kern_tc.c revision 95821
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 *
9 * $FreeBSD: head/sys/kern/kern_tc.c 95821 2002-04-30 20:42:06Z phk $
10 */
11
12#include "opt_ntp.h"
13
14#include <sys/param.h>
15#include <sys/kernel.h>
16#include <sys/sysctl.h>
17#include <sys/systm.h>
18#include <sys/timetc.h>
19#include <sys/timepps.h>
20#include <sys/timex.h>
21
22#include <machine/psl.h>
23
24/*
25 * Implement a dummy timecounter which we can use until we get a real one
26 * in the air.  This allows the console and other early stuff to use
27 * time services.
28 */
29
30static u_int
31dummy_get_timecount(struct timecounter *tc)
32{
33	static u_int now;
34
35	return (++now);
36}
37
38static struct timecounter dummy_timecounter = {
39	dummy_get_timecount, 0, ~0u, 1000000, "dummy",
40};
41
42struct timehands {
43	/* These fields must be initialized by the driver. */
44	struct timecounter	*th_counter;
45	int64_t			th_adjustment;
46	u_int64_t		th_scale;
47	u_int	 		th_offset_count;
48	struct bintime		th_offset;
49	struct timeval		th_microtime;
50	struct timespec		th_nanotime;
51	/* Fields not to be copied in tc_windup start with th_generation. */
52	volatile u_int		th_generation;
53	struct timehands	*th_next;
54};
55
56extern struct timehands th0;
57static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
58static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
59static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
60static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
61static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
62static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
63static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
64static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
65static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
66static struct timehands th0 = {
67	&dummy_timecounter,
68	0,
69	(uint64_t)-1 / 1000000,
70	0,
71	{1, 0},
72	{0, 0},
73	{0, 0},
74	1,
75	&th1
76};
77
78static struct timehands *volatile timehands = &th0;
79struct timecounter *timecounter = &dummy_timecounter;
80static struct timecounter *timecounters = &dummy_timecounter;
81
82time_t time_second;
83
84static struct bintime boottimebin;
85struct timeval boottime;
86SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
87    &boottime, timeval, "System boottime");
88
89SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
90
91#define TC_STATS(foo) \
92	static u_int foo; \
93	SYSCTL_INT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "") \
94	struct __hack
95
96TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
97TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
98TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
99TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
100
101#undef TC_STATS
102
103static void tc_windup(void);
104
105/*
106 * Return the difference between the timehands' counter value now and what
107 * was when we copied it to the timehands' offset_count.
108 */
109static __inline u_int
110tc_delta(struct timehands *th)
111{
112	struct timecounter *tc;
113
114	tc = th->th_counter;
115	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
116	    tc->tc_counter_mask);
117}
118
119/*
120 * Functions for reading the time.  We have to loop until we are sure that
121 * the timehands that we operated on was not updated under our feet.  See
122 * the comment in <sys/time.h> for a description of these 12 functions.
123 */
124
125void
126binuptime(struct bintime *bt)
127{
128	struct timehands *th;
129	u_int gen;
130
131	nbinuptime++;
132	do {
133		th = timehands;
134		gen = th->th_generation;
135		*bt = th->th_offset;
136		bintime_addx(bt, th->th_scale * tc_delta(th));
137	} while (gen == 0 || gen != th->th_generation);
138}
139
140void
141nanouptime(struct timespec *tsp)
142{
143	struct bintime bt;
144
145	nnanouptime++;
146	binuptime(&bt);
147	bintime2timespec(&bt, tsp);
148}
149
150void
151microuptime(struct timeval *tvp)
152{
153	struct bintime bt;
154
155	nmicrouptime++;
156	binuptime(&bt);
157	bintime2timeval(&bt, tvp);
158}
159
160#define SYNC_TIME
161
162void
163bintime(struct bintime *bt)
164{
165
166	nbintime++;
167	binuptime(bt);
168	bintime_add(bt, &boottimebin);
169}
170
171void
172nanotime(struct timespec *tsp)
173{
174	struct bintime bt;
175
176	nnanotime++;
177	bintime(&bt);
178	bintime2timespec(&bt, tsp);
179}
180
181void
182microtime(struct timeval *tvp)
183{
184	struct bintime bt;
185
186	nmicrotime++;
187	bintime(&bt);
188	bintime2timeval(&bt, tvp);
189}
190
191void
192getbinuptime(struct bintime *bt)
193{
194	struct timehands *th;
195	u_int gen;
196
197	ngetbinuptime++;
198	do {
199		th = timehands;
200		gen = th->th_generation;
201		*bt = th->th_offset;
202	} while (gen == 0 || gen != th->th_generation);
203}
204
205void
206getnanouptime(struct timespec *tsp)
207{
208	struct timehands *th;
209	u_int gen;
210
211	ngetnanouptime++;
212	do {
213		th = timehands;
214		gen = th->th_generation;
215		bintime2timespec(&th->th_offset, tsp);
216	} while (gen == 0 || gen != th->th_generation);
217}
218
219void
220getmicrouptime(struct timeval *tvp)
221{
222	struct timehands *th;
223	u_int gen;
224
225	ngetmicrouptime++;
226	do {
227		th = timehands;
228		gen = th->th_generation;
229		bintime2timeval(&th->th_offset, tvp);
230	} while (gen == 0 || gen != th->th_generation);
231}
232
233void
234getbintime(struct bintime *bt)
235{
236	struct timehands *th;
237	u_int gen;
238
239	ngetbintime++;
240	do {
241		th = timehands;
242		gen = th->th_generation;
243		*bt = th->th_offset;
244	} while (gen == 0 || gen != th->th_generation);
245	bintime_add(bt, &boottimebin);
246}
247
248void
249getnanotime(struct timespec *tsp)
250{
251	struct timehands *th;
252	u_int gen;
253
254	ngetnanotime++;
255	do {
256		th = timehands;
257		gen = th->th_generation;
258		*tsp = th->th_nanotime;
259	} while (gen == 0 || gen != th->th_generation);
260}
261
262void
263getmicrotime(struct timeval *tvp)
264{
265	struct timehands *th;
266	u_int gen;
267
268	ngetmicrotime++;
269	do {
270		th = timehands;
271		gen = th->th_generation;
272		*tvp = th->th_microtime;
273	} while (gen == 0 || gen != th->th_generation);
274}
275
276/*
277 * Initialize a new timecounter.
278 * We should really try to rank the timecounters and intelligently determine
279 * if the new timecounter is better than the current one.  This is subject
280 * to further study.  For now always use the new timecounter.
281 */
282void
283tc_init(struct timecounter *tc)
284{
285
286	tc->tc_next = timecounters;
287	timecounters = tc;
288	printf("Timecounter \"%s\"  frequency %lu Hz\n",
289	    tc->tc_name, (u_long)tc->tc_frequency);
290	(void)tc->tc_get_timecount(tc);
291	(void)tc->tc_get_timecount(tc);
292	timecounter = tc;
293}
294
295/* Report the frequency of the current timecounter. */
296u_int32_t
297tc_getfrequency(void)
298{
299
300	return (timehands->th_counter->tc_frequency);
301}
302
303/*
304 * Step our concept of GMT.  This is done by modifying our estimate of
305 * when we booted.  XXX: needs futher work.
306 */
307void
308tc_setclock(struct timespec *ts)
309{
310	struct timespec ts2;
311
312	nanouptime(&ts2);
313	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
314	/* XXX boottime should probably be a timespec. */
315	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
316	if (boottime.tv_usec < 0) {
317		boottime.tv_usec += 1000000;
318		boottime.tv_sec--;
319	}
320	timeval2bintime(&boottime, &boottimebin);
321
322	/* XXX fiddle all the little crinkly bits around the fiords... */
323	tc_windup();
324}
325
326/*
327 * Initialize the next struct timehands in the ring and make
328 * it the active timehands.  Along the way we might switch to a different
329 * timecounter and/or do seconds processing in NTP.  Slightly magic.
330 */
331static void
332tc_windup(void)
333{
334	struct bintime bt;
335	struct timehands *th, *tho;
336	u_int64_t scale;
337	u_int delta, ncount, ogen;
338	int i;
339
340	/*
341	 * Make the next timehands a copy of the current one, but do not
342	 * overwrite the generation or next pointer.  While we update
343	 * the contents, the generation must be zero.
344	 */
345	tho = timehands;
346	th = tho->th_next;
347	ogen = th->th_generation;
348	th->th_generation = 0;
349	bcopy(tho, th, offsetof(struct timehands, th_generation));
350
351	/*
352	 * Capture a timecounter delta on the current timecounter and if
353	 * changing timecounters, a counter value from the new timecounter.
354	 * Update the offset fields accordingly.
355	 */
356	delta = tc_delta(th);
357	if (th->th_counter != timecounter)
358		ncount = timecounter->tc_get_timecount(timecounter);
359	else
360		ncount = 0;
361	th->th_offset_count += delta;
362	th->th_offset_count &= th->th_counter->tc_counter_mask;
363	bintime_addx(&th->th_offset, th->th_scale * delta);
364
365	/*
366	 * Hardware latching timecounters may not generate interrupts on
367	 * PPS events, so instead we poll them.  There is a finite risk that
368	 * the hardware might capture a count which is later than the one we
369	 * got above, and therefore possibly in the next NTP second which might
370	 * have a different rate than the current NTP second.  It doesn't
371	 * matter in practice.
372	 */
373	if (tho->th_counter->tc_poll_pps)
374		tho->th_counter->tc_poll_pps(tho->th_counter);
375
376	/*
377	 * Deal with NTP second processing.  The for loop normally only
378	 * iterates once, but in extreme situations it might keep NTP sane
379	 * if timeouts are not run for several seconds.
380	 */
381	for (i = th->th_offset.sec - tho->th_offset.sec; i > 0; i--)
382		ntp_update_second(&th->th_adjustment, &th->th_offset.sec);
383
384	/* Now is a good time to change timecounters. */
385	if (th->th_counter != timecounter) {
386		th->th_counter = timecounter;
387		th->th_offset_count = ncount;
388	}
389
390	/*-?
391	 * Recalculate the scaling factor.  We want the number of 1/2^64
392	 * fractions of a second per period of the hardware counter, taking
393	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
394	 * processing provides us with.
395	 *
396	 * The th_adjustment is nanoseconds per second with 32 bit binary
397	 * fraction and want 64 bit binary fraction of second:
398	 *
399	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
400	 *
401	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
402	 * we can only multiply by about 850 without overflowing, but that
403	 * leaves suitably precise fractions for multiply before divide.
404	 *
405	 * Divide before multiply with a fraction of 2199/512 results in a
406	 * systematic undercompensation of 10PPM of th_adjustment.  On a
407	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
408 	 *
409	 * We happily sacrifice the lowest of the 64 bits of our result
410	 * to the goddess of code clarity.
411	 *
412	 */
413	scale = (u_int64_t)1 << 63;
414	scale += (th->th_adjustment / 1024) * 2199;
415	scale /= th->th_counter->tc_frequency;
416	th->th_scale = scale * 2;
417
418	/* Update the GMT timestamps used for the get*() functions. */
419	bt = th->th_offset;
420	bintime_add(&bt, &boottimebin);
421	bintime2timeval(&bt, &th->th_microtime);
422	bintime2timespec(&bt, &th->th_nanotime);
423
424	/*
425	 * Now that the struct timehands is again consistent, set the new
426	 * generation number, making sure to not make it zero.
427	 */
428	if (++ogen == 0)
429		ogen = 1;
430	th->th_generation = ogen;
431
432	/* Go live with the new struct timehands. */
433	time_second = th->th_microtime.tv_sec;
434	timehands = th;
435}
436
437/* Report or change the active timecounter hardware. */
438static int
439sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
440{
441	char newname[32];
442	struct timecounter *newtc, *tc;
443	int error;
444
445	tc = timecounter;
446	strncpy(newname, tc->tc_name, sizeof(newname));
447	newname[sizeof(newname) - 1] = '\0';
448	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
449	if (error != 0 || req->newptr == NULL ||
450	    strcmp(newname, tc->tc_name) == 0)
451		return (error);
452	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
453		if (strcmp(newname, newtc->tc_name) != 0)
454			continue;
455
456		/* Warm up new timecounter. */
457		(void)newtc->tc_get_timecount(newtc);
458		(void)newtc->tc_get_timecount(newtc);
459
460		timecounter = newtc;
461		return (0);
462	}
463	return (EINVAL);
464}
465
466SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
467    0, 0, sysctl_kern_timecounter_hardware, "A", "");
468
469/*
470 * RFC 2783 PPS-API implementation.
471 */
472
473int
474pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
475{
476	pps_params_t *app;
477	struct pps_fetch_args *fapi;
478#ifdef PPS_SYNC
479	struct pps_kcbind_args *kapi;
480#endif
481
482	switch (cmd) {
483	case PPS_IOC_CREATE:
484		return (0);
485	case PPS_IOC_DESTROY:
486		return (0);
487	case PPS_IOC_SETPARAMS:
488		app = (pps_params_t *)data;
489		if (app->mode & ~pps->ppscap)
490			return (EINVAL);
491		pps->ppsparam = *app;
492		return (0);
493	case PPS_IOC_GETPARAMS:
494		app = (pps_params_t *)data;
495		*app = pps->ppsparam;
496		app->api_version = PPS_API_VERS_1;
497		return (0);
498	case PPS_IOC_GETCAP:
499		*(int*)data = pps->ppscap;
500		return (0);
501	case PPS_IOC_FETCH:
502		fapi = (struct pps_fetch_args *)data;
503		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
504			return (EINVAL);
505		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
506			return (EOPNOTSUPP);
507		pps->ppsinfo.current_mode = pps->ppsparam.mode;
508		fapi->pps_info_buf = pps->ppsinfo;
509		return (0);
510	case PPS_IOC_KCBIND:
511#ifdef PPS_SYNC
512		kapi = (struct pps_kcbind_args *)data;
513		/* XXX Only root should be able to do this */
514		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
515			return (EINVAL);
516		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
517			return (EINVAL);
518		if (kapi->edge & ~pps->ppscap)
519			return (EINVAL);
520		pps->kcmode = kapi->edge;
521		return (0);
522#else
523		return (EOPNOTSUPP);
524#endif
525	default:
526		return (ENOTTY);
527	}
528}
529
530void
531pps_init(struct pps_state *pps)
532{
533	pps->ppscap |= PPS_TSFMT_TSPEC;
534	if (pps->ppscap & PPS_CAPTUREASSERT)
535		pps->ppscap |= PPS_OFFSETASSERT;
536	if (pps->ppscap & PPS_CAPTURECLEAR)
537		pps->ppscap |= PPS_OFFSETCLEAR;
538}
539
540void
541pps_capture(struct pps_state *pps)
542{
543	struct timehands *th;
544
545	th = timehands;
546	pps->capgen = th->th_generation;
547	pps->capth = th;
548	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
549	if (pps->capgen != th->th_generation)
550		pps->capgen = 0;
551}
552
553void
554pps_event(struct pps_state *pps, int event)
555{
556	struct bintime bt;
557	struct timespec ts, *tsp, *osp;
558	u_int tcount, *pcount;
559	int foff, fhard;
560	pps_seq_t *pseq;
561
562	/* If the timecounter was wound up underneath us, bail out. */
563	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
564		return;
565
566	/* Things would be easier with arrays. */
567	if (event == PPS_CAPTUREASSERT) {
568		tsp = &pps->ppsinfo.assert_timestamp;
569		osp = &pps->ppsparam.assert_offset;
570		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
571		fhard = pps->kcmode & PPS_CAPTUREASSERT;
572		pcount = &pps->ppscount[0];
573		pseq = &pps->ppsinfo.assert_sequence;
574	} else {
575		tsp = &pps->ppsinfo.clear_timestamp;
576		osp = &pps->ppsparam.clear_offset;
577		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
578		fhard = pps->kcmode & PPS_CAPTURECLEAR;
579		pcount = &pps->ppscount[1];
580		pseq = &pps->ppsinfo.clear_sequence;
581	}
582
583	/*
584	 * If the timecounter changed, we cannot compare the count values, so
585	 * we have to drop the rest of the PPS-stuff until the next event.
586	 */
587	if (pps->ppstc != pps->capth->th_counter) {
588		pps->ppstc = pps->capth->th_counter;
589		*pcount = pps->capcount;
590		pps->ppscount[2] = pps->capcount;
591		return;
592	}
593
594	/* Return if nothing really happened. */
595	if (*pcount == pps->capcount)
596		return;
597
598	/* Convert the count to a timespec. */
599	tcount = pps->capcount - pps->capth->th_offset_count;
600	tcount &= pps->capth->th_counter->tc_counter_mask;
601	bt = pps->capth->th_offset;
602	bintime_addx(&bt, pps->capth->th_scale * tcount);
603	bintime2timespec(&bt, &ts);
604
605	/* If the timecounter was wound up underneath us, bail out. */
606	if (pps->capgen != pps->capth->th_generation)
607		return;
608
609	*pcount = pps->capcount;
610	(*pseq)++;
611	*tsp = ts;
612
613	if (foff) {
614		timespecadd(tsp, osp);
615		if (tsp->tv_nsec < 0) {
616			tsp->tv_nsec += 1000000000;
617			tsp->tv_sec -= 1;
618		}
619	}
620#ifdef PPS_SYNC
621	if (fhard) {
622		/*
623		 * Feed the NTP PLL/FLL.
624		 * The FLL wants to know how many nanoseconds elapsed since
625		 * the previous event.
626		 * I have never been able to convince myself that this code
627		 * is actually correct:  Using th_scale is bound to contain
628		 * a phase correction component from userland, when running
629		 * as FLL, so the number hardpps() gets is not meaningful IMO.
630		 */
631		tcount = pps->capcount - pps->ppscount[2];
632		pps->ppscount[2] = pps->capcount;
633		tcount &= pps->capth->th_counter->tc_counter_mask;
634		bt.sec = 0;
635		bt.frac = 0;
636		bintime_addx(&bt, pps->capth->th_scale * tcount);
637		bintime2timespec(&bt, &ts);
638		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
639	}
640#endif
641}
642
643/*
644 * Timecounters need to be updated every so often to prevent the hardware
645 * counter from overflowing.  Updating also recalculates the cached values
646 * used by the get*() family of functions, so their precision depends on
647 * the update frequency.
648 */
649
650static int tc_tick;
651SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tick, 0, "");
652
653static void
654tc_ticktock(void *dummy)
655{
656
657	tc_windup();
658	timeout(tc_ticktock, NULL, tc_tick);
659}
660
661static void
662inittimecounter(void *dummy)
663{
664	u_int p;
665
666	/*
667	 * Set the initial timeout to
668	 * max(1, <approx. number of hardclock ticks in a millisecond>).
669	 * People should probably not use the sysctl to set the timeout
670	 * to smaller than its inital value, since that value is the
671	 * smallest reasonable one.  If they want better timestamps they
672	 * should use the non-"get"* functions.
673	 */
674	if (hz > 1000)
675		tc_tick = (hz + 500) / 1000;
676	else
677		tc_tick = 1;
678	p = (tc_tick * 1000000) / hz;
679	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
680
681	/* warm up new timecounter (again) and get rolling */
682	(void)timecounter->tc_get_timecount(timecounter);
683	(void)timecounter->tc_get_timecount(timecounter);
684	tc_ticktock(NULL);
685}
686
687SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_FIRST, inittimecounter, NULL)
688