kern_tc.c revision 5081
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
39 * $Id: kern_clock.c,v 1.10 1994/10/16 03:52:12 wollman Exp $
40 */
41
42/* Portions of this software are covered by the following: */
43/******************************************************************************
44 *                                                                            *
45 * Copyright (c) David L. Mills 1993, 1994                                    *
46 *                                                                            *
47 * Permission to use, copy, modify, and distribute this software and its      *
48 * documentation for any purpose and without fee is hereby granted, provided  *
49 * that the above copyright notice appears in all copies and that both the    *
50 * copyright notice and this permission notice appear in supporting           *
51 * documentation, and that the name University of Delaware not be used in     *
52 * advertising or publicity pertaining to distribution of the software        *
53 * without specific, written prior permission.  The University of Delaware    *
54 * makes no representations about the suitability this software for any       *
55 * purpose.  It is provided "as is" without express or implied warranty.      *
56 *                                                                            *
57 *****************************************************************************/
58
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/dkstat.h>
62#include <sys/callout.h>
63#include <sys/kernel.h>
64#include <sys/proc.h>
65#include <sys/resourcevar.h>
66#include <sys/signalvar.h>
67#include <sys/timex.h>
68#include <vm/vm.h>
69#include <sys/sysctl.h>
70
71#include <machine/cpu.h>
72#include <machine/clock.h>
73
74#ifdef GPROF
75#include <sys/gmon.h>
76#endif
77
78/* Does anybody else really care about these? */
79struct callout *callfree, *callout, calltodo;
80int ncallout;
81
82/* Some of these don't belong here, but it's easiest to concentrate them. */
83long cp_time[CPUSTATES];
84long dk_seek[DK_NDRIVE];
85long dk_time[DK_NDRIVE];
86long dk_wds[DK_NDRIVE];
87long dk_wpms[DK_NDRIVE];
88long dk_xfer[DK_NDRIVE];
89
90int dk_busy;
91int dk_ndrive = 0;
92char dk_names[DK_NDRIVE][DK_NAMELEN];
93
94long tk_cancc;
95long tk_nin;
96long tk_nout;
97long tk_rawcc;
98
99/*
100 * Clock handling routines.
101 *
102 * This code is written to operate with two timers that run independently of
103 * each other.  The main clock, running hz times per second, is used to keep
104 * track of real time.  The second timer handles kernel and user profiling,
105 * and does resource use estimation.  If the second timer is programmable,
106 * it is randomized to avoid aliasing between the two clocks.  For example,
107 * the randomization prevents an adversary from always giving up the cpu
108 * just before its quantum expires.  Otherwise, it would never accumulate
109 * cpu ticks.  The mean frequency of the second timer is stathz.
110 *
111 * If no second timer exists, stathz will be zero; in this case we drive
112 * profiling and statistics off the main clock.  This WILL NOT be accurate;
113 * do not do it unless absolutely necessary.
114 *
115 * The statistics clock may (or may not) be run at a higher rate while
116 * profiling.  This profile clock runs at profhz.  We require that profhz
117 * be an integral multiple of stathz.
118 *
119 * If the statistics clock is running fast, it must be divided by the ratio
120 * profhz/stathz for statistics.  (For profiling, every tick counts.)
121 */
122
123/*
124 * TODO:
125 *	allocate more timeout table slots when table overflows.
126 */
127
128/*
129 * Bump a timeval by a small number of usec's.
130 */
131#define BUMPTIME(t, usec) { \
132	register volatile struct timeval *tp = (t); \
133	register long us; \
134 \
135	tp->tv_usec = us = tp->tv_usec + (usec); \
136	if (us >= 1000000) { \
137		tp->tv_usec = us - 1000000; \
138		tp->tv_sec++; \
139	} \
140}
141
142int	stathz;
143int	profhz;
144int	profprocs;
145int	ticks;
146static int psdiv, pscnt;	/* prof => stat divider */
147int	psratio;		/* ratio: prof / stat */
148
149volatile struct	timeval time;
150volatile struct	timeval mono_time;
151
152/*
153 * Phase-lock loop (PLL) definitions
154 *
155 * The following variables are read and set by the ntp_adjtime() system
156 * call.
157 *
158 * time_state shows the state of the system clock, with values defined
159 * in the timex.h header file.
160 *
161 * time_status shows the status of the system clock, with bits defined
162 * in the timex.h header file.
163 *
164 * time_offset is used by the PLL to adjust the system time in small
165 * increments.
166 *
167 * time_constant determines the bandwidth or "stiffness" of the PLL.
168 *
169 * time_tolerance determines maximum frequency error or tolerance of the
170 * CPU clock oscillator and is a property of the architecture; however,
171 * in principle it could change as result of the presence of external
172 * discipline signals, for instance.
173 *
174 * time_precision is usually equal to the kernel tick variable; however,
175 * in cases where a precision clock counter or external clock is
176 * available, the resolution can be much less than this and depend on
177 * whether the external clock is working or not.
178 *
179 * time_maxerror is initialized by a ntp_adjtime() call and increased by
180 * the kernel once each second to reflect the maximum error
181 * bound growth.
182 *
183 * time_esterror is set and read by the ntp_adjtime() call, but
184 * otherwise not used by the kernel.
185 */
186int time_status = STA_UNSYNC;	/* clock status bits */
187int time_state = TIME_OK;	/* clock state */
188long time_offset = 0;		/* time offset (us) */
189long time_constant = 0;		/* pll time constant */
190long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
191long time_precision = 1;	/* clock precision (us) */
192long time_maxerror = MAXPHASE;	/* maximum error (us) */
193long time_esterror = MAXPHASE;	/* estimated error (us) */
194
195/*
196 * The following variables establish the state of the PLL and the
197 * residual time and frequency offset of the local clock. The scale
198 * factors are defined in the timex.h header file.
199 *
200 * time_phase and time_freq are the phase increment and the frequency
201 * increment, respectively, of the kernel time variable at each tick of
202 * the clock.
203 *
204 * time_freq is set via ntp_adjtime() from a value stored in a file when
205 * the synchronization daemon is first started. Its value is retrieved
206 * via ntp_adjtime() and written to the file about once per hour by the
207 * daemon.
208 *
209 * time_adj is the adjustment added to the value of tick at each timer
210 * interrupt and is recomputed at each timer interrupt.
211 *
212 * time_reftime is the second's portion of the system time on the last
213 * call to ntp_adjtime(). It is used to adjust the time_freq variable
214 * and to increase the time_maxerror as the time since last update
215 * increases.
216 */
217long time_phase = 0;		/* phase offset (scaled us) */
218long time_freq = 0;		/* frequency offset (scaled ppm) */
219long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
220long time_reftime = 0;		/* time at last adjustment (s) */
221
222#ifdef PPS_SYNC
223/*
224 * The following variables are used only if the if the kernel PPS
225 * discipline code is configured (PPS_SYNC). The scale factors are
226 * defined in the timex.h header file.
227 *
228 * pps_time contains the time at each calibration interval, as read by
229 * microtime().
230 *
231 * pps_offset is the time offset produced by the time median filter
232 * pps_tf[], while pps_jitter is the dispersion measured by this
233 * filter.
234 *
235 * pps_freq is the frequency offset produced by the frequency median
236 * filter pps_ff[], while pps_stabil is the dispersion measured by
237 * this filter.
238 *
239 * pps_usec is latched from a high resolution counter or external clock
240 * at pps_time. Here we want the hardware counter contents only, not the
241 * contents plus the time_tv.usec as usual.
242 *
243 * pps_valid counts the number of seconds since the last PPS update. It
244 * is used as a watchdog timer to disable the PPS discipline should the
245 * PPS signal be lost.
246 *
247 * pps_glitch counts the number of seconds since the beginning of an
248 * offset burst more than tick/2 from current nominal offset. It is used
249 * mainly to suppress error bursts due to priority conflicts between the
250 * PPS interrupt and timer interrupt.
251 *
252 * pps_count counts the seconds of the calibration interval, the
253 * duration of which is pps_shift in powers of two.
254 *
255 * pps_intcnt counts the calibration intervals for use in the interval-
256 * adaptation algorithm. It's just too complicated for words.
257 */
258struct timeval pps_time;	/* kernel time at last interval */
259long pps_offset = 0;		/* pps time offset (us) */
260long pps_jitter = MAXTIME;	/* pps time dispersion (jitter) (us) */
261long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
262long pps_freq = 0;		/* frequency offset (scaled ppm) */
263long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
264long pps_ff[] = {0, 0, 0};	/* frequency offset median filter */
265long pps_usec = 0;		/* microsec counter at last interval */
266long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
267int pps_glitch = 0;		/* pps signal glitch counter */
268int pps_count = 0;		/* calibration interval counter (s) */
269int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
270int pps_intcnt = 0;		/* intervals at current duration */
271
272/*
273 * PPS signal quality monitors
274 *
275 * pps_jitcnt counts the seconds that have been discarded because the
276 * jitter measured by the time median filter exceeds the limit MAXTIME
277 * (100 us).
278 *
279 * pps_calcnt counts the frequency calibration intervals, which are
280 * variable from 4 s to 256 s.
281 *
282 * pps_errcnt counts the calibration intervals which have been discarded
283 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
284 * calibration interval jitter exceeds two ticks.
285 *
286 * pps_stbcnt counts the calibration intervals that have been discarded
287 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
288 */
289long pps_jitcnt = 0;		/* jitter limit exceeded */
290long pps_calcnt = 0;		/* calibration intervals */
291long pps_errcnt = 0;		/* calibration errors */
292long pps_stbcnt = 0;		/* stability limit exceeded */
293#endif /* PPS_SYNC */
294
295/* XXX none of this stuff works under FreeBSD */
296#ifdef EXT_CLOCK
297/*
298 * External clock definitions
299 *
300 * The following definitions and declarations are used only if an
301 * external clock (HIGHBALL or TPRO) is configured on the system.
302 */
303#define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
304
305/*
306 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
307 * interrupt and decremented once each second.
308 */
309int clock_count = 0;		/* CPU clock counter */
310
311#ifdef HIGHBALL
312/*
313 * The clock_offset and clock_cpu variables are used by the HIGHBALL
314 * interface. The clock_offset variable defines the offset between
315 * system time and the HIGBALL counters. The clock_cpu variable contains
316 * the offset between the system clock and the HIGHBALL clock for use in
317 * disciplining the kernel time variable.
318 */
319extern struct timeval clock_offset; /* Highball clock offset */
320long clock_cpu = 0;		/* CPU clock adjust */
321#endif /* HIGHBALL */
322#endif /* EXT_CLOCK */
323
324/*
325 * hardupdate() - local clock update
326 *
327 * This routine is called by ntp_adjtime() to update the local clock
328 * phase and frequency. This is used to implement an adaptive-parameter,
329 * first-order, type-II phase-lock loop. The code computes new time and
330 * frequency offsets each time it is called. The hardclock() routine
331 * amortizes these offsets at each tick interrupt. If the kernel PPS
332 * discipline code is configured (PPS_SYNC), the PPS signal itself
333 * determines the new time offset, instead of the calling argument.
334 * Presumably, calls to ntp_adjtime() occur only when the caller
335 * believes the local clock is valid within some bound (+-128 ms with
336 * NTP). If the caller's time is far different than the PPS time, an
337 * argument will ensue, and it's not clear who will lose.
338 *
339 * For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the
340 * maximum interval between updates is 4096 s and the maximum frequency
341 * offset is +-31.25 ms/s.
342 *
343 * Note: splclock() is in effect.
344 */
345void
346hardupdate(offset)
347	long offset;
348{
349	long ltemp, mtemp;
350
351	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
352		return;
353	ltemp = offset;
354#ifdef PPS_SYNC
355	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
356		ltemp = pps_offset;
357#endif /* PPS_SYNC */
358	if (ltemp > MAXPHASE)
359		time_offset = MAXPHASE << SHIFT_UPDATE;
360	else if (ltemp < -MAXPHASE)
361		time_offset = -(MAXPHASE << SHIFT_UPDATE);
362	else
363		time_offset = ltemp << SHIFT_UPDATE;
364	mtemp = time.tv_sec - time_reftime;
365	time_reftime = time.tv_sec;
366	if (mtemp > MAXSEC)
367		mtemp = 0;
368
369	/* ugly multiply should be replaced */
370	if (ltemp < 0)
371		time_freq -= (-ltemp * mtemp) >> (time_constant +
372		    time_constant + SHIFT_KF - SHIFT_USEC);
373	else
374		time_freq += (ltemp * mtemp) >> (time_constant +
375		    time_constant + SHIFT_KF - SHIFT_USEC);
376	if (time_freq > time_tolerance)
377		time_freq = time_tolerance;
378	else if (time_freq < -time_tolerance)
379		time_freq = -time_tolerance;
380}
381
382
383
384/*
385 * Initialize clock frequencies and start both clocks running.
386 */
387void
388initclocks()
389{
390	register int i;
391
392	/*
393	 * Set divisors to 1 (normal case) and let the machine-specific
394	 * code do its bit.
395	 */
396	psdiv = pscnt = 1;
397	cpu_initclocks();
398
399	/*
400	 * Compute profhz/stathz, and fix profhz if needed.
401	 */
402	i = stathz ? stathz : hz;
403	if (profhz == 0)
404		profhz = i;
405	psratio = profhz / i;
406}
407
408/*
409 * The real-time timer, interrupting hz times per second.
410 */
411void
412hardclock(frame)
413	register struct clockframe *frame;
414{
415	register struct callout *p1;
416	register struct proc *p;
417	register int needsoft;
418	extern int tickdelta;
419	extern long timedelta;
420
421	/*
422	 * Update real-time timeout queue.
423	 * At front of queue are some number of events which are ``due''.
424	 * The time to these is <= 0 and if negative represents the
425	 * number of ticks which have passed since it was supposed to happen.
426	 * The rest of the q elements (times > 0) are events yet to happen,
427	 * where the time for each is given as a delta from the previous.
428	 * Decrementing just the first of these serves to decrement the time
429	 * to all events.
430	 */
431	needsoft = 0;
432	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
433		if (--p1->c_time > 0)
434			break;
435		needsoft = 1;
436		if (p1->c_time == 0)
437			break;
438	}
439
440	p = curproc;
441	if (p) {
442		register struct pstats *pstats;
443
444		/*
445		 * Run current process's virtual and profile time, as needed.
446		 */
447		pstats = p->p_stats;
448		if (CLKF_USERMODE(frame) &&
449		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
450		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
451			psignal(p, SIGVTALRM);
452		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
453		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
454			psignal(p, SIGPROF);
455	}
456
457	/*
458	 * If no separate statistics clock is available, run it from here.
459	 */
460	if (stathz == 0)
461		statclock(frame);
462
463	/*
464	 * Increment the time-of-day.
465	 */
466	ticks++;
467	{
468		int time_update;
469		struct timeval newtime = time;
470		long ltemp;
471
472		if (timedelta == 0) {
473			time_update = tick;
474		} else {
475			time_update = tick + tickdelta;
476			timedelta -= tickdelta;
477		}
478		BUMPTIME(&mono_time, time_update);
479
480		/*
481		 * Compute the phase adjustment. If the low-order bits
482		 * (time_phase) of the update overflow, bump the high-order bits
483		 * (time_update).
484		 */
485		time_phase += time_adj;
486		if (time_phase <= -FINEUSEC) {
487		  ltemp = -time_phase >> SHIFT_SCALE;
488		  time_phase += ltemp << SHIFT_SCALE;
489		  time_update -= ltemp;
490		}
491		else if (time_phase >= FINEUSEC) {
492		  ltemp = time_phase >> SHIFT_SCALE;
493		  time_phase -= ltemp << SHIFT_SCALE;
494		  time_update += ltemp;
495		}
496
497		newtime.tv_usec += time_update;
498		/*
499		 * On rollover of the second the phase adjustment to be used for
500		 * the next second is calculated. Also, the maximum error is
501		 * increased by the tolerance. If the PPS frequency discipline
502		 * code is present, the phase is increased to compensate for the
503		 * CPU clock oscillator frequency error.
504		 *
505		 * With SHIFT_SCALE = 23, the maximum frequency adjustment is
506		 * +-256 us per tick, or 25.6 ms/s at a clock frequency of 100
507		 * Hz. The time contribution is shifted right a minimum of two
508		 * bits, while the frequency contribution is a right shift.
509		 * Thus, overflow is prevented if the frequency contribution is
510		 * limited to half the maximum or 15.625 ms/s.
511		 */
512		if (newtime.tv_usec >= 1000000) {
513		  newtime.tv_usec -= 1000000;
514		  newtime.tv_sec++;
515		  time_maxerror += time_tolerance >> SHIFT_USEC;
516		  if (time_offset < 0) {
517		    ltemp = -time_offset >>
518		      (SHIFT_KG + time_constant);
519		    time_offset += ltemp;
520		    time_adj = -ltemp <<
521		      (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
522		  } else {
523		    ltemp = time_offset >>
524		      (SHIFT_KG + time_constant);
525		    time_offset -= ltemp;
526		    time_adj = ltemp <<
527		      (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
528		  }
529#ifdef PPS_SYNC
530		  /*
531		   * Gnaw on the watchdog counter and update the frequency
532		   * computed by the pll and the PPS signal.
533		   */
534		  pps_valid++;
535		  if (pps_valid == PPS_VALID) {
536		    pps_jitter = MAXTIME;
537		    pps_stabil = MAXFREQ;
538		    time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
539				     STA_PPSWANDER | STA_PPSERROR);
540		  }
541		  ltemp = time_freq + pps_freq;
542#else
543		  ltemp = time_freq;
544#endif /* PPS_SYNC */
545		  if (ltemp < 0)
546		    time_adj -= -ltemp >>
547		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
548		  else
549		    time_adj += ltemp >>
550		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
551
552		  /*
553		   * When the CPU clock oscillator frequency is not a
554		   * power of two in Hz, the SHIFT_HZ is only an
555		   * approximate scale factor. In the SunOS kernel, this
556		   * results in a PLL gain factor of 1/1.28 = 0.78 what it
557		   * should be. In the following code the overall gain is
558		   * increased by a factor of 1.25, which results in a
559		   * residual error less than 3 percent.
560		   */
561		  /* Same thing applies for FreeBSD --GAW */
562		  if (hz == 100) {
563		    if (time_adj < 0)
564		      time_adj -= -time_adj >> 2;
565		    else
566		      time_adj += time_adj >> 2;
567		  }
568
569		  /* XXX - this is really bogus, but can't be fixed until
570		     xntpd's idea of the system clock is fixed to know how
571		     the user wants leap seconds handled; in the mean time,
572		     we assume that users of NTP are running without proper
573		     leap second support (this is now the default anyway) */
574		  /*
575		   * Leap second processing. If in leap-insert state at
576		   * the end of the day, the system clock is set back one
577		   * second; if in leap-delete state, the system clock is
578		   * set ahead one second. The microtime() routine or
579		   * external clock driver will insure that reported time
580		   * is always monotonic. The ugly divides should be
581		   * replaced.
582		   */
583		  switch (time_state) {
584
585		  case TIME_OK:
586		    if (time_status & STA_INS)
587		      time_state = TIME_INS;
588		    else if (time_status & STA_DEL)
589		      time_state = TIME_DEL;
590		    break;
591
592		  case TIME_INS:
593		    if (newtime.tv_sec % 86400 == 0) {
594		      newtime.tv_sec--;
595		      time_state = TIME_OOP;
596		    }
597		    break;
598
599		  case TIME_DEL:
600		    if ((newtime.tv_sec + 1) % 86400 == 0) {
601		      newtime.tv_sec++;
602		      time_state = TIME_WAIT;
603		    }
604		    break;
605
606		  case TIME_OOP:
607		    time_state = TIME_WAIT;
608		    break;
609
610		  case TIME_WAIT:
611		    if (!(time_status & (STA_INS | STA_DEL)))
612		      time_state = TIME_OK;
613		  }
614		}
615		CPU_CLOCKUPDATE(&time, &newtime);
616	}
617
618	/*
619	 * Process callouts at a very low cpu priority, so we don't keep the
620	 * relatively high clock interrupt priority any longer than necessary.
621	 */
622	if (needsoft) {
623		if (CLKF_BASEPRI(frame)) {
624			/*
625			 * Save the overhead of a software interrupt;
626			 * it will happen as soon as we return, so do it now.
627			 */
628			(void)splsoftclock();
629			softclock();
630		} else
631			setsoftclock();
632	}
633}
634
635/*
636 * Software (low priority) clock interrupt.
637 * Run periodic events from timeout queue.
638 */
639/*ARGSUSED*/
640void
641softclock()
642{
643	register struct callout *c;
644	register void *arg;
645	register void (*func) __P((void *));
646	register int s;
647
648	s = splhigh();
649	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
650		func = c->c_func;
651		arg = c->c_arg;
652		calltodo.c_next = c->c_next;
653		c->c_next = callfree;
654		callfree = c;
655		splx(s);
656		(*func)(arg);
657		(void) splhigh();
658	}
659	splx(s);
660}
661
662/*
663 * timeout --
664 *	Execute a function after a specified length of time.
665 *
666 * untimeout --
667 *	Cancel previous timeout function call.
668 *
669 *	See AT&T BCI Driver Reference Manual for specification.  This
670 *	implementation differs from that one in that no identification
671 *	value is returned from timeout, rather, the original arguments
672 *	to timeout are used to identify entries for untimeout.
673 */
674void
675timeout(ftn, arg, ticks)
676	timeout_t ftn;
677	void *arg;
678	register int ticks;
679{
680	register struct callout *new, *p, *t;
681	register int s;
682
683	if (ticks <= 0)
684		ticks = 1;
685
686	/* Lock out the clock. */
687	s = splhigh();
688
689	/* Fill in the next free callout structure. */
690	if (callfree == NULL)
691		panic("timeout table full");
692	new = callfree;
693	callfree = new->c_next;
694	new->c_arg = arg;
695	new->c_func = ftn;
696
697	/*
698	 * The time for each event is stored as a difference from the time
699	 * of the previous event on the queue.  Walk the queue, correcting
700	 * the ticks argument for queue entries passed.  Correct the ticks
701	 * value for the queue entry immediately after the insertion point
702	 * as well.  Watch out for negative c_time values; these represent
703	 * overdue events.
704	 */
705	for (p = &calltodo;
706	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
707		if (t->c_time > 0)
708			ticks -= t->c_time;
709	new->c_time = ticks;
710	if (t != NULL)
711		t->c_time -= ticks;
712
713	/* Insert the new entry into the queue. */
714	p->c_next = new;
715	new->c_next = t;
716	splx(s);
717}
718
719void
720untimeout(ftn, arg)
721	timeout_t ftn;
722	void *arg;
723{
724	register struct callout *p, *t;
725	register int s;
726
727	s = splhigh();
728	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
729		if (t->c_func == ftn && t->c_arg == arg) {
730			/* Increment next entry's tick count. */
731			if (t->c_next && t->c_time > 0)
732				t->c_next->c_time += t->c_time;
733
734			/* Move entry from callout queue to callfree queue. */
735			p->c_next = t->c_next;
736			t->c_next = callfree;
737			callfree = t;
738			break;
739		}
740	splx(s);
741}
742
743/*
744 * Compute number of hz until specified time.  Used to
745 * compute third argument to timeout() from an absolute time.
746 */
747int
748hzto(tv)
749	struct timeval *tv;
750{
751	register unsigned long ticks;
752	register long sec, usec;
753	int s;
754
755	/*
756	 * If the number of usecs in the whole seconds part of the time
757	 * difference fits in a long, then the total number of usecs will
758	 * fit in an unsigned long.  Compute the total and convert it to
759	 * ticks, rounding up and adding 1 to allow for the current tick
760	 * to expire.  Rounding also depends on unsigned long arithmetic
761	 * to avoid overflow.
762	 *
763	 * Otherwise, if the number of ticks in the whole seconds part of
764	 * the time difference fits in a long, then convert the parts to
765	 * ticks separately and add, using similar rounding methods and
766	 * overflow avoidance.  This method would work in the previous
767	 * case but it is slightly slower and assumes that hz is integral.
768	 *
769	 * Otherwise, round the time difference down to the maximum
770	 * representable value.
771	 *
772	 * If ints have 32 bits, then the maximum value for any timeout in
773	 * 10ms ticks is 248 days.
774	 */
775	s = splclock();
776	sec = tv->tv_sec - time.tv_sec;
777	usec = tv->tv_usec - time.tv_usec;
778	splx(s);
779	if (usec < 0) {
780		sec--;
781		usec += 1000000;
782	}
783	if (sec < 0) {
784#ifdef DIAGNOSTIC
785		printf("hzto: negative time difference %ld sec %ld usec\n",
786		       sec, usec);
787#endif
788		ticks = 1;
789	} else if (sec <= LONG_MAX / 1000000)
790		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
791			/ tick + 1;
792	else if (sec <= LONG_MAX / hz)
793		ticks = sec * hz
794			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
795	else
796		ticks = LONG_MAX;
797	if (ticks > INT_MAX)
798		ticks = INT_MAX;
799	return (ticks);
800}
801
802/*
803 * Start profiling on a process.
804 *
805 * Kernel profiling passes proc0 which never exits and hence
806 * keeps the profile clock running constantly.
807 */
808void
809startprofclock(p)
810	register struct proc *p;
811{
812	int s;
813
814	if ((p->p_flag & P_PROFIL) == 0) {
815		p->p_flag |= P_PROFIL;
816		if (++profprocs == 1 && stathz != 0) {
817			s = splstatclock();
818			psdiv = pscnt = psratio;
819			setstatclockrate(profhz);
820			splx(s);
821		}
822	}
823}
824
825/*
826 * Stop profiling on a process.
827 */
828void
829stopprofclock(p)
830	register struct proc *p;
831{
832	int s;
833
834	if (p->p_flag & P_PROFIL) {
835		p->p_flag &= ~P_PROFIL;
836		if (--profprocs == 0 && stathz != 0) {
837			s = splstatclock();
838			psdiv = pscnt = 1;
839			setstatclockrate(stathz);
840			splx(s);
841		}
842	}
843}
844
845/*
846 * Statistics clock.  Grab profile sample, and if divider reaches 0,
847 * do process and kernel statistics.
848 */
849void
850statclock(frame)
851	register struct clockframe *frame;
852{
853#ifdef GPROF
854	register struct gmonparam *g;
855#endif
856	register struct proc *p = curproc;
857	register int i;
858
859	if (p) {
860		struct pstats *pstats;
861		struct rusage *ru;
862		struct vmspace *vm;
863
864		/* bump the resource usage of integral space use */
865		if ((pstats = p->p_stats) && (ru = &pstats->p_ru) && (vm = p->p_vmspace)) {
866			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
867			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
868			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
869			if ((vm->vm_pmap.pm_stats.resident_count * PAGE_SIZE / 1024) >
870			    ru->ru_maxrss) {
871				ru->ru_maxrss =
872				    vm->vm_pmap.pm_stats.resident_count * PAGE_SIZE / 1024;
873			}
874        	}
875	}
876
877	if (CLKF_USERMODE(frame)) {
878		if (p->p_flag & P_PROFIL)
879			addupc_intr(p, CLKF_PC(frame), 1);
880		if (--pscnt > 0)
881			return;
882		/*
883		 * Came from user mode; CPU was in user state.
884		 * If this process is being profiled record the tick.
885		 */
886		p->p_uticks++;
887		if (p->p_nice > NZERO)
888			cp_time[CP_NICE]++;
889		else
890			cp_time[CP_USER]++;
891	} else {
892#ifdef GPROF
893		/*
894		 * Kernel statistics are just like addupc_intr, only easier.
895		 */
896		g = &_gmonparam;
897		if (g->state == GMON_PROF_ON) {
898			i = CLKF_PC(frame) - g->lowpc;
899			if (i < g->textsize) {
900				i /= HISTFRACTION * sizeof(*g->kcount);
901				g->kcount[i]++;
902			}
903		}
904#endif
905		if (--pscnt > 0)
906			return;
907		/*
908		 * Came from kernel mode, so we were:
909		 * - handling an interrupt,
910		 * - doing syscall or trap work on behalf of the current
911		 *   user process, or
912		 * - spinning in the idle loop.
913		 * Whichever it is, charge the time as appropriate.
914		 * Note that we charge interrupts to the current process,
915		 * regardless of whether they are ``for'' that process,
916		 * so that we know how much of its real time was spent
917		 * in ``non-process'' (i.e., interrupt) work.
918		 */
919		if (CLKF_INTR(frame)) {
920			if (p != NULL)
921				p->p_iticks++;
922			cp_time[CP_INTR]++;
923		} else if (p != NULL) {
924			p->p_sticks++;
925			cp_time[CP_SYS]++;
926		} else
927			cp_time[CP_IDLE]++;
928	}
929	pscnt = psdiv;
930
931	/*
932	 * We maintain statistics shown by user-level statistics
933	 * programs:  the amount of time in each cpu state, and
934	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
935	 *
936	 * XXX	should either run linked list of drives, or (better)
937	 *	grab timestamps in the start & done code.
938	 */
939	for (i = 0; i < DK_NDRIVE; i++)
940		if (dk_busy & (1 << i))
941			dk_time[i]++;
942
943	/*
944	 * We adjust the priority of the current process.  The priority of
945	 * a process gets worse as it accumulates CPU time.  The cpu usage
946	 * estimator (p_estcpu) is increased here.  The formula for computing
947	 * priorities (in kern_synch.c) will compute a different value each
948	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
949	 * quite quickly when the process is running (linearly), and decays
950	 * away exponentially, at a rate which is proportionally slower when
951	 * the system is busy.  The basic principal is that the system will
952	 * 90% forget that the process used a lot of CPU time in 5 * loadav
953	 * seconds.  This causes the system to favor processes which haven't
954	 * run much recently, and to round-robin among other processes.
955	 */
956	if (p != NULL) {
957		p->p_cpticks++;
958		if (++p->p_estcpu == 0)
959			p->p_estcpu--;
960		if ((p->p_estcpu & 3) == 0) {
961			resetpriority(p);
962			if (p->p_priority >= PUSER)
963				p->p_priority = p->p_usrpri;
964		}
965	}
966}
967
968/*
969 * Return information about system clocks.
970 */
971int
972sysctl_clockrate(where, sizep)
973	register char *where;
974	size_t *sizep;
975{
976	struct clockinfo clkinfo;
977
978	/*
979	 * Construct clockinfo structure.
980	 */
981	clkinfo.hz = hz;
982	clkinfo.tick = tick;
983	clkinfo.profhz = profhz;
984	clkinfo.stathz = stathz ? stathz : hz;
985	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
986}
987
988/*#ifdef PPS_SYNC*/
989#if 0
990/* This code is completely bogus; if anybody ever wants to use it, get
991 * the current version from Dave Mills. */
992
993/*
994 * hardpps() - discipline CPU clock oscillator to external pps signal
995 *
996 * This routine is called at each PPS interrupt in order to discipline
997 * the CPU clock oscillator to the PPS signal. It integrates successive
998 * phase differences between the two oscillators and calculates the
999 * frequency offset. This is used in hardclock() to discipline the CPU
1000 * clock oscillator so that intrinsic frequency error is cancelled out.
1001 * The code requires the caller to capture the time and hardware
1002 * counter value at the designated PPS signal transition.
1003 */
1004void
1005hardpps(tvp, usec)
1006	struct timeval *tvp;		/* time at PPS */
1007	long usec;			/* hardware counter at PPS */
1008{
1009	long u_usec, v_usec, bigtick;
1010	long cal_sec, cal_usec;
1011
1012	/*
1013	 * During the calibration interval adjust the starting time when
1014	 * the tick overflows. At the end of the interval compute the
1015	 * duration of the interval and the difference of the hardware
1016	 * counters at the beginning and end of the interval. This code
1017	 * is deliciously complicated by the fact valid differences may
1018	 * exceed the value of tick when using long calibration
1019	 * intervals and small ticks. Note that the counter can be
1020	 * greater than tick if caught at just the wrong instant, but
1021	 * the values returned and used here are correct.
1022	 */
1023	bigtick = (long)tick << SHIFT_USEC;
1024	pps_usec -= ntp_pll.ybar;
1025	if (pps_usec >= bigtick)
1026		pps_usec -= bigtick;
1027	if (pps_usec < 0)
1028		pps_usec += bigtick;
1029	pps_time.tv_sec++;
1030	pps_count++;
1031	if (pps_count < (1 << pps_shift))
1032		return;
1033	pps_count = 0;
1034	ntp_pll.calcnt++;
1035	u_usec = usec << SHIFT_USEC;
1036	v_usec = pps_usec - u_usec;
1037	if (v_usec >= bigtick >> 1)
1038		v_usec -= bigtick;
1039	if (v_usec < -(bigtick >> 1))
1040		v_usec += bigtick;
1041	if (v_usec < 0)
1042		v_usec = -(-v_usec >> ntp_pll.shift);
1043	else
1044		v_usec = v_usec >> ntp_pll.shift;
1045	pps_usec = u_usec;
1046	cal_sec = tvp->tv_sec;
1047	cal_usec = tvp->tv_usec;
1048	cal_sec -= pps_time.tv_sec;
1049	cal_usec -= pps_time.tv_usec;
1050	if (cal_usec < 0) {
1051		cal_usec += 1000000;
1052		cal_sec--;
1053	}
1054	pps_time = *tvp;
1055
1056	/*
1057	 * Check for lost interrupts, noise, excessive jitter and
1058	 * excessive frequency error. The number of timer ticks during
1059	 * the interval may vary +-1 tick. Add to this a margin of one
1060	 * tick for the PPS signal jitter and maximum frequency
1061	 * deviation. If the limits are exceeded, the calibration
1062	 * interval is reset to the minimum and we start over.
1063	 */
1064	u_usec = (long)tick << 1;
1065	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1066	    || (cal_sec == 0 && cal_usec < u_usec))
1067	    || v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) {
1068		ntp_pll.jitcnt++;
1069		ntp_pll.shift = NTP_PLL.SHIFT;
1070		pps_dispinc = PPS_DISPINC;
1071		ntp_pll.intcnt = 0;
1072		return;
1073	}
1074
1075	/*
1076	 * A three-stage median filter is used to help deglitch the pps
1077	 * signal. The median sample becomes the offset estimate; the
1078	 * difference between the other two samples becomes the
1079	 * dispersion estimate.
1080	 */
1081	pps_mf[2] = pps_mf[1];
1082	pps_mf[1] = pps_mf[0];
1083	pps_mf[0] = v_usec;
1084	if (pps_mf[0] > pps_mf[1]) {
1085		if (pps_mf[1] > pps_mf[2]) {
1086			u_usec = pps_mf[1];		/* 0 1 2 */
1087			v_usec = pps_mf[0] - pps_mf[2];
1088		} else if (pps_mf[2] > pps_mf[0]) {
1089			u_usec = pps_mf[0];		/* 2 0 1 */
1090			v_usec = pps_mf[2] - pps_mf[1];
1091		} else {
1092			u_usec = pps_mf[2];		/* 0 2 1 */
1093			v_usec = pps_mf[0] - pps_mf[1];
1094		}
1095	} else {
1096		if (pps_mf[1] < pps_mf[2]) {
1097			u_usec = pps_mf[1];		/* 2 1 0 */
1098			v_usec = pps_mf[2] - pps_mf[0];
1099		} else  if (pps_mf[2] < pps_mf[0]) {
1100			u_usec = pps_mf[0];		/* 1 0 2 */
1101			v_usec = pps_mf[1] - pps_mf[2];
1102		} else {
1103			u_usec = pps_mf[2];		/* 1 2 0 */
1104			v_usec = pps_mf[1] - pps_mf[0];
1105		}
1106	}
1107
1108	/*
1109	 * Here the dispersion average is updated. If it is less than
1110	 * the threshold pps_dispmax, the frequency average is updated
1111	 * as well, but clamped to the tolerance.
1112	 */
1113	v_usec = (v_usec >> 1) - ntp_pll.disp;
1114	if (v_usec < 0)
1115		ntp_pll.disp -= -v_usec >> PPS_AVG;
1116	else
1117		ntp_pll.disp += v_usec >> PPS_AVG;
1118	if (ntp_pll.disp > pps_dispmax) {
1119		ntp_pll.discnt++;
1120		return;
1121	}
1122	if (u_usec < 0) {
1123		ntp_pll.ybar -= -u_usec >> PPS_AVG;
1124		if (ntp_pll.ybar < -ntp_pll.tolerance)
1125			ntp_pll.ybar = -ntp_pll.tolerance;
1126		u_usec = -u_usec;
1127	} else {
1128		ntp_pll.ybar += u_usec >> PPS_AVG;
1129		if (ntp_pll.ybar > ntp_pll.tolerance)
1130			ntp_pll.ybar = ntp_pll.tolerance;
1131	}
1132
1133	/*
1134	 * Here the calibration interval is adjusted. If the maximum
1135	 * time difference is greater than tick/4, reduce the interval
1136	 * by half. If this is not the case for four consecutive
1137	 * intervals, double the interval.
1138	 */
1139	if (u_usec << ntp_pll.shift > bigtick >> 2) {
1140		ntp_pll.intcnt = 0;
1141		if (ntp_pll.shift > NTP_PLL.SHIFT) {
1142			ntp_pll.shift--;
1143			pps_dispinc <<= 1;
1144		}
1145	} else if (ntp_pll.intcnt >= 4) {
1146		ntp_pll.intcnt = 0;
1147		if (ntp_pll.shift < NTP_PLL.SHIFTMAX) {
1148			ntp_pll.shift++;
1149			pps_dispinc >>= 1;
1150		}
1151	} else
1152		ntp_pll.intcnt++;
1153}
1154#endif /* PPS_SYNC */
1155