sched_ule.c revision 123685
1109864Sjeff/*-
2113357Sjeff * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3109864Sjeff * All rights reserved.
4109864Sjeff *
5109864Sjeff * Redistribution and use in source and binary forms, with or without
6109864Sjeff * modification, are permitted provided that the following conditions
7109864Sjeff * are met:
8109864Sjeff * 1. Redistributions of source code must retain the above copyright
9109864Sjeff *    notice unmodified, this list of conditions, and the following
10109864Sjeff *    disclaimer.
11109864Sjeff * 2. Redistributions in binary form must reproduce the above copyright
12109864Sjeff *    notice, this list of conditions and the following disclaimer in the
13109864Sjeff *    documentation and/or other materials provided with the distribution.
14109864Sjeff *
15109864Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16109864Sjeff * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17109864Sjeff * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18109864Sjeff * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19109864Sjeff * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20109864Sjeff * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21109864Sjeff * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22109864Sjeff * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23109864Sjeff * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24109864Sjeff * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25109864Sjeff */
26109864Sjeff
27116182Sobrien#include <sys/cdefs.h>
28116182Sobrien__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 123685 2003-12-20 14:03:14Z jeff $");
29116182Sobrien
30109864Sjeff#include <sys/param.h>
31109864Sjeff#include <sys/systm.h>
32109864Sjeff#include <sys/kernel.h>
33109864Sjeff#include <sys/ktr.h>
34109864Sjeff#include <sys/lock.h>
35109864Sjeff#include <sys/mutex.h>
36109864Sjeff#include <sys/proc.h>
37112966Sjeff#include <sys/resource.h>
38122038Sjeff#include <sys/resourcevar.h>
39109864Sjeff#include <sys/sched.h>
40109864Sjeff#include <sys/smp.h>
41109864Sjeff#include <sys/sx.h>
42109864Sjeff#include <sys/sysctl.h>
43109864Sjeff#include <sys/sysproto.h>
44109864Sjeff#include <sys/vmmeter.h>
45109864Sjeff#ifdef DDB
46109864Sjeff#include <ddb/ddb.h>
47109864Sjeff#endif
48109864Sjeff#ifdef KTRACE
49109864Sjeff#include <sys/uio.h>
50109864Sjeff#include <sys/ktrace.h>
51109864Sjeff#endif
52109864Sjeff
53109864Sjeff#include <machine/cpu.h>
54121790Sjeff#include <machine/smp.h>
55109864Sjeff
56113357Sjeff#define KTR_ULE         KTR_NFS
57113357Sjeff
58109864Sjeff/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
59109864Sjeff/* XXX This is bogus compatability crap for ps */
60109864Sjeffstatic fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
61109864SjeffSYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
62109864Sjeff
63109864Sjeffstatic void sched_setup(void *dummy);
64109864SjeffSYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
65109864Sjeff
66113357Sjeffstatic SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
67113357Sjeff
68113357Sjeffstatic int sched_strict;
69113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
70113357Sjeff
71113357Sjeffstatic int slice_min = 1;
72113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
73113357Sjeff
74116365Sjeffstatic int slice_max = 10;
75113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
76113357Sjeff
77111857Sjeffint realstathz;
78113357Sjeffint tickincr = 1;
79111857Sjeff
80116069Sjeff#ifdef SMP
81123487Sjeff/* Callouts to handle load balancing SMP systems. */
82116069Sjeffstatic struct callout kseq_lb_callout;
83123487Sjeffstatic struct callout kseq_group_callout;
84116069Sjeff#endif
85116069Sjeff
86109864Sjeff/*
87109864Sjeff * These datastructures are allocated within their parent datastructure but
88109864Sjeff * are scheduler specific.
89109864Sjeff */
90109864Sjeff
91109864Sjeffstruct ke_sched {
92109864Sjeff	int		ske_slice;
93109864Sjeff	struct runq	*ske_runq;
94109864Sjeff	/* The following variables are only used for pctcpu calculation */
95109864Sjeff	int		ske_ltick;	/* Last tick that we were running on */
96109864Sjeff	int		ske_ftick;	/* First tick that we were running on */
97109864Sjeff	int		ske_ticks;	/* Tick count */
98113357Sjeff	/* CPU that we have affinity for. */
99110260Sjeff	u_char		ske_cpu;
100109864Sjeff};
101109864Sjeff#define	ke_slice	ke_sched->ske_slice
102109864Sjeff#define	ke_runq		ke_sched->ske_runq
103109864Sjeff#define	ke_ltick	ke_sched->ske_ltick
104109864Sjeff#define	ke_ftick	ke_sched->ske_ftick
105109864Sjeff#define	ke_ticks	ke_sched->ske_ticks
106110260Sjeff#define	ke_cpu		ke_sched->ske_cpu
107121790Sjeff#define	ke_assign	ke_procq.tqe_next
108109864Sjeff
109121790Sjeff#define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
110122158Sjeff#define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
111121790Sjeff
112109864Sjeffstruct kg_sched {
113110645Sjeff	int	skg_slptime;		/* Number of ticks we vol. slept */
114110645Sjeff	int	skg_runtime;		/* Number of ticks we were running */
115109864Sjeff};
116109864Sjeff#define	kg_slptime	kg_sched->skg_slptime
117110645Sjeff#define	kg_runtime	kg_sched->skg_runtime
118109864Sjeff
119109864Sjeffstruct td_sched {
120109864Sjeff	int	std_slptime;
121109864Sjeff};
122109864Sjeff#define	td_slptime	td_sched->std_slptime
123109864Sjeff
124110267Sjeffstruct td_sched td_sched;
125109864Sjeffstruct ke_sched ke_sched;
126109864Sjeffstruct kg_sched kg_sched;
127109864Sjeff
128109864Sjeffstruct ke_sched *kse0_sched = &ke_sched;
129109864Sjeffstruct kg_sched *ksegrp0_sched = &kg_sched;
130109864Sjeffstruct p_sched *proc0_sched = NULL;
131109864Sjeffstruct td_sched *thread0_sched = &td_sched;
132109864Sjeff
133109864Sjeff/*
134116642Sjeff * The priority is primarily determined by the interactivity score.  Thus, we
135116642Sjeff * give lower(better) priorities to kse groups that use less CPU.  The nice
136116642Sjeff * value is then directly added to this to allow nice to have some effect
137116642Sjeff * on latency.
138111857Sjeff *
139111857Sjeff * PRI_RANGE:	Total priority range for timeshare threads.
140116642Sjeff * PRI_NRESV:	Number of nice values.
141111857Sjeff * PRI_BASE:	The start of the dynamic range.
142109864Sjeff */
143111857Sjeff#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
144121869Sjeff#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
145121869Sjeff#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
146116642Sjeff#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
147113357Sjeff#define	SCHED_PRI_INTERACT(score)					\
148116642Sjeff    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
149109864Sjeff
150109864Sjeff/*
151111857Sjeff * These determine the interactivity of a process.
152109864Sjeff *
153110645Sjeff * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
154110645Sjeff *		before throttling back.
155121868Sjeff * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
156116365Sjeff * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
157111857Sjeff * INTERACT_THRESH:	Threshhold for placement on the current runq.
158109864Sjeff */
159121126Sjeff#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
160121868Sjeff#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
161116365Sjeff#define	SCHED_INTERACT_MAX	(100)
162116365Sjeff#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
163121126Sjeff#define	SCHED_INTERACT_THRESH	(30)
164111857Sjeff
165109864Sjeff/*
166109864Sjeff * These parameters and macros determine the size of the time slice that is
167109864Sjeff * granted to each thread.
168109864Sjeff *
169109864Sjeff * SLICE_MIN:	Minimum time slice granted, in units of ticks.
170109864Sjeff * SLICE_MAX:	Maximum time slice granted.
171109864Sjeff * SLICE_RANGE:	Range of available time slices scaled by hz.
172112966Sjeff * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
173112966Sjeff * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
174121871Sjeff * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
175109864Sjeff */
176113357Sjeff#define	SCHED_SLICE_MIN			(slice_min)
177113357Sjeff#define	SCHED_SLICE_MAX			(slice_max)
178123684Sjeff#define	SCHED_SLICE_INTERACTIVE		(slice_min * 4)
179121871Sjeff#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
180111857Sjeff#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
181109864Sjeff#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
182112966Sjeff#define	SCHED_SLICE_NICE(nice)						\
183121871Sjeff    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
184109864Sjeff
185109864Sjeff/*
186109864Sjeff * This macro determines whether or not the kse belongs on the current or
187109864Sjeff * next run queue.
188109864Sjeff */
189113357Sjeff#define	SCHED_INTERACTIVE(kg)						\
190113357Sjeff    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
191113417Sjeff#define	SCHED_CURR(kg, ke)						\
192121107Sjeff    (ke->ke_thread->td_priority != kg->kg_user_pri ||			\
193121107Sjeff    SCHED_INTERACTIVE(kg))
194109864Sjeff
195109864Sjeff/*
196109864Sjeff * Cpu percentage computation macros and defines.
197109864Sjeff *
198109864Sjeff * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
199109864Sjeff * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
200109864Sjeff */
201109864Sjeff
202112971Sjeff#define	SCHED_CPU_TIME	10
203109864Sjeff#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
204109864Sjeff
205109864Sjeff/*
206113357Sjeff * kseq - per processor runqs and statistics.
207109864Sjeff */
208109864Sjeffstruct kseq {
209113357Sjeff	struct runq	ksq_idle;		/* Queue of IDLE threads. */
210113357Sjeff	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
211113357Sjeff	struct runq	*ksq_next;		/* Next timeshare queue. */
212113357Sjeff	struct runq	*ksq_curr;		/* Current queue. */
213121896Sjeff	int		ksq_load_timeshare;	/* Load for timeshare. */
214113357Sjeff	int		ksq_load;		/* Aggregate load. */
215121869Sjeff	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
216113357Sjeff	short		ksq_nicemin;		/* Least nice. */
217110267Sjeff#ifdef SMP
218123433Sjeff	int			ksq_transferable;
219123433Sjeff	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
220123433Sjeff	struct kseq_group	*ksq_group;	/* Our processor group. */
221123433Sjeff	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
222110267Sjeff#endif
223109864Sjeff};
224109864Sjeff
225123433Sjeff#ifdef SMP
226109864Sjeff/*
227123433Sjeff * kseq groups are groups of processors which can cheaply share threads.  When
228123433Sjeff * one processor in the group goes idle it will check the runqs of the other
229123433Sjeff * processors in its group prior to halting and waiting for an interrupt.
230123433Sjeff * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
231123433Sjeff * In a numa environment we'd want an idle bitmap per group and a two tiered
232123433Sjeff * load balancer.
233123433Sjeff */
234123433Sjeffstruct kseq_group {
235123433Sjeff	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
236123433Sjeff	int	ksg_cpumask;		/* Mask of cpus in this group. */
237123433Sjeff	int	ksg_idlemask;		/* Idle cpus in this group. */
238123433Sjeff	int	ksg_mask;		/* Bit mask for first cpu. */
239123487Sjeff	int	ksg_load;		/* Total load of this group. */
240123433Sjeff	int	ksg_transferable;	/* Transferable load of this group. */
241123433Sjeff	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
242123433Sjeff};
243123433Sjeff#endif
244123433Sjeff
245123433Sjeff/*
246109864Sjeff * One kse queue per processor.
247109864Sjeff */
248110028Sjeff#ifdef SMP
249121790Sjeffstatic int kseq_idle;
250123487Sjeffstatic int ksg_maxid;
251121790Sjeffstatic struct kseq	kseq_cpu[MAXCPU];
252123433Sjeffstatic struct kseq_group kseq_groups[MAXCPU];
253123433Sjeff#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
254123433Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
255123487Sjeff#define	KSEQ_ID(x)	((x) - kseq_cpu)
256123487Sjeff#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
257123433Sjeff#else	/* !SMP */
258121790Sjeffstatic struct kseq	kseq_cpu;
259110028Sjeff#define	KSEQ_SELF()	(&kseq_cpu)
260110028Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu)
261110028Sjeff#endif
262109864Sjeff
263112966Sjeffstatic void sched_slice(struct kse *ke);
264113357Sjeffstatic void sched_priority(struct ksegrp *kg);
265111857Sjeffstatic int sched_interact_score(struct ksegrp *kg);
266116463Sjeffstatic void sched_interact_update(struct ksegrp *kg);
267121868Sjeffstatic void sched_interact_fork(struct ksegrp *kg);
268121790Sjeffstatic void sched_pctcpu_update(struct kse *ke);
269109864Sjeff
270110267Sjeff/* Operations on per processor queues */
271121790Sjeffstatic struct kse * kseq_choose(struct kseq *kseq);
272110028Sjeffstatic void kseq_setup(struct kseq *kseq);
273122744Sjeffstatic void kseq_load_add(struct kseq *kseq, struct kse *ke);
274122744Sjeffstatic void kseq_load_rem(struct kseq *kseq, struct kse *ke);
275122744Sjeffstatic __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
276122744Sjeffstatic __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
277113357Sjeffstatic void kseq_nice_add(struct kseq *kseq, int nice);
278113357Sjeffstatic void kseq_nice_rem(struct kseq *kseq, int nice);
279113660Sjeffvoid kseq_print(int cpu);
280110267Sjeff#ifdef SMP
281123433Sjeffstatic int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
282121790Sjeffstatic struct kse *runq_steal(struct runq *rq);
283122744Sjeffstatic void sched_balance(void *arg);
284123487Sjeffstatic void sched_balance_group(struct kseq_group *ksg);
285123487Sjeffstatic void sched_balance_pair(struct kseq *high, struct kseq *low);
286121790Sjeffstatic void kseq_move(struct kseq *from, int cpu);
287123433Sjeffstatic int kseq_idled(struct kseq *kseq);
288121790Sjeffstatic void kseq_notify(struct kse *ke, int cpu);
289121790Sjeffstatic void kseq_assign(struct kseq *);
290123433Sjeffstatic struct kse *kseq_steal(struct kseq *kseq, int stealidle);
291122038Sjeff#define	KSE_CAN_MIGRATE(ke, class)					\
292122158Sjeff    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
293122165Sjeff    ((ke)->ke_flags & KEF_BOUND) == 0)
294121790Sjeff#endif
295110028Sjeff
296113357Sjeffvoid
297113660Sjeffkseq_print(int cpu)
298110267Sjeff{
299113660Sjeff	struct kseq *kseq;
300113357Sjeff	int i;
301112994Sjeff
302113660Sjeff	kseq = KSEQ_CPU(cpu);
303112994Sjeff
304113357Sjeff	printf("kseq:\n");
305113357Sjeff	printf("\tload:           %d\n", kseq->ksq_load);
306122744Sjeff	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
307121896Sjeff#ifdef SMP
308123433Sjeff	printf("\tload transferable: %d\n", kseq->ksq_transferable);
309121896Sjeff#endif
310113357Sjeff	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
311113357Sjeff	printf("\tnice counts:\n");
312121869Sjeff	for (i = 0; i < SCHED_PRI_NRESV; i++)
313113357Sjeff		if (kseq->ksq_nice[i])
314113357Sjeff			printf("\t\t%d = %d\n",
315113357Sjeff			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
316113357Sjeff}
317112994Sjeff
318122744Sjeffstatic __inline void
319122744Sjeffkseq_runq_add(struct kseq *kseq, struct kse *ke)
320122744Sjeff{
321122744Sjeff#ifdef SMP
322123433Sjeff	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
323123433Sjeff		kseq->ksq_transferable++;
324123433Sjeff		kseq->ksq_group->ksg_transferable++;
325123433Sjeff	}
326122744Sjeff#endif
327122744Sjeff	runq_add(ke->ke_runq, ke);
328122744Sjeff}
329122744Sjeff
330122744Sjeffstatic __inline void
331122744Sjeffkseq_runq_rem(struct kseq *kseq, struct kse *ke)
332122744Sjeff{
333122744Sjeff#ifdef SMP
334123433Sjeff	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
335123433Sjeff		kseq->ksq_transferable--;
336123433Sjeff		kseq->ksq_group->ksg_transferable--;
337123433Sjeff	}
338122744Sjeff#endif
339122744Sjeff	runq_remove(ke->ke_runq, ke);
340122744Sjeff}
341122744Sjeff
342113357Sjeffstatic void
343122744Sjeffkseq_load_add(struct kseq *kseq, struct kse *ke)
344113357Sjeff{
345121896Sjeff	int class;
346115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
347121896Sjeff	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
348121896Sjeff	if (class == PRI_TIMESHARE)
349121896Sjeff		kseq->ksq_load_timeshare++;
350113357Sjeff	kseq->ksq_load++;
351123487Sjeff#ifdef SMP
352123487Sjeff	if (class != PRI_ITHD)
353123487Sjeff		kseq->ksq_group->ksg_load++;
354123487Sjeff#endif
355113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
356122744Sjeff		CTR6(KTR_ULE,
357122744Sjeff		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
358122744Sjeff		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
359122744Sjeff		    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
360113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
361113357Sjeff		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
362110267Sjeff}
363113357Sjeff
364112994Sjeffstatic void
365122744Sjeffkseq_load_rem(struct kseq *kseq, struct kse *ke)
366110267Sjeff{
367121896Sjeff	int class;
368115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
369121896Sjeff	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
370121896Sjeff	if (class == PRI_TIMESHARE)
371121896Sjeff		kseq->ksq_load_timeshare--;
372123487Sjeff#ifdef SMP
373123487Sjeff	if (class != PRI_ITHD)
374123487Sjeff		kseq->ksq_group->ksg_load--;
375123487Sjeff#endif
376113357Sjeff	kseq->ksq_load--;
377113357Sjeff	ke->ke_runq = NULL;
378113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
379113357Sjeff		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
380110267Sjeff}
381110267Sjeff
382113357Sjeffstatic void
383113357Sjeffkseq_nice_add(struct kseq *kseq, int nice)
384110267Sjeff{
385115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
386113357Sjeff	/* Normalize to zero. */
387113357Sjeff	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
388121896Sjeff	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
389113357Sjeff		kseq->ksq_nicemin = nice;
390110267Sjeff}
391110267Sjeff
392113357Sjeffstatic void
393113357Sjeffkseq_nice_rem(struct kseq *kseq, int nice)
394110267Sjeff{
395113357Sjeff	int n;
396113357Sjeff
397115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
398113357Sjeff	/* Normalize to zero. */
399113357Sjeff	n = nice + SCHED_PRI_NHALF;
400113357Sjeff	kseq->ksq_nice[n]--;
401113357Sjeff	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
402113357Sjeff
403113357Sjeff	/*
404113357Sjeff	 * If this wasn't the smallest nice value or there are more in
405113357Sjeff	 * this bucket we can just return.  Otherwise we have to recalculate
406113357Sjeff	 * the smallest nice.
407113357Sjeff	 */
408113357Sjeff	if (nice != kseq->ksq_nicemin ||
409113357Sjeff	    kseq->ksq_nice[n] != 0 ||
410121896Sjeff	    kseq->ksq_load_timeshare == 0)
411113357Sjeff		return;
412113357Sjeff
413121869Sjeff	for (; n < SCHED_PRI_NRESV; n++)
414113357Sjeff		if (kseq->ksq_nice[n]) {
415113357Sjeff			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
416113357Sjeff			return;
417113357Sjeff		}
418110267Sjeff}
419110267Sjeff
420113357Sjeff#ifdef SMP
421116069Sjeff/*
422122744Sjeff * sched_balance is a simple CPU load balancing algorithm.  It operates by
423116069Sjeff * finding the least loaded and most loaded cpu and equalizing their load
424116069Sjeff * by migrating some processes.
425116069Sjeff *
426116069Sjeff * Dealing only with two CPUs at a time has two advantages.  Firstly, most
427116069Sjeff * installations will only have 2 cpus.  Secondly, load balancing too much at
428116069Sjeff * once can have an unpleasant effect on the system.  The scheduler rarely has
429116069Sjeff * enough information to make perfect decisions.  So this algorithm chooses
430116069Sjeff * algorithm simplicity and more gradual effects on load in larger systems.
431116069Sjeff *
432116069Sjeff * It could be improved by considering the priorities and slices assigned to
433116069Sjeff * each task prior to balancing them.  There are many pathological cases with
434116069Sjeff * any approach and so the semi random algorithm below may work as well as any.
435116069Sjeff *
436116069Sjeff */
437121790Sjeffstatic void
438122744Sjeffsched_balance(void *arg)
439116069Sjeff{
440123487Sjeff	struct kseq_group *high;
441123487Sjeff	struct kseq_group *low;
442123487Sjeff	struct kseq_group *ksg;
443123487Sjeff	int timo;
444123487Sjeff	int cnt;
445123487Sjeff	int i;
446123487Sjeff
447123487Sjeff	mtx_lock_spin(&sched_lock);
448123487Sjeff	if (smp_started == 0)
449123487Sjeff		goto out;
450123487Sjeff	low = high = NULL;
451123487Sjeff	i = random() % (ksg_maxid + 1);
452123487Sjeff	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
453123487Sjeff		ksg = KSEQ_GROUP(i);
454123487Sjeff		/*
455123487Sjeff		 * Find the CPU with the highest load that has some
456123487Sjeff		 * threads to transfer.
457123487Sjeff		 */
458123487Sjeff		if ((high == NULL || ksg->ksg_load > high->ksg_load)
459123487Sjeff		    && ksg->ksg_transferable)
460123487Sjeff			high = ksg;
461123487Sjeff		if (low == NULL || ksg->ksg_load < low->ksg_load)
462123487Sjeff			low = ksg;
463123487Sjeff		if (++i > ksg_maxid)
464123487Sjeff			i = 0;
465123487Sjeff	}
466123487Sjeff	if (low != NULL && high != NULL && high != low)
467123487Sjeff		sched_balance_pair(LIST_FIRST(&high->ksg_members),
468123487Sjeff		    LIST_FIRST(&low->ksg_members));
469123487Sjeffout:
470123487Sjeff	mtx_unlock_spin(&sched_lock);
471123487Sjeff	timo = random() % (hz * 2);
472123487Sjeff	callout_reset(&kseq_lb_callout, timo, sched_balance, NULL);
473123487Sjeff}
474123487Sjeff
475123487Sjeffstatic void
476123487Sjeffsched_balance_groups(void *arg)
477123487Sjeff{
478123487Sjeff	int timo;
479123487Sjeff	int i;
480123487Sjeff
481123487Sjeff	mtx_lock_spin(&sched_lock);
482123487Sjeff	if (smp_started)
483123487Sjeff		for (i = 0; i <= ksg_maxid; i++)
484123487Sjeff			sched_balance_group(KSEQ_GROUP(i));
485123487Sjeff	mtx_unlock_spin(&sched_lock);
486123487Sjeff	timo = random() % (hz * 2);
487123487Sjeff	callout_reset(&kseq_group_callout, timo, sched_balance_groups, NULL);
488123487Sjeff}
489123487Sjeff
490123487Sjeffstatic void
491123487Sjeffsched_balance_group(struct kseq_group *ksg)
492123487Sjeff{
493116069Sjeff	struct kseq *kseq;
494123487Sjeff	struct kseq *high;
495123487Sjeff	struct kseq *low;
496123487Sjeff	int load;
497123487Sjeff
498123487Sjeff	if (ksg->ksg_transferable == 0)
499123487Sjeff		return;
500123487Sjeff	low = NULL;
501123487Sjeff	high = NULL;
502123487Sjeff	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
503123487Sjeff		load = kseq->ksq_load;
504123487Sjeff		if (kseq == KSEQ_CPU(0))
505123487Sjeff			load--;
506123487Sjeff		if (high == NULL || load > high->ksq_load)
507123487Sjeff			high = kseq;
508123487Sjeff		if (low == NULL || load < low->ksq_load)
509123487Sjeff			low = kseq;
510123487Sjeff	}
511123487Sjeff	if (high != NULL && low != NULL && high != low)
512123487Sjeff		sched_balance_pair(high, low);
513123487Sjeff}
514123487Sjeff
515123487Sjeffstatic void
516123487Sjeffsched_balance_pair(struct kseq *high, struct kseq *low)
517123487Sjeff{
518123433Sjeff	int transferable;
519116069Sjeff	int high_load;
520116069Sjeff	int low_load;
521116069Sjeff	int move;
522116069Sjeff	int diff;
523116069Sjeff	int i;
524116069Sjeff
525116069Sjeff	/*
526123433Sjeff	 * If we're transfering within a group we have to use this specific
527123433Sjeff	 * kseq's transferable count, otherwise we can steal from other members
528123433Sjeff	 * of the group.
529123433Sjeff	 */
530123487Sjeff	if (high->ksq_group == low->ksq_group) {
531123487Sjeff		transferable = high->ksq_transferable;
532123487Sjeff		high_load = high->ksq_load;
533123487Sjeff		low_load = low->ksq_load;
534123487Sjeff		/*
535123487Sjeff		 * XXX If we encounter cpu 0 we must remember to reduce it's
536123487Sjeff		 * load by 1 to reflect the swi that is running the callout.
537123487Sjeff		 * At some point we should really fix load balancing of the
538123487Sjeff		 * swi and then this wont matter.
539123487Sjeff		 */
540123487Sjeff		if (high == KSEQ_CPU(0))
541123487Sjeff			high_load--;
542123487Sjeff		if (low == KSEQ_CPU(0))
543123487Sjeff			low_load--;
544123487Sjeff	} else {
545123487Sjeff		transferable = high->ksq_group->ksg_transferable;
546123487Sjeff		high_load = high->ksq_group->ksg_load;
547123487Sjeff		low_load = low->ksq_group->ksg_load;
548123487Sjeff	}
549123433Sjeff	if (transferable == 0)
550123487Sjeff		return;
551123433Sjeff	/*
552122744Sjeff	 * Determine what the imbalance is and then adjust that to how many
553123433Sjeff	 * kses we actually have to give up (transferable).
554122744Sjeff	 */
555123487Sjeff	diff = high_load - low_load;
556116069Sjeff	move = diff / 2;
557116069Sjeff	if (diff & 0x1)
558116069Sjeff		move++;
559123433Sjeff	move = min(move, transferable);
560116069Sjeff	for (i = 0; i < move; i++)
561123487Sjeff		kseq_move(high, KSEQ_ID(low));
562116069Sjeff	return;
563116069Sjeff}
564116069Sjeff
565121790Sjeffstatic void
566116069Sjeffkseq_move(struct kseq *from, int cpu)
567116069Sjeff{
568123433Sjeff	struct kseq *kseq;
569123433Sjeff	struct kseq *to;
570116069Sjeff	struct kse *ke;
571116069Sjeff
572123433Sjeff	kseq = from;
573123433Sjeff	to = KSEQ_CPU(cpu);
574123433Sjeff	ke = kseq_steal(kseq, 1);
575123433Sjeff	if (ke == NULL) {
576123433Sjeff		struct kseq_group *ksg;
577123433Sjeff
578123433Sjeff		ksg = kseq->ksq_group;
579123433Sjeff		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
580123433Sjeff			if (kseq == from || kseq->ksq_transferable == 0)
581123433Sjeff				continue;
582123433Sjeff			ke = kseq_steal(kseq, 1);
583123433Sjeff			break;
584123433Sjeff		}
585123433Sjeff		if (ke == NULL)
586123433Sjeff			panic("kseq_move: No KSEs available with a "
587123433Sjeff			    "transferable count of %d\n",
588123433Sjeff			    ksg->ksg_transferable);
589123433Sjeff	}
590123433Sjeff	if (kseq == to)
591123433Sjeff		return;
592116069Sjeff	ke->ke_state = KES_THREAD;
593123433Sjeff	kseq_runq_rem(kseq, ke);
594123433Sjeff	kseq_load_rem(kseq, ke);
595121923Sjeff	kseq_notify(ke, cpu);
596116069Sjeff}
597110267Sjeff
598123433Sjeffstatic int
599123433Sjeffkseq_idled(struct kseq *kseq)
600121790Sjeff{
601123433Sjeff	struct kseq_group *ksg;
602123433Sjeff	struct kseq *steal;
603123433Sjeff	struct kse *ke;
604123433Sjeff
605123433Sjeff	ksg = kseq->ksq_group;
606123433Sjeff	/*
607123433Sjeff	 * If we're in a cpu group, try and steal kses from another cpu in
608123433Sjeff	 * the group before idling.
609123433Sjeff	 */
610123433Sjeff	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
611123433Sjeff		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
612123433Sjeff			if (steal == kseq || steal->ksq_transferable == 0)
613123433Sjeff				continue;
614123433Sjeff			ke = kseq_steal(steal, 0);
615123433Sjeff			if (ke == NULL)
616123433Sjeff				continue;
617123433Sjeff			ke->ke_state = KES_THREAD;
618123433Sjeff			kseq_runq_rem(steal, ke);
619123433Sjeff			kseq_load_rem(steal, ke);
620123433Sjeff			ke->ke_cpu = PCPU_GET(cpuid);
621123433Sjeff			sched_add(ke->ke_thread);
622123433Sjeff			return (0);
623123433Sjeff		}
624123433Sjeff	}
625123433Sjeff	/*
626123433Sjeff	 * We only set the idled bit when all of the cpus in the group are
627123433Sjeff	 * idle.  Otherwise we could get into a situation where a KSE bounces
628123433Sjeff	 * back and forth between two idle cores on seperate physical CPUs.
629123433Sjeff	 */
630123433Sjeff	ksg->ksg_idlemask |= PCPU_GET(cpumask);
631123433Sjeff	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
632123433Sjeff		return (1);
633123433Sjeff	atomic_set_int(&kseq_idle, ksg->ksg_mask);
634123433Sjeff	return (1);
635121790Sjeff}
636121790Sjeff
637121790Sjeffstatic void
638121790Sjeffkseq_assign(struct kseq *kseq)
639121790Sjeff{
640121790Sjeff	struct kse *nke;
641121790Sjeff	struct kse *ke;
642121790Sjeff
643121790Sjeff	do {
644122848Sjeff		(volatile struct kse *)ke = kseq->ksq_assigned;
645121790Sjeff	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
646121790Sjeff	for (; ke != NULL; ke = nke) {
647121790Sjeff		nke = ke->ke_assign;
648121790Sjeff		ke->ke_flags &= ~KEF_ASSIGNED;
649121790Sjeff		sched_add(ke->ke_thread);
650121790Sjeff	}
651121790Sjeff}
652121790Sjeff
653121790Sjeffstatic void
654121790Sjeffkseq_notify(struct kse *ke, int cpu)
655121790Sjeff{
656121790Sjeff	struct kseq *kseq;
657121790Sjeff	struct thread *td;
658121790Sjeff	struct pcpu *pcpu;
659121790Sjeff
660123529Sjeff	ke->ke_cpu = cpu;
661121790Sjeff	ke->ke_flags |= KEF_ASSIGNED;
662121790Sjeff
663121790Sjeff	kseq = KSEQ_CPU(cpu);
664121790Sjeff
665121790Sjeff	/*
666121790Sjeff	 * Place a KSE on another cpu's queue and force a resched.
667121790Sjeff	 */
668121790Sjeff	do {
669122848Sjeff		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
670121790Sjeff	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
671121790Sjeff	pcpu = pcpu_find(cpu);
672121790Sjeff	td = pcpu->pc_curthread;
673121790Sjeff	if (ke->ke_thread->td_priority < td->td_priority ||
674121790Sjeff	    td == pcpu->pc_idlethread) {
675121790Sjeff		td->td_flags |= TDF_NEEDRESCHED;
676121790Sjeff		ipi_selected(1 << cpu, IPI_AST);
677121790Sjeff	}
678121790Sjeff}
679121790Sjeff
680121790Sjeffstatic struct kse *
681121790Sjeffrunq_steal(struct runq *rq)
682121790Sjeff{
683121790Sjeff	struct rqhead *rqh;
684121790Sjeff	struct rqbits *rqb;
685121790Sjeff	struct kse *ke;
686121790Sjeff	int word;
687121790Sjeff	int bit;
688121790Sjeff
689121790Sjeff	mtx_assert(&sched_lock, MA_OWNED);
690121790Sjeff	rqb = &rq->rq_status;
691121790Sjeff	for (word = 0; word < RQB_LEN; word++) {
692121790Sjeff		if (rqb->rqb_bits[word] == 0)
693121790Sjeff			continue;
694121790Sjeff		for (bit = 0; bit < RQB_BPW; bit++) {
695123231Speter			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
696121790Sjeff				continue;
697121790Sjeff			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
698121790Sjeff			TAILQ_FOREACH(ke, rqh, ke_procq) {
699121896Sjeff				if (KSE_CAN_MIGRATE(ke,
700121896Sjeff				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
701121790Sjeff					return (ke);
702121790Sjeff			}
703121790Sjeff		}
704121790Sjeff	}
705121790Sjeff	return (NULL);
706121790Sjeff}
707121790Sjeff
708121790Sjeffstatic struct kse *
709123433Sjeffkseq_steal(struct kseq *kseq, int stealidle)
710121790Sjeff{
711121790Sjeff	struct kse *ke;
712121790Sjeff
713123433Sjeff	/*
714123433Sjeff	 * Steal from next first to try to get a non-interactive task that
715123433Sjeff	 * may not have run for a while.
716123433Sjeff	 */
717123433Sjeff	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
718123433Sjeff		return (ke);
719121790Sjeff	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
720121790Sjeff		return (ke);
721123433Sjeff	if (stealidle)
722123433Sjeff		return (runq_steal(&kseq->ksq_idle));
723123433Sjeff	return (NULL);
724121790Sjeff}
725123433Sjeff
726123433Sjeffint
727123433Sjeffkseq_transfer(struct kseq *kseq, struct kse *ke, int class)
728123433Sjeff{
729123433Sjeff	struct kseq_group *ksg;
730123433Sjeff	int cpu;
731123433Sjeff
732123685Sjeff	if (smp_started == 0)
733123685Sjeff		return (0);
734123433Sjeff	cpu = 0;
735123433Sjeff	ksg = kseq->ksq_group;
736123433Sjeff
737123433Sjeff	/*
738123685Sjeff	 * If there are any idle groups, give them our extra load.  The
739123685Sjeff	 * threshold at which we start to reassign kses has a large impact
740123685Sjeff	 * on the overall performance of the system.  Tuned too high and
741123685Sjeff	 * some CPUs may idle.  Too low and there will be excess migration
742123685Sjeff	 * and context swiches.
743123685Sjeff	 */
744123685Sjeff	/*
745123433Sjeff	 * XXX This ksg_transferable might work better if we were checking
746123433Sjeff	 * against a global group load.  As it is now, this prevents us from
747123433Sjeff	 * transfering a thread from a group that is potentially bogged down
748123433Sjeff	 * with non transferable load.
749123433Sjeff	 */
750123433Sjeff	if (ksg->ksg_transferable > ksg->ksg_cpus && kseq_idle) {
751123433Sjeff		/*
752123433Sjeff		 * Multiple cpus could find this bit simultaneously
753123433Sjeff		 * but the race shouldn't be terrible.
754123433Sjeff		 */
755123433Sjeff		cpu = ffs(kseq_idle);
756123433Sjeff		if (cpu)
757123433Sjeff			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
758123433Sjeff	}
759123433Sjeff	/*
760123433Sjeff	 * If another cpu in this group has idled, assign a thread over
761123433Sjeff	 * to them after checking to see if there are idled groups.
762123433Sjeff	 */
763123433Sjeff	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
764123433Sjeff		cpu = ffs(ksg->ksg_idlemask);
765123433Sjeff		if (cpu)
766123433Sjeff			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
767123433Sjeff	}
768123433Sjeff	/*
769123433Sjeff	 * Now that we've found an idle CPU, migrate the thread.
770123433Sjeff	 */
771123433Sjeff	if (cpu) {
772123433Sjeff		cpu--;
773123433Sjeff		ke->ke_runq = NULL;
774123433Sjeff		kseq_notify(ke, cpu);
775123433Sjeff		return (1);
776123433Sjeff	}
777123433Sjeff	return (0);
778123433Sjeff}
779123433Sjeff
780121790Sjeff#endif	/* SMP */
781121790Sjeff
782117326Sjeff/*
783121790Sjeff * Pick the highest priority task we have and return it.
784117326Sjeff */
785117326Sjeff
786121790Sjeffstatic struct kse *
787121790Sjeffkseq_choose(struct kseq *kseq)
788110267Sjeff{
789110267Sjeff	struct kse *ke;
790110267Sjeff	struct runq *swap;
791110267Sjeff
792115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
793113357Sjeff	swap = NULL;
794112994Sjeff
795113357Sjeff	for (;;) {
796113357Sjeff		ke = runq_choose(kseq->ksq_curr);
797113357Sjeff		if (ke == NULL) {
798113357Sjeff			/*
799113357Sjeff			 * We already swaped once and didn't get anywhere.
800113357Sjeff			 */
801113357Sjeff			if (swap)
802113357Sjeff				break;
803113357Sjeff			swap = kseq->ksq_curr;
804113357Sjeff			kseq->ksq_curr = kseq->ksq_next;
805113357Sjeff			kseq->ksq_next = swap;
806113357Sjeff			continue;
807113357Sjeff		}
808113357Sjeff		/*
809113357Sjeff		 * If we encounter a slice of 0 the kse is in a
810113357Sjeff		 * TIMESHARE kse group and its nice was too far out
811113357Sjeff		 * of the range that receives slices.
812113357Sjeff		 */
813121790Sjeff		if (ke->ke_slice == 0) {
814113357Sjeff			runq_remove(ke->ke_runq, ke);
815113357Sjeff			sched_slice(ke);
816113357Sjeff			ke->ke_runq = kseq->ksq_next;
817113357Sjeff			runq_add(ke->ke_runq, ke);
818113357Sjeff			continue;
819113357Sjeff		}
820113357Sjeff		return (ke);
821110267Sjeff	}
822110267Sjeff
823113357Sjeff	return (runq_choose(&kseq->ksq_idle));
824110267Sjeff}
825110267Sjeff
826109864Sjeffstatic void
827110028Sjeffkseq_setup(struct kseq *kseq)
828110028Sjeff{
829113357Sjeff	runq_init(&kseq->ksq_timeshare[0]);
830113357Sjeff	runq_init(&kseq->ksq_timeshare[1]);
831112994Sjeff	runq_init(&kseq->ksq_idle);
832113357Sjeff	kseq->ksq_curr = &kseq->ksq_timeshare[0];
833113357Sjeff	kseq->ksq_next = &kseq->ksq_timeshare[1];
834113660Sjeff	kseq->ksq_load = 0;
835121896Sjeff	kseq->ksq_load_timeshare = 0;
836110028Sjeff}
837110028Sjeff
838110028Sjeffstatic void
839109864Sjeffsched_setup(void *dummy)
840109864Sjeff{
841117313Sjeff#ifdef SMP
842123487Sjeff	int balance_groups;
843109864Sjeff	int i;
844117313Sjeff#endif
845109864Sjeff
846116946Sjeff	slice_min = (hz/100);	/* 10ms */
847116946Sjeff	slice_max = (hz/7);	/* ~140ms */
848111857Sjeff
849117237Sjeff#ifdef SMP
850123487Sjeff	balance_groups = 0;
851123433Sjeff	/*
852123433Sjeff	 * Initialize the kseqs.
853123433Sjeff	 */
854123433Sjeff	for (i = 0; i < MAXCPU; i++) {
855123433Sjeff		struct kseq *ksq;
856123433Sjeff
857123433Sjeff		ksq = &kseq_cpu[i];
858123433Sjeff		ksq->ksq_assigned = NULL;
859123433Sjeff		kseq_setup(&kseq_cpu[i]);
860123433Sjeff	}
861117237Sjeff	if (smp_topology == NULL) {
862123433Sjeff		struct kseq_group *ksg;
863123433Sjeff		struct kseq *ksq;
864123433Sjeff
865117237Sjeff		for (i = 0; i < MAXCPU; i++) {
866123433Sjeff			ksq = &kseq_cpu[i];
867123433Sjeff			ksg = &kseq_groups[i];
868123433Sjeff			/*
869123433Sjeff			 * Setup a kse group with one member.
870123433Sjeff			 */
871123433Sjeff			ksq->ksq_transferable = 0;
872123433Sjeff			ksq->ksq_group = ksg;
873123433Sjeff			ksg->ksg_cpus = 1;
874123433Sjeff			ksg->ksg_idlemask = 0;
875123433Sjeff			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
876123487Sjeff			ksg->ksg_load = 0;
877123433Sjeff			ksg->ksg_transferable = 0;
878123433Sjeff			LIST_INIT(&ksg->ksg_members);
879123433Sjeff			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
880117237Sjeff		}
881117237Sjeff	} else {
882123433Sjeff		struct kseq_group *ksg;
883123433Sjeff		struct cpu_group *cg;
884117237Sjeff		int j;
885113357Sjeff
886117237Sjeff		for (i = 0; i < smp_topology->ct_count; i++) {
887117237Sjeff			cg = &smp_topology->ct_group[i];
888123433Sjeff			ksg = &kseq_groups[i];
889123433Sjeff			/*
890123433Sjeff			 * Initialize the group.
891123433Sjeff			 */
892123433Sjeff			ksg->ksg_idlemask = 0;
893123487Sjeff			ksg->ksg_load = 0;
894123433Sjeff			ksg->ksg_transferable = 0;
895123433Sjeff			ksg->ksg_cpus = cg->cg_count;
896123433Sjeff			ksg->ksg_cpumask = cg->cg_mask;
897123433Sjeff			LIST_INIT(&ksg->ksg_members);
898123433Sjeff			/*
899123433Sjeff			 * Find all of the group members and add them.
900123433Sjeff			 */
901123433Sjeff			for (j = 0; j < MAXCPU; j++) {
902123433Sjeff				if ((cg->cg_mask & (1 << j)) != 0) {
903123433Sjeff					if (ksg->ksg_mask == 0)
904123433Sjeff						ksg->ksg_mask = 1 << j;
905123433Sjeff					kseq_cpu[j].ksq_transferable = 0;
906123433Sjeff					kseq_cpu[j].ksq_group = ksg;
907123433Sjeff					LIST_INSERT_HEAD(&ksg->ksg_members,
908123433Sjeff					    &kseq_cpu[j], ksq_siblings);
909123433Sjeff				}
910123433Sjeff			}
911123487Sjeff			if (ksg->ksg_cpus > 1)
912123487Sjeff				balance_groups = 1;
913117237Sjeff		}
914123487Sjeff		ksg_maxid = smp_topology->ct_count - 1;
915117237Sjeff	}
916119137Ssam	callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
917123487Sjeff	callout_init(&kseq_group_callout, CALLOUT_MPSAFE);
918122744Sjeff	sched_balance(NULL);
919123487Sjeff	/*
920123487Sjeff	 * Stagger the group and global load balancer so they do not
921123487Sjeff	 * interfere with each other.
922123487Sjeff	 */
923123487Sjeff	if (balance_groups)
924123487Sjeff		callout_reset(&kseq_group_callout, hz / 2,
925123487Sjeff		    sched_balance_groups, NULL);
926117237Sjeff#else
927117237Sjeff	kseq_setup(KSEQ_SELF());
928116069Sjeff#endif
929117237Sjeff	mtx_lock_spin(&sched_lock);
930122744Sjeff	kseq_load_add(KSEQ_SELF(), &kse0);
931117237Sjeff	mtx_unlock_spin(&sched_lock);
932109864Sjeff}
933109864Sjeff
934109864Sjeff/*
935109864Sjeff * Scale the scheduling priority according to the "interactivity" of this
936109864Sjeff * process.
937109864Sjeff */
938113357Sjeffstatic void
939109864Sjeffsched_priority(struct ksegrp *kg)
940109864Sjeff{
941109864Sjeff	int pri;
942109864Sjeff
943109864Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
944113357Sjeff		return;
945109864Sjeff
946113357Sjeff	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
947111857Sjeff	pri += SCHED_PRI_BASE;
948109864Sjeff	pri += kg->kg_nice;
949109864Sjeff
950109864Sjeff	if (pri > PRI_MAX_TIMESHARE)
951109864Sjeff		pri = PRI_MAX_TIMESHARE;
952109864Sjeff	else if (pri < PRI_MIN_TIMESHARE)
953109864Sjeff		pri = PRI_MIN_TIMESHARE;
954109864Sjeff
955109864Sjeff	kg->kg_user_pri = pri;
956109864Sjeff
957113357Sjeff	return;
958109864Sjeff}
959109864Sjeff
960109864Sjeff/*
961112966Sjeff * Calculate a time slice based on the properties of the kseg and the runq
962112994Sjeff * that we're on.  This is only for PRI_TIMESHARE ksegrps.
963109864Sjeff */
964112966Sjeffstatic void
965112966Sjeffsched_slice(struct kse *ke)
966109864Sjeff{
967113357Sjeff	struct kseq *kseq;
968112966Sjeff	struct ksegrp *kg;
969109864Sjeff
970112966Sjeff	kg = ke->ke_ksegrp;
971113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
972109864Sjeff
973112966Sjeff	/*
974112966Sjeff	 * Rationale:
975112966Sjeff	 * KSEs in interactive ksegs get the minimum slice so that we
976112966Sjeff	 * quickly notice if it abuses its advantage.
977112966Sjeff	 *
978112966Sjeff	 * KSEs in non-interactive ksegs are assigned a slice that is
979112966Sjeff	 * based on the ksegs nice value relative to the least nice kseg
980112966Sjeff	 * on the run queue for this cpu.
981112966Sjeff	 *
982112966Sjeff	 * If the KSE is less nice than all others it gets the maximum
983112966Sjeff	 * slice and other KSEs will adjust their slice relative to
984112966Sjeff	 * this when they first expire.
985112966Sjeff	 *
986112966Sjeff	 * There is 20 point window that starts relative to the least
987112966Sjeff	 * nice kse on the run queue.  Slice size is determined by
988112966Sjeff	 * the kse distance from the last nice ksegrp.
989112966Sjeff	 *
990121871Sjeff	 * If the kse is outside of the window it will get no slice
991121871Sjeff	 * and will be reevaluated each time it is selected on the
992121871Sjeff	 * run queue.  The exception to this is nice 0 ksegs when
993121871Sjeff	 * a nice -20 is running.  They are always granted a minimum
994121871Sjeff	 * slice.
995112966Sjeff	 */
996113357Sjeff	if (!SCHED_INTERACTIVE(kg)) {
997112966Sjeff		int nice;
998112966Sjeff
999113357Sjeff		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
1000121896Sjeff		if (kseq->ksq_load_timeshare == 0 ||
1001113357Sjeff		    kg->kg_nice < kseq->ksq_nicemin)
1002112966Sjeff			ke->ke_slice = SCHED_SLICE_MAX;
1003121871Sjeff		else if (nice <= SCHED_SLICE_NTHRESH)
1004112966Sjeff			ke->ke_slice = SCHED_SLICE_NICE(nice);
1005121871Sjeff		else if (kg->kg_nice == 0)
1006121871Sjeff			ke->ke_slice = SCHED_SLICE_MIN;
1007112966Sjeff		else
1008112966Sjeff			ke->ke_slice = 0;
1009112966Sjeff	} else
1010123684Sjeff		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1011112966Sjeff
1012113357Sjeff	CTR6(KTR_ULE,
1013113357Sjeff	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1014113357Sjeff	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
1015121896Sjeff	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1016113357Sjeff
1017112966Sjeff	return;
1018109864Sjeff}
1019109864Sjeff
1020121868Sjeff/*
1021121868Sjeff * This routine enforces a maximum limit on the amount of scheduling history
1022121868Sjeff * kept.  It is called after either the slptime or runtime is adjusted.
1023121868Sjeff * This routine will not operate correctly when slp or run times have been
1024121868Sjeff * adjusted to more than double their maximum.
1025121868Sjeff */
1026116463Sjeffstatic void
1027116463Sjeffsched_interact_update(struct ksegrp *kg)
1028116463Sjeff{
1029121868Sjeff	int sum;
1030121605Sjeff
1031121868Sjeff	sum = kg->kg_runtime + kg->kg_slptime;
1032121868Sjeff	if (sum < SCHED_SLP_RUN_MAX)
1033121868Sjeff		return;
1034121868Sjeff	/*
1035121868Sjeff	 * If we have exceeded by more than 1/5th then the algorithm below
1036121868Sjeff	 * will not bring us back into range.  Dividing by two here forces
1037121868Sjeff	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1038121868Sjeff	 */
1039121868Sjeff	if (sum > (SCHED_INTERACT_MAX / 5) * 6) {
1040121868Sjeff		kg->kg_runtime /= 2;
1041121868Sjeff		kg->kg_slptime /= 2;
1042121868Sjeff		return;
1043116463Sjeff	}
1044121868Sjeff	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1045121868Sjeff	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1046116463Sjeff}
1047116463Sjeff
1048121868Sjeffstatic void
1049121868Sjeffsched_interact_fork(struct ksegrp *kg)
1050121868Sjeff{
1051121868Sjeff	int ratio;
1052121868Sjeff	int sum;
1053121868Sjeff
1054121868Sjeff	sum = kg->kg_runtime + kg->kg_slptime;
1055121868Sjeff	if (sum > SCHED_SLP_RUN_FORK) {
1056121868Sjeff		ratio = sum / SCHED_SLP_RUN_FORK;
1057121868Sjeff		kg->kg_runtime /= ratio;
1058121868Sjeff		kg->kg_slptime /= ratio;
1059121868Sjeff	}
1060121868Sjeff}
1061121868Sjeff
1062111857Sjeffstatic int
1063111857Sjeffsched_interact_score(struct ksegrp *kg)
1064111857Sjeff{
1065116365Sjeff	int div;
1066111857Sjeff
1067111857Sjeff	if (kg->kg_runtime > kg->kg_slptime) {
1068116365Sjeff		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1069116365Sjeff		return (SCHED_INTERACT_HALF +
1070116365Sjeff		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1071116365Sjeff	} if (kg->kg_slptime > kg->kg_runtime) {
1072116365Sjeff		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1073116365Sjeff		return (kg->kg_runtime / div);
1074111857Sjeff	}
1075111857Sjeff
1076116365Sjeff	/*
1077116365Sjeff	 * This can happen if slptime and runtime are 0.
1078116365Sjeff	 */
1079116365Sjeff	return (0);
1080111857Sjeff
1081111857Sjeff}
1082111857Sjeff
1083113357Sjeff/*
1084113357Sjeff * This is only somewhat accurate since given many processes of the same
1085113357Sjeff * priority they will switch when their slices run out, which will be
1086113357Sjeff * at most SCHED_SLICE_MAX.
1087113357Sjeff */
1088109864Sjeffint
1089109864Sjeffsched_rr_interval(void)
1090109864Sjeff{
1091109864Sjeff	return (SCHED_SLICE_MAX);
1092109864Sjeff}
1093109864Sjeff
1094121790Sjeffstatic void
1095109864Sjeffsched_pctcpu_update(struct kse *ke)
1096109864Sjeff{
1097109864Sjeff	/*
1098109864Sjeff	 * Adjust counters and watermark for pctcpu calc.
1099116365Sjeff	 */
1100120272Sjeff	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1101120272Sjeff		/*
1102120272Sjeff		 * Shift the tick count out so that the divide doesn't
1103120272Sjeff		 * round away our results.
1104120272Sjeff		 */
1105120272Sjeff		ke->ke_ticks <<= 10;
1106120272Sjeff		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1107120272Sjeff			    SCHED_CPU_TICKS;
1108120272Sjeff		ke->ke_ticks >>= 10;
1109120272Sjeff	} else
1110120272Sjeff		ke->ke_ticks = 0;
1111109864Sjeff	ke->ke_ltick = ticks;
1112109864Sjeff	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1113109864Sjeff}
1114109864Sjeff
1115109864Sjeffvoid
1116109864Sjeffsched_prio(struct thread *td, u_char prio)
1117109864Sjeff{
1118121605Sjeff	struct kse *ke;
1119109864Sjeff
1120121605Sjeff	ke = td->td_kse;
1121109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1122109864Sjeff	if (TD_ON_RUNQ(td)) {
1123121605Sjeff		/*
1124121605Sjeff		 * If the priority has been elevated due to priority
1125121605Sjeff		 * propagation, we may have to move ourselves to a new
1126121605Sjeff		 * queue.  We still call adjustrunqueue below in case kse
1127121605Sjeff		 * needs to fix things up.
1128121605Sjeff		 */
1129121872Sjeff		if (prio < td->td_priority && ke &&
1130121872Sjeff		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1131121790Sjeff		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1132121605Sjeff			runq_remove(ke->ke_runq, ke);
1133121605Sjeff			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1134121605Sjeff			runq_add(ke->ke_runq, ke);
1135121605Sjeff		}
1136119488Sdavidxu		adjustrunqueue(td, prio);
1137121605Sjeff	} else
1138119488Sdavidxu		td->td_priority = prio;
1139109864Sjeff}
1140109864Sjeff
1141109864Sjeffvoid
1142121128Sjeffsched_switch(struct thread *td)
1143109864Sjeff{
1144121128Sjeff	struct thread *newtd;
1145109864Sjeff	struct kse *ke;
1146109864Sjeff
1147109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1148109864Sjeff
1149109864Sjeff	ke = td->td_kse;
1150109864Sjeff
1151109864Sjeff	td->td_last_kse = ke;
1152113339Sjulian        td->td_lastcpu = td->td_oncpu;
1153113339Sjulian	td->td_oncpu = NOCPU;
1154111032Sjulian        td->td_flags &= ~TDF_NEEDRESCHED;
1155109864Sjeff
1156123434Sjeff	/*
1157123434Sjeff	 * If the KSE has been assigned it may be in the process of switching
1158123434Sjeff	 * to the new cpu.  This is the case in sched_bind().
1159123434Sjeff	 */
1160123434Sjeff	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1161123434Sjeff		if (TD_IS_RUNNING(td)) {
1162123434Sjeff			if (td->td_proc->p_flag & P_SA) {
1163123434Sjeff				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1164123434Sjeff				setrunqueue(td);
1165123434Sjeff			} else
1166123434Sjeff				kseq_runq_add(KSEQ_SELF(), ke);
1167123434Sjeff		} else {
1168123434Sjeff			if (ke->ke_runq)
1169123434Sjeff				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1170123434Sjeff			/*
1171123434Sjeff			 * We will not be on the run queue. So we must be
1172123434Sjeff			 * sleeping or similar.
1173123434Sjeff			 */
1174123434Sjeff			if (td->td_proc->p_flag & P_SA)
1175123434Sjeff				kse_reassign(ke);
1176123434Sjeff		}
1177121146Sjeff	}
1178121128Sjeff	newtd = choosethread();
1179121128Sjeff	if (td != newtd)
1180121128Sjeff		cpu_switch(td, newtd);
1181121128Sjeff	sched_lock.mtx_lock = (uintptr_t)td;
1182109864Sjeff
1183113339Sjulian	td->td_oncpu = PCPU_GET(cpuid);
1184109864Sjeff}
1185109864Sjeff
1186109864Sjeffvoid
1187109864Sjeffsched_nice(struct ksegrp *kg, int nice)
1188109864Sjeff{
1189113357Sjeff	struct kse *ke;
1190109864Sjeff	struct thread *td;
1191113357Sjeff	struct kseq *kseq;
1192109864Sjeff
1193113873Sjhb	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
1194113873Sjhb	mtx_assert(&sched_lock, MA_OWNED);
1195113357Sjeff	/*
1196113357Sjeff	 * We need to adjust the nice counts for running KSEs.
1197113357Sjeff	 */
1198113357Sjeff	if (kg->kg_pri_class == PRI_TIMESHARE)
1199113357Sjeff		FOREACH_KSE_IN_GROUP(kg, ke) {
1200116500Sjeff			if (ke->ke_runq == NULL)
1201113357Sjeff				continue;
1202113357Sjeff			kseq = KSEQ_CPU(ke->ke_cpu);
1203113357Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
1204113357Sjeff			kseq_nice_add(kseq, nice);
1205113357Sjeff		}
1206109864Sjeff	kg->kg_nice = nice;
1207109864Sjeff	sched_priority(kg);
1208113357Sjeff	FOREACH_THREAD_IN_GROUP(kg, td)
1209111032Sjulian		td->td_flags |= TDF_NEEDRESCHED;
1210109864Sjeff}
1211109864Sjeff
1212109864Sjeffvoid
1213109864Sjeffsched_sleep(struct thread *td, u_char prio)
1214109864Sjeff{
1215109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1216109864Sjeff
1217109864Sjeff	td->td_slptime = ticks;
1218109864Sjeff	td->td_priority = prio;
1219109864Sjeff
1220113357Sjeff	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
1221113357Sjeff	    td->td_kse, td->td_slptime);
1222109864Sjeff}
1223109864Sjeff
1224109864Sjeffvoid
1225109864Sjeffsched_wakeup(struct thread *td)
1226109864Sjeff{
1227109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1228109864Sjeff
1229109864Sjeff	/*
1230109864Sjeff	 * Let the kseg know how long we slept for.  This is because process
1231109864Sjeff	 * interactivity behavior is modeled in the kseg.
1232109864Sjeff	 */
1233111788Sjeff	if (td->td_slptime) {
1234111788Sjeff		struct ksegrp *kg;
1235113357Sjeff		int hzticks;
1236109864Sjeff
1237111788Sjeff		kg = td->td_ksegrp;
1238121868Sjeff		hzticks = (ticks - td->td_slptime) << 10;
1239121868Sjeff		if (hzticks >= SCHED_SLP_RUN_MAX) {
1240121868Sjeff			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1241121868Sjeff			kg->kg_runtime = 1;
1242121868Sjeff		} else {
1243121868Sjeff			kg->kg_slptime += hzticks;
1244121868Sjeff			sched_interact_update(kg);
1245121868Sjeff		}
1246111788Sjeff		sched_priority(kg);
1247116463Sjeff		if (td->td_kse)
1248116463Sjeff			sched_slice(td->td_kse);
1249113357Sjeff		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
1250113357Sjeff		    td->td_kse, hzticks);
1251111788Sjeff		td->td_slptime = 0;
1252109864Sjeff	}
1253109864Sjeff	setrunqueue(td);
1254109864Sjeff}
1255109864Sjeff
1256109864Sjeff/*
1257109864Sjeff * Penalize the parent for creating a new child and initialize the child's
1258109864Sjeff * priority.
1259109864Sjeff */
1260109864Sjeffvoid
1261113357Sjeffsched_fork(struct proc *p, struct proc *p1)
1262109864Sjeff{
1263109864Sjeff
1264109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1265109864Sjeff
1266113357Sjeff	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
1267113357Sjeff	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
1268113357Sjeff	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
1269113357Sjeff}
1270113357Sjeff
1271113357Sjeffvoid
1272113357Sjeffsched_fork_kse(struct kse *ke, struct kse *child)
1273113357Sjeff{
1274113923Sjhb
1275116365Sjeff	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1276122847Sjeff	child->ke_cpu = ke->ke_cpu;
1277113357Sjeff	child->ke_runq = NULL;
1278113357Sjeff
1279121051Sjeff	/* Grab our parents cpu estimation information. */
1280121051Sjeff	child->ke_ticks = ke->ke_ticks;
1281121051Sjeff	child->ke_ltick = ke->ke_ltick;
1282121051Sjeff	child->ke_ftick = ke->ke_ftick;
1283113357Sjeff}
1284113357Sjeff
1285113357Sjeffvoid
1286113357Sjeffsched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1287113357Sjeff{
1288113923Sjhb	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1289116365Sjeff
1290121868Sjeff	child->kg_slptime = kg->kg_slptime;
1291121868Sjeff	child->kg_runtime = kg->kg_runtime;
1292121868Sjeff	child->kg_user_pri = kg->kg_user_pri;
1293121868Sjeff	child->kg_nice = kg->kg_nice;
1294121868Sjeff	sched_interact_fork(child);
1295116463Sjeff	kg->kg_runtime += tickincr << 10;
1296116463Sjeff	sched_interact_update(kg);
1297113357Sjeff
1298121868Sjeff	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1299121868Sjeff	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1300121868Sjeff	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1301113357Sjeff}
1302109864Sjeff
1303113357Sjeffvoid
1304113357Sjeffsched_fork_thread(struct thread *td, struct thread *child)
1305113357Sjeff{
1306113357Sjeff}
1307113357Sjeff
1308113357Sjeffvoid
1309113357Sjeffsched_class(struct ksegrp *kg, int class)
1310113357Sjeff{
1311113357Sjeff	struct kseq *kseq;
1312113357Sjeff	struct kse *ke;
1313121896Sjeff	int nclass;
1314121896Sjeff	int oclass;
1315113357Sjeff
1316113923Sjhb	mtx_assert(&sched_lock, MA_OWNED);
1317113357Sjeff	if (kg->kg_pri_class == class)
1318113357Sjeff		return;
1319113357Sjeff
1320121896Sjeff	nclass = PRI_BASE(class);
1321121896Sjeff	oclass = PRI_BASE(kg->kg_pri_class);
1322113357Sjeff	FOREACH_KSE_IN_GROUP(kg, ke) {
1323113357Sjeff		if (ke->ke_state != KES_ONRUNQ &&
1324113357Sjeff		    ke->ke_state != KES_THREAD)
1325113357Sjeff			continue;
1326113357Sjeff		kseq = KSEQ_CPU(ke->ke_cpu);
1327113357Sjeff
1328121896Sjeff#ifdef SMP
1329122744Sjeff		/*
1330122744Sjeff		 * On SMP if we're on the RUNQ we must adjust the transferable
1331122744Sjeff		 * count because could be changing to or from an interrupt
1332122744Sjeff		 * class.
1333122744Sjeff		 */
1334122744Sjeff		if (ke->ke_state == KES_ONRUNQ) {
1335123433Sjeff			if (KSE_CAN_MIGRATE(ke, oclass)) {
1336123433Sjeff				kseq->ksq_transferable--;
1337123433Sjeff				kseq->ksq_group->ksg_transferable--;
1338123433Sjeff			}
1339123433Sjeff			if (KSE_CAN_MIGRATE(ke, nclass)) {
1340123433Sjeff				kseq->ksq_transferable++;
1341123433Sjeff				kseq->ksq_group->ksg_transferable++;
1342123433Sjeff			}
1343122744Sjeff		}
1344121896Sjeff#endif
1345122744Sjeff		if (oclass == PRI_TIMESHARE) {
1346121896Sjeff			kseq->ksq_load_timeshare--;
1347122744Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
1348122744Sjeff		}
1349122744Sjeff		if (nclass == PRI_TIMESHARE) {
1350121896Sjeff			kseq->ksq_load_timeshare++;
1351113357Sjeff			kseq_nice_add(kseq, kg->kg_nice);
1352122744Sjeff		}
1353109970Sjeff	}
1354109970Sjeff
1355113357Sjeff	kg->kg_pri_class = class;
1356109864Sjeff}
1357109864Sjeff
1358109864Sjeff/*
1359109864Sjeff * Return some of the child's priority and interactivity to the parent.
1360109864Sjeff */
1361109864Sjeffvoid
1362113357Sjeffsched_exit(struct proc *p, struct proc *child)
1363109864Sjeff{
1364109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1365113372Sjeff	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1366116365Sjeff	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1367109864Sjeff}
1368109864Sjeff
1369109864Sjeffvoid
1370113372Sjeffsched_exit_kse(struct kse *ke, struct kse *child)
1371113372Sjeff{
1372122744Sjeff	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1373113372Sjeff}
1374113372Sjeff
1375113372Sjeffvoid
1376113372Sjeffsched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1377113372Sjeff{
1378116463Sjeff	/* kg->kg_slptime += child->kg_slptime; */
1379116365Sjeff	kg->kg_runtime += child->kg_runtime;
1380116463Sjeff	sched_interact_update(kg);
1381113372Sjeff}
1382113372Sjeff
1383113372Sjeffvoid
1384113372Sjeffsched_exit_thread(struct thread *td, struct thread *child)
1385113372Sjeff{
1386113372Sjeff}
1387113372Sjeff
1388113372Sjeffvoid
1389121127Sjeffsched_clock(struct thread *td)
1390109864Sjeff{
1391113357Sjeff	struct kseq *kseq;
1392113357Sjeff	struct ksegrp *kg;
1393121127Sjeff	struct kse *ke;
1394109864Sjeff
1395113357Sjeff	/*
1396113357Sjeff	 * sched_setup() apparently happens prior to stathz being set.  We
1397113357Sjeff	 * need to resolve the timers earlier in the boot so we can avoid
1398113357Sjeff	 * calculating this here.
1399113357Sjeff	 */
1400113357Sjeff	if (realstathz == 0) {
1401113357Sjeff		realstathz = stathz ? stathz : hz;
1402113357Sjeff		tickincr = hz / realstathz;
1403113357Sjeff		/*
1404113357Sjeff		 * XXX This does not work for values of stathz that are much
1405113357Sjeff		 * larger than hz.
1406113357Sjeff		 */
1407113357Sjeff		if (tickincr == 0)
1408113357Sjeff			tickincr = 1;
1409113357Sjeff	}
1410109864Sjeff
1411121127Sjeff	ke = td->td_kse;
1412113357Sjeff	kg = ke->ke_ksegrp;
1413109864Sjeff
1414110028Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1415110028Sjeff	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1416110028Sjeff
1417110028Sjeff	/* Adjust ticks for pctcpu */
1418111793Sjeff	ke->ke_ticks++;
1419109971Sjeff	ke->ke_ltick = ticks;
1420112994Sjeff
1421109971Sjeff	/* Go up to one second beyond our max and then trim back down */
1422109971Sjeff	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1423109971Sjeff		sched_pctcpu_update(ke);
1424109971Sjeff
1425114496Sjulian	if (td->td_flags & TDF_IDLETD)
1426109864Sjeff		return;
1427110028Sjeff
1428113357Sjeff	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1429113357Sjeff	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1430110028Sjeff	/*
1431113357Sjeff	 * We only do slicing code for TIMESHARE ksegrps.
1432113357Sjeff	 */
1433113357Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
1434113357Sjeff		return;
1435113357Sjeff	/*
1436110645Sjeff	 * We used a tick charge it to the ksegrp so that we can compute our
1437113357Sjeff	 * interactivity.
1438109864Sjeff	 */
1439113357Sjeff	kg->kg_runtime += tickincr << 10;
1440116463Sjeff	sched_interact_update(kg);
1441110645Sjeff
1442109864Sjeff	/*
1443109864Sjeff	 * We used up one time slice.
1444109864Sjeff	 */
1445122847Sjeff	if (--ke->ke_slice > 0)
1446113357Sjeff		return;
1447109864Sjeff	/*
1448113357Sjeff	 * We're out of time, recompute priorities and requeue.
1449109864Sjeff	 */
1450122847Sjeff	kseq = KSEQ_SELF();
1451122744Sjeff	kseq_load_rem(kseq, ke);
1452113357Sjeff	sched_priority(kg);
1453113357Sjeff	sched_slice(ke);
1454113357Sjeff	if (SCHED_CURR(kg, ke))
1455113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1456113357Sjeff	else
1457113357Sjeff		ke->ke_runq = kseq->ksq_next;
1458122744Sjeff	kseq_load_add(kseq, ke);
1459113357Sjeff	td->td_flags |= TDF_NEEDRESCHED;
1460109864Sjeff}
1461109864Sjeff
1462109864Sjeffint
1463109864Sjeffsched_runnable(void)
1464109864Sjeff{
1465109864Sjeff	struct kseq *kseq;
1466115998Sjeff	int load;
1467109864Sjeff
1468115998Sjeff	load = 1;
1469115998Sjeff
1470110028Sjeff	kseq = KSEQ_SELF();
1471121790Sjeff#ifdef SMP
1472122094Sjeff	if (kseq->ksq_assigned) {
1473122094Sjeff		mtx_lock_spin(&sched_lock);
1474121790Sjeff		kseq_assign(kseq);
1475122094Sjeff		mtx_unlock_spin(&sched_lock);
1476122094Sjeff	}
1477121790Sjeff#endif
1478121605Sjeff	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1479121605Sjeff		if (kseq->ksq_load > 0)
1480121605Sjeff			goto out;
1481121605Sjeff	} else
1482121605Sjeff		if (kseq->ksq_load - 1 > 0)
1483121605Sjeff			goto out;
1484115998Sjeff	load = 0;
1485115998Sjeffout:
1486115998Sjeff	return (load);
1487109864Sjeff}
1488109864Sjeff
1489109864Sjeffvoid
1490109864Sjeffsched_userret(struct thread *td)
1491109864Sjeff{
1492109864Sjeff	struct ksegrp *kg;
1493121605Sjeff
1494121605Sjeff	kg = td->td_ksegrp;
1495109864Sjeff
1496109864Sjeff	if (td->td_priority != kg->kg_user_pri) {
1497109864Sjeff		mtx_lock_spin(&sched_lock);
1498109864Sjeff		td->td_priority = kg->kg_user_pri;
1499109864Sjeff		mtx_unlock_spin(&sched_lock);
1500109864Sjeff	}
1501109864Sjeff}
1502109864Sjeff
1503109864Sjeffstruct kse *
1504109970Sjeffsched_choose(void)
1505109970Sjeff{
1506110028Sjeff	struct kseq *kseq;
1507109970Sjeff	struct kse *ke;
1508109970Sjeff
1509115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1510121790Sjeff	kseq = KSEQ_SELF();
1511113357Sjeff#ifdef SMP
1512123433Sjeffrestart:
1513121790Sjeff	if (kseq->ksq_assigned)
1514121790Sjeff		kseq_assign(kseq);
1515113357Sjeff#endif
1516121790Sjeff	ke = kseq_choose(kseq);
1517109864Sjeff	if (ke) {
1518121790Sjeff#ifdef SMP
1519121790Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1520123433Sjeff			if (kseq_idled(kseq) == 0)
1521123433Sjeff				goto restart;
1522121790Sjeff#endif
1523122744Sjeff		kseq_runq_rem(kseq, ke);
1524109864Sjeff		ke->ke_state = KES_THREAD;
1525112966Sjeff
1526113357Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1527113357Sjeff			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1528113357Sjeff			    ke, ke->ke_runq, ke->ke_slice,
1529113357Sjeff			    ke->ke_thread->td_priority);
1530113357Sjeff		}
1531113357Sjeff		return (ke);
1532109864Sjeff	}
1533109970Sjeff#ifdef SMP
1534123433Sjeff	if (kseq_idled(kseq) == 0)
1535123433Sjeff		goto restart;
1536109970Sjeff#endif
1537113357Sjeff	return (NULL);
1538109864Sjeff}
1539109864Sjeff
1540109864Sjeffvoid
1541121127Sjeffsched_add(struct thread *td)
1542109864Sjeff{
1543110267Sjeff	struct kseq *kseq;
1544113357Sjeff	struct ksegrp *kg;
1545121127Sjeff	struct kse *ke;
1546121790Sjeff	int class;
1547109864Sjeff
1548121790Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1549121127Sjeff	ke = td->td_kse;
1550121127Sjeff	kg = td->td_ksegrp;
1551121790Sjeff	if (ke->ke_flags & KEF_ASSIGNED)
1552121790Sjeff		return;
1553121790Sjeff	kseq = KSEQ_SELF();
1554110267Sjeff	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1555109864Sjeff	KASSERT((ke->ke_thread->td_kse != NULL),
1556110267Sjeff	    ("sched_add: No KSE on thread"));
1557109864Sjeff	KASSERT(ke->ke_state != KES_ONRUNQ,
1558110267Sjeff	    ("sched_add: kse %p (%s) already in run queue", ke,
1559109864Sjeff	    ke->ke_proc->p_comm));
1560109864Sjeff	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1561110267Sjeff	    ("sched_add: process swapped out"));
1562113387Sjeff	KASSERT(ke->ke_runq == NULL,
1563113387Sjeff	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1564109864Sjeff
1565121790Sjeff	class = PRI_BASE(kg->kg_pri_class);
1566121790Sjeff	switch (class) {
1567112994Sjeff	case PRI_ITHD:
1568112994Sjeff	case PRI_REALTIME:
1569113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1570113357Sjeff		ke->ke_slice = SCHED_SLICE_MAX;
1571113660Sjeff		ke->ke_cpu = PCPU_GET(cpuid);
1572112994Sjeff		break;
1573112994Sjeff	case PRI_TIMESHARE:
1574113387Sjeff		if (SCHED_CURR(kg, ke))
1575113387Sjeff			ke->ke_runq = kseq->ksq_curr;
1576113387Sjeff		else
1577113387Sjeff			ke->ke_runq = kseq->ksq_next;
1578113357Sjeff		break;
1579112994Sjeff	case PRI_IDLE:
1580113357Sjeff		/*
1581113357Sjeff		 * This is for priority prop.
1582113357Sjeff		 */
1583121605Sjeff		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1584113357Sjeff			ke->ke_runq = kseq->ksq_curr;
1585113357Sjeff		else
1586113357Sjeff			ke->ke_runq = &kseq->ksq_idle;
1587113357Sjeff		ke->ke_slice = SCHED_SLICE_MIN;
1588112994Sjeff		break;
1589113357Sjeff	default:
1590121868Sjeff		panic("Unknown pri class.");
1591113357Sjeff		break;
1592112994Sjeff	}
1593121790Sjeff#ifdef SMP
1594123433Sjeff	if (ke->ke_cpu != PCPU_GET(cpuid)) {
1595123529Sjeff		ke->ke_runq = NULL;
1596123433Sjeff		kseq_notify(ke, ke->ke_cpu);
1597123433Sjeff		return;
1598123433Sjeff	}
1599121790Sjeff	/*
1600123685Sjeff	 * If we had been idle, clear our bit in the group and potentially
1601123685Sjeff	 * the global bitmap.  If not, see if we should transfer this thread.
1602121790Sjeff	 */
1603123433Sjeff	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1604123433Sjeff	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1605121790Sjeff		/*
1606123433Sjeff		 * Check to see if our group is unidling, and if so, remove it
1607123433Sjeff		 * from the global idle mask.
1608121790Sjeff		 */
1609123433Sjeff		if (kseq->ksq_group->ksg_idlemask ==
1610123433Sjeff		    kseq->ksq_group->ksg_cpumask)
1611123433Sjeff			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1612123433Sjeff		/*
1613123433Sjeff		 * Now remove ourselves from the group specific idle mask.
1614123433Sjeff		 */
1615123433Sjeff		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1616123685Sjeff	} else if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
1617123685Sjeff		if (kseq_transfer(kseq, ke, class))
1618123685Sjeff			return;
1619121790Sjeff#endif
1620121790Sjeff        if (td->td_priority < curthread->td_priority)
1621121790Sjeff                curthread->td_flags |= TDF_NEEDRESCHED;
1622121790Sjeff
1623109864Sjeff	ke->ke_ksegrp->kg_runq_kses++;
1624109864Sjeff	ke->ke_state = KES_ONRUNQ;
1625109864Sjeff
1626122744Sjeff	kseq_runq_add(kseq, ke);
1627122744Sjeff	kseq_load_add(kseq, ke);
1628109864Sjeff}
1629109864Sjeff
1630109864Sjeffvoid
1631121127Sjeffsched_rem(struct thread *td)
1632109864Sjeff{
1633113357Sjeff	struct kseq *kseq;
1634121127Sjeff	struct kse *ke;
1635113357Sjeff
1636121127Sjeff	ke = td->td_kse;
1637121790Sjeff	/*
1638121790Sjeff	 * It is safe to just return here because sched_rem() is only ever
1639121790Sjeff	 * used in places where we're immediately going to add the
1640121790Sjeff	 * kse back on again.  In that case it'll be added with the correct
1641121790Sjeff	 * thread and priority when the caller drops the sched_lock.
1642121790Sjeff	 */
1643121790Sjeff	if (ke->ke_flags & KEF_ASSIGNED)
1644121790Sjeff		return;
1645109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1646113387Sjeff	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1647109864Sjeff
1648109864Sjeff	ke->ke_state = KES_THREAD;
1649109864Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1650113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
1651122744Sjeff	kseq_runq_rem(kseq, ke);
1652122744Sjeff	kseq_load_rem(kseq, ke);
1653109864Sjeff}
1654109864Sjeff
1655109864Sjefffixpt_t
1656121127Sjeffsched_pctcpu(struct thread *td)
1657109864Sjeff{
1658109864Sjeff	fixpt_t pctcpu;
1659121127Sjeff	struct kse *ke;
1660109864Sjeff
1661109864Sjeff	pctcpu = 0;
1662121127Sjeff	ke = td->td_kse;
1663121290Sjeff	if (ke == NULL)
1664121290Sjeff		return (0);
1665109864Sjeff
1666115998Sjeff	mtx_lock_spin(&sched_lock);
1667109864Sjeff	if (ke->ke_ticks) {
1668109864Sjeff		int rtick;
1669109864Sjeff
1670116365Sjeff		/*
1671116365Sjeff		 * Don't update more frequently than twice a second.  Allowing
1672116365Sjeff		 * this causes the cpu usage to decay away too quickly due to
1673116365Sjeff		 * rounding errors.
1674116365Sjeff		 */
1675123435Sjeff		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1676123435Sjeff		    ke->ke_ltick < (ticks - (hz / 2)))
1677116365Sjeff			sched_pctcpu_update(ke);
1678109864Sjeff		/* How many rtick per second ? */
1679116365Sjeff		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1680110226Sscottl		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1681109864Sjeff	}
1682109864Sjeff
1683109864Sjeff	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1684113865Sjhb	mtx_unlock_spin(&sched_lock);
1685109864Sjeff
1686109864Sjeff	return (pctcpu);
1687109864Sjeff}
1688109864Sjeff
1689122038Sjeffvoid
1690122038Sjeffsched_bind(struct thread *td, int cpu)
1691122038Sjeff{
1692122038Sjeff	struct kse *ke;
1693122038Sjeff
1694122038Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1695122038Sjeff	ke = td->td_kse;
1696122038Sjeff	ke->ke_flags |= KEF_BOUND;
1697123433Sjeff#ifdef SMP
1698123433Sjeff	if (PCPU_GET(cpuid) == cpu)
1699122038Sjeff		return;
1700122038Sjeff	/* sched_rem without the runq_remove */
1701122038Sjeff	ke->ke_state = KES_THREAD;
1702122038Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1703122744Sjeff	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1704122038Sjeff	kseq_notify(ke, cpu);
1705122038Sjeff	/* When we return from mi_switch we'll be on the correct cpu. */
1706122038Sjeff	td->td_proc->p_stats->p_ru.ru_nvcsw++;
1707122038Sjeff	mi_switch();
1708122038Sjeff#endif
1709122038Sjeff}
1710122038Sjeff
1711122038Sjeffvoid
1712122038Sjeffsched_unbind(struct thread *td)
1713122038Sjeff{
1714122038Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1715122038Sjeff	td->td_kse->ke_flags &= ~KEF_BOUND;
1716122038Sjeff}
1717122038Sjeff
1718109864Sjeffint
1719109864Sjeffsched_sizeof_kse(void)
1720109864Sjeff{
1721109864Sjeff	return (sizeof(struct kse) + sizeof(struct ke_sched));
1722109864Sjeff}
1723109864Sjeff
1724109864Sjeffint
1725109864Sjeffsched_sizeof_ksegrp(void)
1726109864Sjeff{
1727109864Sjeff	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1728109864Sjeff}
1729109864Sjeff
1730109864Sjeffint
1731109864Sjeffsched_sizeof_proc(void)
1732109864Sjeff{
1733109864Sjeff	return (sizeof(struct proc));
1734109864Sjeff}
1735109864Sjeff
1736109864Sjeffint
1737109864Sjeffsched_sizeof_thread(void)
1738109864Sjeff{
1739109864Sjeff	return (sizeof(struct thread) + sizeof(struct td_sched));
1740109864Sjeff}
1741