sched_ule.c revision 242402
1219820Sjeff/*-
2219820Sjeff * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3219820Sjeff * All rights reserved.
4219820Sjeff *
5219820Sjeff * Redistribution and use in source and binary forms, with or without
6219820Sjeff * modification, are permitted provided that the following conditions
7219820Sjeff * are met:
8219820Sjeff * 1. Redistributions of source code must retain the above copyright
9219820Sjeff *    notice unmodified, this list of conditions, and the following
10219820Sjeff *    disclaimer.
11219820Sjeff * 2. Redistributions in binary form must reproduce the above copyright
12219820Sjeff *    notice, this list of conditions and the following disclaimer in the
13219820Sjeff *    documentation and/or other materials provided with the distribution.
14219820Sjeff *
15219820Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16219820Sjeff * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17219820Sjeff * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18219820Sjeff * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19219820Sjeff * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20219820Sjeff * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21219820Sjeff * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22219820Sjeff * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23219820Sjeff * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24219820Sjeff * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25219820Sjeff */
26219820Sjeff
27219820Sjeff/*
28219820Sjeff * This file implements the ULE scheduler.  ULE supports independent CPU
29219820Sjeff * run queues and fine grain locking.  It has superior interactive
30219820Sjeff * performance under load even on uni-processor systems.
31219820Sjeff *
32219820Sjeff * etymology:
33219820Sjeff *   ULE is the last three letters in schedule.  It owes its name to a
34219820Sjeff * generic user created for a scheduling system by Paul Mikesell at
35219820Sjeff * Isilon Systems and a general lack of creativity on the part of the author.
36219820Sjeff */
37219820Sjeff
38219820Sjeff#include <sys/cdefs.h>
39219820Sjeff__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 242402 2012-10-31 18:07:18Z attilio $");
40219820Sjeff
41219820Sjeff#include "opt_hwpmc_hooks.h"
42219820Sjeff#include "opt_kdtrace.h"
43219820Sjeff#include "opt_sched.h"
44219820Sjeff
45219820Sjeff#include <sys/param.h>
46219820Sjeff#include <sys/systm.h>
47219820Sjeff#include <sys/kdb.h>
48219820Sjeff#include <sys/kernel.h>
49219820Sjeff#include <sys/ktr.h>
50219820Sjeff#include <sys/lock.h>
51219820Sjeff#include <sys/mutex.h>
52219820Sjeff#include <sys/proc.h>
53219820Sjeff#include <sys/resource.h>
54219820Sjeff#include <sys/resourcevar.h>
55219820Sjeff#include <sys/sched.h>
56219820Sjeff#include <sys/sdt.h>
57219820Sjeff#include <sys/smp.h>
58219820Sjeff#include <sys/sx.h>
59219820Sjeff#include <sys/sysctl.h>
60219820Sjeff#include <sys/sysproto.h>
61219820Sjeff#include <sys/turnstile.h>
62219820Sjeff#include <sys/umtx.h>
63219820Sjeff#include <sys/vmmeter.h>
64219820Sjeff#include <sys/cpuset.h>
65219820Sjeff#include <sys/sbuf.h>
66219820Sjeff
67219820Sjeff#ifdef HWPMC_HOOKS
68219820Sjeff#include <sys/pmckern.h>
69219820Sjeff#endif
70219820Sjeff
71219820Sjeff#ifdef KDTRACE_HOOKS
72219820Sjeff#include <sys/dtrace_bsd.h>
73219820Sjeffint				dtrace_vtime_active;
74219820Sjeffdtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75219820Sjeff#endif
76219820Sjeff
77219820Sjeff#include <machine/cpu.h>
78219820Sjeff#include <machine/smp.h>
79219820Sjeff
80219820Sjeff#if defined(__powerpc__) && defined(BOOKE_E500)
81219820Sjeff#error "This architecture is not currently compatible with ULE"
82219820Sjeff#endif
83219820Sjeff
84219820Sjeff#define	KTR_ULE	0
85219820Sjeff
86219820Sjeff#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87219820Sjeff#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88219820Sjeff#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89219820Sjeff
90219820Sjeff/*
91219820Sjeff * Thread scheduler specific section.  All fields are protected
92219820Sjeff * by the thread lock.
93219820Sjeff */
94219820Sjeffstruct td_sched {
95219820Sjeff	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96219820Sjeff	short		ts_flags;	/* TSF_* flags. */
97219820Sjeff	u_char		ts_cpu;		/* CPU that we have affinity for. */
98219820Sjeff	int		ts_rltick;	/* Real last tick, for affinity. */
99219820Sjeff	int		ts_slice;	/* Ticks of slice remaining. */
100219820Sjeff	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101219820Sjeff	u_int		ts_runtime;	/* Number of ticks we were running */
102219820Sjeff	int		ts_ltick;	/* Last tick that we were running on */
103219820Sjeff	int		ts_ftick;	/* First tick that we were running on */
104219820Sjeff	int		ts_ticks;	/* Tick count */
105219820Sjeff#ifdef KTR
106219820Sjeff	char		ts_name[TS_NAME_LEN];
107219820Sjeff#endif
108219820Sjeff};
109219820Sjeff/* flags kept in ts_flags */
110219820Sjeff#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111219820Sjeff#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112219820Sjeff
113219820Sjeffstatic struct td_sched td_sched0;
114219820Sjeff
115219820Sjeff#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116219820Sjeff#define	THREAD_CAN_SCHED(td, cpu)	\
117219820Sjeff    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118219820Sjeff
119219820Sjeff/*
120219820Sjeff * Priority ranges used for interactive and non-interactive timeshare
121219820Sjeff * threads.  The timeshare priorities are split up into four ranges.
122219820Sjeff * The first range handles interactive threads.  The last three ranges
123219820Sjeff * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124219820Sjeff * ranges supporting nice values.
125219820Sjeff */
126219820Sjeff#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127219820Sjeff#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128219820Sjeff#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129219820Sjeff
130219820Sjeff#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131219820Sjeff#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132219820Sjeff#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133219820Sjeff#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134219820Sjeff
135219820Sjeff/*
136219820Sjeff * Cpu percentage computation macros and defines.
137219820Sjeff *
138219820Sjeff * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139219820Sjeff * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140219820Sjeff * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141219820Sjeff * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142219820Sjeff * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143219820Sjeff * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144219820Sjeff */
145219820Sjeff#define	SCHED_TICK_SECS		10
146219820Sjeff#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147219820Sjeff#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148219820Sjeff#define	SCHED_TICK_SHIFT	10
149219820Sjeff#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150219820Sjeff#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151219820Sjeff
152219820Sjeff/*
153219820Sjeff * These macros determine priorities for non-interactive threads.  They are
154219820Sjeff * assigned a priority based on their recent cpu utilization as expressed
155219820Sjeff * by the ratio of ticks to the tick total.  NHALF priorities at the start
156219820Sjeff * and end of the MIN to MAX timeshare range are only reachable with negative
157219820Sjeff * or positive nice respectively.
158219820Sjeff *
159219820Sjeff * PRI_RANGE:	Priority range for utilization dependent priorities.
160219820Sjeff * PRI_NRESV:	Number of nice values.
161219820Sjeff * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162219820Sjeff * PRI_NICE:	Determines the part of the priority inherited from nice.
163219820Sjeff */
164219820Sjeff#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165219820Sjeff#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166219820Sjeff#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167219820Sjeff#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168219820Sjeff#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169219820Sjeff#define	SCHED_PRI_TICKS(ts)						\
170219820Sjeff    (SCHED_TICK_HZ((ts)) /						\
171219820Sjeff    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172219820Sjeff#define	SCHED_PRI_NICE(nice)	(nice)
173219820Sjeff
174219820Sjeff/*
175219820Sjeff * These determine the interactivity of a process.  Interactivity differs from
176219820Sjeff * cpu utilization in that it expresses the voluntary time slept vs time ran
177219820Sjeff * while cpu utilization includes all time not running.  This more accurately
178219820Sjeff * models the intent of the thread.
179219820Sjeff *
180219820Sjeff * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181219820Sjeff *		before throttling back.
182219820Sjeff * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183219820Sjeff * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184219820Sjeff * INTERACT_THRESH:	Threshold for placement on the current runq.
185219820Sjeff */
186219820Sjeff#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187219820Sjeff#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188219820Sjeff#define	SCHED_INTERACT_MAX	(100)
189219820Sjeff#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190219820Sjeff#define	SCHED_INTERACT_THRESH	(30)
191219820Sjeff
192219820Sjeff/* Flags kept in td_flags. */
193219820Sjeff#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
194219820Sjeff
195219820Sjeff/*
196219820Sjeff * tickincr:		Converts a stathz tick into a hz domain scaled by
197219820Sjeff *			the shift factor.  Without the shift the error rate
198219820Sjeff *			due to rounding would be unacceptably high.
199219820Sjeff * realstathz:		stathz is sometimes 0 and run off of hz.
200219820Sjeff * sched_slice:		Runtime of each thread before rescheduling.
201219820Sjeff * preempt_thresh:	Priority threshold for preemption and remote IPIs.
202219820Sjeff */
203219820Sjeffstatic int sched_interact = SCHED_INTERACT_THRESH;
204219820Sjeffstatic int realstathz = 127;
205219820Sjeffstatic int tickincr = 8 << SCHED_TICK_SHIFT;
206219820Sjeffstatic int sched_slice = 12;
207219820Sjeff#ifdef PREEMPTION
208219820Sjeff#ifdef FULL_PREEMPTION
209219820Sjeffstatic int preempt_thresh = PRI_MAX_IDLE;
210219820Sjeff#else
211219820Sjeffstatic int preempt_thresh = PRI_MIN_KERN;
212219820Sjeff#endif
213219820Sjeff#else
214219820Sjeffstatic int preempt_thresh = 0;
215219820Sjeff#endif
216219820Sjeffstatic int static_boost = PRI_MIN_BATCH;
217219820Sjeffstatic int sched_idlespins = 10000;
218219820Sjeffstatic int sched_idlespinthresh = -1;
219219820Sjeff
220219820Sjeff/*
221219820Sjeff * tdq - per processor runqs and statistics.  All fields are protected by the
222219820Sjeff * tdq_lock.  The load and lowpri may be accessed without to avoid excess
223219820Sjeff * locking in sched_pickcpu();
224219820Sjeff */
225219820Sjeffstruct tdq {
226219820Sjeff	/*
227219820Sjeff	 * Ordered to improve efficiency of cpu_search() and switch().
228219820Sjeff	 * tdq_lock is padded to avoid false sharing with tdq_load and
229219820Sjeff	 * tdq_cpu_idle.
230219820Sjeff	 */
231	struct mtx_padalign tdq_lock;		/* run queue lock. */
232	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
233	volatile int	tdq_load;		/* Aggregate load. */
234	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
235	int		tdq_sysload;		/* For loadavg, !ITHD load. */
236	int		tdq_transferable;	/* Transferable thread count. */
237	short		tdq_switchcnt;		/* Switches this tick. */
238	short		tdq_oldswitchcnt;	/* Switches last tick. */
239	u_char		tdq_lowpri;		/* Lowest priority thread. */
240	u_char		tdq_ipipending;		/* IPI pending. */
241	u_char		tdq_idx;		/* Current insert index. */
242	u_char		tdq_ridx;		/* Current removal index. */
243	struct runq	tdq_realtime;		/* real-time run queue. */
244	struct runq	tdq_timeshare;		/* timeshare run queue. */
245	struct runq	tdq_idle;		/* Queue of IDLE threads. */
246	char		tdq_name[TDQ_NAME_LEN];
247#ifdef KTR
248	char		tdq_loadname[TDQ_LOADNAME_LEN];
249#endif
250} __aligned(64);
251
252/* Idle thread states and config. */
253#define	TDQ_RUNNING	1
254#define	TDQ_IDLE	2
255
256#ifdef SMP
257struct cpu_group *cpu_top;		/* CPU topology */
258
259#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
260#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
261
262/*
263 * Run-time tunables.
264 */
265static int rebalance = 1;
266static int balance_interval = 128;	/* Default set in sched_initticks(). */
267static int affinity;
268static int steal_idle = 1;
269static int steal_thresh = 2;
270
271/*
272 * One thread queue per processor.
273 */
274static struct tdq	tdq_cpu[MAXCPU];
275static struct tdq	*balance_tdq;
276static int balance_ticks;
277static DPCPU_DEFINE(uint32_t, randomval);
278
279#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
280#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
281#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
282#else	/* !SMP */
283static struct tdq	tdq_cpu;
284
285#define	TDQ_ID(x)	(0)
286#define	TDQ_SELF()	(&tdq_cpu)
287#define	TDQ_CPU(x)	(&tdq_cpu)
288#endif
289
290#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
291#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
292#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
293#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
294#define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
295
296static void sched_priority(struct thread *);
297static void sched_thread_priority(struct thread *, u_char);
298static int sched_interact_score(struct thread *);
299static void sched_interact_update(struct thread *);
300static void sched_interact_fork(struct thread *);
301static void sched_pctcpu_update(struct td_sched *, int);
302
303/* Operations on per processor queues */
304static struct thread *tdq_choose(struct tdq *);
305static void tdq_setup(struct tdq *);
306static void tdq_load_add(struct tdq *, struct thread *);
307static void tdq_load_rem(struct tdq *, struct thread *);
308static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
309static __inline void tdq_runq_rem(struct tdq *, struct thread *);
310static inline int sched_shouldpreempt(int, int, int);
311void tdq_print(int cpu);
312static void runq_print(struct runq *rq);
313static void tdq_add(struct tdq *, struct thread *, int);
314#ifdef SMP
315static int tdq_move(struct tdq *, struct tdq *);
316static int tdq_idled(struct tdq *);
317static void tdq_notify(struct tdq *, struct thread *);
318static struct thread *tdq_steal(struct tdq *, int);
319static struct thread *runq_steal(struct runq *, int);
320static int sched_pickcpu(struct thread *, int);
321static void sched_balance(void);
322static int sched_balance_pair(struct tdq *, struct tdq *);
323static inline struct tdq *sched_setcpu(struct thread *, int, int);
324static inline void thread_unblock_switch(struct thread *, struct mtx *);
325static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
326static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
327static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
328    struct cpu_group *cg, int indent);
329#endif
330
331static void sched_setup(void *dummy);
332SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
333
334static void sched_initticks(void *dummy);
335SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
336    NULL);
337
338SDT_PROVIDER_DEFINE(sched);
339
340SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
341    "struct proc *", "uint8_t");
342SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
343    "struct proc *", "void *");
344SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
345    "struct proc *", "void *", "int");
346SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
347    "struct proc *", "uint8_t", "struct thread *");
348SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
349SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
350    "struct proc *");
351SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
352SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
353SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
354    "struct proc *");
355
356/*
357 * Print the threads waiting on a run-queue.
358 */
359static void
360runq_print(struct runq *rq)
361{
362	struct rqhead *rqh;
363	struct thread *td;
364	int pri;
365	int j;
366	int i;
367
368	for (i = 0; i < RQB_LEN; i++) {
369		printf("\t\trunq bits %d 0x%zx\n",
370		    i, rq->rq_status.rqb_bits[i]);
371		for (j = 0; j < RQB_BPW; j++)
372			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
373				pri = j + (i << RQB_L2BPW);
374				rqh = &rq->rq_queues[pri];
375				TAILQ_FOREACH(td, rqh, td_runq) {
376					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
377					    td, td->td_name, td->td_priority,
378					    td->td_rqindex, pri);
379				}
380			}
381	}
382}
383
384/*
385 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
386 */
387void
388tdq_print(int cpu)
389{
390	struct tdq *tdq;
391
392	tdq = TDQ_CPU(cpu);
393
394	printf("tdq %d:\n", TDQ_ID(tdq));
395	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
396	printf("\tLock name:      %s\n", tdq->tdq_name);
397	printf("\tload:           %d\n", tdq->tdq_load);
398	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
399	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
400	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
401	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
402	printf("\tload transferable: %d\n", tdq->tdq_transferable);
403	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
404	printf("\trealtime runq:\n");
405	runq_print(&tdq->tdq_realtime);
406	printf("\ttimeshare runq:\n");
407	runq_print(&tdq->tdq_timeshare);
408	printf("\tidle runq:\n");
409	runq_print(&tdq->tdq_idle);
410}
411
412static inline int
413sched_shouldpreempt(int pri, int cpri, int remote)
414{
415	/*
416	 * If the new priority is not better than the current priority there is
417	 * nothing to do.
418	 */
419	if (pri >= cpri)
420		return (0);
421	/*
422	 * Always preempt idle.
423	 */
424	if (cpri >= PRI_MIN_IDLE)
425		return (1);
426	/*
427	 * If preemption is disabled don't preempt others.
428	 */
429	if (preempt_thresh == 0)
430		return (0);
431	/*
432	 * Preempt if we exceed the threshold.
433	 */
434	if (pri <= preempt_thresh)
435		return (1);
436	/*
437	 * If we're interactive or better and there is non-interactive
438	 * or worse running preempt only remote processors.
439	 */
440	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
441		return (1);
442	return (0);
443}
444
445/*
446 * Add a thread to the actual run-queue.  Keeps transferable counts up to
447 * date with what is actually on the run-queue.  Selects the correct
448 * queue position for timeshare threads.
449 */
450static __inline void
451tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
452{
453	struct td_sched *ts;
454	u_char pri;
455
456	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
457	THREAD_LOCK_ASSERT(td, MA_OWNED);
458
459	pri = td->td_priority;
460	ts = td->td_sched;
461	TD_SET_RUNQ(td);
462	if (THREAD_CAN_MIGRATE(td)) {
463		tdq->tdq_transferable++;
464		ts->ts_flags |= TSF_XFERABLE;
465	}
466	if (pri < PRI_MIN_BATCH) {
467		ts->ts_runq = &tdq->tdq_realtime;
468	} else if (pri <= PRI_MAX_BATCH) {
469		ts->ts_runq = &tdq->tdq_timeshare;
470		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
471			("Invalid priority %d on timeshare runq", pri));
472		/*
473		 * This queue contains only priorities between MIN and MAX
474		 * realtime.  Use the whole queue to represent these values.
475		 */
476		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
477			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
478			pri = (pri + tdq->tdq_idx) % RQ_NQS;
479			/*
480			 * This effectively shortens the queue by one so we
481			 * can have a one slot difference between idx and
482			 * ridx while we wait for threads to drain.
483			 */
484			if (tdq->tdq_ridx != tdq->tdq_idx &&
485			    pri == tdq->tdq_ridx)
486				pri = (unsigned char)(pri - 1) % RQ_NQS;
487		} else
488			pri = tdq->tdq_ridx;
489		runq_add_pri(ts->ts_runq, td, pri, flags);
490		return;
491	} else
492		ts->ts_runq = &tdq->tdq_idle;
493	runq_add(ts->ts_runq, td, flags);
494}
495
496/*
497 * Remove a thread from a run-queue.  This typically happens when a thread
498 * is selected to run.  Running threads are not on the queue and the
499 * transferable count does not reflect them.
500 */
501static __inline void
502tdq_runq_rem(struct tdq *tdq, struct thread *td)
503{
504	struct td_sched *ts;
505
506	ts = td->td_sched;
507	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
508	KASSERT(ts->ts_runq != NULL,
509	    ("tdq_runq_remove: thread %p null ts_runq", td));
510	if (ts->ts_flags & TSF_XFERABLE) {
511		tdq->tdq_transferable--;
512		ts->ts_flags &= ~TSF_XFERABLE;
513	}
514	if (ts->ts_runq == &tdq->tdq_timeshare) {
515		if (tdq->tdq_idx != tdq->tdq_ridx)
516			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
517		else
518			runq_remove_idx(ts->ts_runq, td, NULL);
519	} else
520		runq_remove(ts->ts_runq, td);
521}
522
523/*
524 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
525 * for this thread to the referenced thread queue.
526 */
527static void
528tdq_load_add(struct tdq *tdq, struct thread *td)
529{
530
531	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
532	THREAD_LOCK_ASSERT(td, MA_OWNED);
533
534	tdq->tdq_load++;
535	if ((td->td_flags & TDF_NOLOAD) == 0)
536		tdq->tdq_sysload++;
537	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
538	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
539}
540
541/*
542 * Remove the load from a thread that is transitioning to a sleep state or
543 * exiting.
544 */
545static void
546tdq_load_rem(struct tdq *tdq, struct thread *td)
547{
548
549	THREAD_LOCK_ASSERT(td, MA_OWNED);
550	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
551	KASSERT(tdq->tdq_load != 0,
552	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
553
554	tdq->tdq_load--;
555	if ((td->td_flags & TDF_NOLOAD) == 0)
556		tdq->tdq_sysload--;
557	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
558	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
559}
560
561/*
562 * Set lowpri to its exact value by searching the run-queue and
563 * evaluating curthread.  curthread may be passed as an optimization.
564 */
565static void
566tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
567{
568	struct thread *td;
569
570	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
571	if (ctd == NULL)
572		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
573	td = tdq_choose(tdq);
574	if (td == NULL || td->td_priority > ctd->td_priority)
575		tdq->tdq_lowpri = ctd->td_priority;
576	else
577		tdq->tdq_lowpri = td->td_priority;
578}
579
580#ifdef SMP
581struct cpu_search {
582	cpuset_t cs_mask;
583	u_int	cs_prefer;
584	int	cs_pri;		/* Min priority for low. */
585	int	cs_limit;	/* Max load for low, min load for high. */
586	int	cs_cpu;
587	int	cs_load;
588};
589
590#define	CPU_SEARCH_LOWEST	0x1
591#define	CPU_SEARCH_HIGHEST	0x2
592#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
593
594#define	CPUSET_FOREACH(cpu, mask)				\
595	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
596		if (CPU_ISSET(cpu, &mask))
597
598static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
599    struct cpu_search *high, const int match);
600int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
601int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
602int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
603    struct cpu_search *high);
604
605/*
606 * Search the tree of cpu_groups for the lowest or highest loaded cpu
607 * according to the match argument.  This routine actually compares the
608 * load on all paths through the tree and finds the least loaded cpu on
609 * the least loaded path, which may differ from the least loaded cpu in
610 * the system.  This balances work among caches and busses.
611 *
612 * This inline is instantiated in three forms below using constants for the
613 * match argument.  It is reduced to the minimum set for each case.  It is
614 * also recursive to the depth of the tree.
615 */
616static __inline int
617cpu_search(const struct cpu_group *cg, struct cpu_search *low,
618    struct cpu_search *high, const int match)
619{
620	struct cpu_search lgroup;
621	struct cpu_search hgroup;
622	cpuset_t cpumask;
623	struct cpu_group *child;
624	struct tdq *tdq;
625	int cpu, i, hload, lload, load, total, rnd, *rndptr;
626
627	total = 0;
628	cpumask = cg->cg_mask;
629	if (match & CPU_SEARCH_LOWEST) {
630		lload = INT_MAX;
631		lgroup = *low;
632	}
633	if (match & CPU_SEARCH_HIGHEST) {
634		hload = INT_MIN;
635		hgroup = *high;
636	}
637
638	/* Iterate through the child CPU groups and then remaining CPUs. */
639	for (i = cg->cg_children, cpu = mp_maxid; i >= 0; ) {
640		if (i == 0) {
641			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
642				cpu--;
643			if (cpu < 0)
644				break;
645			child = NULL;
646		} else
647			child = &cg->cg_child[i - 1];
648
649		if (match & CPU_SEARCH_LOWEST)
650			lgroup.cs_cpu = -1;
651		if (match & CPU_SEARCH_HIGHEST)
652			hgroup.cs_cpu = -1;
653		if (child) {			/* Handle child CPU group. */
654			CPU_NAND(&cpumask, &child->cg_mask);
655			switch (match) {
656			case CPU_SEARCH_LOWEST:
657				load = cpu_search_lowest(child, &lgroup);
658				break;
659			case CPU_SEARCH_HIGHEST:
660				load = cpu_search_highest(child, &hgroup);
661				break;
662			case CPU_SEARCH_BOTH:
663				load = cpu_search_both(child, &lgroup, &hgroup);
664				break;
665			}
666		} else {			/* Handle child CPU. */
667			tdq = TDQ_CPU(cpu);
668			load = tdq->tdq_load * 256;
669			rndptr = DPCPU_PTR(randomval);
670			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
671			if (match & CPU_SEARCH_LOWEST) {
672				if (cpu == low->cs_prefer)
673					load -= 64;
674				/* If that CPU is allowed and get data. */
675				if (tdq->tdq_lowpri > lgroup.cs_pri &&
676				    tdq->tdq_load <= lgroup.cs_limit &&
677				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
678					lgroup.cs_cpu = cpu;
679					lgroup.cs_load = load - rnd;
680				}
681			}
682			if (match & CPU_SEARCH_HIGHEST)
683				if (tdq->tdq_load >= hgroup.cs_limit &&
684				    tdq->tdq_transferable &&
685				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
686					hgroup.cs_cpu = cpu;
687					hgroup.cs_load = load - rnd;
688				}
689		}
690		total += load;
691
692		/* We have info about child item. Compare it. */
693		if (match & CPU_SEARCH_LOWEST) {
694			if (lgroup.cs_cpu >= 0 &&
695			    (load < lload ||
696			     (load == lload && lgroup.cs_load < low->cs_load))) {
697				lload = load;
698				low->cs_cpu = lgroup.cs_cpu;
699				low->cs_load = lgroup.cs_load;
700			}
701		}
702		if (match & CPU_SEARCH_HIGHEST)
703			if (hgroup.cs_cpu >= 0 &&
704			    (load > hload ||
705			     (load == hload && hgroup.cs_load > high->cs_load))) {
706				hload = load;
707				high->cs_cpu = hgroup.cs_cpu;
708				high->cs_load = hgroup.cs_load;
709			}
710		if (child) {
711			i--;
712			if (i == 0 && CPU_EMPTY(&cpumask))
713				break;
714		} else
715			cpu--;
716	}
717	return (total);
718}
719
720/*
721 * cpu_search instantiations must pass constants to maintain the inline
722 * optimization.
723 */
724int
725cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
726{
727	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
728}
729
730int
731cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
732{
733	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
734}
735
736int
737cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
738    struct cpu_search *high)
739{
740	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
741}
742
743/*
744 * Find the cpu with the least load via the least loaded path that has a
745 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
746 * acceptable.
747 */
748static inline int
749sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
750    int prefer)
751{
752	struct cpu_search low;
753
754	low.cs_cpu = -1;
755	low.cs_prefer = prefer;
756	low.cs_mask = mask;
757	low.cs_pri = pri;
758	low.cs_limit = maxload;
759	cpu_search_lowest(cg, &low);
760	return low.cs_cpu;
761}
762
763/*
764 * Find the cpu with the highest load via the highest loaded path.
765 */
766static inline int
767sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
768{
769	struct cpu_search high;
770
771	high.cs_cpu = -1;
772	high.cs_mask = mask;
773	high.cs_limit = minload;
774	cpu_search_highest(cg, &high);
775	return high.cs_cpu;
776}
777
778/*
779 * Simultaneously find the highest and lowest loaded cpu reachable via
780 * cg.
781 */
782static inline void
783sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
784{
785	struct cpu_search high;
786	struct cpu_search low;
787
788	low.cs_cpu = -1;
789	low.cs_prefer = -1;
790	low.cs_pri = -1;
791	low.cs_limit = INT_MAX;
792	low.cs_mask = mask;
793	high.cs_cpu = -1;
794	high.cs_limit = -1;
795	high.cs_mask = mask;
796	cpu_search_both(cg, &low, &high);
797	*lowcpu = low.cs_cpu;
798	*highcpu = high.cs_cpu;
799	return;
800}
801
802static void
803sched_balance_group(struct cpu_group *cg)
804{
805	cpuset_t hmask, lmask;
806	int high, low, anylow;
807
808	CPU_FILL(&hmask);
809	for (;;) {
810		high = sched_highest(cg, hmask, 1);
811		/* Stop if there is no more CPU with transferrable threads. */
812		if (high == -1)
813			break;
814		CPU_CLR(high, &hmask);
815		CPU_COPY(&hmask, &lmask);
816		/* Stop if there is no more CPU left for low. */
817		if (CPU_EMPTY(&lmask))
818			break;
819		anylow = 1;
820nextlow:
821		low = sched_lowest(cg, lmask, -1,
822		    TDQ_CPU(high)->tdq_load - 1, high);
823		/* Stop if we looked well and found no less loaded CPU. */
824		if (anylow && low == -1)
825			break;
826		/* Go to next high if we found no less loaded CPU. */
827		if (low == -1)
828			continue;
829		/* Transfer thread from high to low. */
830		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
831			/* CPU that got thread can no longer be a donor. */
832			CPU_CLR(low, &hmask);
833		} else {
834			/*
835			 * If failed, then there is no threads on high
836			 * that can run on this low. Drop low from low
837			 * mask and look for different one.
838			 */
839			CPU_CLR(low, &lmask);
840			anylow = 0;
841			goto nextlow;
842		}
843	}
844}
845
846static void
847sched_balance(void)
848{
849	struct tdq *tdq;
850
851	/*
852	 * Select a random time between .5 * balance_interval and
853	 * 1.5 * balance_interval.
854	 */
855	balance_ticks = max(balance_interval / 2, 1);
856	balance_ticks += random() % balance_interval;
857	if (smp_started == 0 || rebalance == 0)
858		return;
859	tdq = TDQ_SELF();
860	TDQ_UNLOCK(tdq);
861	sched_balance_group(cpu_top);
862	TDQ_LOCK(tdq);
863}
864
865/*
866 * Lock two thread queues using their address to maintain lock order.
867 */
868static void
869tdq_lock_pair(struct tdq *one, struct tdq *two)
870{
871	if (one < two) {
872		TDQ_LOCK(one);
873		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
874	} else {
875		TDQ_LOCK(two);
876		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
877	}
878}
879
880/*
881 * Unlock two thread queues.  Order is not important here.
882 */
883static void
884tdq_unlock_pair(struct tdq *one, struct tdq *two)
885{
886	TDQ_UNLOCK(one);
887	TDQ_UNLOCK(two);
888}
889
890/*
891 * Transfer load between two imbalanced thread queues.
892 */
893static int
894sched_balance_pair(struct tdq *high, struct tdq *low)
895{
896	int moved;
897	int cpu;
898
899	tdq_lock_pair(high, low);
900	moved = 0;
901	/*
902	 * Determine what the imbalance is and then adjust that to how many
903	 * threads we actually have to give up (transferable).
904	 */
905	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
906	    (moved = tdq_move(high, low)) > 0) {
907		/*
908		 * In case the target isn't the current cpu IPI it to force a
909		 * reschedule with the new workload.
910		 */
911		cpu = TDQ_ID(low);
912		if (cpu != PCPU_GET(cpuid))
913			ipi_cpu(cpu, IPI_PREEMPT);
914	}
915	tdq_unlock_pair(high, low);
916	return (moved);
917}
918
919/*
920 * Move a thread from one thread queue to another.
921 */
922static int
923tdq_move(struct tdq *from, struct tdq *to)
924{
925	struct td_sched *ts;
926	struct thread *td;
927	struct tdq *tdq;
928	int cpu;
929
930	TDQ_LOCK_ASSERT(from, MA_OWNED);
931	TDQ_LOCK_ASSERT(to, MA_OWNED);
932
933	tdq = from;
934	cpu = TDQ_ID(to);
935	td = tdq_steal(tdq, cpu);
936	if (td == NULL)
937		return (0);
938	ts = td->td_sched;
939	/*
940	 * Although the run queue is locked the thread may be blocked.  Lock
941	 * it to clear this and acquire the run-queue lock.
942	 */
943	thread_lock(td);
944	/* Drop recursive lock on from acquired via thread_lock(). */
945	TDQ_UNLOCK(from);
946	sched_rem(td);
947	ts->ts_cpu = cpu;
948	td->td_lock = TDQ_LOCKPTR(to);
949	tdq_add(to, td, SRQ_YIELDING);
950	return (1);
951}
952
953/*
954 * This tdq has idled.  Try to steal a thread from another cpu and switch
955 * to it.
956 */
957static int
958tdq_idled(struct tdq *tdq)
959{
960	struct cpu_group *cg;
961	struct tdq *steal;
962	cpuset_t mask;
963	int thresh;
964	int cpu;
965
966	if (smp_started == 0 || steal_idle == 0)
967		return (1);
968	CPU_FILL(&mask);
969	CPU_CLR(PCPU_GET(cpuid), &mask);
970	/* We don't want to be preempted while we're iterating. */
971	spinlock_enter();
972	for (cg = tdq->tdq_cg; cg != NULL; ) {
973		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
974			thresh = steal_thresh;
975		else
976			thresh = 1;
977		cpu = sched_highest(cg, mask, thresh);
978		if (cpu == -1) {
979			cg = cg->cg_parent;
980			continue;
981		}
982		steal = TDQ_CPU(cpu);
983		CPU_CLR(cpu, &mask);
984		tdq_lock_pair(tdq, steal);
985		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
986			tdq_unlock_pair(tdq, steal);
987			continue;
988		}
989		/*
990		 * If a thread was added while interrupts were disabled don't
991		 * steal one here.  If we fail to acquire one due to affinity
992		 * restrictions loop again with this cpu removed from the
993		 * set.
994		 */
995		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
996			tdq_unlock_pair(tdq, steal);
997			continue;
998		}
999		spinlock_exit();
1000		TDQ_UNLOCK(steal);
1001		mi_switch(SW_VOL | SWT_IDLE, NULL);
1002		thread_unlock(curthread);
1003
1004		return (0);
1005	}
1006	spinlock_exit();
1007	return (1);
1008}
1009
1010/*
1011 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1012 */
1013static void
1014tdq_notify(struct tdq *tdq, struct thread *td)
1015{
1016	struct thread *ctd;
1017	int pri;
1018	int cpu;
1019
1020	if (tdq->tdq_ipipending)
1021		return;
1022	cpu = td->td_sched->ts_cpu;
1023	pri = td->td_priority;
1024	ctd = pcpu_find(cpu)->pc_curthread;
1025	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1026		return;
1027	if (TD_IS_IDLETHREAD(ctd)) {
1028		/*
1029		 * If the MD code has an idle wakeup routine try that before
1030		 * falling back to IPI.
1031		 */
1032		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1033			return;
1034	}
1035	tdq->tdq_ipipending = 1;
1036	ipi_cpu(cpu, IPI_PREEMPT);
1037}
1038
1039/*
1040 * Steals load from a timeshare queue.  Honors the rotating queue head
1041 * index.
1042 */
1043static struct thread *
1044runq_steal_from(struct runq *rq, int cpu, u_char start)
1045{
1046	struct rqbits *rqb;
1047	struct rqhead *rqh;
1048	struct thread *td, *first;
1049	int bit;
1050	int pri;
1051	int i;
1052
1053	rqb = &rq->rq_status;
1054	bit = start & (RQB_BPW -1);
1055	pri = 0;
1056	first = NULL;
1057again:
1058	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1059		if (rqb->rqb_bits[i] == 0)
1060			continue;
1061		if (bit != 0) {
1062			for (pri = bit; pri < RQB_BPW; pri++)
1063				if (rqb->rqb_bits[i] & (1ul << pri))
1064					break;
1065			if (pri >= RQB_BPW)
1066				continue;
1067		} else
1068			pri = RQB_FFS(rqb->rqb_bits[i]);
1069		pri += (i << RQB_L2BPW);
1070		rqh = &rq->rq_queues[pri];
1071		TAILQ_FOREACH(td, rqh, td_runq) {
1072			if (first && THREAD_CAN_MIGRATE(td) &&
1073			    THREAD_CAN_SCHED(td, cpu))
1074				return (td);
1075			first = td;
1076		}
1077	}
1078	if (start != 0) {
1079		start = 0;
1080		goto again;
1081	}
1082
1083	if (first && THREAD_CAN_MIGRATE(first) &&
1084	    THREAD_CAN_SCHED(first, cpu))
1085		return (first);
1086	return (NULL);
1087}
1088
1089/*
1090 * Steals load from a standard linear queue.
1091 */
1092static struct thread *
1093runq_steal(struct runq *rq, int cpu)
1094{
1095	struct rqhead *rqh;
1096	struct rqbits *rqb;
1097	struct thread *td;
1098	int word;
1099	int bit;
1100
1101	rqb = &rq->rq_status;
1102	for (word = 0; word < RQB_LEN; word++) {
1103		if (rqb->rqb_bits[word] == 0)
1104			continue;
1105		for (bit = 0; bit < RQB_BPW; bit++) {
1106			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1107				continue;
1108			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1109			TAILQ_FOREACH(td, rqh, td_runq)
1110				if (THREAD_CAN_MIGRATE(td) &&
1111				    THREAD_CAN_SCHED(td, cpu))
1112					return (td);
1113		}
1114	}
1115	return (NULL);
1116}
1117
1118/*
1119 * Attempt to steal a thread in priority order from a thread queue.
1120 */
1121static struct thread *
1122tdq_steal(struct tdq *tdq, int cpu)
1123{
1124	struct thread *td;
1125
1126	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1127	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1128		return (td);
1129	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1130	    cpu, tdq->tdq_ridx)) != NULL)
1131		return (td);
1132	return (runq_steal(&tdq->tdq_idle, cpu));
1133}
1134
1135/*
1136 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1137 * current lock and returns with the assigned queue locked.
1138 */
1139static inline struct tdq *
1140sched_setcpu(struct thread *td, int cpu, int flags)
1141{
1142
1143	struct tdq *tdq;
1144
1145	THREAD_LOCK_ASSERT(td, MA_OWNED);
1146	tdq = TDQ_CPU(cpu);
1147	td->td_sched->ts_cpu = cpu;
1148	/*
1149	 * If the lock matches just return the queue.
1150	 */
1151	if (td->td_lock == TDQ_LOCKPTR(tdq))
1152		return (tdq);
1153#ifdef notyet
1154	/*
1155	 * If the thread isn't running its lockptr is a
1156	 * turnstile or a sleepqueue.  We can just lock_set without
1157	 * blocking.
1158	 */
1159	if (TD_CAN_RUN(td)) {
1160		TDQ_LOCK(tdq);
1161		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1162		return (tdq);
1163	}
1164#endif
1165	/*
1166	 * The hard case, migration, we need to block the thread first to
1167	 * prevent order reversals with other cpus locks.
1168	 */
1169	spinlock_enter();
1170	thread_lock_block(td);
1171	TDQ_LOCK(tdq);
1172	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1173	spinlock_exit();
1174	return (tdq);
1175}
1176
1177SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1178SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1179SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1180SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1181SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1182SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1183
1184static int
1185sched_pickcpu(struct thread *td, int flags)
1186{
1187	struct cpu_group *cg, *ccg;
1188	struct td_sched *ts;
1189	struct tdq *tdq;
1190	cpuset_t mask;
1191	int cpu, pri, self;
1192
1193	self = PCPU_GET(cpuid);
1194	ts = td->td_sched;
1195	if (smp_started == 0)
1196		return (self);
1197	/*
1198	 * Don't migrate a running thread from sched_switch().
1199	 */
1200	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1201		return (ts->ts_cpu);
1202	/*
1203	 * Prefer to run interrupt threads on the processors that generate
1204	 * the interrupt.
1205	 */
1206	pri = td->td_priority;
1207	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1208	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1209		SCHED_STAT_INC(pickcpu_intrbind);
1210		ts->ts_cpu = self;
1211		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1212			SCHED_STAT_INC(pickcpu_affinity);
1213			return (ts->ts_cpu);
1214		}
1215	}
1216	/*
1217	 * If the thread can run on the last cpu and the affinity has not
1218	 * expired or it is idle run it there.
1219	 */
1220	tdq = TDQ_CPU(ts->ts_cpu);
1221	cg = tdq->tdq_cg;
1222	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1223	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1224	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1225		if (cg->cg_flags & CG_FLAG_THREAD) {
1226			CPUSET_FOREACH(cpu, cg->cg_mask) {
1227				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1228					break;
1229			}
1230		} else
1231			cpu = INT_MAX;
1232		if (cpu > mp_maxid) {
1233			SCHED_STAT_INC(pickcpu_idle_affinity);
1234			return (ts->ts_cpu);
1235		}
1236	}
1237	/*
1238	 * Search for the last level cache CPU group in the tree.
1239	 * Skip caches with expired affinity time and SMT groups.
1240	 * Affinity to higher level caches will be handled less aggressively.
1241	 */
1242	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1243		if (cg->cg_flags & CG_FLAG_THREAD)
1244			continue;
1245		if (!SCHED_AFFINITY(ts, cg->cg_level))
1246			continue;
1247		ccg = cg;
1248	}
1249	if (ccg != NULL)
1250		cg = ccg;
1251	cpu = -1;
1252	/* Search the group for the less loaded idle CPU we can run now. */
1253	mask = td->td_cpuset->cs_mask;
1254	if (cg != NULL && cg != cpu_top &&
1255	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1256		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1257		    INT_MAX, ts->ts_cpu);
1258	/* Search globally for the less loaded CPU we can run now. */
1259	if (cpu == -1)
1260		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1261	/* Search globally for the less loaded CPU. */
1262	if (cpu == -1)
1263		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1264	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1265	/*
1266	 * Compare the lowest loaded cpu to current cpu.
1267	 */
1268	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1269	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1270	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1271		SCHED_STAT_INC(pickcpu_local);
1272		cpu = self;
1273	} else
1274		SCHED_STAT_INC(pickcpu_lowest);
1275	if (cpu != ts->ts_cpu)
1276		SCHED_STAT_INC(pickcpu_migration);
1277	return (cpu);
1278}
1279#endif
1280
1281/*
1282 * Pick the highest priority task we have and return it.
1283 */
1284static struct thread *
1285tdq_choose(struct tdq *tdq)
1286{
1287	struct thread *td;
1288
1289	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1290	td = runq_choose(&tdq->tdq_realtime);
1291	if (td != NULL)
1292		return (td);
1293	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1294	if (td != NULL) {
1295		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1296		    ("tdq_choose: Invalid priority on timeshare queue %d",
1297		    td->td_priority));
1298		return (td);
1299	}
1300	td = runq_choose(&tdq->tdq_idle);
1301	if (td != NULL) {
1302		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1303		    ("tdq_choose: Invalid priority on idle queue %d",
1304		    td->td_priority));
1305		return (td);
1306	}
1307
1308	return (NULL);
1309}
1310
1311/*
1312 * Initialize a thread queue.
1313 */
1314static void
1315tdq_setup(struct tdq *tdq)
1316{
1317
1318	if (bootverbose)
1319		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1320	runq_init(&tdq->tdq_realtime);
1321	runq_init(&tdq->tdq_timeshare);
1322	runq_init(&tdq->tdq_idle);
1323	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1324	    "sched lock %d", (int)TDQ_ID(tdq));
1325	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1326	    MTX_SPIN | MTX_RECURSE);
1327#ifdef KTR
1328	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1329	    "CPU %d load", (int)TDQ_ID(tdq));
1330#endif
1331}
1332
1333#ifdef SMP
1334static void
1335sched_setup_smp(void)
1336{
1337	struct tdq *tdq;
1338	int i;
1339
1340	cpu_top = smp_topo();
1341	CPU_FOREACH(i) {
1342		tdq = TDQ_CPU(i);
1343		tdq_setup(tdq);
1344		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1345		if (tdq->tdq_cg == NULL)
1346			panic("Can't find cpu group for %d\n", i);
1347	}
1348	balance_tdq = TDQ_SELF();
1349	sched_balance();
1350}
1351#endif
1352
1353/*
1354 * Setup the thread queues and initialize the topology based on MD
1355 * information.
1356 */
1357static void
1358sched_setup(void *dummy)
1359{
1360	struct tdq *tdq;
1361
1362	tdq = TDQ_SELF();
1363#ifdef SMP
1364	sched_setup_smp();
1365#else
1366	tdq_setup(tdq);
1367#endif
1368
1369	/* Add thread0's load since it's running. */
1370	TDQ_LOCK(tdq);
1371	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1372	tdq_load_add(tdq, &thread0);
1373	tdq->tdq_lowpri = thread0.td_priority;
1374	TDQ_UNLOCK(tdq);
1375}
1376
1377/*
1378 * This routine determines time constants after stathz and hz are setup.
1379 */
1380/* ARGSUSED */
1381static void
1382sched_initticks(void *dummy)
1383{
1384	int incr;
1385
1386	realstathz = stathz ? stathz : hz;
1387	sched_slice = realstathz / 10;	/* ~100ms */
1388	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1389	    realstathz);
1390
1391	/*
1392	 * tickincr is shifted out by 10 to avoid rounding errors due to
1393	 * hz not being evenly divisible by stathz on all platforms.
1394	 */
1395	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1396	/*
1397	 * This does not work for values of stathz that are more than
1398	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1399	 */
1400	if (incr == 0)
1401		incr = 1;
1402	tickincr = incr;
1403#ifdef SMP
1404	/*
1405	 * Set the default balance interval now that we know
1406	 * what realstathz is.
1407	 */
1408	balance_interval = realstathz;
1409	affinity = SCHED_AFFINITY_DEFAULT;
1410#endif
1411	if (sched_idlespinthresh < 0)
1412		sched_idlespinthresh = imax(16, 2 * hz / realstathz);
1413}
1414
1415
1416/*
1417 * This is the core of the interactivity algorithm.  Determines a score based
1418 * on past behavior.  It is the ratio of sleep time to run time scaled to
1419 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1420 * differs from the cpu usage because it does not account for time spent
1421 * waiting on a run-queue.  Would be prettier if we had floating point.
1422 */
1423static int
1424sched_interact_score(struct thread *td)
1425{
1426	struct td_sched *ts;
1427	int div;
1428
1429	ts = td->td_sched;
1430	/*
1431	 * The score is only needed if this is likely to be an interactive
1432	 * task.  Don't go through the expense of computing it if there's
1433	 * no chance.
1434	 */
1435	if (sched_interact <= SCHED_INTERACT_HALF &&
1436		ts->ts_runtime >= ts->ts_slptime)
1437			return (SCHED_INTERACT_HALF);
1438
1439	if (ts->ts_runtime > ts->ts_slptime) {
1440		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1441		return (SCHED_INTERACT_HALF +
1442		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1443	}
1444	if (ts->ts_slptime > ts->ts_runtime) {
1445		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1446		return (ts->ts_runtime / div);
1447	}
1448	/* runtime == slptime */
1449	if (ts->ts_runtime)
1450		return (SCHED_INTERACT_HALF);
1451
1452	/*
1453	 * This can happen if slptime and runtime are 0.
1454	 */
1455	return (0);
1456
1457}
1458
1459/*
1460 * Scale the scheduling priority according to the "interactivity" of this
1461 * process.
1462 */
1463static void
1464sched_priority(struct thread *td)
1465{
1466	int score;
1467	int pri;
1468
1469	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1470		return;
1471	/*
1472	 * If the score is interactive we place the thread in the realtime
1473	 * queue with a priority that is less than kernel and interrupt
1474	 * priorities.  These threads are not subject to nice restrictions.
1475	 *
1476	 * Scores greater than this are placed on the normal timeshare queue
1477	 * where the priority is partially decided by the most recent cpu
1478	 * utilization and the rest is decided by nice value.
1479	 *
1480	 * The nice value of the process has a linear effect on the calculated
1481	 * score.  Negative nice values make it easier for a thread to be
1482	 * considered interactive.
1483	 */
1484	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1485	if (score < sched_interact) {
1486		pri = PRI_MIN_INTERACT;
1487		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1488		    sched_interact) * score;
1489		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1490		    ("sched_priority: invalid interactive priority %d score %d",
1491		    pri, score));
1492	} else {
1493		pri = SCHED_PRI_MIN;
1494		if (td->td_sched->ts_ticks)
1495			pri += min(SCHED_PRI_TICKS(td->td_sched),
1496			    SCHED_PRI_RANGE);
1497		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1498		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1499		    ("sched_priority: invalid priority %d: nice %d, "
1500		    "ticks %d ftick %d ltick %d tick pri %d",
1501		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1502		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1503		    SCHED_PRI_TICKS(td->td_sched)));
1504	}
1505	sched_user_prio(td, pri);
1506
1507	return;
1508}
1509
1510/*
1511 * This routine enforces a maximum limit on the amount of scheduling history
1512 * kept.  It is called after either the slptime or runtime is adjusted.  This
1513 * function is ugly due to integer math.
1514 */
1515static void
1516sched_interact_update(struct thread *td)
1517{
1518	struct td_sched *ts;
1519	u_int sum;
1520
1521	ts = td->td_sched;
1522	sum = ts->ts_runtime + ts->ts_slptime;
1523	if (sum < SCHED_SLP_RUN_MAX)
1524		return;
1525	/*
1526	 * This only happens from two places:
1527	 * 1) We have added an unusual amount of run time from fork_exit.
1528	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1529	 */
1530	if (sum > SCHED_SLP_RUN_MAX * 2) {
1531		if (ts->ts_runtime > ts->ts_slptime) {
1532			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1533			ts->ts_slptime = 1;
1534		} else {
1535			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1536			ts->ts_runtime = 1;
1537		}
1538		return;
1539	}
1540	/*
1541	 * If we have exceeded by more than 1/5th then the algorithm below
1542	 * will not bring us back into range.  Dividing by two here forces
1543	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1544	 */
1545	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1546		ts->ts_runtime /= 2;
1547		ts->ts_slptime /= 2;
1548		return;
1549	}
1550	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1551	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1552}
1553
1554/*
1555 * Scale back the interactivity history when a child thread is created.  The
1556 * history is inherited from the parent but the thread may behave totally
1557 * differently.  For example, a shell spawning a compiler process.  We want
1558 * to learn that the compiler is behaving badly very quickly.
1559 */
1560static void
1561sched_interact_fork(struct thread *td)
1562{
1563	int ratio;
1564	int sum;
1565
1566	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1567	if (sum > SCHED_SLP_RUN_FORK) {
1568		ratio = sum / SCHED_SLP_RUN_FORK;
1569		td->td_sched->ts_runtime /= ratio;
1570		td->td_sched->ts_slptime /= ratio;
1571	}
1572}
1573
1574/*
1575 * Called from proc0_init() to setup the scheduler fields.
1576 */
1577void
1578schedinit(void)
1579{
1580
1581	/*
1582	 * Set up the scheduler specific parts of proc0.
1583	 */
1584	proc0.p_sched = NULL; /* XXX */
1585	thread0.td_sched = &td_sched0;
1586	td_sched0.ts_ltick = ticks;
1587	td_sched0.ts_ftick = ticks;
1588	td_sched0.ts_slice = sched_slice;
1589}
1590
1591/*
1592 * This is only somewhat accurate since given many processes of the same
1593 * priority they will switch when their slices run out, which will be
1594 * at most sched_slice stathz ticks.
1595 */
1596int
1597sched_rr_interval(void)
1598{
1599
1600	/* Convert sched_slice from stathz to hz. */
1601	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1602}
1603
1604/*
1605 * Update the percent cpu tracking information when it is requested or
1606 * the total history exceeds the maximum.  We keep a sliding history of
1607 * tick counts that slowly decays.  This is less precise than the 4BSD
1608 * mechanism since it happens with less regular and frequent events.
1609 */
1610static void
1611sched_pctcpu_update(struct td_sched *ts, int run)
1612{
1613	int t = ticks;
1614
1615	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1616		ts->ts_ticks = 0;
1617		ts->ts_ftick = t - SCHED_TICK_TARG;
1618	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1619		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1620		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1621		ts->ts_ftick = t - SCHED_TICK_TARG;
1622	}
1623	if (run)
1624		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1625	ts->ts_ltick = t;
1626}
1627
1628/*
1629 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1630 * if necessary.  This is the back-end for several priority related
1631 * functions.
1632 */
1633static void
1634sched_thread_priority(struct thread *td, u_char prio)
1635{
1636	struct td_sched *ts;
1637	struct tdq *tdq;
1638	int oldpri;
1639
1640	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1641	    "prio:%d", td->td_priority, "new prio:%d", prio,
1642	    KTR_ATTR_LINKED, sched_tdname(curthread));
1643	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1644	if (td != curthread && prio < td->td_priority) {
1645		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1646		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1647		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1648		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1649		    curthread);
1650	}
1651	ts = td->td_sched;
1652	THREAD_LOCK_ASSERT(td, MA_OWNED);
1653	if (td->td_priority == prio)
1654		return;
1655	/*
1656	 * If the priority has been elevated due to priority
1657	 * propagation, we may have to move ourselves to a new
1658	 * queue.  This could be optimized to not re-add in some
1659	 * cases.
1660	 */
1661	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1662		sched_rem(td);
1663		td->td_priority = prio;
1664		sched_add(td, SRQ_BORROWING);
1665		return;
1666	}
1667	/*
1668	 * If the thread is currently running we may have to adjust the lowpri
1669	 * information so other cpus are aware of our current priority.
1670	 */
1671	if (TD_IS_RUNNING(td)) {
1672		tdq = TDQ_CPU(ts->ts_cpu);
1673		oldpri = td->td_priority;
1674		td->td_priority = prio;
1675		if (prio < tdq->tdq_lowpri)
1676			tdq->tdq_lowpri = prio;
1677		else if (tdq->tdq_lowpri == oldpri)
1678			tdq_setlowpri(tdq, td);
1679		return;
1680	}
1681	td->td_priority = prio;
1682}
1683
1684/*
1685 * Update a thread's priority when it is lent another thread's
1686 * priority.
1687 */
1688void
1689sched_lend_prio(struct thread *td, u_char prio)
1690{
1691
1692	td->td_flags |= TDF_BORROWING;
1693	sched_thread_priority(td, prio);
1694}
1695
1696/*
1697 * Restore a thread's priority when priority propagation is
1698 * over.  The prio argument is the minimum priority the thread
1699 * needs to have to satisfy other possible priority lending
1700 * requests.  If the thread's regular priority is less
1701 * important than prio, the thread will keep a priority boost
1702 * of prio.
1703 */
1704void
1705sched_unlend_prio(struct thread *td, u_char prio)
1706{
1707	u_char base_pri;
1708
1709	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1710	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1711		base_pri = td->td_user_pri;
1712	else
1713		base_pri = td->td_base_pri;
1714	if (prio >= base_pri) {
1715		td->td_flags &= ~TDF_BORROWING;
1716		sched_thread_priority(td, base_pri);
1717	} else
1718		sched_lend_prio(td, prio);
1719}
1720
1721/*
1722 * Standard entry for setting the priority to an absolute value.
1723 */
1724void
1725sched_prio(struct thread *td, u_char prio)
1726{
1727	u_char oldprio;
1728
1729	/* First, update the base priority. */
1730	td->td_base_pri = prio;
1731
1732	/*
1733	 * If the thread is borrowing another thread's priority, don't
1734	 * ever lower the priority.
1735	 */
1736	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1737		return;
1738
1739	/* Change the real priority. */
1740	oldprio = td->td_priority;
1741	sched_thread_priority(td, prio);
1742
1743	/*
1744	 * If the thread is on a turnstile, then let the turnstile update
1745	 * its state.
1746	 */
1747	if (TD_ON_LOCK(td) && oldprio != prio)
1748		turnstile_adjust(td, oldprio);
1749}
1750
1751/*
1752 * Set the base user priority, does not effect current running priority.
1753 */
1754void
1755sched_user_prio(struct thread *td, u_char prio)
1756{
1757
1758	td->td_base_user_pri = prio;
1759	if (td->td_lend_user_pri <= prio)
1760		return;
1761	td->td_user_pri = prio;
1762}
1763
1764void
1765sched_lend_user_prio(struct thread *td, u_char prio)
1766{
1767
1768	THREAD_LOCK_ASSERT(td, MA_OWNED);
1769	td->td_lend_user_pri = prio;
1770	td->td_user_pri = min(prio, td->td_base_user_pri);
1771	if (td->td_priority > td->td_user_pri)
1772		sched_prio(td, td->td_user_pri);
1773	else if (td->td_priority != td->td_user_pri)
1774		td->td_flags |= TDF_NEEDRESCHED;
1775}
1776
1777/*
1778 * Handle migration from sched_switch().  This happens only for
1779 * cpu binding.
1780 */
1781static struct mtx *
1782sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1783{
1784	struct tdq *tdn;
1785
1786	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1787#ifdef SMP
1788	tdq_load_rem(tdq, td);
1789	/*
1790	 * Do the lock dance required to avoid LOR.  We grab an extra
1791	 * spinlock nesting to prevent preemption while we're
1792	 * not holding either run-queue lock.
1793	 */
1794	spinlock_enter();
1795	thread_lock_block(td);	/* This releases the lock on tdq. */
1796
1797	/*
1798	 * Acquire both run-queue locks before placing the thread on the new
1799	 * run-queue to avoid deadlocks created by placing a thread with a
1800	 * blocked lock on the run-queue of a remote processor.  The deadlock
1801	 * occurs when a third processor attempts to lock the two queues in
1802	 * question while the target processor is spinning with its own
1803	 * run-queue lock held while waiting for the blocked lock to clear.
1804	 */
1805	tdq_lock_pair(tdn, tdq);
1806	tdq_add(tdn, td, flags);
1807	tdq_notify(tdn, td);
1808	TDQ_UNLOCK(tdn);
1809	spinlock_exit();
1810#endif
1811	return (TDQ_LOCKPTR(tdn));
1812}
1813
1814/*
1815 * Variadic version of thread_lock_unblock() that does not assume td_lock
1816 * is blocked.
1817 */
1818static inline void
1819thread_unblock_switch(struct thread *td, struct mtx *mtx)
1820{
1821	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1822	    (uintptr_t)mtx);
1823}
1824
1825/*
1826 * Switch threads.  This function has to handle threads coming in while
1827 * blocked for some reason, running, or idle.  It also must deal with
1828 * migrating a thread from one queue to another as running threads may
1829 * be assigned elsewhere via binding.
1830 */
1831void
1832sched_switch(struct thread *td, struct thread *newtd, int flags)
1833{
1834	struct tdq *tdq;
1835	struct td_sched *ts;
1836	struct mtx *mtx;
1837	int srqflag;
1838	int cpuid, preempted;
1839
1840	THREAD_LOCK_ASSERT(td, MA_OWNED);
1841	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1842
1843	cpuid = PCPU_GET(cpuid);
1844	tdq = TDQ_CPU(cpuid);
1845	ts = td->td_sched;
1846	mtx = td->td_lock;
1847	sched_pctcpu_update(ts, 1);
1848	ts->ts_rltick = ticks;
1849	td->td_lastcpu = td->td_oncpu;
1850	td->td_oncpu = NOCPU;
1851	preempted = !(td->td_flags & TDF_SLICEEND);
1852	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1853	td->td_owepreempt = 0;
1854	tdq->tdq_switchcnt++;
1855	/*
1856	 * The lock pointer in an idle thread should never change.  Reset it
1857	 * to CAN_RUN as well.
1858	 */
1859	if (TD_IS_IDLETHREAD(td)) {
1860		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1861		TD_SET_CAN_RUN(td);
1862	} else if (TD_IS_RUNNING(td)) {
1863		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1864		srqflag = preempted ?
1865		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1866		    SRQ_OURSELF|SRQ_YIELDING;
1867#ifdef SMP
1868		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1869			ts->ts_cpu = sched_pickcpu(td, 0);
1870#endif
1871		if (ts->ts_cpu == cpuid)
1872			tdq_runq_add(tdq, td, srqflag);
1873		else {
1874			KASSERT(THREAD_CAN_MIGRATE(td) ||
1875			    (ts->ts_flags & TSF_BOUND) != 0,
1876			    ("Thread %p shouldn't migrate", td));
1877			mtx = sched_switch_migrate(tdq, td, srqflag);
1878		}
1879	} else {
1880		/* This thread must be going to sleep. */
1881		TDQ_LOCK(tdq);
1882		mtx = thread_lock_block(td);
1883		tdq_load_rem(tdq, td);
1884	}
1885	/*
1886	 * We enter here with the thread blocked and assigned to the
1887	 * appropriate cpu run-queue or sleep-queue and with the current
1888	 * thread-queue locked.
1889	 */
1890	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1891	newtd = choosethread();
1892	/*
1893	 * Call the MD code to switch contexts if necessary.
1894	 */
1895	if (td != newtd) {
1896#ifdef	HWPMC_HOOKS
1897		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1898			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1899#endif
1900		SDT_PROBE2(sched, , , off_cpu, td, td->td_proc);
1901		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1902		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1903		sched_pctcpu_update(newtd->td_sched, 0);
1904
1905#ifdef KDTRACE_HOOKS
1906		/*
1907		 * If DTrace has set the active vtime enum to anything
1908		 * other than INACTIVE (0), then it should have set the
1909		 * function to call.
1910		 */
1911		if (dtrace_vtime_active)
1912			(*dtrace_vtime_switch_func)(newtd);
1913#endif
1914
1915		cpu_switch(td, newtd, mtx);
1916		/*
1917		 * We may return from cpu_switch on a different cpu.  However,
1918		 * we always return with td_lock pointing to the current cpu's
1919		 * run queue lock.
1920		 */
1921		cpuid = PCPU_GET(cpuid);
1922		tdq = TDQ_CPU(cpuid);
1923		lock_profile_obtain_lock_success(
1924		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1925
1926		SDT_PROBE0(sched, , , on_cpu);
1927#ifdef	HWPMC_HOOKS
1928		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1929			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1930#endif
1931	} else {
1932		thread_unblock_switch(td, mtx);
1933		SDT_PROBE0(sched, , , remain_cpu);
1934	}
1935	/*
1936	 * Assert that all went well and return.
1937	 */
1938	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1939	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1940	td->td_oncpu = cpuid;
1941}
1942
1943/*
1944 * Adjust thread priorities as a result of a nice request.
1945 */
1946void
1947sched_nice(struct proc *p, int nice)
1948{
1949	struct thread *td;
1950
1951	PROC_LOCK_ASSERT(p, MA_OWNED);
1952
1953	p->p_nice = nice;
1954	FOREACH_THREAD_IN_PROC(p, td) {
1955		thread_lock(td);
1956		sched_priority(td);
1957		sched_prio(td, td->td_base_user_pri);
1958		thread_unlock(td);
1959	}
1960}
1961
1962/*
1963 * Record the sleep time for the interactivity scorer.
1964 */
1965void
1966sched_sleep(struct thread *td, int prio)
1967{
1968
1969	THREAD_LOCK_ASSERT(td, MA_OWNED);
1970
1971	td->td_slptick = ticks;
1972	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1973		td->td_flags |= TDF_CANSWAP;
1974	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1975		return;
1976	if (static_boost == 1 && prio)
1977		sched_prio(td, prio);
1978	else if (static_boost && td->td_priority > static_boost)
1979		sched_prio(td, static_boost);
1980}
1981
1982/*
1983 * Schedule a thread to resume execution and record how long it voluntarily
1984 * slept.  We also update the pctcpu, interactivity, and priority.
1985 */
1986void
1987sched_wakeup(struct thread *td)
1988{
1989	struct td_sched *ts;
1990	int slptick;
1991
1992	THREAD_LOCK_ASSERT(td, MA_OWNED);
1993	ts = td->td_sched;
1994	td->td_flags &= ~TDF_CANSWAP;
1995	/*
1996	 * If we slept for more than a tick update our interactivity and
1997	 * priority.
1998	 */
1999	slptick = td->td_slptick;
2000	td->td_slptick = 0;
2001	if (slptick && slptick != ticks) {
2002		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2003		sched_interact_update(td);
2004		sched_pctcpu_update(ts, 0);
2005	}
2006	/* Reset the slice value after we sleep. */
2007	ts->ts_slice = sched_slice;
2008	sched_add(td, SRQ_BORING);
2009}
2010
2011/*
2012 * Penalize the parent for creating a new child and initialize the child's
2013 * priority.
2014 */
2015void
2016sched_fork(struct thread *td, struct thread *child)
2017{
2018	THREAD_LOCK_ASSERT(td, MA_OWNED);
2019	sched_pctcpu_update(td->td_sched, 1);
2020	sched_fork_thread(td, child);
2021	/*
2022	 * Penalize the parent and child for forking.
2023	 */
2024	sched_interact_fork(child);
2025	sched_priority(child);
2026	td->td_sched->ts_runtime += tickincr;
2027	sched_interact_update(td);
2028	sched_priority(td);
2029}
2030
2031/*
2032 * Fork a new thread, may be within the same process.
2033 */
2034void
2035sched_fork_thread(struct thread *td, struct thread *child)
2036{
2037	struct td_sched *ts;
2038	struct td_sched *ts2;
2039
2040	THREAD_LOCK_ASSERT(td, MA_OWNED);
2041	/*
2042	 * Initialize child.
2043	 */
2044	ts = td->td_sched;
2045	ts2 = child->td_sched;
2046	child->td_lock = TDQ_LOCKPTR(TDQ_SELF());
2047	child->td_cpuset = cpuset_ref(td->td_cpuset);
2048	ts2->ts_cpu = ts->ts_cpu;
2049	ts2->ts_flags = 0;
2050	/*
2051	 * Grab our parents cpu estimation information.
2052	 */
2053	ts2->ts_ticks = ts->ts_ticks;
2054	ts2->ts_ltick = ts->ts_ltick;
2055	ts2->ts_ftick = ts->ts_ftick;
2056	/*
2057	 * Do not inherit any borrowed priority from the parent.
2058	 */
2059	child->td_priority = child->td_base_pri;
2060	/*
2061	 * And update interactivity score.
2062	 */
2063	ts2->ts_slptime = ts->ts_slptime;
2064	ts2->ts_runtime = ts->ts_runtime;
2065	ts2->ts_slice = 1;	/* Attempt to quickly learn interactivity. */
2066#ifdef KTR
2067	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2068#endif
2069}
2070
2071/*
2072 * Adjust the priority class of a thread.
2073 */
2074void
2075sched_class(struct thread *td, int class)
2076{
2077
2078	THREAD_LOCK_ASSERT(td, MA_OWNED);
2079	if (td->td_pri_class == class)
2080		return;
2081	td->td_pri_class = class;
2082}
2083
2084/*
2085 * Return some of the child's priority and interactivity to the parent.
2086 */
2087void
2088sched_exit(struct proc *p, struct thread *child)
2089{
2090	struct thread *td;
2091
2092	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2093	    "prio:%d", child->td_priority);
2094	PROC_LOCK_ASSERT(p, MA_OWNED);
2095	td = FIRST_THREAD_IN_PROC(p);
2096	sched_exit_thread(td, child);
2097}
2098
2099/*
2100 * Penalize another thread for the time spent on this one.  This helps to
2101 * worsen the priority and interactivity of processes which schedule batch
2102 * jobs such as make.  This has little effect on the make process itself but
2103 * causes new processes spawned by it to receive worse scores immediately.
2104 */
2105void
2106sched_exit_thread(struct thread *td, struct thread *child)
2107{
2108
2109	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2110	    "prio:%d", child->td_priority);
2111	/*
2112	 * Give the child's runtime to the parent without returning the
2113	 * sleep time as a penalty to the parent.  This causes shells that
2114	 * launch expensive things to mark their children as expensive.
2115	 */
2116	thread_lock(td);
2117	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2118	sched_interact_update(td);
2119	sched_priority(td);
2120	thread_unlock(td);
2121}
2122
2123void
2124sched_preempt(struct thread *td)
2125{
2126	struct tdq *tdq;
2127
2128	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2129
2130	thread_lock(td);
2131	tdq = TDQ_SELF();
2132	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2133	tdq->tdq_ipipending = 0;
2134	if (td->td_priority > tdq->tdq_lowpri) {
2135		int flags;
2136
2137		flags = SW_INVOL | SW_PREEMPT;
2138		if (td->td_critnest > 1)
2139			td->td_owepreempt = 1;
2140		else if (TD_IS_IDLETHREAD(td))
2141			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2142		else
2143			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2144	}
2145	thread_unlock(td);
2146}
2147
2148/*
2149 * Fix priorities on return to user-space.  Priorities may be elevated due
2150 * to static priorities in msleep() or similar.
2151 */
2152void
2153sched_userret(struct thread *td)
2154{
2155	/*
2156	 * XXX we cheat slightly on the locking here to avoid locking in
2157	 * the usual case.  Setting td_priority here is essentially an
2158	 * incomplete workaround for not setting it properly elsewhere.
2159	 * Now that some interrupt handlers are threads, not setting it
2160	 * properly elsewhere can clobber it in the window between setting
2161	 * it here and returning to user mode, so don't waste time setting
2162	 * it perfectly here.
2163	 */
2164	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2165	    ("thread with borrowed priority returning to userland"));
2166	if (td->td_priority != td->td_user_pri) {
2167		thread_lock(td);
2168		td->td_priority = td->td_user_pri;
2169		td->td_base_pri = td->td_user_pri;
2170		tdq_setlowpri(TDQ_SELF(), td);
2171		thread_unlock(td);
2172        }
2173}
2174
2175/*
2176 * Handle a stathz tick.  This is really only relevant for timeshare
2177 * threads.
2178 */
2179void
2180sched_clock(struct thread *td)
2181{
2182	struct tdq *tdq;
2183	struct td_sched *ts;
2184
2185	THREAD_LOCK_ASSERT(td, MA_OWNED);
2186	tdq = TDQ_SELF();
2187#ifdef SMP
2188	/*
2189	 * We run the long term load balancer infrequently on the first cpu.
2190	 */
2191	if (balance_tdq == tdq) {
2192		if (balance_ticks && --balance_ticks == 0)
2193			sched_balance();
2194	}
2195#endif
2196	/*
2197	 * Save the old switch count so we have a record of the last ticks
2198	 * activity.   Initialize the new switch count based on our load.
2199	 * If there is some activity seed it to reflect that.
2200	 */
2201	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2202	tdq->tdq_switchcnt = tdq->tdq_load;
2203	/*
2204	 * Advance the insert index once for each tick to ensure that all
2205	 * threads get a chance to run.
2206	 */
2207	if (tdq->tdq_idx == tdq->tdq_ridx) {
2208		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2209		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2210			tdq->tdq_ridx = tdq->tdq_idx;
2211	}
2212	ts = td->td_sched;
2213	sched_pctcpu_update(ts, 1);
2214	if (td->td_pri_class & PRI_FIFO_BIT)
2215		return;
2216	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2217		/*
2218		 * We used a tick; charge it to the thread so
2219		 * that we can compute our interactivity.
2220		 */
2221		td->td_sched->ts_runtime += tickincr;
2222		sched_interact_update(td);
2223		sched_priority(td);
2224	}
2225
2226	/*
2227	 * Force a context switch if the current thread has used up a full
2228	 * time slice (default is 100ms).
2229	 */
2230	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
2231		ts->ts_slice = sched_slice;
2232		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2233	}
2234}
2235
2236/*
2237 * Called once per hz tick.
2238 */
2239void
2240sched_tick(int cnt)
2241{
2242
2243}
2244
2245/*
2246 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2247 * cooperative idle threads.
2248 */
2249int
2250sched_runnable(void)
2251{
2252	struct tdq *tdq;
2253	int load;
2254
2255	load = 1;
2256
2257	tdq = TDQ_SELF();
2258	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2259		if (tdq->tdq_load > 0)
2260			goto out;
2261	} else
2262		if (tdq->tdq_load - 1 > 0)
2263			goto out;
2264	load = 0;
2265out:
2266	return (load);
2267}
2268
2269/*
2270 * Choose the highest priority thread to run.  The thread is removed from
2271 * the run-queue while running however the load remains.  For SMP we set
2272 * the tdq in the global idle bitmask if it idles here.
2273 */
2274struct thread *
2275sched_choose(void)
2276{
2277	struct thread *td;
2278	struct tdq *tdq;
2279
2280	tdq = TDQ_SELF();
2281	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2282	td = tdq_choose(tdq);
2283	if (td) {
2284		tdq_runq_rem(tdq, td);
2285		tdq->tdq_lowpri = td->td_priority;
2286		return (td);
2287	}
2288	tdq->tdq_lowpri = PRI_MAX_IDLE;
2289	return (PCPU_GET(idlethread));
2290}
2291
2292/*
2293 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2294 * we always request it once we exit a critical section.
2295 */
2296static inline void
2297sched_setpreempt(struct thread *td)
2298{
2299	struct thread *ctd;
2300	int cpri;
2301	int pri;
2302
2303	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2304
2305	ctd = curthread;
2306	pri = td->td_priority;
2307	cpri = ctd->td_priority;
2308	if (pri < cpri)
2309		ctd->td_flags |= TDF_NEEDRESCHED;
2310	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2311		return;
2312	if (!sched_shouldpreempt(pri, cpri, 0))
2313		return;
2314	ctd->td_owepreempt = 1;
2315}
2316
2317/*
2318 * Add a thread to a thread queue.  Select the appropriate runq and add the
2319 * thread to it.  This is the internal function called when the tdq is
2320 * predetermined.
2321 */
2322void
2323tdq_add(struct tdq *tdq, struct thread *td, int flags)
2324{
2325
2326	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2327	KASSERT((td->td_inhibitors == 0),
2328	    ("sched_add: trying to run inhibited thread"));
2329	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2330	    ("sched_add: bad thread state"));
2331	KASSERT(td->td_flags & TDF_INMEM,
2332	    ("sched_add: thread swapped out"));
2333
2334	if (td->td_priority < tdq->tdq_lowpri)
2335		tdq->tdq_lowpri = td->td_priority;
2336	tdq_runq_add(tdq, td, flags);
2337	tdq_load_add(tdq, td);
2338}
2339
2340/*
2341 * Select the target thread queue and add a thread to it.  Request
2342 * preemption or IPI a remote processor if required.
2343 */
2344void
2345sched_add(struct thread *td, int flags)
2346{
2347	struct tdq *tdq;
2348#ifdef SMP
2349	int cpu;
2350#endif
2351
2352	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2353	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2354	    sched_tdname(curthread));
2355	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2356	    KTR_ATTR_LINKED, sched_tdname(td));
2357	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2358	    flags & SRQ_PREEMPTED);
2359	THREAD_LOCK_ASSERT(td, MA_OWNED);
2360	/*
2361	 * Recalculate the priority before we select the target cpu or
2362	 * run-queue.
2363	 */
2364	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2365		sched_priority(td);
2366#ifdef SMP
2367	/*
2368	 * Pick the destination cpu and if it isn't ours transfer to the
2369	 * target cpu.
2370	 */
2371	cpu = sched_pickcpu(td, flags);
2372	tdq = sched_setcpu(td, cpu, flags);
2373	tdq_add(tdq, td, flags);
2374	if (cpu != PCPU_GET(cpuid)) {
2375		tdq_notify(tdq, td);
2376		return;
2377	}
2378#else
2379	tdq = TDQ_SELF();
2380	TDQ_LOCK(tdq);
2381	/*
2382	 * Now that the thread is moving to the run-queue, set the lock
2383	 * to the scheduler's lock.
2384	 */
2385	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2386	tdq_add(tdq, td, flags);
2387#endif
2388	if (!(flags & SRQ_YIELDING))
2389		sched_setpreempt(td);
2390}
2391
2392/*
2393 * Remove a thread from a run-queue without running it.  This is used
2394 * when we're stealing a thread from a remote queue.  Otherwise all threads
2395 * exit by calling sched_exit_thread() and sched_throw() themselves.
2396 */
2397void
2398sched_rem(struct thread *td)
2399{
2400	struct tdq *tdq;
2401
2402	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2403	    "prio:%d", td->td_priority);
2404	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2405	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2406	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2407	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2408	KASSERT(TD_ON_RUNQ(td),
2409	    ("sched_rem: thread not on run queue"));
2410	tdq_runq_rem(tdq, td);
2411	tdq_load_rem(tdq, td);
2412	TD_SET_CAN_RUN(td);
2413	if (td->td_priority == tdq->tdq_lowpri)
2414		tdq_setlowpri(tdq, NULL);
2415}
2416
2417/*
2418 * Fetch cpu utilization information.  Updates on demand.
2419 */
2420fixpt_t
2421sched_pctcpu(struct thread *td)
2422{
2423	fixpt_t pctcpu;
2424	struct td_sched *ts;
2425
2426	pctcpu = 0;
2427	ts = td->td_sched;
2428	if (ts == NULL)
2429		return (0);
2430
2431	THREAD_LOCK_ASSERT(td, MA_OWNED);
2432	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2433	if (ts->ts_ticks) {
2434		int rtick;
2435
2436		/* How many rtick per second ? */
2437		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2438		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2439	}
2440
2441	return (pctcpu);
2442}
2443
2444/*
2445 * Enforce affinity settings for a thread.  Called after adjustments to
2446 * cpumask.
2447 */
2448void
2449sched_affinity(struct thread *td)
2450{
2451#ifdef SMP
2452	struct td_sched *ts;
2453
2454	THREAD_LOCK_ASSERT(td, MA_OWNED);
2455	ts = td->td_sched;
2456	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2457		return;
2458	if (TD_ON_RUNQ(td)) {
2459		sched_rem(td);
2460		sched_add(td, SRQ_BORING);
2461		return;
2462	}
2463	if (!TD_IS_RUNNING(td))
2464		return;
2465	/*
2466	 * Force a switch before returning to userspace.  If the
2467	 * target thread is not running locally send an ipi to force
2468	 * the issue.
2469	 */
2470	td->td_flags |= TDF_NEEDRESCHED;
2471	if (td != curthread)
2472		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2473#endif
2474}
2475
2476/*
2477 * Bind a thread to a target cpu.
2478 */
2479void
2480sched_bind(struct thread *td, int cpu)
2481{
2482	struct td_sched *ts;
2483
2484	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2485	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2486	ts = td->td_sched;
2487	if (ts->ts_flags & TSF_BOUND)
2488		sched_unbind(td);
2489	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2490	ts->ts_flags |= TSF_BOUND;
2491	sched_pin();
2492	if (PCPU_GET(cpuid) == cpu)
2493		return;
2494	ts->ts_cpu = cpu;
2495	/* When we return from mi_switch we'll be on the correct cpu. */
2496	mi_switch(SW_VOL, NULL);
2497}
2498
2499/*
2500 * Release a bound thread.
2501 */
2502void
2503sched_unbind(struct thread *td)
2504{
2505	struct td_sched *ts;
2506
2507	THREAD_LOCK_ASSERT(td, MA_OWNED);
2508	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2509	ts = td->td_sched;
2510	if ((ts->ts_flags & TSF_BOUND) == 0)
2511		return;
2512	ts->ts_flags &= ~TSF_BOUND;
2513	sched_unpin();
2514}
2515
2516int
2517sched_is_bound(struct thread *td)
2518{
2519	THREAD_LOCK_ASSERT(td, MA_OWNED);
2520	return (td->td_sched->ts_flags & TSF_BOUND);
2521}
2522
2523/*
2524 * Basic yield call.
2525 */
2526void
2527sched_relinquish(struct thread *td)
2528{
2529	thread_lock(td);
2530	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2531	thread_unlock(td);
2532}
2533
2534/*
2535 * Return the total system load.
2536 */
2537int
2538sched_load(void)
2539{
2540#ifdef SMP
2541	int total;
2542	int i;
2543
2544	total = 0;
2545	CPU_FOREACH(i)
2546		total += TDQ_CPU(i)->tdq_sysload;
2547	return (total);
2548#else
2549	return (TDQ_SELF()->tdq_sysload);
2550#endif
2551}
2552
2553int
2554sched_sizeof_proc(void)
2555{
2556	return (sizeof(struct proc));
2557}
2558
2559int
2560sched_sizeof_thread(void)
2561{
2562	return (sizeof(struct thread) + sizeof(struct td_sched));
2563}
2564
2565#ifdef SMP
2566#define	TDQ_IDLESPIN(tdq)						\
2567    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2568#else
2569#define	TDQ_IDLESPIN(tdq)	1
2570#endif
2571
2572/*
2573 * The actual idle process.
2574 */
2575void
2576sched_idletd(void *dummy)
2577{
2578	struct thread *td;
2579	struct tdq *tdq;
2580	int switchcnt;
2581	int i;
2582
2583	mtx_assert(&Giant, MA_NOTOWNED);
2584	td = curthread;
2585	tdq = TDQ_SELF();
2586	THREAD_NO_SLEEPING();
2587	for (;;) {
2588#ifdef SMP
2589		if (tdq_idled(tdq) == 0)
2590			continue;
2591#endif
2592		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2593		/*
2594		 * If we're switching very frequently, spin while checking
2595		 * for load rather than entering a low power state that
2596		 * may require an IPI.  However, don't do any busy
2597		 * loops while on SMT machines as this simply steals
2598		 * cycles from cores doing useful work.
2599		 */
2600		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2601			for (i = 0; i < sched_idlespins; i++) {
2602				if (tdq->tdq_load)
2603					break;
2604				cpu_spinwait();
2605			}
2606		}
2607		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2608		if (tdq->tdq_load == 0) {
2609			tdq->tdq_cpu_idle = 1;
2610			if (tdq->tdq_load == 0) {
2611				cpu_idle(switchcnt > sched_idlespinthresh * 4);
2612				tdq->tdq_switchcnt++;
2613			}
2614			tdq->tdq_cpu_idle = 0;
2615		}
2616		if (tdq->tdq_load) {
2617			thread_lock(td);
2618			mi_switch(SW_VOL | SWT_IDLE, NULL);
2619			thread_unlock(td);
2620		}
2621	}
2622}
2623
2624/*
2625 * A CPU is entering for the first time or a thread is exiting.
2626 */
2627void
2628sched_throw(struct thread *td)
2629{
2630	struct thread *newtd;
2631	struct tdq *tdq;
2632
2633	tdq = TDQ_SELF();
2634	if (td == NULL) {
2635		/* Correct spinlock nesting and acquire the correct lock. */
2636		TDQ_LOCK(tdq);
2637		spinlock_exit();
2638		PCPU_SET(switchtime, cpu_ticks());
2639		PCPU_SET(switchticks, ticks);
2640	} else {
2641		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2642		tdq_load_rem(tdq, td);
2643		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2644	}
2645	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2646	newtd = choosethread();
2647	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2648	cpu_throw(td, newtd);		/* doesn't return */
2649}
2650
2651/*
2652 * This is called from fork_exit().  Just acquire the correct locks and
2653 * let fork do the rest of the work.
2654 */
2655void
2656sched_fork_exit(struct thread *td)
2657{
2658	struct td_sched *ts;
2659	struct tdq *tdq;
2660	int cpuid;
2661
2662	/*
2663	 * Finish setting up thread glue so that it begins execution in a
2664	 * non-nested critical section with the scheduler lock held.
2665	 */
2666	cpuid = PCPU_GET(cpuid);
2667	tdq = TDQ_CPU(cpuid);
2668	ts = td->td_sched;
2669	if (TD_IS_IDLETHREAD(td))
2670		td->td_lock = TDQ_LOCKPTR(tdq);
2671	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2672	td->td_oncpu = cpuid;
2673	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2674	lock_profile_obtain_lock_success(
2675	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2676}
2677
2678/*
2679 * Create on first use to catch odd startup conditons.
2680 */
2681char *
2682sched_tdname(struct thread *td)
2683{
2684#ifdef KTR
2685	struct td_sched *ts;
2686
2687	ts = td->td_sched;
2688	if (ts->ts_name[0] == '\0')
2689		snprintf(ts->ts_name, sizeof(ts->ts_name),
2690		    "%s tid %d", td->td_name, td->td_tid);
2691	return (ts->ts_name);
2692#else
2693	return (td->td_name);
2694#endif
2695}
2696
2697#ifdef KTR
2698void
2699sched_clear_tdname(struct thread *td)
2700{
2701	struct td_sched *ts;
2702
2703	ts = td->td_sched;
2704	ts->ts_name[0] = '\0';
2705}
2706#endif
2707
2708#ifdef SMP
2709
2710/*
2711 * Build the CPU topology dump string. Is recursively called to collect
2712 * the topology tree.
2713 */
2714static int
2715sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2716    int indent)
2717{
2718	char cpusetbuf[CPUSETBUFSIZ];
2719	int i, first;
2720
2721	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2722	    "", 1 + indent / 2, cg->cg_level);
2723	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2724	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2725	first = TRUE;
2726	for (i = 0; i < MAXCPU; i++) {
2727		if (CPU_ISSET(i, &cg->cg_mask)) {
2728			if (!first)
2729				sbuf_printf(sb, ", ");
2730			else
2731				first = FALSE;
2732			sbuf_printf(sb, "%d", i);
2733		}
2734	}
2735	sbuf_printf(sb, "</cpu>\n");
2736
2737	if (cg->cg_flags != 0) {
2738		sbuf_printf(sb, "%*s <flags>", indent, "");
2739		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2740			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2741		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2742			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2743		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2744			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2745		sbuf_printf(sb, "</flags>\n");
2746	}
2747
2748	if (cg->cg_children > 0) {
2749		sbuf_printf(sb, "%*s <children>\n", indent, "");
2750		for (i = 0; i < cg->cg_children; i++)
2751			sysctl_kern_sched_topology_spec_internal(sb,
2752			    &cg->cg_child[i], indent+2);
2753		sbuf_printf(sb, "%*s </children>\n", indent, "");
2754	}
2755	sbuf_printf(sb, "%*s</group>\n", indent, "");
2756	return (0);
2757}
2758
2759/*
2760 * Sysctl handler for retrieving topology dump. It's a wrapper for
2761 * the recursive sysctl_kern_smp_topology_spec_internal().
2762 */
2763static int
2764sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2765{
2766	struct sbuf *topo;
2767	int err;
2768
2769	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2770
2771	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2772	if (topo == NULL)
2773		return (ENOMEM);
2774
2775	sbuf_printf(topo, "<groups>\n");
2776	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2777	sbuf_printf(topo, "</groups>\n");
2778
2779	if (err == 0) {
2780		sbuf_finish(topo);
2781		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2782	}
2783	sbuf_delete(topo);
2784	return (err);
2785}
2786
2787#endif
2788
2789static int
2790sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2791{
2792	int error, new_val, period;
2793
2794	period = 1000000 / realstathz;
2795	new_val = period * sched_slice;
2796	error = sysctl_handle_int(oidp, &new_val, 0, req);
2797	if (error != 0 || req->newptr == NULL)
2798		return (error);
2799	if (new_val <= 0)
2800		return (EINVAL);
2801	sched_slice = imax(1, (new_val + period / 2) / period);
2802	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2803	    realstathz);
2804	return (0);
2805}
2806
2807SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2808SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2809    "Scheduler name");
2810SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2811    NULL, 0, sysctl_kern_quantum, "I",
2812    "Quantum for timeshare threads in microseconds");
2813SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2814    "Quantum for timeshare threads in stathz ticks");
2815SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2816    "Interactivity score threshold");
2817SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2818    &preempt_thresh, 0,
2819    "Maximal (lowest) priority for preemption");
2820SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2821    "Assign static kernel priorities to sleeping threads");
2822SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2823    "Number of times idle thread will spin waiting for new work");
2824SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2825    &sched_idlespinthresh, 0,
2826    "Threshold before we will permit idle thread spinning");
2827#ifdef SMP
2828SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2829    "Number of hz ticks to keep thread affinity for");
2830SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2831    "Enables the long-term load balancer");
2832SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2833    &balance_interval, 0,
2834    "Average period in stathz ticks to run the long-term balancer");
2835SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2836    "Attempts to steal work from other cores before idling");
2837SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2838    "Minimum load on remote CPU before we'll steal");
2839SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2840    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2841    "XML dump of detected CPU topology");
2842#endif
2843
2844/* ps compat.  All cpu percentages from ULE are weighted. */
2845static int ccpu = 0;
2846SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2847