kern_tc.c revision 52097
1/*-
2 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
3 * Copyright (c) 1982, 1986, 1991, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 * (c) UNIX System Laboratories, Inc.
6 * All or some portions of this file are derived from material licensed
7 * to the University of California by American Telephone and Telegraph
8 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
9 * the permission of UNIX System Laboratories, Inc.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
40 * $FreeBSD: head/sys/kern/kern_tc.c 52097 1999-10-10 16:18:36Z peter $
41 */
42
43#include "opt_ntp.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/dkstat.h>
48#include <sys/callout.h>
49#include <sys/kernel.h>
50#include <sys/proc.h>
51#include <sys/malloc.h>
52#include <sys/resourcevar.h>
53#include <sys/signalvar.h>
54#include <sys/timex.h>
55#include <sys/timepps.h>
56#include <vm/vm.h>
57#include <sys/lock.h>
58#include <vm/pmap.h>
59#include <vm/vm_map.h>
60#include <sys/sysctl.h>
61
62#include <machine/cpu.h>
63#include <machine/limits.h>
64
65#ifdef GPROF
66#include <sys/gmon.h>
67#endif
68
69#if defined(SMP) && defined(BETTER_CLOCK)
70#include <machine/smp.h>
71#endif
72
73/*
74 * Number of timecounters used to implement stable storage
75 */
76#ifndef NTIMECOUNTER
77#define NTIMECOUNTER	5
78#endif
79
80static MALLOC_DEFINE(M_TIMECOUNTER, "timecounter",
81	"Timecounter stable storage");
82
83static void initclocks __P((void *dummy));
84SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
85
86static void tco_forward __P((int force));
87static void tco_setscales __P((struct timecounter *tc));
88static __inline unsigned tco_delta __P((struct timecounter *tc));
89
90/* Some of these don't belong here, but it's easiest to concentrate them. */
91#if defined(SMP) && defined(BETTER_CLOCK)
92long cp_time[CPUSTATES];
93#else
94static long cp_time[CPUSTATES];
95#endif
96
97long tk_cancc;
98long tk_nin;
99long tk_nout;
100long tk_rawcc;
101
102time_t time_second;
103
104struct	timeval boottime;
105SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
106    &boottime, timeval, "System boottime");
107
108/*
109 * Which update policy to use.
110 *   0 - every tick, bad hardware may fail with "calcru negative..."
111 *   1 - more resistent to the above hardware, but less efficient.
112 */
113static int tco_method;
114
115/*
116 * Implement a dummy timecounter which we can use until we get a real one
117 * in the air.  This allows the console and other early stuff to use
118 * timeservices.
119 */
120
121static unsigned
122dummy_get_timecount(struct timecounter *tc)
123{
124	static unsigned now;
125	return (++now);
126}
127
128static struct timecounter dummy_timecounter = {
129	dummy_get_timecount,
130	0,
131	~0u,
132	1000000,
133	"dummy"
134};
135
136struct timecounter *timecounter = &dummy_timecounter;
137
138/*
139 * Clock handling routines.
140 *
141 * This code is written to operate with two timers that run independently of
142 * each other.
143 *
144 * The main timer, running hz times per second, is used to trigger interval
145 * timers, timeouts and rescheduling as needed.
146 *
147 * The second timer handles kernel and user profiling,
148 * and does resource use estimation.  If the second timer is programmable,
149 * it is randomized to avoid aliasing between the two clocks.  For example,
150 * the randomization prevents an adversary from always giving up the cpu
151 * just before its quantum expires.  Otherwise, it would never accumulate
152 * cpu ticks.  The mean frequency of the second timer is stathz.
153 *
154 * If no second timer exists, stathz will be zero; in this case we drive
155 * profiling and statistics off the main clock.  This WILL NOT be accurate;
156 * do not do it unless absolutely necessary.
157 *
158 * The statistics clock may (or may not) be run at a higher rate while
159 * profiling.  This profile clock runs at profhz.  We require that profhz
160 * be an integral multiple of stathz.
161 *
162 * If the statistics clock is running fast, it must be divided by the ratio
163 * profhz/stathz for statistics.  (For profiling, every tick counts.)
164 *
165 * Time-of-day is maintained using a "timecounter", which may or may
166 * not be related to the hardware generating the above mentioned
167 * interrupts.
168 */
169
170int	stathz;
171int	profhz;
172static int profprocs;
173int	ticks;
174static int psdiv, pscnt;		/* prof => stat divider */
175int	psratio;			/* ratio: prof / stat */
176
177/*
178 * Initialize clock frequencies and start both clocks running.
179 */
180/* ARGSUSED*/
181static void
182initclocks(dummy)
183	void *dummy;
184{
185	register int i;
186
187	/*
188	 * Set divisors to 1 (normal case) and let the machine-specific
189	 * code do its bit.
190	 */
191	psdiv = pscnt = 1;
192	cpu_initclocks();
193
194	/*
195	 * Compute profhz/stathz, and fix profhz if needed.
196	 */
197	i = stathz ? stathz : hz;
198	if (profhz == 0)
199		profhz = i;
200	psratio = profhz / i;
201}
202
203/*
204 * The real-time timer, interrupting hz times per second.
205 */
206void
207hardclock(frame)
208	register struct clockframe *frame;
209{
210	register struct proc *p;
211
212	p = curproc;
213	if (p) {
214		register struct pstats *pstats;
215
216		/*
217		 * Run current process's virtual and profile time, as needed.
218		 */
219		pstats = p->p_stats;
220		if (CLKF_USERMODE(frame) &&
221		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
222		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
223			psignal(p, SIGVTALRM);
224		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
225		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
226			psignal(p, SIGPROF);
227	}
228
229#if defined(SMP) && defined(BETTER_CLOCK)
230	forward_hardclock(pscnt);
231#endif
232
233	/*
234	 * If no separate statistics clock is available, run it from here.
235	 */
236	if (stathz == 0)
237		statclock(frame);
238
239	tco_forward(0);
240	ticks++;
241
242	/*
243	 * Process callouts at a very low cpu priority, so we don't keep the
244	 * relatively high clock interrupt priority any longer than necessary.
245	 */
246	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
247		if (CLKF_BASEPRI(frame)) {
248			/*
249			 * Save the overhead of a software interrupt;
250			 * it will happen as soon as we return, so do it now.
251			 */
252			(void)splsoftclock();
253			softclock();
254		} else
255			setsoftclock();
256	} else if (softticks + 1 == ticks)
257		++softticks;
258}
259
260/*
261 * Compute number of ticks in the specified amount of time.
262 */
263int
264tvtohz(tv)
265	struct timeval *tv;
266{
267	register unsigned long ticks;
268	register long sec, usec;
269
270	/*
271	 * If the number of usecs in the whole seconds part of the time
272	 * difference fits in a long, then the total number of usecs will
273	 * fit in an unsigned long.  Compute the total and convert it to
274	 * ticks, rounding up and adding 1 to allow for the current tick
275	 * to expire.  Rounding also depends on unsigned long arithmetic
276	 * to avoid overflow.
277	 *
278	 * Otherwise, if the number of ticks in the whole seconds part of
279	 * the time difference fits in a long, then convert the parts to
280	 * ticks separately and add, using similar rounding methods and
281	 * overflow avoidance.  This method would work in the previous
282	 * case but it is slightly slower and assumes that hz is integral.
283	 *
284	 * Otherwise, round the time difference down to the maximum
285	 * representable value.
286	 *
287	 * If ints have 32 bits, then the maximum value for any timeout in
288	 * 10ms ticks is 248 days.
289	 */
290	sec = tv->tv_sec;
291	usec = tv->tv_usec;
292	if (usec < 0) {
293		sec--;
294		usec += 1000000;
295	}
296	if (sec < 0) {
297#ifdef DIAGNOSTIC
298		if (usec > 0) {
299			sec++;
300			usec -= 1000000;
301		}
302		printf("tvotohz: negative time difference %ld sec %ld usec\n",
303		       sec, usec);
304#endif
305		ticks = 1;
306	} else if (sec <= LONG_MAX / 1000000)
307		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
308			/ tick + 1;
309	else if (sec <= LONG_MAX / hz)
310		ticks = sec * hz
311			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
312	else
313		ticks = LONG_MAX;
314	if (ticks > INT_MAX)
315		ticks = INT_MAX;
316	return ((int)ticks);
317}
318
319/*
320 * Start profiling on a process.
321 *
322 * Kernel profiling passes proc0 which never exits and hence
323 * keeps the profile clock running constantly.
324 */
325void
326startprofclock(p)
327	register struct proc *p;
328{
329	int s;
330
331	if ((p->p_flag & P_PROFIL) == 0) {
332		p->p_flag |= P_PROFIL;
333		if (++profprocs == 1 && stathz != 0) {
334			s = splstatclock();
335			psdiv = pscnt = psratio;
336			setstatclockrate(profhz);
337			splx(s);
338		}
339	}
340}
341
342/*
343 * Stop profiling on a process.
344 */
345void
346stopprofclock(p)
347	register struct proc *p;
348{
349	int s;
350
351	if (p->p_flag & P_PROFIL) {
352		p->p_flag &= ~P_PROFIL;
353		if (--profprocs == 0 && stathz != 0) {
354			s = splstatclock();
355			psdiv = pscnt = 1;
356			setstatclockrate(stathz);
357			splx(s);
358		}
359	}
360}
361
362/*
363 * Statistics clock.  Grab profile sample, and if divider reaches 0,
364 * do process and kernel statistics.
365 */
366void
367statclock(frame)
368	register struct clockframe *frame;
369{
370#ifdef GPROF
371	register struct gmonparam *g;
372	int i;
373#endif
374	register struct proc *p;
375	struct pstats *pstats;
376	long rss;
377	struct rusage *ru;
378	struct vmspace *vm;
379
380	if (curproc != NULL && CLKF_USERMODE(frame)) {
381		p = curproc;
382		if (p->p_flag & P_PROFIL)
383			addupc_intr(p, CLKF_PC(frame), 1);
384#if defined(SMP) && defined(BETTER_CLOCK)
385		if (stathz != 0)
386			forward_statclock(pscnt);
387#endif
388		if (--pscnt > 0)
389			return;
390		/*
391		 * Came from user mode; CPU was in user state.
392		 * If this process is being profiled record the tick.
393		 */
394		p->p_uticks++;
395		if (p->p_nice > NZERO)
396			cp_time[CP_NICE]++;
397		else
398			cp_time[CP_USER]++;
399	} else {
400#ifdef GPROF
401		/*
402		 * Kernel statistics are just like addupc_intr, only easier.
403		 */
404		g = &_gmonparam;
405		if (g->state == GMON_PROF_ON) {
406			i = CLKF_PC(frame) - g->lowpc;
407			if (i < g->textsize) {
408				i /= HISTFRACTION * sizeof(*g->kcount);
409				g->kcount[i]++;
410			}
411		}
412#endif
413#if defined(SMP) && defined(BETTER_CLOCK)
414		if (stathz != 0)
415			forward_statclock(pscnt);
416#endif
417		if (--pscnt > 0)
418			return;
419		/*
420		 * Came from kernel mode, so we were:
421		 * - handling an interrupt,
422		 * - doing syscall or trap work on behalf of the current
423		 *   user process, or
424		 * - spinning in the idle loop.
425		 * Whichever it is, charge the time as appropriate.
426		 * Note that we charge interrupts to the current process,
427		 * regardless of whether they are ``for'' that process,
428		 * so that we know how much of its real time was spent
429		 * in ``non-process'' (i.e., interrupt) work.
430		 */
431		p = curproc;
432		if (CLKF_INTR(frame)) {
433			if (p != NULL)
434				p->p_iticks++;
435			cp_time[CP_INTR]++;
436		} else if (p != NULL) {
437			p->p_sticks++;
438			cp_time[CP_SYS]++;
439		} else
440			cp_time[CP_IDLE]++;
441	}
442	pscnt = psdiv;
443
444	/*
445	 * We maintain statistics shown by user-level statistics
446	 * programs:  the amount of time in each cpu state.
447	 */
448
449	/*
450	 * We adjust the priority of the current process.  The priority of
451	 * a process gets worse as it accumulates CPU time.  The cpu usage
452	 * estimator (p_estcpu) is increased here.  The formula for computing
453	 * priorities (in kern_synch.c) will compute a different value each
454	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
455	 * quite quickly when the process is running (linearly), and decays
456	 * away exponentially, at a rate which is proportionally slower when
457	 * the system is busy.  The basic principal is that the system will
458	 * 90% forget that the process used a lot of CPU time in 5 * loadav
459	 * seconds.  This causes the system to favor processes which haven't
460	 * run much recently, and to round-robin among other processes.
461	 */
462	if (p != NULL) {
463		p->p_cpticks++;
464		if (++p->p_estcpu == 0)
465			p->p_estcpu--;
466		if ((p->p_estcpu & 3) == 0) {
467			resetpriority(p);
468			if (p->p_priority >= PUSER)
469				p->p_priority = p->p_usrpri;
470		}
471
472		/* Update resource usage integrals and maximums. */
473		if ((pstats = p->p_stats) != NULL &&
474		    (ru = &pstats->p_ru) != NULL &&
475		    (vm = p->p_vmspace) != NULL) {
476			ru->ru_ixrss += pgtok(vm->vm_tsize);
477			ru->ru_idrss += pgtok(vm->vm_dsize);
478			ru->ru_isrss += pgtok(vm->vm_ssize);
479			rss = pgtok(vmspace_resident_count(vm));
480			if (ru->ru_maxrss < rss)
481				ru->ru_maxrss = rss;
482		}
483	}
484}
485
486/*
487 * Return information about system clocks.
488 */
489static int
490sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
491{
492	struct clockinfo clkinfo;
493	/*
494	 * Construct clockinfo structure.
495	 */
496	clkinfo.hz = hz;
497	clkinfo.tick = tick;
498	clkinfo.tickadj = tickadj;
499	clkinfo.profhz = profhz;
500	clkinfo.stathz = stathz ? stathz : hz;
501	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
502}
503
504SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
505	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
506
507static __inline unsigned
508tco_delta(struct timecounter *tc)
509{
510
511	return ((tc->tc_get_timecount(tc) - tc->tc_offset_count) &
512	    tc->tc_counter_mask);
513}
514
515/*
516 * We have eight functions for looking at the clock, four for
517 * microseconds and four for nanoseconds.  For each there is fast
518 * but less precise version "get{nano|micro}[up]time" which will
519 * return a time which is up to 1/HZ previous to the call, whereas
520 * the raw version "{nano|micro}[up]time" will return a timestamp
521 * which is as precise as possible.  The "up" variants return the
522 * time relative to system boot, these are well suited for time
523 * interval measurements.
524 */
525
526void
527getmicrotime(struct timeval *tvp)
528{
529	struct timecounter *tc;
530
531	if (!tco_method) {
532		tc = timecounter;
533		*tvp = tc->tc_microtime;
534	} else {
535		microtime(tvp);
536	}
537}
538
539void
540getnanotime(struct timespec *tsp)
541{
542	struct timecounter *tc;
543
544	if (!tco_method) {
545		tc = timecounter;
546		*tsp = tc->tc_nanotime;
547	} else {
548		nanotime(tsp);
549	}
550}
551
552void
553microtime(struct timeval *tv)
554{
555	struct timecounter *tc;
556
557	tc = timecounter;
558	tv->tv_sec = tc->tc_offset_sec;
559	tv->tv_usec = tc->tc_offset_micro;
560	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
561	tv->tv_usec += boottime.tv_usec;
562	tv->tv_sec += boottime.tv_sec;
563	while (tv->tv_usec >= 1000000) {
564		tv->tv_usec -= 1000000;
565		tv->tv_sec++;
566	}
567}
568
569void
570nanotime(struct timespec *ts)
571{
572	unsigned count;
573	u_int64_t delta;
574	struct timecounter *tc;
575
576	tc = timecounter;
577	ts->tv_sec = tc->tc_offset_sec;
578	count = tco_delta(tc);
579	delta = tc->tc_offset_nano;
580	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
581	delta >>= 32;
582	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
583	delta += boottime.tv_usec * 1000;
584	ts->tv_sec += boottime.tv_sec;
585	while (delta >= 1000000000) {
586		delta -= 1000000000;
587		ts->tv_sec++;
588	}
589	ts->tv_nsec = delta;
590}
591
592void
593getmicrouptime(struct timeval *tvp)
594{
595	struct timecounter *tc;
596
597	if (!tco_method) {
598		tc = timecounter;
599		tvp->tv_sec = tc->tc_offset_sec;
600		tvp->tv_usec = tc->tc_offset_micro;
601	} else {
602		microuptime(tvp);
603	}
604}
605
606void
607getnanouptime(struct timespec *tsp)
608{
609	struct timecounter *tc;
610
611	if (!tco_method) {
612		tc = timecounter;
613		tsp->tv_sec = tc->tc_offset_sec;
614		tsp->tv_nsec = tc->tc_offset_nano >> 32;
615	} else {
616		nanouptime(tsp);
617	}
618}
619
620void
621microuptime(struct timeval *tv)
622{
623	struct timecounter *tc;
624
625	tc = timecounter;
626	tv->tv_sec = tc->tc_offset_sec;
627	tv->tv_usec = tc->tc_offset_micro;
628	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
629	if (tv->tv_usec >= 1000000) {
630		tv->tv_usec -= 1000000;
631		tv->tv_sec++;
632	}
633}
634
635void
636nanouptime(struct timespec *ts)
637{
638	unsigned count;
639	u_int64_t delta;
640	struct timecounter *tc;
641
642	tc = timecounter;
643	ts->tv_sec = tc->tc_offset_sec;
644	count = tco_delta(tc);
645	delta = tc->tc_offset_nano;
646	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
647	delta >>= 32;
648	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
649	if (delta >= 1000000000) {
650		delta -= 1000000000;
651		ts->tv_sec++;
652	}
653	ts->tv_nsec = delta;
654}
655
656static void
657tco_setscales(struct timecounter *tc)
658{
659	u_int64_t scale;
660
661	scale = 1000000000LL << 32;
662	scale += tc->tc_adjustment;
663	scale /= tc->tc_tweak->tc_frequency;
664	tc->tc_scale_micro = scale / 1000;
665	tc->tc_scale_nano_f = scale & 0xffffffff;
666	tc->tc_scale_nano_i = scale >> 32;
667}
668
669void
670update_timecounter(struct timecounter *tc)
671{
672	tco_setscales(tc);
673}
674
675void
676init_timecounter(struct timecounter *tc)
677{
678	struct timespec ts1;
679	struct timecounter *t1, *t2, *t3;
680	int i;
681
682	tc->tc_adjustment = 0;
683	tc->tc_tweak = tc;
684	tco_setscales(tc);
685	tc->tc_offset_count = tc->tc_get_timecount(tc);
686	if (timecounter == &dummy_timecounter)
687		tc->tc_avail = tc;
688	else {
689		tc->tc_avail = timecounter->tc_tweak->tc_avail;
690		timecounter->tc_tweak->tc_avail = tc;
691	}
692	MALLOC(t1, struct timecounter *, sizeof *t1, M_TIMECOUNTER, M_WAITOK);
693	tc->tc_other = t1;
694	*t1 = *tc;
695	t2 = t1;
696	for (i = 1; i < NTIMECOUNTER; i++) {
697		MALLOC(t3, struct timecounter *, sizeof *t3,
698		    M_TIMECOUNTER, M_WAITOK);
699		*t3 = *tc;
700		t3->tc_other = t2;
701		t2 = t3;
702	}
703	t1->tc_other = t3;
704	tc = t1;
705
706	printf("Timecounter \"%s\"  frequency %lu Hz\n",
707	    tc->tc_name, (u_long)tc->tc_frequency);
708
709	/* XXX: For now always start using the counter. */
710	tc->tc_offset_count = tc->tc_get_timecount(tc);
711	nanouptime(&ts1);
712	tc->tc_offset_nano = (u_int64_t)ts1.tv_nsec << 32;
713	tc->tc_offset_micro = ts1.tv_nsec / 1000;
714	tc->tc_offset_sec = ts1.tv_sec;
715	timecounter = tc;
716}
717
718void
719set_timecounter(struct timespec *ts)
720{
721	struct timespec ts2;
722
723	nanouptime(&ts2);
724	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
725	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
726	if (boottime.tv_usec < 0) {
727		boottime.tv_usec += 1000000;
728		boottime.tv_sec--;
729	}
730	/* fiddle all the little crinkly bits around the fiords... */
731	tco_forward(1);
732}
733
734static void
735switch_timecounter(struct timecounter *newtc)
736{
737	int s;
738	struct timecounter *tc;
739	struct timespec ts;
740
741	s = splclock();
742	tc = timecounter;
743	if (newtc->tc_tweak == tc->tc_tweak) {
744		splx(s);
745		return;
746	}
747	newtc = newtc->tc_tweak->tc_other;
748	nanouptime(&ts);
749	newtc->tc_offset_sec = ts.tv_sec;
750	newtc->tc_offset_nano = (u_int64_t)ts.tv_nsec << 32;
751	newtc->tc_offset_micro = ts.tv_nsec / 1000;
752	newtc->tc_offset_count = newtc->tc_get_timecount(newtc);
753	tco_setscales(newtc);
754	timecounter = newtc;
755	splx(s);
756}
757
758static struct timecounter *
759sync_other_counter(void)
760{
761	struct timecounter *tc, *tcn, *tco;
762	unsigned delta;
763
764	tco = timecounter;
765	tc = tco->tc_other;
766	tcn = tc->tc_other;
767	*tc = *tco;
768	tc->tc_other = tcn;
769	delta = tco_delta(tc);
770	tc->tc_offset_count += delta;
771	tc->tc_offset_count &= tc->tc_counter_mask;
772	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_f;
773	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_i << 32;
774	return (tc);
775}
776
777static void
778tco_forward(int force)
779{
780	struct timecounter *tc, *tco;
781
782	tco = timecounter;
783	tc = sync_other_counter();
784	/*
785	 * We may be inducing a tiny error here, the tc_poll_pps() may
786	 * process a latched count which happens after the tco_delta()
787	 * in sync_other_counter(), which would extend the previous
788	 * counters parameters into the domain of this new one.
789	 * Since the timewindow is very small for this, the error is
790	 * going to be only a few weenieseconds (as Dave Mills would
791	 * say), so lets just not talk more about it, OK ?
792	 */
793	if (tco->tc_poll_pps)
794		tco->tc_poll_pps(tco);
795	if (timedelta != 0) {
796		tc->tc_offset_nano += (u_int64_t)(tickdelta * 1000) << 32;
797		timedelta -= tickdelta;
798		force++;
799	}
800
801	while (tc->tc_offset_nano >= 1000000000ULL << 32) {
802		tc->tc_offset_nano -= 1000000000ULL << 32;
803		tc->tc_offset_sec++;
804		ntp_update_second(tc);	/* XXX only needed if xntpd runs */
805		tco_setscales(tc);
806		force++;
807	}
808
809	if (tco_method && !force)
810		return;
811
812	tc->tc_offset_micro = (tc->tc_offset_nano / 1000) >> 32;
813
814	/* Figure out the wall-clock time */
815	tc->tc_nanotime.tv_sec = tc->tc_offset_sec + boottime.tv_sec;
816	tc->tc_nanotime.tv_nsec =
817	    (tc->tc_offset_nano >> 32) + boottime.tv_usec * 1000;
818	tc->tc_microtime.tv_usec = tc->tc_offset_micro + boottime.tv_usec;
819	if (tc->tc_nanotime.tv_nsec >= 1000000000) {
820		tc->tc_nanotime.tv_nsec -= 1000000000;
821		tc->tc_microtime.tv_usec -= 1000000;
822		tc->tc_nanotime.tv_sec++;
823	}
824	time_second = tc->tc_microtime.tv_sec = tc->tc_nanotime.tv_sec;
825
826	timecounter = tc;
827}
828
829SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
830
831SYSCTL_INT(_kern_timecounter, OID_AUTO, method, CTLFLAG_RW, &tco_method, 0,
832    "This variable determines the method used for updating timecounters. "
833    "If the default algorithm (0) fails with \"calcru negative...\" messages "
834    "try the alternate algorithm (1) which handles bad hardware better."
835
836);
837
838static int
839sysctl_kern_timecounter_hardware SYSCTL_HANDLER_ARGS
840{
841	char newname[32];
842	struct timecounter *newtc, *tc;
843	int error;
844
845	tc = timecounter->tc_tweak;
846	strncpy(newname, tc->tc_name, sizeof(newname));
847	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
848	if (error == 0 && req->newptr != NULL &&
849	    strcmp(newname, tc->tc_name) != 0) {
850		for (newtc = tc->tc_avail; newtc != tc;
851		    newtc = newtc->tc_avail) {
852			if (strcmp(newname, newtc->tc_name) == 0) {
853				/* Warm up new timecounter. */
854				(void)newtc->tc_get_timecount(newtc);
855
856				switch_timecounter(newtc);
857				return (0);
858			}
859		}
860		return (EINVAL);
861	}
862	return (error);
863}
864
865SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
866    0, 0, sysctl_kern_timecounter_hardware, "A", "");
867
868
869int
870pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
871{
872	pps_params_t *app;
873	struct pps_fetch_args *fapi;
874#ifdef PPS_SYNC
875	struct pps_kcbind_args *kapi;
876#endif
877
878	switch (cmd) {
879	case PPS_IOC_CREATE:
880		return (0);
881	case PPS_IOC_DESTROY:
882		return (0);
883	case PPS_IOC_SETPARAMS:
884		app = (pps_params_t *)data;
885		if (app->mode & ~pps->ppscap)
886			return (EINVAL);
887		pps->ppsparam = *app;
888		return (0);
889	case PPS_IOC_GETPARAMS:
890		app = (pps_params_t *)data;
891		*app = pps->ppsparam;
892		app->api_version = PPS_API_VERS_1;
893		return (0);
894	case PPS_IOC_GETCAP:
895		*(int*)data = pps->ppscap;
896		return (0);
897	case PPS_IOC_FETCH:
898		fapi = (struct pps_fetch_args *)data;
899		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
900			return (EINVAL);
901		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
902			return (EOPNOTSUPP);
903		pps->ppsinfo.current_mode = pps->ppsparam.mode;
904		fapi->pps_info_buf = pps->ppsinfo;
905		return (0);
906	case PPS_IOC_KCBIND:
907#ifdef PPS_SYNC
908		kapi = (struct pps_kcbind_args *)data;
909		/* XXX Only root should be able to do this */
910		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
911			return (EINVAL);
912		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
913			return (EINVAL);
914		if (kapi->edge & ~pps->ppscap)
915			return (EINVAL);
916		pps->kcmode = kapi->edge;
917		return (0);
918#else
919		return (EOPNOTSUPP);
920#endif
921	default:
922		return (ENOTTY);
923	}
924}
925
926void
927pps_init(struct pps_state *pps)
928{
929	pps->ppscap |= PPS_TSFMT_TSPEC;
930	if (pps->ppscap & PPS_CAPTUREASSERT)
931		pps->ppscap |= PPS_OFFSETASSERT;
932	if (pps->ppscap & PPS_CAPTURECLEAR)
933		pps->ppscap |= PPS_OFFSETCLEAR;
934}
935
936void
937pps_event(struct pps_state *pps, struct timecounter *tc, unsigned count, int event)
938{
939	struct timespec ts, *tsp, *osp;
940	u_int64_t delta;
941	unsigned tcount, *pcount;
942	int foff, fhard;
943	pps_seq_t	*pseq;
944
945	/* Things would be easier with arrays... */
946	if (event == PPS_CAPTUREASSERT) {
947		tsp = &pps->ppsinfo.assert_timestamp;
948		osp = &pps->ppsparam.assert_offset;
949		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
950		fhard = pps->kcmode & PPS_CAPTUREASSERT;
951		pcount = &pps->ppscount[0];
952		pseq = &pps->ppsinfo.assert_sequence;
953	} else {
954		tsp = &pps->ppsinfo.clear_timestamp;
955		osp = &pps->ppsparam.clear_offset;
956		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
957		fhard = pps->kcmode & PPS_CAPTURECLEAR;
958		pcount = &pps->ppscount[1];
959		pseq = &pps->ppsinfo.clear_sequence;
960	}
961
962	/* The timecounter changed: bail */
963	if (!pps->ppstc ||
964	    pps->ppstc->tc_name != tc->tc_name ||
965	    tc->tc_name != timecounter->tc_name) {
966		pps->ppstc = tc;
967		*pcount = count;
968		return;
969	}
970
971	/* Nothing really happened */
972	if (*pcount == count)
973		return;
974
975	*pcount = count;
976
977	/* Convert the count to timespec */
978	ts.tv_sec = tc->tc_offset_sec;
979	tcount = count - tc->tc_offset_count;
980	tcount &= tc->tc_counter_mask;
981	delta = tc->tc_offset_nano;
982	delta += ((u_int64_t)tcount * tc->tc_scale_nano_f);
983	delta >>= 32;
984	delta += ((u_int64_t)tcount * tc->tc_scale_nano_i);
985	delta += boottime.tv_usec * 1000;
986	ts.tv_sec += boottime.tv_sec;
987	while (delta >= 1000000000) {
988		delta -= 1000000000;
989		ts.tv_sec++;
990	}
991	ts.tv_nsec = delta;
992
993	(*pseq)++;
994	*tsp = ts;
995
996	if (foff) {
997		timespecadd(tsp, osp);
998		if (tsp->tv_nsec < 0) {
999			tsp->tv_nsec += 1000000000;
1000			tsp->tv_sec -= 1;
1001		}
1002	}
1003#ifdef PPS_SYNC
1004	if (fhard) {
1005		/* magic, at its best... */
1006		tcount = count - pps->ppscount[2];
1007		pps->ppscount[2] = count;
1008		tcount &= tc->tc_counter_mask;
1009		delta = ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_f);
1010		delta >>= 32;
1011		delta += ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_i);
1012		hardpps(tsp, delta);
1013	}
1014#endif
1015}
1016