kern_tc.c revision 33108
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
39 * $Id: kern_clock.c,v 1.53 1998/01/14 20:48:15 phk Exp $
40 */
41
42#include "opt_diagnostic.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/dkstat.h>
47#include <sys/callout.h>
48#include <sys/kernel.h>
49#include <sys/proc.h>
50#include <sys/resourcevar.h>
51#include <sys/signalvar.h>
52#include <sys/timex.h>
53#include <vm/vm.h>
54#include <sys/lock.h>
55#include <vm/pmap.h>
56#include <vm/vm_map.h>
57#include <sys/sysctl.h>
58
59#include <machine/cpu.h>
60#define CLOCK_HAIR		/* XXX */
61#include <machine/clock.h>
62#include <machine/limits.h>
63
64#ifdef GPROF
65#include <sys/gmon.h>
66#endif
67
68#if defined(SMP) && defined(BETTER_CLOCK)
69#include <machine/smp.h>
70#endif
71
72static void initclocks __P((void *dummy));
73SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
74
75/* Some of these don't belong here, but it's easiest to concentrate them. */
76#if defined(SMP) && defined(BETTER_CLOCK)
77long cp_time[CPUSTATES];
78#else
79static long cp_time[CPUSTATES];
80#endif
81long dk_seek[DK_NDRIVE];
82static long dk_time[DK_NDRIVE];	/* time busy (in statclock ticks) */
83long dk_wds[DK_NDRIVE];
84long dk_wpms[DK_NDRIVE];
85long dk_xfer[DK_NDRIVE];
86
87int dk_busy;
88int dk_ndrive = 0;
89char dk_names[DK_NDRIVE][DK_NAMELEN];
90
91long tk_cancc;
92long tk_nin;
93long tk_nout;
94long tk_rawcc;
95
96/*
97 * Clock handling routines.
98 *
99 * This code is written to operate with two timers that run independently of
100 * each other.  The main clock, running hz times per second, is used to keep
101 * track of real time.  The second timer handles kernel and user profiling,
102 * and does resource use estimation.  If the second timer is programmable,
103 * it is randomized to avoid aliasing between the two clocks.  For example,
104 * the randomization prevents an adversary from always giving up the cpu
105 * just before its quantum expires.  Otherwise, it would never accumulate
106 * cpu ticks.  The mean frequency of the second timer is stathz.
107 *
108 * If no second timer exists, stathz will be zero; in this case we drive
109 * profiling and statistics off the main clock.  This WILL NOT be accurate;
110 * do not do it unless absolutely necessary.
111 *
112 * The statistics clock may (or may not) be run at a higher rate while
113 * profiling.  This profile clock runs at profhz.  We require that profhz
114 * be an integral multiple of stathz.
115 *
116 * If the statistics clock is running fast, it must be divided by the ratio
117 * profhz/stathz for statistics.  (For profiling, every tick counts.)
118 */
119
120/*
121 * TODO:
122 *	allocate more timeout table slots when table overflows.
123 */
124
125/*
126 * Bump a timeval by a small number of usec's.
127 */
128#define BUMPTIME(t, usec) { \
129	register volatile struct timeval *tp = (t); \
130	register long us; \
131 \
132	tp->tv_usec = us = tp->tv_usec + (usec); \
133	if (us >= 1000000) { \
134		tp->tv_usec = us - 1000000; \
135		tp->tv_sec++; \
136	} \
137}
138
139int	stathz;
140int	profhz;
141static int profprocs;
142int	ticks;
143static int psdiv, pscnt;		/* prof => stat divider */
144int psratio;				/* ratio: prof / stat */
145
146volatile struct	timeval time;
147volatile struct	timeval mono_time;
148
149/*
150 * Initialize clock frequencies and start both clocks running.
151 */
152/* ARGSUSED*/
153static void
154initclocks(dummy)
155	void *dummy;
156{
157	register int i;
158
159	/*
160	 * Set divisors to 1 (normal case) and let the machine-specific
161	 * code do its bit.
162	 */
163	psdiv = pscnt = 1;
164	cpu_initclocks();
165
166	/*
167	 * Compute profhz/stathz, and fix profhz if needed.
168	 */
169	i = stathz ? stathz : hz;
170	if (profhz == 0)
171		profhz = i;
172	psratio = profhz / i;
173}
174
175/*
176 * The real-time timer, interrupting hz times per second.
177 */
178void
179hardclock(frame)
180	register struct clockframe *frame;
181{
182	register struct proc *p;
183	int time_update;
184	struct timeval newtime = time;
185	long ltemp;
186
187	p = curproc;
188	if (p) {
189		register struct pstats *pstats;
190
191		/*
192		 * Run current process's virtual and profile time, as needed.
193		 */
194		pstats = p->p_stats;
195		if (CLKF_USERMODE(frame) &&
196		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
197		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
198			psignal(p, SIGVTALRM);
199		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
200		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
201			psignal(p, SIGPROF);
202	}
203
204#if defined(SMP) && defined(BETTER_CLOCK)
205	forward_hardclock(pscnt);
206#endif
207	/*
208	 * If no separate statistics clock is available, run it from here.
209	 */
210	if (stathz == 0)
211		statclock(frame);
212
213	/*
214	 * Increment the time-of-day.
215	 */
216	ticks++;
217
218	if (timedelta == 0) {
219		time_update = CPU_THISTICKLEN(tick);
220	} else {
221		time_update = CPU_THISTICKLEN(tick) + tickdelta;
222		timedelta -= tickdelta;
223	}
224	BUMPTIME(&mono_time, time_update);
225
226	/*
227	 * Compute the phase adjustment. If the low-order bits
228	 * (time_phase) of the update overflow, bump the high-order bits
229	 * (time_update).
230	 */
231	time_phase += time_adj;
232	if (time_phase <= -FINEUSEC) {
233		ltemp = -time_phase >> SHIFT_SCALE;
234		time_phase += ltemp << SHIFT_SCALE;
235		time_update -= ltemp;
236	}
237	else if (time_phase >= FINEUSEC) {
238		ltemp = time_phase >> SHIFT_SCALE;
239		time_phase -= ltemp << SHIFT_SCALE;
240		time_update += ltemp;
241	}
242
243	newtime.tv_usec += time_update;
244	/*
245	 * On rollover of the second the phase adjustment to be used for
246	 * the next second is calculated. Also, the maximum error is
247	 * increased by the tolerance. If the PPS frequency discipline
248	 * code is present, the phase is increased to compensate for the
249	 * CPU clock oscillator frequency error.
250	 *
251	 * On a 32-bit machine and given parameters in the timex.h
252	 * header file, the maximum phase adjustment is +-512 ms and
253	 * maximum frequency offset is a tad less than) +-512 ppm. On a
254	 * 64-bit machine, you shouldn't need to ask.
255	 */
256	if (newtime.tv_usec >= 1000000) {
257		newtime.tv_usec -= 1000000;
258		newtime.tv_sec++;
259		ntp_update_second(&newtime.tv_sec);
260	}
261	CPU_CLOCKUPDATE(&time, &newtime);
262
263	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL)
264		setsoftclock();
265}
266
267void
268gettime(struct timeval *tvp)
269{
270	int s;
271
272	s = splclock();
273	/* XXX should use microtime() iff tv_usec is used. */
274	*tvp = time;
275	splx(s);
276}
277
278/*
279 * Compute number of hz until specified time.  Used to
280 * compute third argument to timeout() from an absolute time.
281 */
282int
283hzto(tv)
284	struct timeval *tv;
285{
286	register unsigned long ticks;
287	register long sec, usec;
288	int s;
289
290	/*
291	 * If the number of usecs in the whole seconds part of the time
292	 * difference fits in a long, then the total number of usecs will
293	 * fit in an unsigned long.  Compute the total and convert it to
294	 * ticks, rounding up and adding 1 to allow for the current tick
295	 * to expire.  Rounding also depends on unsigned long arithmetic
296	 * to avoid overflow.
297	 *
298	 * Otherwise, if the number of ticks in the whole seconds part of
299	 * the time difference fits in a long, then convert the parts to
300	 * ticks separately and add, using similar rounding methods and
301	 * overflow avoidance.  This method would work in the previous
302	 * case but it is slightly slower and assumes that hz is integral.
303	 *
304	 * Otherwise, round the time difference down to the maximum
305	 * representable value.
306	 *
307	 * If ints have 32 bits, then the maximum value for any timeout in
308	 * 10ms ticks is 248 days.
309	 */
310	s = splclock();
311	sec = tv->tv_sec - time.tv_sec;
312	usec = tv->tv_usec - time.tv_usec;
313	splx(s);
314	if (usec < 0) {
315		sec--;
316		usec += 1000000;
317	}
318	if (sec < 0) {
319#ifdef DIAGNOSTIC
320		printf("hzto: negative time difference %ld sec %ld usec\n",
321		       sec, usec);
322#endif
323		ticks = 1;
324	} else if (sec <= LONG_MAX / 1000000)
325		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
326			/ tick + 1;
327	else if (sec <= LONG_MAX / hz)
328		ticks = sec * hz
329			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
330	else
331		ticks = LONG_MAX;
332	if (ticks > INT_MAX)
333		ticks = INT_MAX;
334	return (ticks);
335}
336
337/*
338 * Start profiling on a process.
339 *
340 * Kernel profiling passes proc0 which never exits and hence
341 * keeps the profile clock running constantly.
342 */
343void
344startprofclock(p)
345	register struct proc *p;
346{
347	int s;
348
349	if ((p->p_flag & P_PROFIL) == 0) {
350		p->p_flag |= P_PROFIL;
351		if (++profprocs == 1 && stathz != 0) {
352			s = splstatclock();
353			psdiv = pscnt = psratio;
354			setstatclockrate(profhz);
355			splx(s);
356		}
357	}
358}
359
360/*
361 * Stop profiling on a process.
362 */
363void
364stopprofclock(p)
365	register struct proc *p;
366{
367	int s;
368
369	if (p->p_flag & P_PROFIL) {
370		p->p_flag &= ~P_PROFIL;
371		if (--profprocs == 0 && stathz != 0) {
372			s = splstatclock();
373			psdiv = pscnt = 1;
374			setstatclockrate(stathz);
375			splx(s);
376		}
377	}
378}
379
380/*
381 * Statistics clock.  Grab profile sample, and if divider reaches 0,
382 * do process and kernel statistics.
383 */
384void
385statclock(frame)
386	register struct clockframe *frame;
387{
388#ifdef GPROF
389	register struct gmonparam *g;
390#endif
391	register struct proc *p;
392	register int i;
393	struct pstats *pstats;
394	long rss;
395	struct rusage *ru;
396	struct vmspace *vm;
397
398	if (CLKF_USERMODE(frame)) {
399		p = curproc;
400		if (p->p_flag & P_PROFIL)
401			addupc_intr(p, CLKF_PC(frame), 1);
402#if defined(SMP) && defined(BETTER_CLOCK)
403		if (stathz != 0)
404			forward_statclock(pscnt);
405#endif
406		if (--pscnt > 0)
407			return;
408		/*
409		 * Came from user mode; CPU was in user state.
410		 * If this process is being profiled record the tick.
411		 */
412		p->p_uticks++;
413		if (p->p_nice > NZERO)
414			cp_time[CP_NICE]++;
415		else
416			cp_time[CP_USER]++;
417	} else {
418#ifdef GPROF
419		/*
420		 * Kernel statistics are just like addupc_intr, only easier.
421		 */
422		g = &_gmonparam;
423		if (g->state == GMON_PROF_ON) {
424			i = CLKF_PC(frame) - g->lowpc;
425			if (i < g->textsize) {
426				i /= HISTFRACTION * sizeof(*g->kcount);
427				g->kcount[i]++;
428			}
429		}
430#endif
431#if defined(SMP) && defined(BETTER_CLOCK)
432		if (stathz != 0)
433			forward_statclock(pscnt);
434#endif
435		if (--pscnt > 0)
436			return;
437		/*
438		 * Came from kernel mode, so we were:
439		 * - handling an interrupt,
440		 * - doing syscall or trap work on behalf of the current
441		 *   user process, or
442		 * - spinning in the idle loop.
443		 * Whichever it is, charge the time as appropriate.
444		 * Note that we charge interrupts to the current process,
445		 * regardless of whether they are ``for'' that process,
446		 * so that we know how much of its real time was spent
447		 * in ``non-process'' (i.e., interrupt) work.
448		 */
449		p = curproc;
450		if (CLKF_INTR(frame)) {
451			if (p != NULL)
452				p->p_iticks++;
453			cp_time[CP_INTR]++;
454		} else if (p != NULL) {
455			p->p_sticks++;
456			cp_time[CP_SYS]++;
457		} else
458			cp_time[CP_IDLE]++;
459	}
460	pscnt = psdiv;
461
462	/*
463	 * We maintain statistics shown by user-level statistics
464	 * programs:  the amount of time in each cpu state, and
465	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
466	 *
467	 * XXX	should either run linked list of drives, or (better)
468	 *	grab timestamps in the start & done code.
469	 */
470	for (i = 0; i < DK_NDRIVE; i++)
471		if (dk_busy & (1 << i))
472			dk_time[i]++;
473
474	/*
475	 * We adjust the priority of the current process.  The priority of
476	 * a process gets worse as it accumulates CPU time.  The cpu usage
477	 * estimator (p_estcpu) is increased here.  The formula for computing
478	 * priorities (in kern_synch.c) will compute a different value each
479	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
480	 * quite quickly when the process is running (linearly), and decays
481	 * away exponentially, at a rate which is proportionally slower when
482	 * the system is busy.  The basic principal is that the system will
483	 * 90% forget that the process used a lot of CPU time in 5 * loadav
484	 * seconds.  This causes the system to favor processes which haven't
485	 * run much recently, and to round-robin among other processes.
486	 */
487	if (p != NULL) {
488		p->p_cpticks++;
489		if (++p->p_estcpu == 0)
490			p->p_estcpu--;
491		if ((p->p_estcpu & 3) == 0) {
492			resetpriority(p);
493			if (p->p_priority >= PUSER)
494				p->p_priority = p->p_usrpri;
495		}
496
497		/* Update resource usage integrals and maximums. */
498		if ((pstats = p->p_stats) != NULL &&
499		    (ru = &pstats->p_ru) != NULL &&
500		    (vm = p->p_vmspace) != NULL) {
501			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
502			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
503			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
504			rss = vm->vm_pmap.pm_stats.resident_count *
505			      PAGE_SIZE / 1024;
506			if (ru->ru_maxrss < rss)
507				ru->ru_maxrss = rss;
508        	}
509	}
510}
511
512/*
513 * Return information about system clocks.
514 */
515static int
516sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
517{
518	struct clockinfo clkinfo;
519	/*
520	 * Construct clockinfo structure.
521	 */
522	clkinfo.hz = hz;
523	clkinfo.tick = tick;
524	clkinfo.tickadj = tickadj;
525	clkinfo.profhz = profhz;
526	clkinfo.stathz = stathz ? stathz : hz;
527	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
528}
529
530SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
531	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
532
533