kern_timeout.c revision 298649
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_timeout.c 298649 2016-04-26 15:38:17Z pfg $");
39
40#include "opt_callout_profiling.h"
41#if defined(__arm__)
42#include "opt_timer.h"
43#endif
44#include "opt_rss.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/bus.h>
49#include <sys/callout.h>
50#include <sys/file.h>
51#include <sys/interrupt.h>
52#include <sys/kernel.h>
53#include <sys/ktr.h>
54#include <sys/lock.h>
55#include <sys/malloc.h>
56#include <sys/mutex.h>
57#include <sys/proc.h>
58#include <sys/sdt.h>
59#include <sys/sleepqueue.h>
60#include <sys/sysctl.h>
61#include <sys/smp.h>
62
63#ifdef SMP
64#include <machine/cpu.h>
65#endif
66
67#ifndef NO_EVENTTIMERS
68DPCPU_DECLARE(sbintime_t, hardclocktime);
69#endif
70
71SDT_PROVIDER_DEFINE(callout_execute);
72SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
73SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
74
75#ifdef CALLOUT_PROFILING
76static int avg_depth;
77SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
78    "Average number of items examined per softclock call. Units = 1/1000");
79static int avg_gcalls;
80SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
81    "Average number of Giant callouts made per softclock call. Units = 1/1000");
82static int avg_lockcalls;
83SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
84    "Average number of lock callouts made per softclock call. Units = 1/1000");
85static int avg_mpcalls;
86SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
87    "Average number of MP callouts made per softclock call. Units = 1/1000");
88static int avg_depth_dir;
89SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
90    "Average number of direct callouts examined per callout_process call. "
91    "Units = 1/1000");
92static int avg_lockcalls_dir;
93SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
94    &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
95    "callout_process call. Units = 1/1000");
96static int avg_mpcalls_dir;
97SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
98    0, "Average number of MP direct callouts made per callout_process call. "
99    "Units = 1/1000");
100#endif
101
102static int ncallout;
103SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
104    "Number of entries in callwheel and size of timeout() preallocation");
105
106#ifdef	RSS
107static int pin_default_swi = 1;
108static int pin_pcpu_swi = 1;
109#else
110static int pin_default_swi = 0;
111static int pin_pcpu_swi = 0;
112#endif
113
114SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
115    0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
116SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
117    0, "Pin the per-CPU swis (except PCPU 0, which is also default");
118
119/*
120 * TODO:
121 *	allocate more timeout table slots when table overflows.
122 */
123u_int callwheelsize, callwheelmask;
124
125/*
126 * The callout cpu exec entities represent informations necessary for
127 * describing the state of callouts currently running on the CPU and the ones
128 * necessary for migrating callouts to the new callout cpu. In particular,
129 * the first entry of the array cc_exec_entity holds informations for callout
130 * running in SWI thread context, while the second one holds informations
131 * for callout running directly from hardware interrupt context.
132 * The cached informations are very important for deferring migration when
133 * the migrating callout is already running.
134 */
135struct cc_exec {
136	struct callout		*cc_curr;
137	void			(*cc_drain)(void *);
138#ifdef SMP
139	void			(*ce_migration_func)(void *);
140	void			*ce_migration_arg;
141	int			ce_migration_cpu;
142	sbintime_t		ce_migration_time;
143	sbintime_t		ce_migration_prec;
144#endif
145	bool			cc_cancel;
146	bool			cc_waiting;
147};
148
149/*
150 * There is one struct callout_cpu per cpu, holding all relevant
151 * state for the callout processing thread on the individual CPU.
152 */
153struct callout_cpu {
154	struct mtx_padalign	cc_lock;
155	struct cc_exec 		cc_exec_entity[2];
156	struct callout		*cc_next;
157	struct callout		*cc_callout;
158	struct callout_list	*cc_callwheel;
159	struct callout_tailq	cc_expireq;
160	struct callout_slist	cc_callfree;
161	sbintime_t		cc_firstevent;
162	sbintime_t		cc_lastscan;
163	void			*cc_cookie;
164	u_int			cc_bucket;
165	u_int			cc_inited;
166	char			cc_ktr_event_name[20];
167};
168
169#define	callout_migrating(c)	((c)->c_iflags & CALLOUT_DFRMIGRATION)
170
171#define	cc_exec_curr(cc, dir)		cc->cc_exec_entity[dir].cc_curr
172#define	cc_exec_drain(cc, dir)		cc->cc_exec_entity[dir].cc_drain
173#define	cc_exec_next(cc)		cc->cc_next
174#define	cc_exec_cancel(cc, dir)		cc->cc_exec_entity[dir].cc_cancel
175#define	cc_exec_waiting(cc, dir)	cc->cc_exec_entity[dir].cc_waiting
176#ifdef SMP
177#define	cc_migration_func(cc, dir)	cc->cc_exec_entity[dir].ce_migration_func
178#define	cc_migration_arg(cc, dir)	cc->cc_exec_entity[dir].ce_migration_arg
179#define	cc_migration_cpu(cc, dir)	cc->cc_exec_entity[dir].ce_migration_cpu
180#define	cc_migration_time(cc, dir)	cc->cc_exec_entity[dir].ce_migration_time
181#define	cc_migration_prec(cc, dir)	cc->cc_exec_entity[dir].ce_migration_prec
182
183struct callout_cpu cc_cpu[MAXCPU];
184#define	CPUBLOCK	MAXCPU
185#define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
186#define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
187#else
188struct callout_cpu cc_cpu;
189#define	CC_CPU(cpu)	&cc_cpu
190#define	CC_SELF()	&cc_cpu
191#endif
192#define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
193#define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
194#define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
195
196static int timeout_cpu;
197
198static void	callout_cpu_init(struct callout_cpu *cc, int cpu);
199static void	softclock_call_cc(struct callout *c, struct callout_cpu *cc,
200#ifdef CALLOUT_PROFILING
201		    int *mpcalls, int *lockcalls, int *gcalls,
202#endif
203		    int direct);
204
205static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
206
207/**
208 * Locked by cc_lock:
209 *   cc_curr         - If a callout is in progress, it is cc_curr.
210 *                     If cc_curr is non-NULL, threads waiting in
211 *                     callout_drain() will be woken up as soon as the
212 *                     relevant callout completes.
213 *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
214 *                     guarantees that the current callout will not run.
215 *                     The softclock() function sets this to 0 before it
216 *                     drops callout_lock to acquire c_lock, and it calls
217 *                     the handler only if curr_cancelled is still 0 after
218 *                     cc_lock is successfully acquired.
219 *   cc_waiting      - If a thread is waiting in callout_drain(), then
220 *                     callout_wait is nonzero.  Set only when
221 *                     cc_curr is non-NULL.
222 */
223
224/*
225 * Resets the execution entity tied to a specific callout cpu.
226 */
227static void
228cc_cce_cleanup(struct callout_cpu *cc, int direct)
229{
230
231	cc_exec_curr(cc, direct) = NULL;
232	cc_exec_cancel(cc, direct) = false;
233	cc_exec_waiting(cc, direct) = false;
234#ifdef SMP
235	cc_migration_cpu(cc, direct) = CPUBLOCK;
236	cc_migration_time(cc, direct) = 0;
237	cc_migration_prec(cc, direct) = 0;
238	cc_migration_func(cc, direct) = NULL;
239	cc_migration_arg(cc, direct) = NULL;
240#endif
241}
242
243/*
244 * Checks if migration is requested by a specific callout cpu.
245 */
246static int
247cc_cce_migrating(struct callout_cpu *cc, int direct)
248{
249
250#ifdef SMP
251	return (cc_migration_cpu(cc, direct) != CPUBLOCK);
252#else
253	return (0);
254#endif
255}
256
257/*
258 * Kernel low level callwheel initialization
259 * called on cpu0 during kernel startup.
260 */
261static void
262callout_callwheel_init(void *dummy)
263{
264	struct callout_cpu *cc;
265
266	/*
267	 * Calculate the size of the callout wheel and the preallocated
268	 * timeout() structures.
269	 * XXX: Clip callout to result of previous function of maxusers
270	 * maximum 384.  This is still huge, but acceptable.
271	 */
272	memset(CC_CPU(0), 0, sizeof(cc_cpu));
273	ncallout = imin(16 + maxproc + maxfiles, 18508);
274	TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
275
276	/*
277	 * Calculate callout wheel size, should be next power of two higher
278	 * than 'ncallout'.
279	 */
280	callwheelsize = 1 << fls(ncallout);
281	callwheelmask = callwheelsize - 1;
282
283	/*
284	 * Fetch whether we're pinning the swi's or not.
285	 */
286	TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
287	TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
288
289	/*
290	 * Only cpu0 handles timeout(9) and receives a preallocation.
291	 *
292	 * XXX: Once all timeout(9) consumers are converted this can
293	 * be removed.
294	 */
295	timeout_cpu = PCPU_GET(cpuid);
296	cc = CC_CPU(timeout_cpu);
297	cc->cc_callout = malloc(ncallout * sizeof(struct callout),
298	    M_CALLOUT, M_WAITOK);
299	callout_cpu_init(cc, timeout_cpu);
300}
301SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
302
303/*
304 * Initialize the per-cpu callout structures.
305 */
306static void
307callout_cpu_init(struct callout_cpu *cc, int cpu)
308{
309	struct callout *c;
310	int i;
311
312	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
313	SLIST_INIT(&cc->cc_callfree);
314	cc->cc_inited = 1;
315	cc->cc_callwheel = malloc(sizeof(struct callout_list) * callwheelsize,
316	    M_CALLOUT, M_WAITOK);
317	for (i = 0; i < callwheelsize; i++)
318		LIST_INIT(&cc->cc_callwheel[i]);
319	TAILQ_INIT(&cc->cc_expireq);
320	cc->cc_firstevent = SBT_MAX;
321	for (i = 0; i < 2; i++)
322		cc_cce_cleanup(cc, i);
323	snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
324	    "callwheel cpu %d", cpu);
325	if (cc->cc_callout == NULL)	/* Only cpu0 handles timeout(9) */
326		return;
327	for (i = 0; i < ncallout; i++) {
328		c = &cc->cc_callout[i];
329		callout_init(c, 0);
330		c->c_iflags = CALLOUT_LOCAL_ALLOC;
331		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
332	}
333}
334
335#ifdef SMP
336/*
337 * Switches the cpu tied to a specific callout.
338 * The function expects a locked incoming callout cpu and returns with
339 * locked outcoming callout cpu.
340 */
341static struct callout_cpu *
342callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
343{
344	struct callout_cpu *new_cc;
345
346	MPASS(c != NULL && cc != NULL);
347	CC_LOCK_ASSERT(cc);
348
349	/*
350	 * Avoid interrupts and preemption firing after the callout cpu
351	 * is blocked in order to avoid deadlocks as the new thread
352	 * may be willing to acquire the callout cpu lock.
353	 */
354	c->c_cpu = CPUBLOCK;
355	spinlock_enter();
356	CC_UNLOCK(cc);
357	new_cc = CC_CPU(new_cpu);
358	CC_LOCK(new_cc);
359	spinlock_exit();
360	c->c_cpu = new_cpu;
361	return (new_cc);
362}
363#endif
364
365/*
366 * Start standard softclock thread.
367 */
368static void
369start_softclock(void *dummy)
370{
371	struct callout_cpu *cc;
372	char name[MAXCOMLEN];
373#ifdef SMP
374	int cpu;
375	struct intr_event *ie;
376#endif
377
378	cc = CC_CPU(timeout_cpu);
379	snprintf(name, sizeof(name), "clock (%d)", timeout_cpu);
380	if (swi_add(&clk_intr_event, name, softclock, cc, SWI_CLOCK,
381	    INTR_MPSAFE, &cc->cc_cookie))
382		panic("died while creating standard software ithreads");
383	if (pin_default_swi &&
384	    (intr_event_bind(clk_intr_event, timeout_cpu) != 0)) {
385		printf("%s: timeout clock couldn't be pinned to cpu %d\n",
386		    __func__,
387		    timeout_cpu);
388	}
389
390#ifdef SMP
391	CPU_FOREACH(cpu) {
392		if (cpu == timeout_cpu)
393			continue;
394		cc = CC_CPU(cpu);
395		cc->cc_callout = NULL;	/* Only cpu0 handles timeout(9). */
396		callout_cpu_init(cc, cpu);
397		snprintf(name, sizeof(name), "clock (%d)", cpu);
398		ie = NULL;
399		if (swi_add(&ie, name, softclock, cc, SWI_CLOCK,
400		    INTR_MPSAFE, &cc->cc_cookie))
401			panic("died while creating standard software ithreads");
402		if (pin_pcpu_swi && (intr_event_bind(ie, cpu) != 0)) {
403			printf("%s: per-cpu clock couldn't be pinned to "
404			    "cpu %d\n",
405			    __func__,
406			    cpu);
407		}
408	}
409#endif
410}
411SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
412
413#define	CC_HASH_SHIFT	8
414
415static inline u_int
416callout_hash(sbintime_t sbt)
417{
418
419	return (sbt >> (32 - CC_HASH_SHIFT));
420}
421
422static inline u_int
423callout_get_bucket(sbintime_t sbt)
424{
425
426	return (callout_hash(sbt) & callwheelmask);
427}
428
429void
430callout_process(sbintime_t now)
431{
432	struct callout *tmp, *tmpn;
433	struct callout_cpu *cc;
434	struct callout_list *sc;
435	sbintime_t first, last, max, tmp_max;
436	uint32_t lookahead;
437	u_int firstb, lastb, nowb;
438#ifdef CALLOUT_PROFILING
439	int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
440#endif
441
442	cc = CC_SELF();
443	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
444
445	/* Compute the buckets of the last scan and present times. */
446	firstb = callout_hash(cc->cc_lastscan);
447	cc->cc_lastscan = now;
448	nowb = callout_hash(now);
449
450	/* Compute the last bucket and minimum time of the bucket after it. */
451	if (nowb == firstb)
452		lookahead = (SBT_1S / 16);
453	else if (nowb - firstb == 1)
454		lookahead = (SBT_1S / 8);
455	else
456		lookahead = (SBT_1S / 2);
457	first = last = now;
458	first += (lookahead / 2);
459	last += lookahead;
460	last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
461	lastb = callout_hash(last) - 1;
462	max = last;
463
464	/*
465	 * Check if we wrapped around the entire wheel from the last scan.
466	 * In case, we need to scan entirely the wheel for pending callouts.
467	 */
468	if (lastb - firstb >= callwheelsize) {
469		lastb = firstb + callwheelsize - 1;
470		if (nowb - firstb >= callwheelsize)
471			nowb = lastb;
472	}
473
474	/* Iterate callwheel from firstb to nowb and then up to lastb. */
475	do {
476		sc = &cc->cc_callwheel[firstb & callwheelmask];
477		tmp = LIST_FIRST(sc);
478		while (tmp != NULL) {
479			/* Run the callout if present time within allowed. */
480			if (tmp->c_time <= now) {
481				/*
482				 * Consumer told us the callout may be run
483				 * directly from hardware interrupt context.
484				 */
485				if (tmp->c_iflags & CALLOUT_DIRECT) {
486#ifdef CALLOUT_PROFILING
487					++depth_dir;
488#endif
489					cc_exec_next(cc) =
490					    LIST_NEXT(tmp, c_links.le);
491					cc->cc_bucket = firstb & callwheelmask;
492					LIST_REMOVE(tmp, c_links.le);
493					softclock_call_cc(tmp, cc,
494#ifdef CALLOUT_PROFILING
495					    &mpcalls_dir, &lockcalls_dir, NULL,
496#endif
497					    1);
498					tmp = cc_exec_next(cc);
499					cc_exec_next(cc) = NULL;
500				} else {
501					tmpn = LIST_NEXT(tmp, c_links.le);
502					LIST_REMOVE(tmp, c_links.le);
503					TAILQ_INSERT_TAIL(&cc->cc_expireq,
504					    tmp, c_links.tqe);
505					tmp->c_iflags |= CALLOUT_PROCESSED;
506					tmp = tmpn;
507				}
508				continue;
509			}
510			/* Skip events from distant future. */
511			if (tmp->c_time >= max)
512				goto next;
513			/*
514			 * Event minimal time is bigger than present maximal
515			 * time, so it cannot be aggregated.
516			 */
517			if (tmp->c_time > last) {
518				lastb = nowb;
519				goto next;
520			}
521			/* Update first and last time, respecting this event. */
522			if (tmp->c_time < first)
523				first = tmp->c_time;
524			tmp_max = tmp->c_time + tmp->c_precision;
525			if (tmp_max < last)
526				last = tmp_max;
527next:
528			tmp = LIST_NEXT(tmp, c_links.le);
529		}
530		/* Proceed with the next bucket. */
531		firstb++;
532		/*
533		 * Stop if we looked after present time and found
534		 * some event we can't execute at now.
535		 * Stop if we looked far enough into the future.
536		 */
537	} while (((int)(firstb - lastb)) <= 0);
538	cc->cc_firstevent = last;
539#ifndef NO_EVENTTIMERS
540	cpu_new_callout(curcpu, last, first);
541#endif
542#ifdef CALLOUT_PROFILING
543	avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
544	avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
545	avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
546#endif
547	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
548	/*
549	 * swi_sched acquires the thread lock, so we don't want to call it
550	 * with cc_lock held; incorrect locking order.
551	 */
552	if (!TAILQ_EMPTY(&cc->cc_expireq))
553		swi_sched(cc->cc_cookie, 0);
554}
555
556static struct callout_cpu *
557callout_lock(struct callout *c)
558{
559	struct callout_cpu *cc;
560	int cpu;
561
562	for (;;) {
563		cpu = c->c_cpu;
564#ifdef SMP
565		if (cpu == CPUBLOCK) {
566			while (c->c_cpu == CPUBLOCK)
567				cpu_spinwait();
568			continue;
569		}
570#endif
571		cc = CC_CPU(cpu);
572		CC_LOCK(cc);
573		if (cpu == c->c_cpu)
574			break;
575		CC_UNLOCK(cc);
576	}
577	return (cc);
578}
579
580static void
581callout_cc_add(struct callout *c, struct callout_cpu *cc,
582    sbintime_t sbt, sbintime_t precision, void (*func)(void *),
583    void *arg, int cpu, int flags)
584{
585	int bucket;
586
587	CC_LOCK_ASSERT(cc);
588	if (sbt < cc->cc_lastscan)
589		sbt = cc->cc_lastscan;
590	c->c_arg = arg;
591	c->c_iflags |= CALLOUT_PENDING;
592	c->c_iflags &= ~CALLOUT_PROCESSED;
593	c->c_flags |= CALLOUT_ACTIVE;
594	if (flags & C_DIRECT_EXEC)
595		c->c_iflags |= CALLOUT_DIRECT;
596	c->c_func = func;
597	c->c_time = sbt;
598	c->c_precision = precision;
599	bucket = callout_get_bucket(c->c_time);
600	CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
601	    c, (int)(c->c_precision >> 32),
602	    (u_int)(c->c_precision & 0xffffffff));
603	LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
604	if (cc->cc_bucket == bucket)
605		cc_exec_next(cc) = c;
606#ifndef NO_EVENTTIMERS
607	/*
608	 * Inform the eventtimers(4) subsystem there's a new callout
609	 * that has been inserted, but only if really required.
610	 */
611	if (SBT_MAX - c->c_time < c->c_precision)
612		c->c_precision = SBT_MAX - c->c_time;
613	sbt = c->c_time + c->c_precision;
614	if (sbt < cc->cc_firstevent) {
615		cc->cc_firstevent = sbt;
616		cpu_new_callout(cpu, sbt, c->c_time);
617	}
618#endif
619}
620
621static void
622callout_cc_del(struct callout *c, struct callout_cpu *cc)
623{
624
625	if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) == 0)
626		return;
627	c->c_func = NULL;
628	SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
629}
630
631static void
632softclock_call_cc(struct callout *c, struct callout_cpu *cc,
633#ifdef CALLOUT_PROFILING
634    int *mpcalls, int *lockcalls, int *gcalls,
635#endif
636    int direct)
637{
638	struct rm_priotracker tracker;
639	void (*c_func)(void *);
640	void *c_arg;
641	struct lock_class *class;
642	struct lock_object *c_lock;
643	uintptr_t lock_status;
644	int c_iflags;
645#ifdef SMP
646	struct callout_cpu *new_cc;
647	void (*new_func)(void *);
648	void *new_arg;
649	int flags, new_cpu;
650	sbintime_t new_prec, new_time;
651#endif
652#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
653	sbintime_t sbt1, sbt2;
654	struct timespec ts2;
655	static sbintime_t maxdt = 2 * SBT_1MS;	/* 2 msec */
656	static timeout_t *lastfunc;
657#endif
658
659	KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
660	    ("softclock_call_cc: pend %p %x", c, c->c_iflags));
661	KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
662	    ("softclock_call_cc: act %p %x", c, c->c_flags));
663	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
664	lock_status = 0;
665	if (c->c_flags & CALLOUT_SHAREDLOCK) {
666		if (class == &lock_class_rm)
667			lock_status = (uintptr_t)&tracker;
668		else
669			lock_status = 1;
670	}
671	c_lock = c->c_lock;
672	c_func = c->c_func;
673	c_arg = c->c_arg;
674	c_iflags = c->c_iflags;
675	if (c->c_iflags & CALLOUT_LOCAL_ALLOC)
676		c->c_iflags = CALLOUT_LOCAL_ALLOC;
677	else
678		c->c_iflags &= ~CALLOUT_PENDING;
679
680	cc_exec_curr(cc, direct) = c;
681	cc_exec_cancel(cc, direct) = false;
682	cc_exec_drain(cc, direct) = NULL;
683	CC_UNLOCK(cc);
684	if (c_lock != NULL) {
685		class->lc_lock(c_lock, lock_status);
686		/*
687		 * The callout may have been cancelled
688		 * while we switched locks.
689		 */
690		if (cc_exec_cancel(cc, direct)) {
691			class->lc_unlock(c_lock);
692			goto skip;
693		}
694		/* The callout cannot be stopped now. */
695		cc_exec_cancel(cc, direct) = true;
696		if (c_lock == &Giant.lock_object) {
697#ifdef CALLOUT_PROFILING
698			(*gcalls)++;
699#endif
700			CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
701			    c, c_func, c_arg);
702		} else {
703#ifdef CALLOUT_PROFILING
704			(*lockcalls)++;
705#endif
706			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
707			    c, c_func, c_arg);
708		}
709	} else {
710#ifdef CALLOUT_PROFILING
711		(*mpcalls)++;
712#endif
713		CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
714		    c, c_func, c_arg);
715	}
716	KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
717	    "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
718#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
719	sbt1 = sbinuptime();
720#endif
721	THREAD_NO_SLEEPING();
722	SDT_PROBE1(callout_execute, , , callout__start, c);
723	c_func(c_arg);
724	SDT_PROBE1(callout_execute, , , callout__end, c);
725	THREAD_SLEEPING_OK();
726#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
727	sbt2 = sbinuptime();
728	sbt2 -= sbt1;
729	if (sbt2 > maxdt) {
730		if (lastfunc != c_func || sbt2 > maxdt * 2) {
731			ts2 = sbttots(sbt2);
732			printf(
733		"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
734			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
735		}
736		maxdt = sbt2;
737		lastfunc = c_func;
738	}
739#endif
740	KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
741	CTR1(KTR_CALLOUT, "callout %p finished", c);
742	if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
743		class->lc_unlock(c_lock);
744skip:
745	CC_LOCK(cc);
746	KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
747	cc_exec_curr(cc, direct) = NULL;
748	if (cc_exec_drain(cc, direct)) {
749		void (*drain)(void *);
750
751		drain = cc_exec_drain(cc, direct);
752		cc_exec_drain(cc, direct) = NULL;
753		CC_UNLOCK(cc);
754		drain(c_arg);
755		CC_LOCK(cc);
756	}
757	if (cc_exec_waiting(cc, direct)) {
758		/*
759		 * There is someone waiting for the
760		 * callout to complete.
761		 * If the callout was scheduled for
762		 * migration just cancel it.
763		 */
764		if (cc_cce_migrating(cc, direct)) {
765			cc_cce_cleanup(cc, direct);
766
767			/*
768			 * It should be assert here that the callout is not
769			 * destroyed but that is not easy.
770			 */
771			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
772		}
773		cc_exec_waiting(cc, direct) = false;
774		CC_UNLOCK(cc);
775		wakeup(&cc_exec_waiting(cc, direct));
776		CC_LOCK(cc);
777	} else if (cc_cce_migrating(cc, direct)) {
778		KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0,
779		    ("Migrating legacy callout %p", c));
780#ifdef SMP
781		/*
782		 * If the callout was scheduled for
783		 * migration just perform it now.
784		 */
785		new_cpu = cc_migration_cpu(cc, direct);
786		new_time = cc_migration_time(cc, direct);
787		new_prec = cc_migration_prec(cc, direct);
788		new_func = cc_migration_func(cc, direct);
789		new_arg = cc_migration_arg(cc, direct);
790		cc_cce_cleanup(cc, direct);
791
792		/*
793		 * It should be assert here that the callout is not destroyed
794		 * but that is not easy.
795		 *
796		 * As first thing, handle deferred callout stops.
797		 */
798		if (!callout_migrating(c)) {
799			CTR3(KTR_CALLOUT,
800			     "deferred cancelled %p func %p arg %p",
801			     c, new_func, new_arg);
802			callout_cc_del(c, cc);
803			return;
804		}
805		c->c_iflags &= ~CALLOUT_DFRMIGRATION;
806
807		new_cc = callout_cpu_switch(c, cc, new_cpu);
808		flags = (direct) ? C_DIRECT_EXEC : 0;
809		callout_cc_add(c, new_cc, new_time, new_prec, new_func,
810		    new_arg, new_cpu, flags);
811		CC_UNLOCK(new_cc);
812		CC_LOCK(cc);
813#else
814		panic("migration should not happen");
815#endif
816	}
817	/*
818	 * If the current callout is locally allocated (from
819	 * timeout(9)) then put it on the freelist.
820	 *
821	 * Note: we need to check the cached copy of c_iflags because
822	 * if it was not local, then it's not safe to deref the
823	 * callout pointer.
824	 */
825	KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0 ||
826	    c->c_iflags == CALLOUT_LOCAL_ALLOC,
827	    ("corrupted callout"));
828	if (c_iflags & CALLOUT_LOCAL_ALLOC)
829		callout_cc_del(c, cc);
830}
831
832/*
833 * The callout mechanism is based on the work of Adam M. Costello and
834 * George Varghese, published in a technical report entitled "Redesigning
835 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
836 * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
837 * used in this implementation was published by G. Varghese and T. Lauck in
838 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
839 * the Efficient Implementation of a Timer Facility" in the Proceedings of
840 * the 11th ACM Annual Symposium on Operating Systems Principles,
841 * Austin, Texas Nov 1987.
842 */
843
844/*
845 * Software (low priority) clock interrupt.
846 * Run periodic events from timeout queue.
847 */
848void
849softclock(void *arg)
850{
851	struct callout_cpu *cc;
852	struct callout *c;
853#ifdef CALLOUT_PROFILING
854	int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0;
855#endif
856
857	cc = (struct callout_cpu *)arg;
858	CC_LOCK(cc);
859	while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
860		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
861		softclock_call_cc(c, cc,
862#ifdef CALLOUT_PROFILING
863		    &mpcalls, &lockcalls, &gcalls,
864#endif
865		    0);
866#ifdef CALLOUT_PROFILING
867		++depth;
868#endif
869	}
870#ifdef CALLOUT_PROFILING
871	avg_depth += (depth * 1000 - avg_depth) >> 8;
872	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
873	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
874	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
875#endif
876	CC_UNLOCK(cc);
877}
878
879/*
880 * timeout --
881 *	Execute a function after a specified length of time.
882 *
883 * untimeout --
884 *	Cancel previous timeout function call.
885 *
886 * callout_handle_init --
887 *	Initialize a handle so that using it with untimeout is benign.
888 *
889 *	See AT&T BCI Driver Reference Manual for specification.  This
890 *	implementation differs from that one in that although an
891 *	identification value is returned from timeout, the original
892 *	arguments to timeout as well as the identifier are used to
893 *	identify entries for untimeout.
894 */
895struct callout_handle
896timeout(timeout_t *ftn, void *arg, int to_ticks)
897{
898	struct callout_cpu *cc;
899	struct callout *new;
900	struct callout_handle handle;
901
902	cc = CC_CPU(timeout_cpu);
903	CC_LOCK(cc);
904	/* Fill in the next free callout structure. */
905	new = SLIST_FIRST(&cc->cc_callfree);
906	if (new == NULL)
907		/* XXX Attempt to malloc first */
908		panic("timeout table full");
909	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
910	callout_reset(new, to_ticks, ftn, arg);
911	handle.callout = new;
912	CC_UNLOCK(cc);
913
914	return (handle);
915}
916
917void
918untimeout(timeout_t *ftn, void *arg, struct callout_handle handle)
919{
920	struct callout_cpu *cc;
921
922	/*
923	 * Check for a handle that was initialized
924	 * by callout_handle_init, but never used
925	 * for a real timeout.
926	 */
927	if (handle.callout == NULL)
928		return;
929
930	cc = callout_lock(handle.callout);
931	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
932		callout_stop(handle.callout);
933	CC_UNLOCK(cc);
934}
935
936void
937callout_handle_init(struct callout_handle *handle)
938{
939	handle->callout = NULL;
940}
941
942/*
943 * New interface; clients allocate their own callout structures.
944 *
945 * callout_reset() - establish or change a timeout
946 * callout_stop() - disestablish a timeout
947 * callout_init() - initialize a callout structure so that it can
948 *	safely be passed to callout_reset() and callout_stop()
949 *
950 * <sys/callout.h> defines three convenience macros:
951 *
952 * callout_active() - returns truth if callout has not been stopped,
953 *	drained, or deactivated since the last time the callout was
954 *	reset.
955 * callout_pending() - returns truth if callout is still waiting for timeout
956 * callout_deactivate() - marks the callout as having been serviced
957 */
958int
959callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t precision,
960    void (*ftn)(void *), void *arg, int cpu, int flags)
961{
962	sbintime_t to_sbt, pr;
963	struct callout_cpu *cc;
964	int cancelled, direct;
965	int ignore_cpu=0;
966
967	cancelled = 0;
968	if (cpu == -1) {
969		ignore_cpu = 1;
970	} else if ((cpu >= MAXCPU) ||
971		   ((CC_CPU(cpu))->cc_inited == 0)) {
972		/* Invalid CPU spec */
973		panic("Invalid CPU in callout %d", cpu);
974	}
975	if (flags & C_ABSOLUTE) {
976		to_sbt = sbt;
977	} else {
978		if ((flags & C_HARDCLOCK) && (sbt < tick_sbt))
979			sbt = tick_sbt;
980		if ((flags & C_HARDCLOCK) ||
981#ifdef NO_EVENTTIMERS
982		    sbt >= sbt_timethreshold) {
983			to_sbt = getsbinuptime();
984
985			/* Add safety belt for the case of hz > 1000. */
986			to_sbt += tc_tick_sbt - tick_sbt;
987#else
988		    sbt >= sbt_tickthreshold) {
989			/*
990			 * Obtain the time of the last hardclock() call on
991			 * this CPU directly from the kern_clocksource.c.
992			 * This value is per-CPU, but it is equal for all
993			 * active ones.
994			 */
995#ifdef __LP64__
996			to_sbt = DPCPU_GET(hardclocktime);
997#else
998			spinlock_enter();
999			to_sbt = DPCPU_GET(hardclocktime);
1000			spinlock_exit();
1001#endif
1002#endif
1003			if ((flags & C_HARDCLOCK) == 0)
1004				to_sbt += tick_sbt;
1005		} else
1006			to_sbt = sbinuptime();
1007		if (SBT_MAX - to_sbt < sbt)
1008			to_sbt = SBT_MAX;
1009		else
1010			to_sbt += sbt;
1011		pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
1012		    sbt >> C_PRELGET(flags));
1013		if (pr > precision)
1014			precision = pr;
1015	}
1016	/*
1017	 * This flag used to be added by callout_cc_add, but the
1018	 * first time you call this we could end up with the
1019	 * wrong direct flag if we don't do it before we add.
1020	 */
1021	if (flags & C_DIRECT_EXEC) {
1022		direct = 1;
1023	} else {
1024		direct = 0;
1025	}
1026	KASSERT(!direct || c->c_lock == NULL,
1027	    ("%s: direct callout %p has lock", __func__, c));
1028	cc = callout_lock(c);
1029	/*
1030	 * Don't allow migration of pre-allocated callouts lest they
1031	 * become unbalanced or handle the case where the user does
1032	 * not care.
1033	 */
1034	if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) ||
1035	    ignore_cpu) {
1036		cpu = c->c_cpu;
1037	}
1038
1039	if (cc_exec_curr(cc, direct) == c) {
1040		/*
1041		 * We're being asked to reschedule a callout which is
1042		 * currently in progress.  If there is a lock then we
1043		 * can cancel the callout if it has not really started.
1044		 */
1045		if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
1046			cancelled = cc_exec_cancel(cc, direct) = true;
1047		if (cc_exec_waiting(cc, direct)) {
1048			/*
1049			 * Someone has called callout_drain to kill this
1050			 * callout.  Don't reschedule.
1051			 */
1052			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
1053			    cancelled ? "cancelled" : "failed to cancel",
1054			    c, c->c_func, c->c_arg);
1055			CC_UNLOCK(cc);
1056			return (cancelled);
1057		}
1058#ifdef SMP
1059		if (callout_migrating(c)) {
1060			/*
1061			 * This only occurs when a second callout_reset_sbt_on
1062			 * is made after a previous one moved it into
1063			 * deferred migration (below). Note we do *not* change
1064			 * the prev_cpu even though the previous target may
1065			 * be different.
1066			 */
1067			cc_migration_cpu(cc, direct) = cpu;
1068			cc_migration_time(cc, direct) = to_sbt;
1069			cc_migration_prec(cc, direct) = precision;
1070			cc_migration_func(cc, direct) = ftn;
1071			cc_migration_arg(cc, direct) = arg;
1072			cancelled = 1;
1073			CC_UNLOCK(cc);
1074			return (cancelled);
1075		}
1076#endif
1077	}
1078	if (c->c_iflags & CALLOUT_PENDING) {
1079		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1080			if (cc_exec_next(cc) == c)
1081				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1082			LIST_REMOVE(c, c_links.le);
1083		} else {
1084			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1085		}
1086		cancelled = 1;
1087		c->c_iflags &= ~ CALLOUT_PENDING;
1088		c->c_flags &= ~ CALLOUT_ACTIVE;
1089	}
1090
1091#ifdef SMP
1092	/*
1093	 * If the callout must migrate try to perform it immediately.
1094	 * If the callout is currently running, just defer the migration
1095	 * to a more appropriate moment.
1096	 */
1097	if (c->c_cpu != cpu) {
1098		if (cc_exec_curr(cc, direct) == c) {
1099			/*
1100			 * Pending will have been removed since we are
1101			 * actually executing the callout on another
1102			 * CPU. That callout should be waiting on the
1103			 * lock the caller holds. If we set both
1104			 * active/and/pending after we return and the
1105			 * lock on the executing callout proceeds, it
1106			 * will then see pending is true and return.
1107			 * At the return from the actual callout execution
1108			 * the migration will occur in softclock_call_cc
1109			 * and this new callout will be placed on the
1110			 * new CPU via a call to callout_cpu_switch() which
1111			 * will get the lock on the right CPU followed
1112			 * by a call callout_cc_add() which will add it there.
1113			 * (see above in softclock_call_cc()).
1114			 */
1115			cc_migration_cpu(cc, direct) = cpu;
1116			cc_migration_time(cc, direct) = to_sbt;
1117			cc_migration_prec(cc, direct) = precision;
1118			cc_migration_func(cc, direct) = ftn;
1119			cc_migration_arg(cc, direct) = arg;
1120			c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
1121			c->c_flags |= CALLOUT_ACTIVE;
1122			CTR6(KTR_CALLOUT,
1123		    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1124			    c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1125			    (u_int)(to_sbt & 0xffffffff), cpu);
1126			CC_UNLOCK(cc);
1127			return (cancelled);
1128		}
1129		cc = callout_cpu_switch(c, cc, cpu);
1130	}
1131#endif
1132
1133	callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1134	CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1135	    cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1136	    (u_int)(to_sbt & 0xffffffff));
1137	CC_UNLOCK(cc);
1138
1139	return (cancelled);
1140}
1141
1142/*
1143 * Common idioms that can be optimized in the future.
1144 */
1145int
1146callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1147{
1148	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1149}
1150
1151int
1152callout_schedule(struct callout *c, int to_ticks)
1153{
1154	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1155}
1156
1157int
1158_callout_stop_safe(struct callout *c, int flags, void (*drain)(void *))
1159{
1160	struct callout_cpu *cc, *old_cc;
1161	struct lock_class *class;
1162	int direct, sq_locked, use_lock;
1163	int not_on_a_list;
1164
1165	if ((flags & CS_DRAIN) != 0)
1166		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
1167		    "calling %s", __func__);
1168
1169	/*
1170	 * Some old subsystems don't hold Giant while running a callout_stop(),
1171	 * so just discard this check for the moment.
1172	 */
1173	if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
1174		if (c->c_lock == &Giant.lock_object)
1175			use_lock = mtx_owned(&Giant);
1176		else {
1177			use_lock = 1;
1178			class = LOCK_CLASS(c->c_lock);
1179			class->lc_assert(c->c_lock, LA_XLOCKED);
1180		}
1181	} else
1182		use_lock = 0;
1183	if (c->c_iflags & CALLOUT_DIRECT) {
1184		direct = 1;
1185	} else {
1186		direct = 0;
1187	}
1188	sq_locked = 0;
1189	old_cc = NULL;
1190again:
1191	cc = callout_lock(c);
1192
1193	if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
1194	    (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
1195	    ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
1196		/*
1197		 * Special case where this slipped in while we
1198		 * were migrating *as* the callout is about to
1199		 * execute. The caller probably holds the lock
1200		 * the callout wants.
1201		 *
1202		 * Get rid of the migration first. Then set
1203		 * the flag that tells this code *not* to
1204		 * try to remove it from any lists (its not
1205		 * on one yet). When the callout wheel runs,
1206		 * it will ignore this callout.
1207		 */
1208		c->c_iflags &= ~CALLOUT_PENDING;
1209		c->c_flags &= ~CALLOUT_ACTIVE;
1210		not_on_a_list = 1;
1211	} else {
1212		not_on_a_list = 0;
1213	}
1214
1215	/*
1216	 * If the callout was migrating while the callout cpu lock was
1217	 * dropped,  just drop the sleepqueue lock and check the states
1218	 * again.
1219	 */
1220	if (sq_locked != 0 && cc != old_cc) {
1221#ifdef SMP
1222		CC_UNLOCK(cc);
1223		sleepq_release(&cc_exec_waiting(old_cc, direct));
1224		sq_locked = 0;
1225		old_cc = NULL;
1226		goto again;
1227#else
1228		panic("migration should not happen");
1229#endif
1230	}
1231
1232	/*
1233	 * If the callout isn't pending, it's not on the queue, so
1234	 * don't attempt to remove it from the queue.  We can try to
1235	 * stop it by other means however.
1236	 */
1237	if (!(c->c_iflags & CALLOUT_PENDING)) {
1238		/*
1239		 * If it wasn't on the queue and it isn't the current
1240		 * callout, then we can't stop it, so just bail.
1241		 * It probably has already been run (if locking
1242		 * is properly done). You could get here if the caller
1243		 * calls stop twice in a row for example. The second
1244		 * call would fall here without CALLOUT_ACTIVE set.
1245		 */
1246		c->c_flags &= ~CALLOUT_ACTIVE;
1247		if (cc_exec_curr(cc, direct) != c) {
1248			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1249			    c, c->c_func, c->c_arg);
1250			CC_UNLOCK(cc);
1251			if (sq_locked)
1252				sleepq_release(&cc_exec_waiting(cc, direct));
1253			return (-1);
1254		}
1255
1256		if ((flags & CS_DRAIN) != 0) {
1257			/*
1258			 * The current callout is running (or just
1259			 * about to run) and blocking is allowed, so
1260			 * just wait for the current invocation to
1261			 * finish.
1262			 */
1263			while (cc_exec_curr(cc, direct) == c) {
1264				/*
1265				 * Use direct calls to sleepqueue interface
1266				 * instead of cv/msleep in order to avoid
1267				 * a LOR between cc_lock and sleepqueue
1268				 * chain spinlocks.  This piece of code
1269				 * emulates a msleep_spin() call actually.
1270				 *
1271				 * If we already have the sleepqueue chain
1272				 * locked, then we can safely block.  If we
1273				 * don't already have it locked, however,
1274				 * we have to drop the cc_lock to lock
1275				 * it.  This opens several races, so we
1276				 * restart at the beginning once we have
1277				 * both locks.  If nothing has changed, then
1278				 * we will end up back here with sq_locked
1279				 * set.
1280				 */
1281				if (!sq_locked) {
1282					CC_UNLOCK(cc);
1283					sleepq_lock(
1284					    &cc_exec_waiting(cc, direct));
1285					sq_locked = 1;
1286					old_cc = cc;
1287					goto again;
1288				}
1289
1290				/*
1291				 * Migration could be cancelled here, but
1292				 * as long as it is still not sure when it
1293				 * will be packed up, just let softclock()
1294				 * take care of it.
1295				 */
1296				cc_exec_waiting(cc, direct) = true;
1297				DROP_GIANT();
1298				CC_UNLOCK(cc);
1299				sleepq_add(
1300				    &cc_exec_waiting(cc, direct),
1301				    &cc->cc_lock.lock_object, "codrain",
1302				    SLEEPQ_SLEEP, 0);
1303				sleepq_wait(
1304				    &cc_exec_waiting(cc, direct),
1305					     0);
1306				sq_locked = 0;
1307				old_cc = NULL;
1308
1309				/* Reacquire locks previously released. */
1310				PICKUP_GIANT();
1311				CC_LOCK(cc);
1312			}
1313		} else if (use_lock &&
1314			   !cc_exec_cancel(cc, direct) && (drain == NULL)) {
1315
1316			/*
1317			 * The current callout is waiting for its
1318			 * lock which we hold.  Cancel the callout
1319			 * and return.  After our caller drops the
1320			 * lock, the callout will be skipped in
1321			 * softclock(). This *only* works with a
1322			 * callout_stop() *not* callout_drain() or
1323			 * callout_async_drain().
1324			 */
1325			cc_exec_cancel(cc, direct) = true;
1326			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1327			    c, c->c_func, c->c_arg);
1328			KASSERT(!cc_cce_migrating(cc, direct),
1329			    ("callout wrongly scheduled for migration"));
1330			if (callout_migrating(c)) {
1331				c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1332#ifdef SMP
1333				cc_migration_cpu(cc, direct) = CPUBLOCK;
1334				cc_migration_time(cc, direct) = 0;
1335				cc_migration_prec(cc, direct) = 0;
1336				cc_migration_func(cc, direct) = NULL;
1337				cc_migration_arg(cc, direct) = NULL;
1338#endif
1339			}
1340			CC_UNLOCK(cc);
1341			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1342			return (1);
1343		} else if (callout_migrating(c)) {
1344			/*
1345			 * The callout is currently being serviced
1346			 * and the "next" callout is scheduled at
1347			 * its completion with a migration. We remove
1348			 * the migration flag so it *won't* get rescheduled,
1349			 * but we can't stop the one thats running so
1350			 * we return 0.
1351			 */
1352			c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1353#ifdef SMP
1354			/*
1355			 * We can't call cc_cce_cleanup here since
1356			 * if we do it will remove .ce_curr and
1357			 * its still running. This will prevent a
1358			 * reschedule of the callout when the
1359			 * execution completes.
1360			 */
1361			cc_migration_cpu(cc, direct) = CPUBLOCK;
1362			cc_migration_time(cc, direct) = 0;
1363			cc_migration_prec(cc, direct) = 0;
1364			cc_migration_func(cc, direct) = NULL;
1365			cc_migration_arg(cc, direct) = NULL;
1366#endif
1367			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1368			    c, c->c_func, c->c_arg);
1369 			if (drain) {
1370				cc_exec_drain(cc, direct) = drain;
1371			}
1372			CC_UNLOCK(cc);
1373			return ((flags & CS_MIGRBLOCK) != 0);
1374		}
1375		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1376		    c, c->c_func, c->c_arg);
1377		if (drain) {
1378			cc_exec_drain(cc, direct) = drain;
1379		}
1380		CC_UNLOCK(cc);
1381		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1382		return (0);
1383	}
1384	if (sq_locked)
1385		sleepq_release(&cc_exec_waiting(cc, direct));
1386
1387	c->c_iflags &= ~CALLOUT_PENDING;
1388	c->c_flags &= ~CALLOUT_ACTIVE;
1389
1390	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1391	    c, c->c_func, c->c_arg);
1392	if (not_on_a_list == 0) {
1393		if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1394			if (cc_exec_next(cc) == c)
1395				cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1396			LIST_REMOVE(c, c_links.le);
1397		} else {
1398			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1399		}
1400	}
1401	callout_cc_del(c, cc);
1402	CC_UNLOCK(cc);
1403	return (1);
1404}
1405
1406void
1407callout_init(struct callout *c, int mpsafe)
1408{
1409	bzero(c, sizeof *c);
1410	if (mpsafe) {
1411		c->c_lock = NULL;
1412		c->c_iflags = CALLOUT_RETURNUNLOCKED;
1413	} else {
1414		c->c_lock = &Giant.lock_object;
1415		c->c_iflags = 0;
1416	}
1417	c->c_cpu = timeout_cpu;
1418}
1419
1420void
1421_callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1422{
1423	bzero(c, sizeof *c);
1424	c->c_lock = lock;
1425	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1426	    ("callout_init_lock: bad flags %d", flags));
1427	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1428	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1429	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1430	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1431	    __func__));
1432	c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1433	c->c_cpu = timeout_cpu;
1434}
1435
1436#ifdef APM_FIXUP_CALLTODO
1437/*
1438 * Adjust the kernel calltodo timeout list.  This routine is used after
1439 * an APM resume to recalculate the calltodo timer list values with the
1440 * number of hz's we have been sleeping.  The next hardclock() will detect
1441 * that there are fired timers and run softclock() to execute them.
1442 *
1443 * Please note, I have not done an exhaustive analysis of what code this
1444 * might break.  I am motivated to have my select()'s and alarm()'s that
1445 * have expired during suspend firing upon resume so that the applications
1446 * which set the timer can do the maintanence the timer was for as close
1447 * as possible to the originally intended time.  Testing this code for a
1448 * week showed that resuming from a suspend resulted in 22 to 25 timers
1449 * firing, which seemed independant on whether the suspend was 2 hours or
1450 * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1451 */
1452void
1453adjust_timeout_calltodo(struct timeval *time_change)
1454{
1455	register struct callout *p;
1456	unsigned long delta_ticks;
1457
1458	/*
1459	 * How many ticks were we asleep?
1460	 * (stolen from tvtohz()).
1461	 */
1462
1463	/* Don't do anything */
1464	if (time_change->tv_sec < 0)
1465		return;
1466	else if (time_change->tv_sec <= LONG_MAX / 1000000)
1467		delta_ticks = howmany(time_change->tv_sec * 1000000 +
1468		    time_change->tv_usec, tick) + 1;
1469	else if (time_change->tv_sec <= LONG_MAX / hz)
1470		delta_ticks = time_change->tv_sec * hz +
1471		    howmany(time_change->tv_usec, tick) + 1;
1472	else
1473		delta_ticks = LONG_MAX;
1474
1475	if (delta_ticks > INT_MAX)
1476		delta_ticks = INT_MAX;
1477
1478	/*
1479	 * Now rip through the timer calltodo list looking for timers
1480	 * to expire.
1481	 */
1482
1483	/* don't collide with softclock() */
1484	CC_LOCK(cc);
1485	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1486		p->c_time -= delta_ticks;
1487
1488		/* Break if the timer had more time on it than delta_ticks */
1489		if (p->c_time > 0)
1490			break;
1491
1492		/* take back the ticks the timer didn't use (p->c_time <= 0) */
1493		delta_ticks = -p->c_time;
1494	}
1495	CC_UNLOCK(cc);
1496
1497	return;
1498}
1499#endif /* APM_FIXUP_CALLTODO */
1500
1501static int
1502flssbt(sbintime_t sbt)
1503{
1504
1505	sbt += (uint64_t)sbt >> 1;
1506	if (sizeof(long) >= sizeof(sbintime_t))
1507		return (flsl(sbt));
1508	if (sbt >= SBT_1S)
1509		return (flsl(((uint64_t)sbt) >> 32) + 32);
1510	return (flsl(sbt));
1511}
1512
1513/*
1514 * Dump immediate statistic snapshot of the scheduled callouts.
1515 */
1516static int
1517sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1518{
1519	struct callout *tmp;
1520	struct callout_cpu *cc;
1521	struct callout_list *sc;
1522	sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1523	int ct[64], cpr[64], ccpbk[32];
1524	int error, val, i, count, tcum, pcum, maxc, c, medc;
1525#ifdef SMP
1526	int cpu;
1527#endif
1528
1529	val = 0;
1530	error = sysctl_handle_int(oidp, &val, 0, req);
1531	if (error != 0 || req->newptr == NULL)
1532		return (error);
1533	count = maxc = 0;
1534	st = spr = maxt = maxpr = 0;
1535	bzero(ccpbk, sizeof(ccpbk));
1536	bzero(ct, sizeof(ct));
1537	bzero(cpr, sizeof(cpr));
1538	now = sbinuptime();
1539#ifdef SMP
1540	CPU_FOREACH(cpu) {
1541		cc = CC_CPU(cpu);
1542#else
1543		cc = CC_CPU(timeout_cpu);
1544#endif
1545		CC_LOCK(cc);
1546		for (i = 0; i < callwheelsize; i++) {
1547			sc = &cc->cc_callwheel[i];
1548			c = 0;
1549			LIST_FOREACH(tmp, sc, c_links.le) {
1550				c++;
1551				t = tmp->c_time - now;
1552				if (t < 0)
1553					t = 0;
1554				st += t / SBT_1US;
1555				spr += tmp->c_precision / SBT_1US;
1556				if (t > maxt)
1557					maxt = t;
1558				if (tmp->c_precision > maxpr)
1559					maxpr = tmp->c_precision;
1560				ct[flssbt(t)]++;
1561				cpr[flssbt(tmp->c_precision)]++;
1562			}
1563			if (c > maxc)
1564				maxc = c;
1565			ccpbk[fls(c + c / 2)]++;
1566			count += c;
1567		}
1568		CC_UNLOCK(cc);
1569#ifdef SMP
1570	}
1571#endif
1572
1573	for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1574		tcum += ct[i];
1575	medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1576	for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1577		pcum += cpr[i];
1578	medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1579	for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1580		c += ccpbk[i];
1581	medc = (i >= 2) ? (1 << (i - 2)) : 0;
1582
1583	printf("Scheduled callouts statistic snapshot:\n");
1584	printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1585	    count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1586	printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1587	    medc,
1588	    count / callwheelsize / mp_ncpus,
1589	    (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1590	    maxc);
1591	printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1592	    medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1593	    (st / count) / 1000000, (st / count) % 1000000,
1594	    maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1595	printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1596	    medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1597	    (spr / count) / 1000000, (spr / count) % 1000000,
1598	    maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1599	printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1600	    "   prec\t   pcum\n");
1601	for (i = 0, tcum = pcum = 0; i < 64; i++) {
1602		if (ct[i] == 0 && cpr[i] == 0)
1603			continue;
1604		t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1605		tcum += ct[i];
1606		pcum += cpr[i];
1607		printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1608		    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1609		    i - 1 - (32 - CC_HASH_SHIFT),
1610		    ct[i], tcum, cpr[i], pcum);
1611	}
1612	return (error);
1613}
1614SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1615    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1616    0, 0, sysctl_kern_callout_stat, "I",
1617    "Dump immediate statistic snapshot of the scheduled callouts");
1618