kern_timeout.c revision 267961
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_timeout.c 267961 2014-06-27 16:33:43Z hselasky $");
39
40#include "opt_callout_profiling.h"
41#if defined(__arm__)
42#include "opt_timer.h"
43#endif
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/bus.h>
48#include <sys/callout.h>
49#include <sys/file.h>
50#include <sys/interrupt.h>
51#include <sys/kernel.h>
52#include <sys/ktr.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mutex.h>
56#include <sys/proc.h>
57#include <sys/sdt.h>
58#include <sys/sleepqueue.h>
59#include <sys/sysctl.h>
60#include <sys/smp.h>
61
62#ifdef SMP
63#include <machine/cpu.h>
64#endif
65
66#ifndef NO_EVENTTIMERS
67DPCPU_DECLARE(sbintime_t, hardclocktime);
68#endif
69
70SDT_PROVIDER_DEFINE(callout_execute);
71SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__start,
72    "struct callout *");
73SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__end,
74    "struct callout *");
75
76#ifdef CALLOUT_PROFILING
77static int avg_depth;
78SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
79    "Average number of items examined per softclock call. Units = 1/1000");
80static int avg_gcalls;
81SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
82    "Average number of Giant callouts made per softclock call. Units = 1/1000");
83static int avg_lockcalls;
84SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
85    "Average number of lock callouts made per softclock call. Units = 1/1000");
86static int avg_mpcalls;
87SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
88    "Average number of MP callouts made per softclock call. Units = 1/1000");
89static int avg_depth_dir;
90SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
91    "Average number of direct callouts examined per callout_process call. "
92    "Units = 1/1000");
93static int avg_lockcalls_dir;
94SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
95    &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
96    "callout_process call. Units = 1/1000");
97static int avg_mpcalls_dir;
98SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
99    0, "Average number of MP direct callouts made per callout_process call. "
100    "Units = 1/1000");
101#endif
102
103static int ncallout;
104SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
105    "Number of entries in callwheel and size of timeout() preallocation");
106
107static int pin_default_swi = 0;
108static int pin_pcpu_swi = 0;
109
110SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
111    0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
112SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
113    0, "Pin the per-CPU swis (except PCPU 0, which is also default");
114
115/*
116 * TODO:
117 *	allocate more timeout table slots when table overflows.
118 */
119u_int callwheelsize, callwheelmask;
120
121/*
122 * The callout cpu exec entities represent informations necessary for
123 * describing the state of callouts currently running on the CPU and the ones
124 * necessary for migrating callouts to the new callout cpu. In particular,
125 * the first entry of the array cc_exec_entity holds informations for callout
126 * running in SWI thread context, while the second one holds informations
127 * for callout running directly from hardware interrupt context.
128 * The cached informations are very important for deferring migration when
129 * the migrating callout is already running.
130 */
131struct cc_exec {
132	struct callout		*cc_next;
133	struct callout		*cc_curr;
134#ifdef SMP
135	void			(*ce_migration_func)(void *);
136	void			*ce_migration_arg;
137	int			ce_migration_cpu;
138	sbintime_t		ce_migration_time;
139	sbintime_t		ce_migration_prec;
140#endif
141	bool			cc_cancel;
142	bool			cc_waiting;
143};
144
145/*
146 * There is one struct callout_cpu per cpu, holding all relevant
147 * state for the callout processing thread on the individual CPU.
148 */
149struct callout_cpu {
150	struct mtx_padalign	cc_lock;
151	struct cc_exec 		cc_exec_entity[2];
152	struct callout		*cc_callout;
153	struct callout_list	*cc_callwheel;
154	struct callout_tailq	cc_expireq;
155	struct callout_slist	cc_callfree;
156	sbintime_t		cc_firstevent;
157	sbintime_t		cc_lastscan;
158	void			*cc_cookie;
159	u_int			cc_bucket;
160};
161
162#define	cc_exec_curr		cc_exec_entity[0].cc_curr
163#define	cc_exec_next		cc_exec_entity[0].cc_next
164#define	cc_exec_cancel		cc_exec_entity[0].cc_cancel
165#define	cc_exec_waiting		cc_exec_entity[0].cc_waiting
166#define	cc_exec_curr_dir	cc_exec_entity[1].cc_curr
167#define	cc_exec_next_dir	cc_exec_entity[1].cc_next
168#define	cc_exec_cancel_dir	cc_exec_entity[1].cc_cancel
169#define	cc_exec_waiting_dir	cc_exec_entity[1].cc_waiting
170
171#ifdef SMP
172#define	cc_migration_func	cc_exec_entity[0].ce_migration_func
173#define	cc_migration_arg	cc_exec_entity[0].ce_migration_arg
174#define	cc_migration_cpu	cc_exec_entity[0].ce_migration_cpu
175#define	cc_migration_time	cc_exec_entity[0].ce_migration_time
176#define	cc_migration_prec	cc_exec_entity[0].ce_migration_prec
177#define	cc_migration_func_dir	cc_exec_entity[1].ce_migration_func
178#define	cc_migration_arg_dir	cc_exec_entity[1].ce_migration_arg
179#define	cc_migration_cpu_dir	cc_exec_entity[1].ce_migration_cpu
180#define	cc_migration_time_dir	cc_exec_entity[1].ce_migration_time
181#define	cc_migration_prec_dir	cc_exec_entity[1].ce_migration_prec
182
183struct callout_cpu cc_cpu[MAXCPU];
184#define	CPUBLOCK	MAXCPU
185#define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
186#define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
187#else
188struct callout_cpu cc_cpu;
189#define	CC_CPU(cpu)	&cc_cpu
190#define	CC_SELF()	&cc_cpu
191#endif
192#define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
193#define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
194#define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
195
196static int timeout_cpu;
197
198static void	callout_cpu_init(struct callout_cpu *cc);
199static void	softclock_call_cc(struct callout *c, struct callout_cpu *cc,
200#ifdef CALLOUT_PROFILING
201		    int *mpcalls, int *lockcalls, int *gcalls,
202#endif
203		    int direct);
204
205static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
206
207/**
208 * Locked by cc_lock:
209 *   cc_curr         - If a callout is in progress, it is cc_curr.
210 *                     If cc_curr is non-NULL, threads waiting in
211 *                     callout_drain() will be woken up as soon as the
212 *                     relevant callout completes.
213 *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
214 *                     guarantees that the current callout will not run.
215 *                     The softclock() function sets this to 0 before it
216 *                     drops callout_lock to acquire c_lock, and it calls
217 *                     the handler only if curr_cancelled is still 0 after
218 *                     cc_lock is successfully acquired.
219 *   cc_waiting      - If a thread is waiting in callout_drain(), then
220 *                     callout_wait is nonzero.  Set only when
221 *                     cc_curr is non-NULL.
222 */
223
224/*
225 * Resets the execution entity tied to a specific callout cpu.
226 */
227static void
228cc_cce_cleanup(struct callout_cpu *cc, int direct)
229{
230
231	cc->cc_exec_entity[direct].cc_curr = NULL;
232	cc->cc_exec_entity[direct].cc_next = NULL;
233	cc->cc_exec_entity[direct].cc_cancel = false;
234	cc->cc_exec_entity[direct].cc_waiting = false;
235#ifdef SMP
236	cc->cc_exec_entity[direct].ce_migration_cpu = CPUBLOCK;
237	cc->cc_exec_entity[direct].ce_migration_time = 0;
238	cc->cc_exec_entity[direct].ce_migration_prec = 0;
239	cc->cc_exec_entity[direct].ce_migration_func = NULL;
240	cc->cc_exec_entity[direct].ce_migration_arg = NULL;
241#endif
242}
243
244/*
245 * Checks if migration is requested by a specific callout cpu.
246 */
247static int
248cc_cce_migrating(struct callout_cpu *cc, int direct)
249{
250
251#ifdef SMP
252	return (cc->cc_exec_entity[direct].ce_migration_cpu != CPUBLOCK);
253#else
254	return (0);
255#endif
256}
257
258/*
259 * Kernel low level callwheel initialization
260 * called on cpu0 during kernel startup.
261 */
262static void
263callout_callwheel_init(void *dummy)
264{
265	struct callout_cpu *cc;
266
267	/*
268	 * Calculate the size of the callout wheel and the preallocated
269	 * timeout() structures.
270	 * XXX: Clip callout to result of previous function of maxusers
271	 * maximum 384.  This is still huge, but acceptable.
272	 */
273	ncallout = imin(16 + maxproc + maxfiles, 18508);
274	TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
275
276	/*
277	 * Calculate callout wheel size, should be next power of two higher
278	 * than 'ncallout'.
279	 */
280	callwheelsize = 1 << fls(ncallout);
281	callwheelmask = callwheelsize - 1;
282
283	/*
284	 * Fetch whether we're pinning the swi's or not.
285	 */
286	TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
287	TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
288
289	/*
290	 * Only cpu0 handles timeout(9) and receives a preallocation.
291	 *
292	 * XXX: Once all timeout(9) consumers are converted this can
293	 * be removed.
294	 */
295	timeout_cpu = PCPU_GET(cpuid);
296	cc = CC_CPU(timeout_cpu);
297	cc->cc_callout = malloc(ncallout * sizeof(struct callout),
298	    M_CALLOUT, M_WAITOK);
299	callout_cpu_init(cc);
300}
301SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
302
303/*
304 * Initialize the per-cpu callout structures.
305 */
306static void
307callout_cpu_init(struct callout_cpu *cc)
308{
309	struct callout *c;
310	int i;
311
312	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
313	SLIST_INIT(&cc->cc_callfree);
314	cc->cc_callwheel = malloc(sizeof(struct callout_list) * callwheelsize,
315	    M_CALLOUT, M_WAITOK);
316	for (i = 0; i < callwheelsize; i++)
317		LIST_INIT(&cc->cc_callwheel[i]);
318	TAILQ_INIT(&cc->cc_expireq);
319	cc->cc_firstevent = SBT_MAX;
320	for (i = 0; i < 2; i++)
321		cc_cce_cleanup(cc, i);
322	if (cc->cc_callout == NULL)	/* Only cpu0 handles timeout(9) */
323		return;
324	for (i = 0; i < ncallout; i++) {
325		c = &cc->cc_callout[i];
326		callout_init(c, 0);
327		c->c_flags = CALLOUT_LOCAL_ALLOC;
328		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
329	}
330}
331
332#ifdef SMP
333/*
334 * Switches the cpu tied to a specific callout.
335 * The function expects a locked incoming callout cpu and returns with
336 * locked outcoming callout cpu.
337 */
338static struct callout_cpu *
339callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
340{
341	struct callout_cpu *new_cc;
342
343	MPASS(c != NULL && cc != NULL);
344	CC_LOCK_ASSERT(cc);
345
346	/*
347	 * Avoid interrupts and preemption firing after the callout cpu
348	 * is blocked in order to avoid deadlocks as the new thread
349	 * may be willing to acquire the callout cpu lock.
350	 */
351	c->c_cpu = CPUBLOCK;
352	spinlock_enter();
353	CC_UNLOCK(cc);
354	new_cc = CC_CPU(new_cpu);
355	CC_LOCK(new_cc);
356	spinlock_exit();
357	c->c_cpu = new_cpu;
358	return (new_cc);
359}
360#endif
361
362/*
363 * Start standard softclock thread.
364 */
365static void
366start_softclock(void *dummy)
367{
368	struct callout_cpu *cc;
369	char name[MAXCOMLEN];
370#ifdef SMP
371	int cpu;
372	struct intr_event *ie;
373#endif
374
375	cc = CC_CPU(timeout_cpu);
376	snprintf(name, sizeof(name), "clock (%d)", timeout_cpu);
377	if (swi_add(&clk_intr_event, name, softclock, cc, SWI_CLOCK,
378	    INTR_MPSAFE, &cc->cc_cookie))
379		panic("died while creating standard software ithreads");
380	if (pin_default_swi &&
381	    (intr_event_bind(clk_intr_event, timeout_cpu) != 0)) {
382		printf("%s: timeout clock couldn't be pinned to cpu %d\n",
383		    __func__,
384		    timeout_cpu);
385	}
386
387#ifdef SMP
388	CPU_FOREACH(cpu) {
389		if (cpu == timeout_cpu)
390			continue;
391		cc = CC_CPU(cpu);
392		cc->cc_callout = NULL;	/* Only cpu0 handles timeout(9). */
393		callout_cpu_init(cc);
394		snprintf(name, sizeof(name), "clock (%d)", cpu);
395		ie = NULL;
396		if (swi_add(&ie, name, softclock, cc, SWI_CLOCK,
397		    INTR_MPSAFE, &cc->cc_cookie))
398			panic("died while creating standard software ithreads");
399		if (pin_pcpu_swi && (intr_event_bind(ie, cpu) != 0)) {
400			printf("%s: per-cpu clock couldn't be pinned to "
401			    "cpu %d\n",
402			    __func__,
403			    cpu);
404		}
405	}
406#endif
407}
408SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
409
410#define	CC_HASH_SHIFT	8
411
412static inline u_int
413callout_hash(sbintime_t sbt)
414{
415
416	return (sbt >> (32 - CC_HASH_SHIFT));
417}
418
419static inline u_int
420callout_get_bucket(sbintime_t sbt)
421{
422
423	return (callout_hash(sbt) & callwheelmask);
424}
425
426void
427callout_process(sbintime_t now)
428{
429	struct callout *tmp, *tmpn;
430	struct callout_cpu *cc;
431	struct callout_list *sc;
432	sbintime_t first, last, max, tmp_max;
433	uint32_t lookahead;
434	u_int firstb, lastb, nowb;
435#ifdef CALLOUT_PROFILING
436	int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
437#endif
438
439	cc = CC_SELF();
440	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
441
442	/* Compute the buckets of the last scan and present times. */
443	firstb = callout_hash(cc->cc_lastscan);
444	cc->cc_lastscan = now;
445	nowb = callout_hash(now);
446
447	/* Compute the last bucket and minimum time of the bucket after it. */
448	if (nowb == firstb)
449		lookahead = (SBT_1S / 16);
450	else if (nowb - firstb == 1)
451		lookahead = (SBT_1S / 8);
452	else
453		lookahead = (SBT_1S / 2);
454	first = last = now;
455	first += (lookahead / 2);
456	last += lookahead;
457	last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
458	lastb = callout_hash(last) - 1;
459	max = last;
460
461	/*
462	 * Check if we wrapped around the entire wheel from the last scan.
463	 * In case, we need to scan entirely the wheel for pending callouts.
464	 */
465	if (lastb - firstb >= callwheelsize) {
466		lastb = firstb + callwheelsize - 1;
467		if (nowb - firstb >= callwheelsize)
468			nowb = lastb;
469	}
470
471	/* Iterate callwheel from firstb to nowb and then up to lastb. */
472	do {
473		sc = &cc->cc_callwheel[firstb & callwheelmask];
474		tmp = LIST_FIRST(sc);
475		while (tmp != NULL) {
476			/* Run the callout if present time within allowed. */
477			if (tmp->c_time <= now) {
478				/*
479				 * Consumer told us the callout may be run
480				 * directly from hardware interrupt context.
481				 */
482				if (tmp->c_flags & CALLOUT_DIRECT) {
483#ifdef CALLOUT_PROFILING
484					++depth_dir;
485#endif
486					cc->cc_exec_next_dir =
487					    LIST_NEXT(tmp, c_links.le);
488					cc->cc_bucket = firstb & callwheelmask;
489					LIST_REMOVE(tmp, c_links.le);
490					softclock_call_cc(tmp, cc,
491#ifdef CALLOUT_PROFILING
492					    &mpcalls_dir, &lockcalls_dir, NULL,
493#endif
494					    1);
495					tmp = cc->cc_exec_next_dir;
496				} else {
497					tmpn = LIST_NEXT(tmp, c_links.le);
498					LIST_REMOVE(tmp, c_links.le);
499					TAILQ_INSERT_TAIL(&cc->cc_expireq,
500					    tmp, c_links.tqe);
501					tmp->c_flags |= CALLOUT_PROCESSED;
502					tmp = tmpn;
503				}
504				continue;
505			}
506			/* Skip events from distant future. */
507			if (tmp->c_time >= max)
508				goto next;
509			/*
510			 * Event minimal time is bigger than present maximal
511			 * time, so it cannot be aggregated.
512			 */
513			if (tmp->c_time > last) {
514				lastb = nowb;
515				goto next;
516			}
517			/* Update first and last time, respecting this event. */
518			if (tmp->c_time < first)
519				first = tmp->c_time;
520			tmp_max = tmp->c_time + tmp->c_precision;
521			if (tmp_max < last)
522				last = tmp_max;
523next:
524			tmp = LIST_NEXT(tmp, c_links.le);
525		}
526		/* Proceed with the next bucket. */
527		firstb++;
528		/*
529		 * Stop if we looked after present time and found
530		 * some event we can't execute at now.
531		 * Stop if we looked far enough into the future.
532		 */
533	} while (((int)(firstb - lastb)) <= 0);
534	cc->cc_firstevent = last;
535#ifndef NO_EVENTTIMERS
536	cpu_new_callout(curcpu, last, first);
537#endif
538#ifdef CALLOUT_PROFILING
539	avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
540	avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
541	avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
542#endif
543	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
544	/*
545	 * swi_sched acquires the thread lock, so we don't want to call it
546	 * with cc_lock held; incorrect locking order.
547	 */
548	if (!TAILQ_EMPTY(&cc->cc_expireq))
549		swi_sched(cc->cc_cookie, 0);
550}
551
552static struct callout_cpu *
553callout_lock(struct callout *c)
554{
555	struct callout_cpu *cc;
556	int cpu;
557
558	for (;;) {
559		cpu = c->c_cpu;
560#ifdef SMP
561		if (cpu == CPUBLOCK) {
562			while (c->c_cpu == CPUBLOCK)
563				cpu_spinwait();
564			continue;
565		}
566#endif
567		cc = CC_CPU(cpu);
568		CC_LOCK(cc);
569		if (cpu == c->c_cpu)
570			break;
571		CC_UNLOCK(cc);
572	}
573	return (cc);
574}
575
576static void
577callout_cc_add(struct callout *c, struct callout_cpu *cc,
578    sbintime_t sbt, sbintime_t precision, void (*func)(void *),
579    void *arg, int cpu, int flags)
580{
581	int bucket;
582
583	CC_LOCK_ASSERT(cc);
584	if (sbt < cc->cc_lastscan)
585		sbt = cc->cc_lastscan;
586	c->c_arg = arg;
587	c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
588	if (flags & C_DIRECT_EXEC)
589		c->c_flags |= CALLOUT_DIRECT;
590	c->c_flags &= ~CALLOUT_PROCESSED;
591	c->c_func = func;
592	c->c_time = sbt;
593	c->c_precision = precision;
594	bucket = callout_get_bucket(c->c_time);
595	CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
596	    c, (int)(c->c_precision >> 32),
597	    (u_int)(c->c_precision & 0xffffffff));
598	LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
599	if (cc->cc_bucket == bucket)
600		cc->cc_exec_next_dir = c;
601#ifndef NO_EVENTTIMERS
602	/*
603	 * Inform the eventtimers(4) subsystem there's a new callout
604	 * that has been inserted, but only if really required.
605	 */
606	if (SBT_MAX - c->c_time < c->c_precision)
607		c->c_precision = SBT_MAX - c->c_time;
608	sbt = c->c_time + c->c_precision;
609	if (sbt < cc->cc_firstevent) {
610		cc->cc_firstevent = sbt;
611		cpu_new_callout(cpu, sbt, c->c_time);
612	}
613#endif
614}
615
616static void
617callout_cc_del(struct callout *c, struct callout_cpu *cc)
618{
619
620	if ((c->c_flags & CALLOUT_LOCAL_ALLOC) == 0)
621		return;
622	c->c_func = NULL;
623	SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
624}
625
626static void
627softclock_call_cc(struct callout *c, struct callout_cpu *cc,
628#ifdef CALLOUT_PROFILING
629    int *mpcalls, int *lockcalls, int *gcalls,
630#endif
631    int direct)
632{
633	struct rm_priotracker tracker;
634	void (*c_func)(void *);
635	void *c_arg;
636	struct lock_class *class;
637	struct lock_object *c_lock;
638	uintptr_t lock_status;
639	int c_flags;
640#ifdef SMP
641	struct callout_cpu *new_cc;
642	void (*new_func)(void *);
643	void *new_arg;
644	int flags, new_cpu;
645	sbintime_t new_prec, new_time;
646#endif
647#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
648	sbintime_t sbt1, sbt2;
649	struct timespec ts2;
650	static sbintime_t maxdt = 2 * SBT_1MS;	/* 2 msec */
651	static timeout_t *lastfunc;
652#endif
653
654	KASSERT((c->c_flags & (CALLOUT_PENDING | CALLOUT_ACTIVE)) ==
655	    (CALLOUT_PENDING | CALLOUT_ACTIVE),
656	    ("softclock_call_cc: pend|act %p %x", c, c->c_flags));
657	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
658	lock_status = 0;
659	if (c->c_flags & CALLOUT_SHAREDLOCK) {
660		if (class == &lock_class_rm)
661			lock_status = (uintptr_t)&tracker;
662		else
663			lock_status = 1;
664	}
665	c_lock = c->c_lock;
666	c_func = c->c_func;
667	c_arg = c->c_arg;
668	c_flags = c->c_flags;
669	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
670		c->c_flags = CALLOUT_LOCAL_ALLOC;
671	else
672		c->c_flags &= ~CALLOUT_PENDING;
673	cc->cc_exec_entity[direct].cc_curr = c;
674	cc->cc_exec_entity[direct].cc_cancel = false;
675	CC_UNLOCK(cc);
676	if (c_lock != NULL) {
677		class->lc_lock(c_lock, lock_status);
678		/*
679		 * The callout may have been cancelled
680		 * while we switched locks.
681		 */
682		if (cc->cc_exec_entity[direct].cc_cancel) {
683			class->lc_unlock(c_lock);
684			goto skip;
685		}
686		/* The callout cannot be stopped now. */
687		cc->cc_exec_entity[direct].cc_cancel = true;
688		if (c_lock == &Giant.lock_object) {
689#ifdef CALLOUT_PROFILING
690			(*gcalls)++;
691#endif
692			CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
693			    c, c_func, c_arg);
694		} else {
695#ifdef CALLOUT_PROFILING
696			(*lockcalls)++;
697#endif
698			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
699			    c, c_func, c_arg);
700		}
701	} else {
702#ifdef CALLOUT_PROFILING
703		(*mpcalls)++;
704#endif
705		CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
706		    c, c_func, c_arg);
707	}
708#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
709	sbt1 = sbinuptime();
710#endif
711	THREAD_NO_SLEEPING();
712	SDT_PROBE(callout_execute, kernel, , callout__start, c, 0, 0, 0, 0);
713	c_func(c_arg);
714	SDT_PROBE(callout_execute, kernel, , callout__end, c, 0, 0, 0, 0);
715	THREAD_SLEEPING_OK();
716#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
717	sbt2 = sbinuptime();
718	sbt2 -= sbt1;
719	if (sbt2 > maxdt) {
720		if (lastfunc != c_func || sbt2 > maxdt * 2) {
721			ts2 = sbttots(sbt2);
722			printf(
723		"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
724			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
725		}
726		maxdt = sbt2;
727		lastfunc = c_func;
728	}
729#endif
730	CTR1(KTR_CALLOUT, "callout %p finished", c);
731	if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
732		class->lc_unlock(c_lock);
733skip:
734	CC_LOCK(cc);
735	KASSERT(cc->cc_exec_entity[direct].cc_curr == c, ("mishandled cc_curr"));
736	cc->cc_exec_entity[direct].cc_curr = NULL;
737	if (cc->cc_exec_entity[direct].cc_waiting) {
738		/*
739		 * There is someone waiting for the
740		 * callout to complete.
741		 * If the callout was scheduled for
742		 * migration just cancel it.
743		 */
744		if (cc_cce_migrating(cc, direct)) {
745			cc_cce_cleanup(cc, direct);
746
747			/*
748			 * It should be assert here that the callout is not
749			 * destroyed but that is not easy.
750			 */
751			c->c_flags &= ~CALLOUT_DFRMIGRATION;
752		}
753		cc->cc_exec_entity[direct].cc_waiting = false;
754		CC_UNLOCK(cc);
755		wakeup(&cc->cc_exec_entity[direct].cc_waiting);
756		CC_LOCK(cc);
757	} else if (cc_cce_migrating(cc, direct)) {
758		KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0,
759		    ("Migrating legacy callout %p", c));
760#ifdef SMP
761		/*
762		 * If the callout was scheduled for
763		 * migration just perform it now.
764		 */
765		new_cpu = cc->cc_exec_entity[direct].ce_migration_cpu;
766		new_time = cc->cc_exec_entity[direct].ce_migration_time;
767		new_prec = cc->cc_exec_entity[direct].ce_migration_prec;
768		new_func = cc->cc_exec_entity[direct].ce_migration_func;
769		new_arg = cc->cc_exec_entity[direct].ce_migration_arg;
770		cc_cce_cleanup(cc, direct);
771
772		/*
773		 * It should be assert here that the callout is not destroyed
774		 * but that is not easy.
775		 *
776		 * As first thing, handle deferred callout stops.
777		 */
778		if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) {
779			CTR3(KTR_CALLOUT,
780			     "deferred cancelled %p func %p arg %p",
781			     c, new_func, new_arg);
782			callout_cc_del(c, cc);
783			return;
784		}
785		c->c_flags &= ~CALLOUT_DFRMIGRATION;
786
787		new_cc = callout_cpu_switch(c, cc, new_cpu);
788		flags = (direct) ? C_DIRECT_EXEC : 0;
789		callout_cc_add(c, new_cc, new_time, new_prec, new_func,
790		    new_arg, new_cpu, flags);
791		CC_UNLOCK(new_cc);
792		CC_LOCK(cc);
793#else
794		panic("migration should not happen");
795#endif
796	}
797	/*
798	 * If the current callout is locally allocated (from
799	 * timeout(9)) then put it on the freelist.
800	 *
801	 * Note: we need to check the cached copy of c_flags because
802	 * if it was not local, then it's not safe to deref the
803	 * callout pointer.
804	 */
805	KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0 ||
806	    c->c_flags == CALLOUT_LOCAL_ALLOC,
807	    ("corrupted callout"));
808	if (c_flags & CALLOUT_LOCAL_ALLOC)
809		callout_cc_del(c, cc);
810}
811
812/*
813 * The callout mechanism is based on the work of Adam M. Costello and
814 * George Varghese, published in a technical report entitled "Redesigning
815 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
816 * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
817 * used in this implementation was published by G. Varghese and T. Lauck in
818 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
819 * the Efficient Implementation of a Timer Facility" in the Proceedings of
820 * the 11th ACM Annual Symposium on Operating Systems Principles,
821 * Austin, Texas Nov 1987.
822 */
823
824/*
825 * Software (low priority) clock interrupt.
826 * Run periodic events from timeout queue.
827 */
828void
829softclock(void *arg)
830{
831	struct callout_cpu *cc;
832	struct callout *c;
833#ifdef CALLOUT_PROFILING
834	int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0;
835#endif
836
837	cc = (struct callout_cpu *)arg;
838	CC_LOCK(cc);
839	while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
840		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
841		softclock_call_cc(c, cc,
842#ifdef CALLOUT_PROFILING
843		    &mpcalls, &lockcalls, &gcalls,
844#endif
845		    0);
846#ifdef CALLOUT_PROFILING
847		++depth;
848#endif
849	}
850#ifdef CALLOUT_PROFILING
851	avg_depth += (depth * 1000 - avg_depth) >> 8;
852	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
853	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
854	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
855#endif
856	CC_UNLOCK(cc);
857}
858
859/*
860 * timeout --
861 *	Execute a function after a specified length of time.
862 *
863 * untimeout --
864 *	Cancel previous timeout function call.
865 *
866 * callout_handle_init --
867 *	Initialize a handle so that using it with untimeout is benign.
868 *
869 *	See AT&T BCI Driver Reference Manual for specification.  This
870 *	implementation differs from that one in that although an
871 *	identification value is returned from timeout, the original
872 *	arguments to timeout as well as the identifier are used to
873 *	identify entries for untimeout.
874 */
875struct callout_handle
876timeout(timeout_t *ftn, void *arg, int to_ticks)
877{
878	struct callout_cpu *cc;
879	struct callout *new;
880	struct callout_handle handle;
881
882	cc = CC_CPU(timeout_cpu);
883	CC_LOCK(cc);
884	/* Fill in the next free callout structure. */
885	new = SLIST_FIRST(&cc->cc_callfree);
886	if (new == NULL)
887		/* XXX Attempt to malloc first */
888		panic("timeout table full");
889	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
890	callout_reset(new, to_ticks, ftn, arg);
891	handle.callout = new;
892	CC_UNLOCK(cc);
893
894	return (handle);
895}
896
897void
898untimeout(timeout_t *ftn, void *arg, struct callout_handle handle)
899{
900	struct callout_cpu *cc;
901
902	/*
903	 * Check for a handle that was initialized
904	 * by callout_handle_init, but never used
905	 * for a real timeout.
906	 */
907	if (handle.callout == NULL)
908		return;
909
910	cc = callout_lock(handle.callout);
911	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
912		callout_stop(handle.callout);
913	CC_UNLOCK(cc);
914}
915
916void
917callout_handle_init(struct callout_handle *handle)
918{
919	handle->callout = NULL;
920}
921
922/*
923 * New interface; clients allocate their own callout structures.
924 *
925 * callout_reset() - establish or change a timeout
926 * callout_stop() - disestablish a timeout
927 * callout_init() - initialize a callout structure so that it can
928 *	safely be passed to callout_reset() and callout_stop()
929 *
930 * <sys/callout.h> defines three convenience macros:
931 *
932 * callout_active() - returns truth if callout has not been stopped,
933 *	drained, or deactivated since the last time the callout was
934 *	reset.
935 * callout_pending() - returns truth if callout is still waiting for timeout
936 * callout_deactivate() - marks the callout as having been serviced
937 */
938int
939callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t precision,
940    void (*ftn)(void *), void *arg, int cpu, int flags)
941{
942	sbintime_t to_sbt, pr;
943	struct callout_cpu *cc;
944	int cancelled, direct;
945
946	cancelled = 0;
947	if (flags & C_ABSOLUTE) {
948		to_sbt = sbt;
949	} else {
950		if ((flags & C_HARDCLOCK) && (sbt < tick_sbt))
951			sbt = tick_sbt;
952		if ((flags & C_HARDCLOCK) ||
953#ifdef NO_EVENTTIMERS
954		    sbt >= sbt_timethreshold) {
955			to_sbt = getsbinuptime();
956
957			/* Add safety belt for the case of hz > 1000. */
958			to_sbt += tc_tick_sbt - tick_sbt;
959#else
960		    sbt >= sbt_tickthreshold) {
961			/*
962			 * Obtain the time of the last hardclock() call on
963			 * this CPU directly from the kern_clocksource.c.
964			 * This value is per-CPU, but it is equal for all
965			 * active ones.
966			 */
967#ifdef __LP64__
968			to_sbt = DPCPU_GET(hardclocktime);
969#else
970			spinlock_enter();
971			to_sbt = DPCPU_GET(hardclocktime);
972			spinlock_exit();
973#endif
974#endif
975			if ((flags & C_HARDCLOCK) == 0)
976				to_sbt += tick_sbt;
977		} else
978			to_sbt = sbinuptime();
979		if (SBT_MAX - to_sbt < sbt)
980			to_sbt = SBT_MAX;
981		else
982			to_sbt += sbt;
983		pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
984		    sbt >> C_PRELGET(flags));
985		if (pr > precision)
986			precision = pr;
987	}
988	/*
989	 * Don't allow migration of pre-allocated callouts lest they
990	 * become unbalanced.
991	 */
992	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
993		cpu = c->c_cpu;
994	direct = (c->c_flags & CALLOUT_DIRECT) != 0;
995	KASSERT(!direct || c->c_lock == NULL,
996	    ("%s: direct callout %p has lock", __func__, c));
997	cc = callout_lock(c);
998	if (cc->cc_exec_entity[direct].cc_curr == c) {
999		/*
1000		 * We're being asked to reschedule a callout which is
1001		 * currently in progress.  If there is a lock then we
1002		 * can cancel the callout if it has not really started.
1003		 */
1004		if (c->c_lock != NULL && !cc->cc_exec_entity[direct].cc_cancel)
1005			cancelled = cc->cc_exec_entity[direct].cc_cancel = true;
1006		if (cc->cc_exec_entity[direct].cc_waiting) {
1007			/*
1008			 * Someone has called callout_drain to kill this
1009			 * callout.  Don't reschedule.
1010			 */
1011			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
1012			    cancelled ? "cancelled" : "failed to cancel",
1013			    c, c->c_func, c->c_arg);
1014			CC_UNLOCK(cc);
1015			return (cancelled);
1016		}
1017	}
1018	if (c->c_flags & CALLOUT_PENDING) {
1019		if ((c->c_flags & CALLOUT_PROCESSED) == 0) {
1020			if (cc->cc_exec_next_dir == c)
1021				cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le);
1022			LIST_REMOVE(c, c_links.le);
1023		} else
1024			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1025		cancelled = 1;
1026		c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1027	}
1028
1029#ifdef SMP
1030	/*
1031	 * If the callout must migrate try to perform it immediately.
1032	 * If the callout is currently running, just defer the migration
1033	 * to a more appropriate moment.
1034	 */
1035	if (c->c_cpu != cpu) {
1036		if (cc->cc_exec_entity[direct].cc_curr == c) {
1037			cc->cc_exec_entity[direct].ce_migration_cpu = cpu;
1038			cc->cc_exec_entity[direct].ce_migration_time
1039			    = to_sbt;
1040			cc->cc_exec_entity[direct].ce_migration_prec
1041			    = precision;
1042			cc->cc_exec_entity[direct].ce_migration_func = ftn;
1043			cc->cc_exec_entity[direct].ce_migration_arg = arg;
1044			c->c_flags |= CALLOUT_DFRMIGRATION;
1045			CTR6(KTR_CALLOUT,
1046		    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1047			    c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1048			    (u_int)(to_sbt & 0xffffffff), cpu);
1049			CC_UNLOCK(cc);
1050			return (cancelled);
1051		}
1052		cc = callout_cpu_switch(c, cc, cpu);
1053	}
1054#endif
1055
1056	callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1057	CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1058	    cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1059	    (u_int)(to_sbt & 0xffffffff));
1060	CC_UNLOCK(cc);
1061
1062	return (cancelled);
1063}
1064
1065/*
1066 * Common idioms that can be optimized in the future.
1067 */
1068int
1069callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1070{
1071	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1072}
1073
1074int
1075callout_schedule(struct callout *c, int to_ticks)
1076{
1077	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1078}
1079
1080int
1081_callout_stop_safe(struct callout *c, int safe)
1082{
1083	struct callout_cpu *cc, *old_cc;
1084	struct lock_class *class;
1085	int direct, sq_locked, use_lock;
1086
1087	/*
1088	 * Some old subsystems don't hold Giant while running a callout_stop(),
1089	 * so just discard this check for the moment.
1090	 */
1091	if (!safe && c->c_lock != NULL) {
1092		if (c->c_lock == &Giant.lock_object)
1093			use_lock = mtx_owned(&Giant);
1094		else {
1095			use_lock = 1;
1096			class = LOCK_CLASS(c->c_lock);
1097			class->lc_assert(c->c_lock, LA_XLOCKED);
1098		}
1099	} else
1100		use_lock = 0;
1101	direct = (c->c_flags & CALLOUT_DIRECT) != 0;
1102	sq_locked = 0;
1103	old_cc = NULL;
1104again:
1105	cc = callout_lock(c);
1106
1107	/*
1108	 * If the callout was migrating while the callout cpu lock was
1109	 * dropped,  just drop the sleepqueue lock and check the states
1110	 * again.
1111	 */
1112	if (sq_locked != 0 && cc != old_cc) {
1113#ifdef SMP
1114		CC_UNLOCK(cc);
1115		sleepq_release(&old_cc->cc_exec_entity[direct].cc_waiting);
1116		sq_locked = 0;
1117		old_cc = NULL;
1118		goto again;
1119#else
1120		panic("migration should not happen");
1121#endif
1122	}
1123
1124	/*
1125	 * If the callout isn't pending, it's not on the queue, so
1126	 * don't attempt to remove it from the queue.  We can try to
1127	 * stop it by other means however.
1128	 */
1129	if (!(c->c_flags & CALLOUT_PENDING)) {
1130		c->c_flags &= ~CALLOUT_ACTIVE;
1131
1132		/*
1133		 * If it wasn't on the queue and it isn't the current
1134		 * callout, then we can't stop it, so just bail.
1135		 */
1136		if (cc->cc_exec_entity[direct].cc_curr != c) {
1137			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1138			    c, c->c_func, c->c_arg);
1139			CC_UNLOCK(cc);
1140			if (sq_locked)
1141				sleepq_release(
1142				    &cc->cc_exec_entity[direct].cc_waiting);
1143			return (0);
1144		}
1145
1146		if (safe) {
1147			/*
1148			 * The current callout is running (or just
1149			 * about to run) and blocking is allowed, so
1150			 * just wait for the current invocation to
1151			 * finish.
1152			 */
1153			while (cc->cc_exec_entity[direct].cc_curr == c) {
1154				/*
1155				 * Use direct calls to sleepqueue interface
1156				 * instead of cv/msleep in order to avoid
1157				 * a LOR between cc_lock and sleepqueue
1158				 * chain spinlocks.  This piece of code
1159				 * emulates a msleep_spin() call actually.
1160				 *
1161				 * If we already have the sleepqueue chain
1162				 * locked, then we can safely block.  If we
1163				 * don't already have it locked, however,
1164				 * we have to drop the cc_lock to lock
1165				 * it.  This opens several races, so we
1166				 * restart at the beginning once we have
1167				 * both locks.  If nothing has changed, then
1168				 * we will end up back here with sq_locked
1169				 * set.
1170				 */
1171				if (!sq_locked) {
1172					CC_UNLOCK(cc);
1173					sleepq_lock(
1174					&cc->cc_exec_entity[direct].cc_waiting);
1175					sq_locked = 1;
1176					old_cc = cc;
1177					goto again;
1178				}
1179
1180				/*
1181				 * Migration could be cancelled here, but
1182				 * as long as it is still not sure when it
1183				 * will be packed up, just let softclock()
1184				 * take care of it.
1185				 */
1186				cc->cc_exec_entity[direct].cc_waiting = true;
1187				DROP_GIANT();
1188				CC_UNLOCK(cc);
1189				sleepq_add(
1190				    &cc->cc_exec_entity[direct].cc_waiting,
1191				    &cc->cc_lock.lock_object, "codrain",
1192				    SLEEPQ_SLEEP, 0);
1193				sleepq_wait(
1194				    &cc->cc_exec_entity[direct].cc_waiting,
1195					     0);
1196				sq_locked = 0;
1197				old_cc = NULL;
1198
1199				/* Reacquire locks previously released. */
1200				PICKUP_GIANT();
1201				CC_LOCK(cc);
1202			}
1203		} else if (use_lock &&
1204			    !cc->cc_exec_entity[direct].cc_cancel) {
1205			/*
1206			 * The current callout is waiting for its
1207			 * lock which we hold.  Cancel the callout
1208			 * and return.  After our caller drops the
1209			 * lock, the callout will be skipped in
1210			 * softclock().
1211			 */
1212			cc->cc_exec_entity[direct].cc_cancel = true;
1213			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1214			    c, c->c_func, c->c_arg);
1215			KASSERT(!cc_cce_migrating(cc, direct),
1216			    ("callout wrongly scheduled for migration"));
1217			CC_UNLOCK(cc);
1218			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1219			return (1);
1220		} else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) {
1221			c->c_flags &= ~CALLOUT_DFRMIGRATION;
1222			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1223			    c, c->c_func, c->c_arg);
1224			CC_UNLOCK(cc);
1225			return (1);
1226		}
1227		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1228		    c, c->c_func, c->c_arg);
1229		CC_UNLOCK(cc);
1230		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1231		return (0);
1232	}
1233	if (sq_locked)
1234		sleepq_release(&cc->cc_exec_entity[direct].cc_waiting);
1235
1236	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1237
1238	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1239	    c, c->c_func, c->c_arg);
1240	if ((c->c_flags & CALLOUT_PROCESSED) == 0) {
1241		if (cc->cc_exec_next_dir == c)
1242			cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le);
1243		LIST_REMOVE(c, c_links.le);
1244	} else
1245		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1246	callout_cc_del(c, cc);
1247
1248	CC_UNLOCK(cc);
1249	return (1);
1250}
1251
1252void
1253callout_init(struct callout *c, int mpsafe)
1254{
1255	bzero(c, sizeof *c);
1256	if (mpsafe) {
1257		c->c_lock = NULL;
1258		c->c_flags = CALLOUT_RETURNUNLOCKED;
1259	} else {
1260		c->c_lock = &Giant.lock_object;
1261		c->c_flags = 0;
1262	}
1263	c->c_cpu = timeout_cpu;
1264}
1265
1266void
1267_callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1268{
1269	bzero(c, sizeof *c);
1270	c->c_lock = lock;
1271	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1272	    ("callout_init_lock: bad flags %d", flags));
1273	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1274	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1275	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1276	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1277	    __func__));
1278	c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1279	c->c_cpu = timeout_cpu;
1280}
1281
1282#ifdef APM_FIXUP_CALLTODO
1283/*
1284 * Adjust the kernel calltodo timeout list.  This routine is used after
1285 * an APM resume to recalculate the calltodo timer list values with the
1286 * number of hz's we have been sleeping.  The next hardclock() will detect
1287 * that there are fired timers and run softclock() to execute them.
1288 *
1289 * Please note, I have not done an exhaustive analysis of what code this
1290 * might break.  I am motivated to have my select()'s and alarm()'s that
1291 * have expired during suspend firing upon resume so that the applications
1292 * which set the timer can do the maintanence the timer was for as close
1293 * as possible to the originally intended time.  Testing this code for a
1294 * week showed that resuming from a suspend resulted in 22 to 25 timers
1295 * firing, which seemed independant on whether the suspend was 2 hours or
1296 * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1297 */
1298void
1299adjust_timeout_calltodo(struct timeval *time_change)
1300{
1301	register struct callout *p;
1302	unsigned long delta_ticks;
1303
1304	/*
1305	 * How many ticks were we asleep?
1306	 * (stolen from tvtohz()).
1307	 */
1308
1309	/* Don't do anything */
1310	if (time_change->tv_sec < 0)
1311		return;
1312	else if (time_change->tv_sec <= LONG_MAX / 1000000)
1313		delta_ticks = (time_change->tv_sec * 1000000 +
1314			       time_change->tv_usec + (tick - 1)) / tick + 1;
1315	else if (time_change->tv_sec <= LONG_MAX / hz)
1316		delta_ticks = time_change->tv_sec * hz +
1317			      (time_change->tv_usec + (tick - 1)) / tick + 1;
1318	else
1319		delta_ticks = LONG_MAX;
1320
1321	if (delta_ticks > INT_MAX)
1322		delta_ticks = INT_MAX;
1323
1324	/*
1325	 * Now rip through the timer calltodo list looking for timers
1326	 * to expire.
1327	 */
1328
1329	/* don't collide with softclock() */
1330	CC_LOCK(cc);
1331	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1332		p->c_time -= delta_ticks;
1333
1334		/* Break if the timer had more time on it than delta_ticks */
1335		if (p->c_time > 0)
1336			break;
1337
1338		/* take back the ticks the timer didn't use (p->c_time <= 0) */
1339		delta_ticks = -p->c_time;
1340	}
1341	CC_UNLOCK(cc);
1342
1343	return;
1344}
1345#endif /* APM_FIXUP_CALLTODO */
1346
1347static int
1348flssbt(sbintime_t sbt)
1349{
1350
1351	sbt += (uint64_t)sbt >> 1;
1352	if (sizeof(long) >= sizeof(sbintime_t))
1353		return (flsl(sbt));
1354	if (sbt >= SBT_1S)
1355		return (flsl(((uint64_t)sbt) >> 32) + 32);
1356	return (flsl(sbt));
1357}
1358
1359/*
1360 * Dump immediate statistic snapshot of the scheduled callouts.
1361 */
1362static int
1363sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1364{
1365	struct callout *tmp;
1366	struct callout_cpu *cc;
1367	struct callout_list *sc;
1368	sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1369	int ct[64], cpr[64], ccpbk[32];
1370	int error, val, i, count, tcum, pcum, maxc, c, medc;
1371#ifdef SMP
1372	int cpu;
1373#endif
1374
1375	val = 0;
1376	error = sysctl_handle_int(oidp, &val, 0, req);
1377	if (error != 0 || req->newptr == NULL)
1378		return (error);
1379	count = maxc = 0;
1380	st = spr = maxt = maxpr = 0;
1381	bzero(ccpbk, sizeof(ccpbk));
1382	bzero(ct, sizeof(ct));
1383	bzero(cpr, sizeof(cpr));
1384	now = sbinuptime();
1385#ifdef SMP
1386	CPU_FOREACH(cpu) {
1387		cc = CC_CPU(cpu);
1388#else
1389		cc = CC_CPU(timeout_cpu);
1390#endif
1391		CC_LOCK(cc);
1392		for (i = 0; i < callwheelsize; i++) {
1393			sc = &cc->cc_callwheel[i];
1394			c = 0;
1395			LIST_FOREACH(tmp, sc, c_links.le) {
1396				c++;
1397				t = tmp->c_time - now;
1398				if (t < 0)
1399					t = 0;
1400				st += t / SBT_1US;
1401				spr += tmp->c_precision / SBT_1US;
1402				if (t > maxt)
1403					maxt = t;
1404				if (tmp->c_precision > maxpr)
1405					maxpr = tmp->c_precision;
1406				ct[flssbt(t)]++;
1407				cpr[flssbt(tmp->c_precision)]++;
1408			}
1409			if (c > maxc)
1410				maxc = c;
1411			ccpbk[fls(c + c / 2)]++;
1412			count += c;
1413		}
1414		CC_UNLOCK(cc);
1415#ifdef SMP
1416	}
1417#endif
1418
1419	for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1420		tcum += ct[i];
1421	medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1422	for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1423		pcum += cpr[i];
1424	medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1425	for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1426		c += ccpbk[i];
1427	medc = (i >= 2) ? (1 << (i - 2)) : 0;
1428
1429	printf("Scheduled callouts statistic snapshot:\n");
1430	printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1431	    count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1432	printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1433	    medc,
1434	    count / callwheelsize / mp_ncpus,
1435	    (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1436	    maxc);
1437	printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1438	    medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1439	    (st / count) / 1000000, (st / count) % 1000000,
1440	    maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1441	printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1442	    medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1443	    (spr / count) / 1000000, (spr / count) % 1000000,
1444	    maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1445	printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1446	    "   prec\t   pcum\n");
1447	for (i = 0, tcum = pcum = 0; i < 64; i++) {
1448		if (ct[i] == 0 && cpr[i] == 0)
1449			continue;
1450		t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1451		tcum += ct[i];
1452		pcum += cpr[i];
1453		printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1454		    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1455		    i - 1 - (32 - CC_HASH_SHIFT),
1456		    ct[i], tcum, cpr[i], pcum);
1457	}
1458	return (error);
1459}
1460SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1461    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1462    0, 0, sysctl_kern_callout_stat, "I",
1463    "Dump immediate statistic snapshot of the scheduled callouts");
1464