
2100	ts2->ts_runtime = ts->ts_runtime;
2101	/* Attempt to quickly learn interactivity. */
2102	ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
2103#ifdef KTR
2104	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2105#endif
2106}
2107
2108/*
2109 * Adjust the priority class of a thread.
2110 */
2111void
2112sched_class(struct thread *td, int class)
2113{
2114
2115	THREAD_LOCK_ASSERT(td, MA_OWNED);
2116	if (td->td_pri_class == class)
2117		return;
2118	td->td_pri_class = class;
2119}
2120
2121/*
2122 * Return some of the child's priority and interactivity to the parent.
2123 */
2124void
2125sched_exit(struct proc *p, struct thread *child)
2126{
2127	struct thread *td;
2128
2129	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2130	    "prio:%d", child->td_priority);
2131	PROC_LOCK_ASSERT(p, MA_OWNED);
2132	td = FIRST_THREAD_IN_PROC(p);
2133	sched_exit_thread(td, child);
2134}
2135
2136/*
2137 * Penalize another thread for the time spent on this one.  This helps to
2138 * worsen the priority and interactivity of processes which schedule batch
2139 * jobs such as make.  This has little effect on the make process itself but
2140 * causes new processes spawned by it to receive worse scores immediately.
2141 */
2142void
2143sched_exit_thread(struct thread *td, struct thread *child)
2144{
2145
2146	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2147	    "prio:%d", child->td_priority);
2148	/*
2149	 * Give the child's runtime to the parent without returning the
2150	 * sleep time as a penalty to the parent.  This causes shells that
2151	 * launch expensive things to mark their children as expensive.
2152	 */
2153	thread_lock(td);
2154	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2155	sched_interact_update(td);
2156	sched_priority(td);
2157	thread_unlock(td);
2158}
2159
2160void
2161sched_preempt(struct thread *td)
2162{
2163	struct tdq *tdq;
2164
2165	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2166
2167	thread_lock(td);
2168	tdq = TDQ_SELF();
2169	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2170	tdq->tdq_ipipending = 0;
2171	if (td->td_priority > tdq->tdq_lowpri) {
2172		int flags;
2173
2174		flags = SW_INVOL | SW_PREEMPT;
2175		if (td->td_critnest > 1)
2176			td->td_owepreempt = 1;
2177		else if (TD_IS_IDLETHREAD(td))
2178			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2179		else
2180			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2181	}
2182	thread_unlock(td);
2183}
2184
2185/*
2186 * Fix priorities on return to user-space.  Priorities may be elevated due
2187 * to static priorities in msleep() or similar.
2188 */
2189void
2190sched_userret(struct thread *td)
2191{
2192	/*
2193	 * XXX we cheat slightly on the locking here to avoid locking in
2194	 * the usual case.  Setting td_priority here is essentially an
2195	 * incomplete workaround for not setting it properly elsewhere.
2196	 * Now that some interrupt handlers are threads, not setting it
2197	 * properly elsewhere can clobber it in the window between setting
2198	 * it here and returning to user mode, so don't waste time setting
2199	 * it perfectly here.
2200	 */
2201	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2202	    ("thread with borrowed priority returning to userland"));
2203	if (td->td_priority != td->td_user_pri) {
2204		thread_lock(td);
2205		td->td_priority = td->td_user_pri;
2206		td->td_base_pri = td->td_user_pri;
2207		tdq_setlowpri(TDQ_SELF(), td);
2208		thread_unlock(td);
2209        }
2210}
2211
2212/*
2213 * Handle a stathz tick.  This is really only relevant for timeshare
2214 * threads.
2215 */
2216void
2217sched_clock(struct thread *td)
2218{
2219	struct tdq *tdq;
2220	struct td_sched *ts;
2221
2222	THREAD_LOCK_ASSERT(td, MA_OWNED);
2223	tdq = TDQ_SELF();
2224#ifdef SMP
2225	/*
2226	 * We run the long term load balancer infrequently on the first cpu.
2227	 */
2228	if (balance_tdq == tdq) {
2229		if (balance_ticks && --balance_ticks == 0)
2230			sched_balance();
2231	}
2232#endif
2233	/*
2234	 * Save the old switch count so we have a record of the last ticks
2235	 * activity.   Initialize the new switch count based on our load.
2236	 * If there is some activity seed it to reflect that.
2237	 */
2238	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2239	tdq->tdq_switchcnt = tdq->tdq_load;
2240	/*
2241	 * Advance the insert index once for each tick to ensure that all
2242	 * threads get a chance to run.
2243	 */
2244	if (tdq->tdq_idx == tdq->tdq_ridx) {
2245		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2246		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2247			tdq->tdq_ridx = tdq->tdq_idx;
2248	}
2249	ts = td->td_sched;
2250	sched_pctcpu_update(ts, 1);
2251	if (td->td_pri_class & PRI_FIFO_BIT)
2252		return;
2253	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2254		/*
2255		 * We used a tick; charge it to the thread so
2256		 * that we can compute our interactivity.
2257		 */
2258		td->td_sched->ts_runtime += tickincr;
2259		sched_interact_update(td);
2260		sched_priority(td);
2261	}
2262
2263	/*
2264	 * Force a context switch if the current thread has used up a full
2265	 * time slice (default is 100ms).
2266	 */
2267	if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) {
2268		ts->ts_slice = 0;
2269		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2270	}
2271}
2272
2273/*
2274 * Called once per hz tick.
2275 */
2276void
2277sched_tick(int cnt)
2278{
2279
2280}
2281
2282/*
2283 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2284 * cooperative idle threads.
2285 */
2286int
2287sched_runnable(void)
2288{
2289	struct tdq *tdq;
2290	int load;
2291
2292	load = 1;
2293
2294	tdq = TDQ_SELF();
2295	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2296		if (tdq->tdq_load > 0)
2297			goto out;
2298	} else
2299		if (tdq->tdq_load - 1 > 0)
2300			goto out;
2301	load = 0;
2302out:
2303	return (load);
2304}
2305
2306/*
2307 * Choose the highest priority thread to run.  The thread is removed from
2308 * the run-queue while running however the load remains.  For SMP we set
2309 * the tdq in the global idle bitmask if it idles here.
2310 */
2311struct thread *
2312sched_choose(void)
2313{
2314	struct thread *td;
2315	struct tdq *tdq;
2316
2317	tdq = TDQ_SELF();
2318	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2319	td = tdq_choose(tdq);
2320	if (td) {
2321		tdq_runq_rem(tdq, td);
2322		tdq->tdq_lowpri = td->td_priority;
2323		return (td);
2324	}
2325	tdq->tdq_lowpri = PRI_MAX_IDLE;
2326	return (PCPU_GET(idlethread));
2327}
2328
2329/*
2330 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2331 * we always request it once we exit a critical section.
2332 */
2333static inline void
2334sched_setpreempt(struct thread *td)
2335{
2336	struct thread *ctd;
2337	int cpri;
2338	int pri;
2339
2340	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2341
2342	ctd = curthread;
2343	pri = td->td_priority;
2344	cpri = ctd->td_priority;
2345	if (pri < cpri)
2346		ctd->td_flags |= TDF_NEEDRESCHED;
2347	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2348		return;
2349	if (!sched_shouldpreempt(pri, cpri, 0))
2350		return;
2351	ctd->td_owepreempt = 1;
2352}
2353
2354/*
2355 * Add a thread to a thread queue.  Select the appropriate runq and add the
2356 * thread to it.  This is the internal function called when the tdq is
2357 * predetermined.
2358 */
2359void
2360tdq_add(struct tdq *tdq, struct thread *td, int flags)
2361{
2362
2363	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2364	KASSERT((td->td_inhibitors == 0),
2365	    ("sched_add: trying to run inhibited thread"));
2366	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2367	    ("sched_add: bad thread state"));
2368	KASSERT(td->td_flags & TDF_INMEM,
2369	    ("sched_add: thread swapped out"));
2370
2371	if (td->td_priority < tdq->tdq_lowpri)
2372		tdq->tdq_lowpri = td->td_priority;
2373	tdq_runq_add(tdq, td, flags);
2374	tdq_load_add(tdq, td);
2375}
2376
2377/*
2378 * Select the target thread queue and add a thread to it.  Request
2379 * preemption or IPI a remote processor if required.
2380 */
2381void
2382sched_add(struct thread *td, int flags)
2383{
2384	struct tdq *tdq;
2385#ifdef SMP
2386	int cpu;
2387#endif
2388
2389	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2390	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2391	    sched_tdname(curthread));
2392	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2393	    KTR_ATTR_LINKED, sched_tdname(td));
2394	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2395	    flags & SRQ_PREEMPTED);
2396	THREAD_LOCK_ASSERT(td, MA_OWNED);
2397	/*
2398	 * Recalculate the priority before we select the target cpu or
2399	 * run-queue.
2400	 */
2401	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2402		sched_priority(td);
2403#ifdef SMP
2404	/*
2405	 * Pick the destination cpu and if it isn't ours transfer to the
2406	 * target cpu.
2407	 */
2408	cpu = sched_pickcpu(td, flags);
2409	tdq = sched_setcpu(td, cpu, flags);
2410	tdq_add(tdq, td, flags);
2411	if (cpu != PCPU_GET(cpuid)) {
2412		tdq_notify(tdq, td);
2413		return;
2414	}
2415#else
2416	tdq = TDQ_SELF();
2417	TDQ_LOCK(tdq);
2418	/*
2419	 * Now that the thread is moving to the run-queue, set the lock
2420	 * to the scheduler's lock.
2421	 */
2422	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2423	tdq_add(tdq, td, flags);
2424#endif
2425	if (!(flags & SRQ_YIELDING))
2426		sched_setpreempt(td);
2427}
2428
2429/*
2430 * Remove a thread from a run-queue without running it.  This is used
2431 * when we're stealing a thread from a remote queue.  Otherwise all threads
2432 * exit by calling sched_exit_thread() and sched_throw() themselves.
2433 */
2434void
2435sched_rem(struct thread *td)
2436{
2437	struct tdq *tdq;
2438
2439	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2440	    "prio:%d", td->td_priority);
2441	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2442	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2443	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2444	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2445	KASSERT(TD_ON_RUNQ(td),
2446	    ("sched_rem: thread not on run queue"));
2447	tdq_runq_rem(tdq, td);
2448	tdq_load_rem(tdq, td);
2449	TD_SET_CAN_RUN(td);
2450	if (td->td_priority == tdq->tdq_lowpri)
2451		tdq_setlowpri(tdq, NULL);
2452}
2453
2454/*
2455 * Fetch cpu utilization information.  Updates on demand.
2456 */
2457fixpt_t
2458sched_pctcpu(struct thread *td)
2459{
2460	fixpt_t pctcpu;
2461	struct td_sched *ts;
2462
2463	pctcpu = 0;
2464	ts = td->td_sched;
2465	if (ts == NULL)
2466		return (0);
2467
2468	THREAD_LOCK_ASSERT(td, MA_OWNED);
2469	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2470	if (ts->ts_ticks) {
2471		int rtick;
2472
2473		/* How many rtick per second ? */
2474		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2475		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2476	}
2477
2478	return (pctcpu);
2479}
2480
2481/*
2482 * Enforce affinity settings for a thread.  Called after adjustments to
2483 * cpumask.
2484 */
2485void
2486sched_affinity(struct thread *td)
2487{
2488#ifdef SMP
2489	struct td_sched *ts;
2490
2491	THREAD_LOCK_ASSERT(td, MA_OWNED);
2492	ts = td->td_sched;
2493	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2494		return;
2495	if (TD_ON_RUNQ(td)) {
2496		sched_rem(td);
2497		sched_add(td, SRQ_BORING);
2498		return;
2499	}
2500	if (!TD_IS_RUNNING(td))
2501		return;
2502	/*
2503	 * Force a switch before returning to userspace.  If the
2504	 * target thread is not running locally send an ipi to force
2505	 * the issue.
2506	 */
2507	td->td_flags |= TDF_NEEDRESCHED;
2508	if (td != curthread)
2509		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2510#endif
2511}
2512
2513/*
2514 * Bind a thread to a target cpu.
2515 */
2516void
2517sched_bind(struct thread *td, int cpu)
2518{
2519	struct td_sched *ts;
2520
2521	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2522	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2523	ts = td->td_sched;
2524	if (ts->ts_flags & TSF_BOUND)
2525		sched_unbind(td);
2526	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2527	ts->ts_flags |= TSF_BOUND;
2528	sched_pin();
2529	if (PCPU_GET(cpuid) == cpu)
2530		return;
2531	ts->ts_cpu = cpu;
2532	/* When we return from mi_switch we'll be on the correct cpu. */
2533	mi_switch(SW_VOL, NULL);
2534}
2535
2536/*
2537 * Release a bound thread.
2538 */
2539void
2540sched_unbind(struct thread *td)
2541{
2542	struct td_sched *ts;
2543
2544	THREAD_LOCK_ASSERT(td, MA_OWNED);
2545	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2546	ts = td->td_sched;
2547	if ((ts->ts_flags & TSF_BOUND) == 0)
2548		return;
2549	ts->ts_flags &= ~TSF_BOUND;
2550	sched_unpin();
2551}
2552
2553int
2554sched_is_bound(struct thread *td)
2555{
2556	THREAD_LOCK_ASSERT(td, MA_OWNED);
2557	return (td->td_sched->ts_flags & TSF_BOUND);
2558}
2559
2560/*
2561 * Basic yield call.
2562 */
2563void
2564sched_relinquish(struct thread *td)
2565{
2566	thread_lock(td);
2567	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2568	thread_unlock(td);
2569}
2570
2571/*
2572 * Return the total system load.
2573 */
2574int
2575sched_load(void)
2576{
2577#ifdef SMP
2578	int total;
2579	int i;
2580
2581	total = 0;
2582	CPU_FOREACH(i)
2583		total += TDQ_CPU(i)->tdq_sysload;
2584	return (total);
2585#else
2586	return (TDQ_SELF()->tdq_sysload);
2587#endif
2588}
2589
2590int
2591sched_sizeof_proc(void)
2592{
2593	return (sizeof(struct proc));
2594}
2595
2596int
2597sched_sizeof_thread(void)
2598{
2599	return (sizeof(struct thread) + sizeof(struct td_sched));
2600}
2601
2602#ifdef SMP
2603#define	TDQ_IDLESPIN(tdq)						\
2604    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2605#else
2606#define	TDQ_IDLESPIN(tdq)	1
2607#endif
2608
2609/*
2610 * The actual idle process.
2611 */
2612void
2613sched_idletd(void *dummy)
2614{
2615	struct thread *td;
2616	struct tdq *tdq;
2617	int oldswitchcnt, switchcnt;
2618	int i;
2619
2620	mtx_assert(&Giant, MA_NOTOWNED);
2621	td = curthread;
2622	tdq = TDQ_SELF();
2623	THREAD_NO_SLEEPING();
2624	oldswitchcnt = -1;
2625	for (;;) {
2626		if (tdq->tdq_load) {
2627			thread_lock(td);
2628			mi_switch(SW_VOL | SWT_IDLE, NULL);
2629			thread_unlock(td);
2630		}
2631		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2632#ifdef SMP
2633		if (switchcnt != oldswitchcnt) {
2634			oldswitchcnt = switchcnt;
2635			if (tdq_idled(tdq) == 0)
2636				continue;
2637		}
2638		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2639#else
2640		oldswitchcnt = switchcnt;
2641#endif
2642		/*
2643		 * If we're switching very frequently, spin while checking
2644		 * for load rather than entering a low power state that
2645		 * may require an IPI.  However, don't do any busy
2646		 * loops while on SMT machines as this simply steals
2647		 * cycles from cores doing useful work.
2648		 */
2649		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2650			for (i = 0; i < sched_idlespins; i++) {
2651				if (tdq->tdq_load)
2652					break;
2653				cpu_spinwait();
2654			}
2655		}
2656
2657		/* If there was context switch during spin, restart it. */
2658		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2659		if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
2660			continue;
2661
2662		/* Run main MD idle handler. */
2663		tdq->tdq_cpu_idle = 1;
2664		/*
2665		 * Make sure that tdq_cpu_idle update is globally visible
2666		 * before cpu_idle() read tdq_load.  The order is important
2667		 * to avoid race with tdq_notify.
2668		 */
2669		mb();
2670		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
2671		tdq->tdq_cpu_idle = 0;
2672
2673		/*
2674		 * Account thread-less hardware interrupts and
2675		 * other wakeup reasons equal to context switches.
2676		 */
2677		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2678		if (switchcnt != oldswitchcnt)
2679			continue;
2680		tdq->tdq_switchcnt++;
2681		oldswitchcnt++;
2682	}
2683}
2684
2685/*
2686 * A CPU is entering for the first time or a thread is exiting.
2687 */
2688void
2689sched_throw(struct thread *td)
2690{
2691	struct thread *newtd;
2692	struct tdq *tdq;
2693
2694	tdq = TDQ_SELF();
2695	if (td == NULL) {
2696		/* Correct spinlock nesting and acquire the correct lock. */
2697		TDQ_LOCK(tdq);
2698		spinlock_exit();
2699		PCPU_SET(switchtime, cpu_ticks());
2700		PCPU_SET(switchticks, ticks);
2701	} else {
2702		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2703		tdq_load_rem(tdq, td);
2704		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2705	}
2706	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2707	newtd = choosethread();
2708	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2709	cpu_throw(td, newtd);		/* doesn't return */
2710}
2711
2712/*
2713 * This is called from fork_exit().  Just acquire the correct locks and
2714 * let fork do the rest of the work.
2715 */
2716void
2717sched_fork_exit(struct thread *td)
2718{
2719	struct tdq *tdq;
2720	int cpuid;
2721
2722	/*
2723	 * Finish setting up thread glue so that it begins execution in a
2724	 * non-nested critical section with the scheduler lock held.
2725	 */
2726	cpuid = PCPU_GET(cpuid);
2727	tdq = TDQ_CPU(cpuid);
2728	if (TD_IS_IDLETHREAD(td))
2729		td->td_lock = TDQ_LOCKPTR(tdq);
2730	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2731	td->td_oncpu = cpuid;
2732	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2733	lock_profile_obtain_lock_success(
2734	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2735}
2736
2737/*
2738 * Create on first use to catch odd startup conditons.
2739 */
2740char *
2741sched_tdname(struct thread *td)
2742{
2743#ifdef KTR
2744	struct td_sched *ts;
2745
2746	ts = td->td_sched;
2747	if (ts->ts_name[0] == '\0')
2748		snprintf(ts->ts_name, sizeof(ts->ts_name),
2749		    "%s tid %d", td->td_name, td->td_tid);
2750	return (ts->ts_name);
2751#else
2752	return (td->td_name);
2753#endif
2754}
2755
2756#ifdef KTR
2757void
2758sched_clear_tdname(struct thread *td)
2759{
2760	struct td_sched *ts;
2761
2762	ts = td->td_sched;
2763	ts->ts_name[0] = '\0';
2764}
2765#endif
2766
2767#ifdef SMP
2768
2769/*
2770 * Build the CPU topology dump string. Is recursively called to collect
2771 * the topology tree.
2772 */
2773static int
2774sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2775    int indent)
2776{
2777	char cpusetbuf[CPUSETBUFSIZ];
2778	int i, first;
2779
2780	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2781	    "", 1 + indent / 2, cg->cg_level);
2782	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2783	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2784	first = TRUE;
2785	for (i = 0; i < MAXCPU; i++) {
2786		if (CPU_ISSET(i, &cg->cg_mask)) {
2787			if (!first)
2788				sbuf_printf(sb, ", ");
2789			else
2790				first = FALSE;
2791			sbuf_printf(sb, "%d", i);
2792		}
2793	}
2794	sbuf_printf(sb, "</cpu>\n");
2795
2796	if (cg->cg_flags != 0) {
2797		sbuf_printf(sb, "%*s <flags>", indent, "");
2798		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2799			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2800		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2801			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2802		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2803			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2804		sbuf_printf(sb, "</flags>\n");
2805	}
2806
2807	if (cg->cg_children > 0) {
2808		sbuf_printf(sb, "%*s <children>\n", indent, "");
2809		for (i = 0; i < cg->cg_children; i++)
2810			sysctl_kern_sched_topology_spec_internal(sb,
2811			    &cg->cg_child[i], indent+2);
2812		sbuf_printf(sb, "%*s </children>\n", indent, "");
2813	}
2814	sbuf_printf(sb, "%*s</group>\n", indent, "");
2815	return (0);
2816}
2817
2818/*
2819 * Sysctl handler for retrieving topology dump. It's a wrapper for
2820 * the recursive sysctl_kern_smp_topology_spec_internal().
2821 */
2822static int
2823sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2824{
2825	struct sbuf *topo;
2826	int err;
2827
2828	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2829
2830	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2831	if (topo == NULL)
2832		return (ENOMEM);
2833
2834	sbuf_printf(topo, "<groups>\n");
2835	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2836	sbuf_printf(topo, "</groups>\n");
2837
2838	if (err == 0) {
2839		sbuf_finish(topo);
2840		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2841	}
2842	sbuf_delete(topo);
2843	return (err);
2844}
2845
2846#endif
2847
2848static int
2849sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2850{
2851	int error, new_val, period;
2852
2853	period = 1000000 / realstathz;
2854	new_val = period * sched_slice;
2855	error = sysctl_handle_int(oidp, &new_val, 0, req);
2856	if (error != 0 || req->newptr == NULL)
2857		return (error);
2858	if (new_val <= 0)
2859		return (EINVAL);
2860	sched_slice = imax(1, (new_val + period / 2) / period);
2861	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
2862	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2863	    realstathz);
2864	return (0);
2865}
2866
2867SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2868SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2869    "Scheduler name");
2870SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2871    NULL, 0, sysctl_kern_quantum, "I",
2872    "Quantum for timeshare threads in microseconds");
2873SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2874    "Quantum for timeshare threads in stathz ticks");
2875SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2876    "Interactivity score threshold");
2877SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2878    &preempt_thresh, 0,
2879    "Maximal (lowest) priority for preemption");
2880SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2881    "Assign static kernel priorities to sleeping threads");
2882SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2883    "Number of times idle thread will spin waiting for new work");
2884SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2885    &sched_idlespinthresh, 0,
2886    "Threshold before we will permit idle thread spinning");
2887#ifdef SMP
2888SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2889    "Number of hz ticks to keep thread affinity for");
2890SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2891    "Enables the long-term load balancer");
2892SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2893    &balance_interval, 0,
2894    "Average period in stathz ticks to run the long-term balancer");
2895SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2896    "Attempts to steal work from other cores before idling");
2897SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2898    "Minimum load on remote CPU before we'll steal");
2899SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2900    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2901    "XML dump of detected CPU topology");
2902#endif
2903
2904/* ps compat.  All cpu percentages from ULE are weighted. */
2905static int ccpu = 0;
2906SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2907