kern_tc.c revision 288216
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 *
9 * Copyright (c) 2011 The FreeBSD Foundation
10 * All rights reserved.
11 *
12 * Portions of this software were developed by Julien Ridoux at the University
13 * of Melbourne under sponsorship from the FreeBSD Foundation.
14 */
15
16#include <sys/cdefs.h>
17__FBSDID("$FreeBSD: head/sys/kern/kern_tc.c 288216 2015-09-25 13:03:57Z kib $");
18
19#include "opt_compat.h"
20#include "opt_ntp.h"
21#include "opt_ffclock.h"
22
23#include <sys/param.h>
24#include <sys/kernel.h>
25#include <sys/limits.h>
26#include <sys/lock.h>
27#include <sys/mutex.h>
28#include <sys/sbuf.h>
29#include <sys/sysctl.h>
30#include <sys/syslog.h>
31#include <sys/systm.h>
32#include <sys/timeffc.h>
33#include <sys/timepps.h>
34#include <sys/timetc.h>
35#include <sys/timex.h>
36#include <sys/vdso.h>
37
38/*
39 * A large step happens on boot.  This constant detects such steps.
40 * It is relatively small so that ntp_update_second gets called enough
41 * in the typical 'missed a couple of seconds' case, but doesn't loop
42 * forever when the time step is large.
43 */
44#define LARGE_STEP	200
45
46/*
47 * Implement a dummy timecounter which we can use until we get a real one
48 * in the air.  This allows the console and other early stuff to use
49 * time services.
50 */
51
52static u_int
53dummy_get_timecount(struct timecounter *tc)
54{
55	static u_int now;
56
57	return (++now);
58}
59
60static struct timecounter dummy_timecounter = {
61	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
62};
63
64struct timehands {
65	/* These fields must be initialized by the driver. */
66	struct timecounter	*th_counter;
67	int64_t			th_adjustment;
68	uint64_t		th_scale;
69	u_int	 		th_offset_count;
70	struct bintime		th_offset;
71	struct timeval		th_microtime;
72	struct timespec		th_nanotime;
73	/* Fields not to be copied in tc_windup start with th_generation. */
74	u_int			th_generation;
75	struct timehands	*th_next;
76};
77
78static struct timehands th0;
79static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
80static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
81static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
82static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
83static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
84static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
85static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
86static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
87static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
88static struct timehands th0 = {
89	&dummy_timecounter,
90	0,
91	(uint64_t)-1 / 1000000,
92	0,
93	{1, 0},
94	{0, 0},
95	{0, 0},
96	1,
97	&th1
98};
99
100static struct timehands *volatile timehands = &th0;
101struct timecounter *timecounter = &dummy_timecounter;
102static struct timecounter *timecounters = &dummy_timecounter;
103
104int tc_min_ticktock_freq = 1;
105
106volatile time_t time_second = 1;
107volatile time_t time_uptime = 1;
108
109struct bintime boottimebin;
110struct timeval boottime;
111static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
112SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
113    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
114
115SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
116static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
117
118static int timestepwarnings;
119SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
120    &timestepwarnings, 0, "Log time steps");
121
122struct bintime bt_timethreshold;
123struct bintime bt_tickthreshold;
124sbintime_t sbt_timethreshold;
125sbintime_t sbt_tickthreshold;
126struct bintime tc_tick_bt;
127sbintime_t tc_tick_sbt;
128int tc_precexp;
129int tc_timepercentage = TC_DEFAULTPERC;
130static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
131SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
132    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
133    sysctl_kern_timecounter_adjprecision, "I",
134    "Allowed time interval deviation in percents");
135
136static int tc_chosen;	/* Non-zero if a specific tc was chosen via sysctl. */
137
138static void tc_windup(void);
139static void cpu_tick_calibrate(int);
140
141void dtrace_getnanotime(struct timespec *tsp);
142
143static int
144sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
145{
146#ifndef __mips__
147#ifdef SCTL_MASK32
148	int tv[2];
149
150	if (req->flags & SCTL_MASK32) {
151		tv[0] = boottime.tv_sec;
152		tv[1] = boottime.tv_usec;
153		return SYSCTL_OUT(req, tv, sizeof(tv));
154	} else
155#endif
156#endif
157		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
158}
159
160static int
161sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
162{
163	u_int ncount;
164	struct timecounter *tc = arg1;
165
166	ncount = tc->tc_get_timecount(tc);
167	return sysctl_handle_int(oidp, &ncount, 0, req);
168}
169
170static int
171sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
172{
173	uint64_t freq;
174	struct timecounter *tc = arg1;
175
176	freq = tc->tc_frequency;
177	return sysctl_handle_64(oidp, &freq, 0, req);
178}
179
180/*
181 * Return the difference between the timehands' counter value now and what
182 * was when we copied it to the timehands' offset_count.
183 */
184static __inline u_int
185tc_delta(struct timehands *th)
186{
187	struct timecounter *tc;
188
189	tc = th->th_counter;
190	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
191	    tc->tc_counter_mask);
192}
193
194/*
195 * Functions for reading the time.  We have to loop until we are sure that
196 * the timehands that we operated on was not updated under our feet.  See
197 * the comment in <sys/time.h> for a description of these 12 functions.
198 */
199
200#ifdef FFCLOCK
201void
202fbclock_binuptime(struct bintime *bt)
203{
204	struct timehands *th;
205	unsigned int gen;
206
207	do {
208		th = timehands;
209		gen = atomic_load_acq_int(&th->th_generation);
210		*bt = th->th_offset;
211		bintime_addx(bt, th->th_scale * tc_delta(th));
212		atomic_thread_fence_acq();
213	} while (gen == 0 || gen != th->th_generation);
214}
215
216void
217fbclock_nanouptime(struct timespec *tsp)
218{
219	struct bintime bt;
220
221	fbclock_binuptime(&bt);
222	bintime2timespec(&bt, tsp);
223}
224
225void
226fbclock_microuptime(struct timeval *tvp)
227{
228	struct bintime bt;
229
230	fbclock_binuptime(&bt);
231	bintime2timeval(&bt, tvp);
232}
233
234void
235fbclock_bintime(struct bintime *bt)
236{
237
238	fbclock_binuptime(bt);
239	bintime_add(bt, &boottimebin);
240}
241
242void
243fbclock_nanotime(struct timespec *tsp)
244{
245	struct bintime bt;
246
247	fbclock_bintime(&bt);
248	bintime2timespec(&bt, tsp);
249}
250
251void
252fbclock_microtime(struct timeval *tvp)
253{
254	struct bintime bt;
255
256	fbclock_bintime(&bt);
257	bintime2timeval(&bt, tvp);
258}
259
260void
261fbclock_getbinuptime(struct bintime *bt)
262{
263	struct timehands *th;
264	unsigned int gen;
265
266	do {
267		th = timehands;
268		gen = atomic_load_acq_int(&th->th_generation);
269		*bt = th->th_offset;
270		atomic_thread_fence_acq();
271	} while (gen == 0 || gen != th->th_generation);
272}
273
274void
275fbclock_getnanouptime(struct timespec *tsp)
276{
277	struct timehands *th;
278	unsigned int gen;
279
280	do {
281		th = timehands;
282		gen = atomic_load_acq_int(&th->th_generation);
283		bintime2timespec(&th->th_offset, tsp);
284		atomic_thread_fence_acq();
285	} while (gen == 0 || gen != th->th_generation);
286}
287
288void
289fbclock_getmicrouptime(struct timeval *tvp)
290{
291	struct timehands *th;
292	unsigned int gen;
293
294	do {
295		th = timehands;
296		gen = atomic_load_acq_int(&th->th_generation);
297		bintime2timeval(&th->th_offset, tvp);
298		atomic_thread_fence_acq();
299	} while (gen == 0 || gen != th->th_generation);
300}
301
302void
303fbclock_getbintime(struct bintime *bt)
304{
305	struct timehands *th;
306	unsigned int gen;
307
308	do {
309		th = timehands;
310		gen = atomic_load_acq_int(&th->th_generation);
311		*bt = th->th_offset;
312		atomic_thread_fence_acq();
313	} while (gen == 0 || gen != th->th_generation);
314	bintime_add(bt, &boottimebin);
315}
316
317void
318fbclock_getnanotime(struct timespec *tsp)
319{
320	struct timehands *th;
321	unsigned int gen;
322
323	do {
324		th = timehands;
325		gen = atomic_load_acq_int(&th->th_generation);
326		*tsp = th->th_nanotime;
327		atomic_thread_fence_acq();
328	} while (gen == 0 || gen != th->th_generation);
329}
330
331void
332fbclock_getmicrotime(struct timeval *tvp)
333{
334	struct timehands *th;
335	unsigned int gen;
336
337	do {
338		th = timehands;
339		gen = atomic_load_acq_int(&th->th_generation);
340		*tvp = th->th_microtime;
341		atomic_thread_fence_acq();
342	} while (gen == 0 || gen != th->th_generation);
343}
344#else /* !FFCLOCK */
345void
346binuptime(struct bintime *bt)
347{
348	struct timehands *th;
349	u_int gen;
350
351	do {
352		th = timehands;
353		gen = atomic_load_acq_int(&th->th_generation);
354		*bt = th->th_offset;
355		bintime_addx(bt, th->th_scale * tc_delta(th));
356		atomic_thread_fence_acq();
357	} while (gen == 0 || gen != th->th_generation);
358}
359
360void
361nanouptime(struct timespec *tsp)
362{
363	struct bintime bt;
364
365	binuptime(&bt);
366	bintime2timespec(&bt, tsp);
367}
368
369void
370microuptime(struct timeval *tvp)
371{
372	struct bintime bt;
373
374	binuptime(&bt);
375	bintime2timeval(&bt, tvp);
376}
377
378void
379bintime(struct bintime *bt)
380{
381
382	binuptime(bt);
383	bintime_add(bt, &boottimebin);
384}
385
386void
387nanotime(struct timespec *tsp)
388{
389	struct bintime bt;
390
391	bintime(&bt);
392	bintime2timespec(&bt, tsp);
393}
394
395void
396microtime(struct timeval *tvp)
397{
398	struct bintime bt;
399
400	bintime(&bt);
401	bintime2timeval(&bt, tvp);
402}
403
404void
405getbinuptime(struct bintime *bt)
406{
407	struct timehands *th;
408	u_int gen;
409
410	do {
411		th = timehands;
412		gen = atomic_load_acq_int(&th->th_generation);
413		*bt = th->th_offset;
414		atomic_thread_fence_acq();
415	} while (gen == 0 || gen != th->th_generation);
416}
417
418void
419getnanouptime(struct timespec *tsp)
420{
421	struct timehands *th;
422	u_int gen;
423
424	do {
425		th = timehands;
426		gen = atomic_load_acq_int(&th->th_generation);
427		bintime2timespec(&th->th_offset, tsp);
428		atomic_thread_fence_acq();
429	} while (gen == 0 || gen != th->th_generation);
430}
431
432void
433getmicrouptime(struct timeval *tvp)
434{
435	struct timehands *th;
436	u_int gen;
437
438	do {
439		th = timehands;
440		gen = atomic_load_acq_int(&th->th_generation);
441		bintime2timeval(&th->th_offset, tvp);
442		atomic_thread_fence_acq();
443	} while (gen == 0 || gen != th->th_generation);
444}
445
446void
447getbintime(struct bintime *bt)
448{
449	struct timehands *th;
450	u_int gen;
451
452	do {
453		th = timehands;
454		gen = atomic_load_acq_int(&th->th_generation);
455		*bt = th->th_offset;
456		atomic_thread_fence_acq();
457	} while (gen == 0 || gen != th->th_generation);
458	bintime_add(bt, &boottimebin);
459}
460
461void
462getnanotime(struct timespec *tsp)
463{
464	struct timehands *th;
465	u_int gen;
466
467	do {
468		th = timehands;
469		gen = atomic_load_acq_int(&th->th_generation);
470		*tsp = th->th_nanotime;
471		atomic_thread_fence_acq();
472	} while (gen == 0 || gen != th->th_generation);
473}
474
475void
476getmicrotime(struct timeval *tvp)
477{
478	struct timehands *th;
479	u_int gen;
480
481	do {
482		th = timehands;
483		gen = atomic_load_acq_int(&th->th_generation);
484		*tvp = th->th_microtime;
485		atomic_thread_fence_acq();
486	} while (gen == 0 || gen != th->th_generation);
487}
488#endif /* FFCLOCK */
489
490#ifdef FFCLOCK
491/*
492 * Support for feed-forward synchronization algorithms. This is heavily inspired
493 * by the timehands mechanism but kept independent from it. *_windup() functions
494 * have some connection to avoid accessing the timecounter hardware more than
495 * necessary.
496 */
497
498/* Feed-forward clock estimates kept updated by the synchronization daemon. */
499struct ffclock_estimate ffclock_estimate;
500struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
501uint32_t ffclock_status;		/* Feed-forward clock status. */
502int8_t ffclock_updated;			/* New estimates are available. */
503struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
504
505struct fftimehands {
506	struct ffclock_estimate	cest;
507	struct bintime		tick_time;
508	struct bintime		tick_time_lerp;
509	ffcounter		tick_ffcount;
510	uint64_t		period_lerp;
511	volatile uint8_t	gen;
512	struct fftimehands	*next;
513};
514
515#define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
516
517static struct fftimehands ffth[10];
518static struct fftimehands *volatile fftimehands = ffth;
519
520static void
521ffclock_init(void)
522{
523	struct fftimehands *cur;
524	struct fftimehands *last;
525
526	memset(ffth, 0, sizeof(ffth));
527
528	last = ffth + NUM_ELEMENTS(ffth) - 1;
529	for (cur = ffth; cur < last; cur++)
530		cur->next = cur + 1;
531	last->next = ffth;
532
533	ffclock_updated = 0;
534	ffclock_status = FFCLOCK_STA_UNSYNC;
535	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
536}
537
538/*
539 * Reset the feed-forward clock estimates. Called from inittodr() to get things
540 * kick started and uses the timecounter nominal frequency as a first period
541 * estimate. Note: this function may be called several time just after boot.
542 * Note: this is the only function that sets the value of boot time for the
543 * monotonic (i.e. uptime) version of the feed-forward clock.
544 */
545void
546ffclock_reset_clock(struct timespec *ts)
547{
548	struct timecounter *tc;
549	struct ffclock_estimate cest;
550
551	tc = timehands->th_counter;
552	memset(&cest, 0, sizeof(struct ffclock_estimate));
553
554	timespec2bintime(ts, &ffclock_boottime);
555	timespec2bintime(ts, &(cest.update_time));
556	ffclock_read_counter(&cest.update_ffcount);
557	cest.leapsec_next = 0;
558	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
559	cest.errb_abs = 0;
560	cest.errb_rate = 0;
561	cest.status = FFCLOCK_STA_UNSYNC;
562	cest.leapsec_total = 0;
563	cest.leapsec = 0;
564
565	mtx_lock(&ffclock_mtx);
566	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
567	ffclock_updated = INT8_MAX;
568	mtx_unlock(&ffclock_mtx);
569
570	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
571	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
572	    (unsigned long)ts->tv_nsec);
573}
574
575/*
576 * Sub-routine to convert a time interval measured in RAW counter units to time
577 * in seconds stored in bintime format.
578 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
579 * larger than the max value of u_int (on 32 bit architecture). Loop to consume
580 * extra cycles.
581 */
582static void
583ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
584{
585	struct bintime bt2;
586	ffcounter delta, delta_max;
587
588	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
589	bintime_clear(bt);
590	do {
591		if (ffdelta > delta_max)
592			delta = delta_max;
593		else
594			delta = ffdelta;
595		bt2.sec = 0;
596		bt2.frac = period;
597		bintime_mul(&bt2, (unsigned int)delta);
598		bintime_add(bt, &bt2);
599		ffdelta -= delta;
600	} while (ffdelta > 0);
601}
602
603/*
604 * Update the fftimehands.
605 * Push the tick ffcount and time(s) forward based on current clock estimate.
606 * The conversion from ffcounter to bintime relies on the difference clock
607 * principle, whose accuracy relies on computing small time intervals. If a new
608 * clock estimate has been passed by the synchronisation daemon, make it
609 * current, and compute the linear interpolation for monotonic time if needed.
610 */
611static void
612ffclock_windup(unsigned int delta)
613{
614	struct ffclock_estimate *cest;
615	struct fftimehands *ffth;
616	struct bintime bt, gap_lerp;
617	ffcounter ffdelta;
618	uint64_t frac;
619	unsigned int polling;
620	uint8_t forward_jump, ogen;
621
622	/*
623	 * Pick the next timehand, copy current ffclock estimates and move tick
624	 * times and counter forward.
625	 */
626	forward_jump = 0;
627	ffth = fftimehands->next;
628	ogen = ffth->gen;
629	ffth->gen = 0;
630	cest = &ffth->cest;
631	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
632	ffdelta = (ffcounter)delta;
633	ffth->period_lerp = fftimehands->period_lerp;
634
635	ffth->tick_time = fftimehands->tick_time;
636	ffclock_convert_delta(ffdelta, cest->period, &bt);
637	bintime_add(&ffth->tick_time, &bt);
638
639	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
640	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
641	bintime_add(&ffth->tick_time_lerp, &bt);
642
643	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
644
645	/*
646	 * Assess the status of the clock, if the last update is too old, it is
647	 * likely the synchronisation daemon is dead and the clock is free
648	 * running.
649	 */
650	if (ffclock_updated == 0) {
651		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
652		ffclock_convert_delta(ffdelta, cest->period, &bt);
653		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
654			ffclock_status |= FFCLOCK_STA_UNSYNC;
655	}
656
657	/*
658	 * If available, grab updated clock estimates and make them current.
659	 * Recompute time at this tick using the updated estimates. The clock
660	 * estimates passed the feed-forward synchronisation daemon may result
661	 * in time conversion that is not monotonically increasing (just after
662	 * the update). time_lerp is a particular linear interpolation over the
663	 * synchronisation algo polling period that ensures monotonicity for the
664	 * clock ids requesting it.
665	 */
666	if (ffclock_updated > 0) {
667		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
668		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
669		ffth->tick_time = cest->update_time;
670		ffclock_convert_delta(ffdelta, cest->period, &bt);
671		bintime_add(&ffth->tick_time, &bt);
672
673		/* ffclock_reset sets ffclock_updated to INT8_MAX */
674		if (ffclock_updated == INT8_MAX)
675			ffth->tick_time_lerp = ffth->tick_time;
676
677		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
678			forward_jump = 1;
679		else
680			forward_jump = 0;
681
682		bintime_clear(&gap_lerp);
683		if (forward_jump) {
684			gap_lerp = ffth->tick_time;
685			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
686		} else {
687			gap_lerp = ffth->tick_time_lerp;
688			bintime_sub(&gap_lerp, &ffth->tick_time);
689		}
690
691		/*
692		 * The reset from the RTC clock may be far from accurate, and
693		 * reducing the gap between real time and interpolated time
694		 * could take a very long time if the interpolated clock insists
695		 * on strict monotonicity. The clock is reset under very strict
696		 * conditions (kernel time is known to be wrong and
697		 * synchronization daemon has been restarted recently.
698		 * ffclock_boottime absorbs the jump to ensure boot time is
699		 * correct and uptime functions stay consistent.
700		 */
701		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
702		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
703		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
704			if (forward_jump)
705				bintime_add(&ffclock_boottime, &gap_lerp);
706			else
707				bintime_sub(&ffclock_boottime, &gap_lerp);
708			ffth->tick_time_lerp = ffth->tick_time;
709			bintime_clear(&gap_lerp);
710		}
711
712		ffclock_status = cest->status;
713		ffth->period_lerp = cest->period;
714
715		/*
716		 * Compute corrected period used for the linear interpolation of
717		 * time. The rate of linear interpolation is capped to 5000PPM
718		 * (5ms/s).
719		 */
720		if (bintime_isset(&gap_lerp)) {
721			ffdelta = cest->update_ffcount;
722			ffdelta -= fftimehands->cest.update_ffcount;
723			ffclock_convert_delta(ffdelta, cest->period, &bt);
724			polling = bt.sec;
725			bt.sec = 0;
726			bt.frac = 5000000 * (uint64_t)18446744073LL;
727			bintime_mul(&bt, polling);
728			if (bintime_cmp(&gap_lerp, &bt, >))
729				gap_lerp = bt;
730
731			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
732			frac = 0;
733			if (gap_lerp.sec > 0) {
734				frac -= 1;
735				frac /= ffdelta / gap_lerp.sec;
736			}
737			frac += gap_lerp.frac / ffdelta;
738
739			if (forward_jump)
740				ffth->period_lerp += frac;
741			else
742				ffth->period_lerp -= frac;
743		}
744
745		ffclock_updated = 0;
746	}
747	if (++ogen == 0)
748		ogen = 1;
749	ffth->gen = ogen;
750	fftimehands = ffth;
751}
752
753/*
754 * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
755 * the old and new hardware counter cannot be read simultaneously. tc_windup()
756 * does read the two counters 'back to back', but a few cycles are effectively
757 * lost, and not accumulated in tick_ffcount. This is a fairly radical
758 * operation for a feed-forward synchronization daemon, and it is its job to not
759 * pushing irrelevant data to the kernel. Because there is no locking here,
760 * simply force to ignore pending or next update to give daemon a chance to
761 * realize the counter has changed.
762 */
763static void
764ffclock_change_tc(struct timehands *th)
765{
766	struct fftimehands *ffth;
767	struct ffclock_estimate *cest;
768	struct timecounter *tc;
769	uint8_t ogen;
770
771	tc = th->th_counter;
772	ffth = fftimehands->next;
773	ogen = ffth->gen;
774	ffth->gen = 0;
775
776	cest = &ffth->cest;
777	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
778	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
779	cest->errb_abs = 0;
780	cest->errb_rate = 0;
781	cest->status |= FFCLOCK_STA_UNSYNC;
782
783	ffth->tick_ffcount = fftimehands->tick_ffcount;
784	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
785	ffth->tick_time = fftimehands->tick_time;
786	ffth->period_lerp = cest->period;
787
788	/* Do not lock but ignore next update from synchronization daemon. */
789	ffclock_updated--;
790
791	if (++ogen == 0)
792		ogen = 1;
793	ffth->gen = ogen;
794	fftimehands = ffth;
795}
796
797/*
798 * Retrieve feed-forward counter and time of last kernel tick.
799 */
800void
801ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
802{
803	struct fftimehands *ffth;
804	uint8_t gen;
805
806	/*
807	 * No locking but check generation has not changed. Also need to make
808	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
809	 */
810	do {
811		ffth = fftimehands;
812		gen = ffth->gen;
813		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
814			*bt = ffth->tick_time_lerp;
815		else
816			*bt = ffth->tick_time;
817		*ffcount = ffth->tick_ffcount;
818	} while (gen == 0 || gen != ffth->gen);
819}
820
821/*
822 * Absolute clock conversion. Low level function to convert ffcounter to
823 * bintime. The ffcounter is converted using the current ffclock period estimate
824 * or the "interpolated period" to ensure monotonicity.
825 * NOTE: this conversion may have been deferred, and the clock updated since the
826 * hardware counter has been read.
827 */
828void
829ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
830{
831	struct fftimehands *ffth;
832	struct bintime bt2;
833	ffcounter ffdelta;
834	uint8_t gen;
835
836	/*
837	 * No locking but check generation has not changed. Also need to make
838	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
839	 */
840	do {
841		ffth = fftimehands;
842		gen = ffth->gen;
843		if (ffcount > ffth->tick_ffcount)
844			ffdelta = ffcount - ffth->tick_ffcount;
845		else
846			ffdelta = ffth->tick_ffcount - ffcount;
847
848		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
849			*bt = ffth->tick_time_lerp;
850			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
851		} else {
852			*bt = ffth->tick_time;
853			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
854		}
855
856		if (ffcount > ffth->tick_ffcount)
857			bintime_add(bt, &bt2);
858		else
859			bintime_sub(bt, &bt2);
860	} while (gen == 0 || gen != ffth->gen);
861}
862
863/*
864 * Difference clock conversion.
865 * Low level function to Convert a time interval measured in RAW counter units
866 * into bintime. The difference clock allows measuring small intervals much more
867 * reliably than the absolute clock.
868 */
869void
870ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
871{
872	struct fftimehands *ffth;
873	uint8_t gen;
874
875	/* No locking but check generation has not changed. */
876	do {
877		ffth = fftimehands;
878		gen = ffth->gen;
879		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
880	} while (gen == 0 || gen != ffth->gen);
881}
882
883/*
884 * Access to current ffcounter value.
885 */
886void
887ffclock_read_counter(ffcounter *ffcount)
888{
889	struct timehands *th;
890	struct fftimehands *ffth;
891	unsigned int gen, delta;
892
893	/*
894	 * ffclock_windup() called from tc_windup(), safe to rely on
895	 * th->th_generation only, for correct delta and ffcounter.
896	 */
897	do {
898		th = timehands;
899		gen = atomic_load_acq_int(&th->th_generation);
900		ffth = fftimehands;
901		delta = tc_delta(th);
902		*ffcount = ffth->tick_ffcount;
903		atomic_thread_fence_acq();
904	} while (gen == 0 || gen != th->th_generation);
905
906	*ffcount += delta;
907}
908
909void
910binuptime(struct bintime *bt)
911{
912
913	binuptime_fromclock(bt, sysclock_active);
914}
915
916void
917nanouptime(struct timespec *tsp)
918{
919
920	nanouptime_fromclock(tsp, sysclock_active);
921}
922
923void
924microuptime(struct timeval *tvp)
925{
926
927	microuptime_fromclock(tvp, sysclock_active);
928}
929
930void
931bintime(struct bintime *bt)
932{
933
934	bintime_fromclock(bt, sysclock_active);
935}
936
937void
938nanotime(struct timespec *tsp)
939{
940
941	nanotime_fromclock(tsp, sysclock_active);
942}
943
944void
945microtime(struct timeval *tvp)
946{
947
948	microtime_fromclock(tvp, sysclock_active);
949}
950
951void
952getbinuptime(struct bintime *bt)
953{
954
955	getbinuptime_fromclock(bt, sysclock_active);
956}
957
958void
959getnanouptime(struct timespec *tsp)
960{
961
962	getnanouptime_fromclock(tsp, sysclock_active);
963}
964
965void
966getmicrouptime(struct timeval *tvp)
967{
968
969	getmicrouptime_fromclock(tvp, sysclock_active);
970}
971
972void
973getbintime(struct bintime *bt)
974{
975
976	getbintime_fromclock(bt, sysclock_active);
977}
978
979void
980getnanotime(struct timespec *tsp)
981{
982
983	getnanotime_fromclock(tsp, sysclock_active);
984}
985
986void
987getmicrotime(struct timeval *tvp)
988{
989
990	getmicrouptime_fromclock(tvp, sysclock_active);
991}
992
993#endif /* FFCLOCK */
994
995/*
996 * This is a clone of getnanotime and used for walltimestamps.
997 * The dtrace_ prefix prevents fbt from creating probes for
998 * it so walltimestamp can be safely used in all fbt probes.
999 */
1000void
1001dtrace_getnanotime(struct timespec *tsp)
1002{
1003	struct timehands *th;
1004	u_int gen;
1005
1006	do {
1007		th = timehands;
1008		gen = atomic_load_acq_int(&th->th_generation);
1009		*tsp = th->th_nanotime;
1010		atomic_thread_fence_acq();
1011	} while (gen == 0 || gen != th->th_generation);
1012}
1013
1014/*
1015 * System clock currently providing time to the system. Modifiable via sysctl
1016 * when the FFCLOCK option is defined.
1017 */
1018int sysclock_active = SYSCLOCK_FBCK;
1019
1020/* Internal NTP status and error estimates. */
1021extern int time_status;
1022extern long time_esterror;
1023
1024/*
1025 * Take a snapshot of sysclock data which can be used to compare system clocks
1026 * and generate timestamps after the fact.
1027 */
1028void
1029sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1030{
1031	struct fbclock_info *fbi;
1032	struct timehands *th;
1033	struct bintime bt;
1034	unsigned int delta, gen;
1035#ifdef FFCLOCK
1036	ffcounter ffcount;
1037	struct fftimehands *ffth;
1038	struct ffclock_info *ffi;
1039	struct ffclock_estimate cest;
1040
1041	ffi = &clock_snap->ff_info;
1042#endif
1043
1044	fbi = &clock_snap->fb_info;
1045	delta = 0;
1046
1047	do {
1048		th = timehands;
1049		gen = atomic_load_acq_int(&th->th_generation);
1050		fbi->th_scale = th->th_scale;
1051		fbi->tick_time = th->th_offset;
1052#ifdef FFCLOCK
1053		ffth = fftimehands;
1054		ffi->tick_time = ffth->tick_time_lerp;
1055		ffi->tick_time_lerp = ffth->tick_time_lerp;
1056		ffi->period = ffth->cest.period;
1057		ffi->period_lerp = ffth->period_lerp;
1058		clock_snap->ffcount = ffth->tick_ffcount;
1059		cest = ffth->cest;
1060#endif
1061		if (!fast)
1062			delta = tc_delta(th);
1063		atomic_thread_fence_acq();
1064	} while (gen == 0 || gen != th->th_generation);
1065
1066	clock_snap->delta = delta;
1067	clock_snap->sysclock_active = sysclock_active;
1068
1069	/* Record feedback clock status and error. */
1070	clock_snap->fb_info.status = time_status;
1071	/* XXX: Very crude estimate of feedback clock error. */
1072	bt.sec = time_esterror / 1000000;
1073	bt.frac = ((time_esterror - bt.sec) * 1000000) *
1074	    (uint64_t)18446744073709ULL;
1075	clock_snap->fb_info.error = bt;
1076
1077#ifdef FFCLOCK
1078	if (!fast)
1079		clock_snap->ffcount += delta;
1080
1081	/* Record feed-forward clock leap second adjustment. */
1082	ffi->leapsec_adjustment = cest.leapsec_total;
1083	if (clock_snap->ffcount > cest.leapsec_next)
1084		ffi->leapsec_adjustment -= cest.leapsec;
1085
1086	/* Record feed-forward clock status and error. */
1087	clock_snap->ff_info.status = cest.status;
1088	ffcount = clock_snap->ffcount - cest.update_ffcount;
1089	ffclock_convert_delta(ffcount, cest.period, &bt);
1090	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1091	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1092	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1093	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1094	clock_snap->ff_info.error = bt;
1095#endif
1096}
1097
1098/*
1099 * Convert a sysclock snapshot into a struct bintime based on the specified
1100 * clock source and flags.
1101 */
1102int
1103sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1104    int whichclock, uint32_t flags)
1105{
1106#ifdef FFCLOCK
1107	struct bintime bt2;
1108	uint64_t period;
1109#endif
1110
1111	switch (whichclock) {
1112	case SYSCLOCK_FBCK:
1113		*bt = cs->fb_info.tick_time;
1114
1115		/* If snapshot was created with !fast, delta will be >0. */
1116		if (cs->delta > 0)
1117			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1118
1119		if ((flags & FBCLOCK_UPTIME) == 0)
1120			bintime_add(bt, &boottimebin);
1121		break;
1122#ifdef FFCLOCK
1123	case SYSCLOCK_FFWD:
1124		if (flags & FFCLOCK_LERP) {
1125			*bt = cs->ff_info.tick_time_lerp;
1126			period = cs->ff_info.period_lerp;
1127		} else {
1128			*bt = cs->ff_info.tick_time;
1129			period = cs->ff_info.period;
1130		}
1131
1132		/* If snapshot was created with !fast, delta will be >0. */
1133		if (cs->delta > 0) {
1134			ffclock_convert_delta(cs->delta, period, &bt2);
1135			bintime_add(bt, &bt2);
1136		}
1137
1138		/* Leap second adjustment. */
1139		if (flags & FFCLOCK_LEAPSEC)
1140			bt->sec -= cs->ff_info.leapsec_adjustment;
1141
1142		/* Boot time adjustment, for uptime/monotonic clocks. */
1143		if (flags & FFCLOCK_UPTIME)
1144			bintime_sub(bt, &ffclock_boottime);
1145		break;
1146#endif
1147	default:
1148		return (EINVAL);
1149		break;
1150	}
1151
1152	return (0);
1153}
1154
1155/*
1156 * Initialize a new timecounter and possibly use it.
1157 */
1158void
1159tc_init(struct timecounter *tc)
1160{
1161	u_int u;
1162	struct sysctl_oid *tc_root;
1163
1164	u = tc->tc_frequency / tc->tc_counter_mask;
1165	/* XXX: We need some margin here, 10% is a guess */
1166	u *= 11;
1167	u /= 10;
1168	if (u > hz && tc->tc_quality >= 0) {
1169		tc->tc_quality = -2000;
1170		if (bootverbose) {
1171			printf("Timecounter \"%s\" frequency %ju Hz",
1172			    tc->tc_name, (uintmax_t)tc->tc_frequency);
1173			printf(" -- Insufficient hz, needs at least %u\n", u);
1174		}
1175	} else if (tc->tc_quality >= 0 || bootverbose) {
1176		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1177		    tc->tc_name, (uintmax_t)tc->tc_frequency,
1178		    tc->tc_quality);
1179	}
1180
1181	tc->tc_next = timecounters;
1182	timecounters = tc;
1183	/*
1184	 * Set up sysctl tree for this counter.
1185	 */
1186	tc_root = SYSCTL_ADD_NODE(NULL,
1187	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1188	    CTLFLAG_RW, 0, "timecounter description");
1189	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1190	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1191	    "mask for implemented bits");
1192	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1193	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1194	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
1195	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1196	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1197	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1198	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1199	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1200	    "goodness of time counter");
1201	/*
1202	 * Do not automatically switch if the current tc was specifically
1203	 * chosen.  Never automatically use a timecounter with negative quality.
1204	 * Even though we run on the dummy counter, switching here may be
1205	 * worse since this timecounter may not be monotonic.
1206	 */
1207	if (tc_chosen)
1208		return;
1209	if (tc->tc_quality < 0)
1210		return;
1211	if (tc->tc_quality < timecounter->tc_quality)
1212		return;
1213	if (tc->tc_quality == timecounter->tc_quality &&
1214	    tc->tc_frequency < timecounter->tc_frequency)
1215		return;
1216	(void)tc->tc_get_timecount(tc);
1217	(void)tc->tc_get_timecount(tc);
1218	timecounter = tc;
1219}
1220
1221/* Report the frequency of the current timecounter. */
1222uint64_t
1223tc_getfrequency(void)
1224{
1225
1226	return (timehands->th_counter->tc_frequency);
1227}
1228
1229/*
1230 * Step our concept of UTC.  This is done by modifying our estimate of
1231 * when we booted.
1232 * XXX: not locked.
1233 */
1234void
1235tc_setclock(struct timespec *ts)
1236{
1237	struct timespec tbef, taft;
1238	struct bintime bt, bt2;
1239
1240	cpu_tick_calibrate(1);
1241	nanotime(&tbef);
1242	timespec2bintime(ts, &bt);
1243	binuptime(&bt2);
1244	bintime_sub(&bt, &bt2);
1245	bintime_add(&bt2, &boottimebin);
1246	boottimebin = bt;
1247	bintime2timeval(&bt, &boottime);
1248
1249	/* XXX fiddle all the little crinkly bits around the fiords... */
1250	tc_windup();
1251	nanotime(&taft);
1252	if (timestepwarnings) {
1253		log(LOG_INFO,
1254		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1255		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1256		    (intmax_t)taft.tv_sec, taft.tv_nsec,
1257		    (intmax_t)ts->tv_sec, ts->tv_nsec);
1258	}
1259	cpu_tick_calibrate(1);
1260}
1261
1262/*
1263 * Initialize the next struct timehands in the ring and make
1264 * it the active timehands.  Along the way we might switch to a different
1265 * timecounter and/or do seconds processing in NTP.  Slightly magic.
1266 */
1267static void
1268tc_windup(void)
1269{
1270	struct bintime bt;
1271	struct timehands *th, *tho;
1272	uint64_t scale;
1273	u_int delta, ncount, ogen;
1274	int i;
1275	time_t t;
1276
1277	/*
1278	 * Make the next timehands a copy of the current one, but do
1279	 * not overwrite the generation or next pointer.  While we
1280	 * update the contents, the generation must be zero.  We need
1281	 * to ensure that the zero generation is visible before the
1282	 * data updates become visible, which requires release fence.
1283	 * For similar reasons, re-reading of the generation after the
1284	 * data is read should use acquire fence.
1285	 */
1286	tho = timehands;
1287	th = tho->th_next;
1288	ogen = th->th_generation;
1289	th->th_generation = 0;
1290	atomic_thread_fence_rel();
1291	bcopy(tho, th, offsetof(struct timehands, th_generation));
1292
1293	/*
1294	 * Capture a timecounter delta on the current timecounter and if
1295	 * changing timecounters, a counter value from the new timecounter.
1296	 * Update the offset fields accordingly.
1297	 */
1298	delta = tc_delta(th);
1299	if (th->th_counter != timecounter)
1300		ncount = timecounter->tc_get_timecount(timecounter);
1301	else
1302		ncount = 0;
1303#ifdef FFCLOCK
1304	ffclock_windup(delta);
1305#endif
1306	th->th_offset_count += delta;
1307	th->th_offset_count &= th->th_counter->tc_counter_mask;
1308	while (delta > th->th_counter->tc_frequency) {
1309		/* Eat complete unadjusted seconds. */
1310		delta -= th->th_counter->tc_frequency;
1311		th->th_offset.sec++;
1312	}
1313	if ((delta > th->th_counter->tc_frequency / 2) &&
1314	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
1315		/* The product th_scale * delta just barely overflows. */
1316		th->th_offset.sec++;
1317	}
1318	bintime_addx(&th->th_offset, th->th_scale * delta);
1319
1320	/*
1321	 * Hardware latching timecounters may not generate interrupts on
1322	 * PPS events, so instead we poll them.  There is a finite risk that
1323	 * the hardware might capture a count which is later than the one we
1324	 * got above, and therefore possibly in the next NTP second which might
1325	 * have a different rate than the current NTP second.  It doesn't
1326	 * matter in practice.
1327	 */
1328	if (tho->th_counter->tc_poll_pps)
1329		tho->th_counter->tc_poll_pps(tho->th_counter);
1330
1331	/*
1332	 * Deal with NTP second processing.  The for loop normally
1333	 * iterates at most once, but in extreme situations it might
1334	 * keep NTP sane if timeouts are not run for several seconds.
1335	 * At boot, the time step can be large when the TOD hardware
1336	 * has been read, so on really large steps, we call
1337	 * ntp_update_second only twice.  We need to call it twice in
1338	 * case we missed a leap second.
1339	 */
1340	bt = th->th_offset;
1341	bintime_add(&bt, &boottimebin);
1342	i = bt.sec - tho->th_microtime.tv_sec;
1343	if (i > LARGE_STEP)
1344		i = 2;
1345	for (; i > 0; i--) {
1346		t = bt.sec;
1347		ntp_update_second(&th->th_adjustment, &bt.sec);
1348		if (bt.sec != t)
1349			boottimebin.sec += bt.sec - t;
1350	}
1351	/* Update the UTC timestamps used by the get*() functions. */
1352	/* XXX shouldn't do this here.  Should force non-`get' versions. */
1353	bintime2timeval(&bt, &th->th_microtime);
1354	bintime2timespec(&bt, &th->th_nanotime);
1355
1356	/* Now is a good time to change timecounters. */
1357	if (th->th_counter != timecounter) {
1358#ifndef __arm__
1359		if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1360			cpu_disable_c2_sleep++;
1361		if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1362			cpu_disable_c2_sleep--;
1363#endif
1364		th->th_counter = timecounter;
1365		th->th_offset_count = ncount;
1366		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1367		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1368#ifdef FFCLOCK
1369		ffclock_change_tc(th);
1370#endif
1371	}
1372
1373	/*-
1374	 * Recalculate the scaling factor.  We want the number of 1/2^64
1375	 * fractions of a second per period of the hardware counter, taking
1376	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1377	 * processing provides us with.
1378	 *
1379	 * The th_adjustment is nanoseconds per second with 32 bit binary
1380	 * fraction and we want 64 bit binary fraction of second:
1381	 *
1382	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
1383	 *
1384	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1385	 * we can only multiply by about 850 without overflowing, that
1386	 * leaves no suitably precise fractions for multiply before divide.
1387	 *
1388	 * Divide before multiply with a fraction of 2199/512 results in a
1389	 * systematic undercompensation of 10PPM of th_adjustment.  On a
1390	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1391 	 *
1392	 * We happily sacrifice the lowest of the 64 bits of our result
1393	 * to the goddess of code clarity.
1394	 *
1395	 */
1396	scale = (uint64_t)1 << 63;
1397	scale += (th->th_adjustment / 1024) * 2199;
1398	scale /= th->th_counter->tc_frequency;
1399	th->th_scale = scale * 2;
1400
1401	/*
1402	 * Now that the struct timehands is again consistent, set the new
1403	 * generation number, making sure to not make it zero.
1404	 */
1405	if (++ogen == 0)
1406		ogen = 1;
1407	atomic_store_rel_int(&th->th_generation, ogen);
1408
1409	/* Go live with the new struct timehands. */
1410#ifdef FFCLOCK
1411	switch (sysclock_active) {
1412	case SYSCLOCK_FBCK:
1413#endif
1414		time_second = th->th_microtime.tv_sec;
1415		time_uptime = th->th_offset.sec;
1416#ifdef FFCLOCK
1417		break;
1418	case SYSCLOCK_FFWD:
1419		time_second = fftimehands->tick_time_lerp.sec;
1420		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1421		break;
1422	}
1423#endif
1424
1425	timehands = th;
1426	timekeep_push_vdso();
1427}
1428
1429/* Report or change the active timecounter hardware. */
1430static int
1431sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1432{
1433	char newname[32];
1434	struct timecounter *newtc, *tc;
1435	int error;
1436
1437	tc = timecounter;
1438	strlcpy(newname, tc->tc_name, sizeof(newname));
1439
1440	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1441	if (error != 0 || req->newptr == NULL)
1442		return (error);
1443	/* Record that the tc in use now was specifically chosen. */
1444	tc_chosen = 1;
1445	if (strcmp(newname, tc->tc_name) == 0)
1446		return (0);
1447	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1448		if (strcmp(newname, newtc->tc_name) != 0)
1449			continue;
1450
1451		/* Warm up new timecounter. */
1452		(void)newtc->tc_get_timecount(newtc);
1453		(void)newtc->tc_get_timecount(newtc);
1454
1455		timecounter = newtc;
1456
1457		/*
1458		 * The vdso timehands update is deferred until the next
1459		 * 'tc_windup()'.
1460		 *
1461		 * This is prudent given that 'timekeep_push_vdso()' does not
1462		 * use any locking and that it can be called in hard interrupt
1463		 * context via 'tc_windup()'.
1464		 */
1465		return (0);
1466	}
1467	return (EINVAL);
1468}
1469
1470SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1471    0, 0, sysctl_kern_timecounter_hardware, "A",
1472    "Timecounter hardware selected");
1473
1474
1475/* Report the available timecounter hardware. */
1476static int
1477sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1478{
1479	struct sbuf sb;
1480	struct timecounter *tc;
1481	int error;
1482
1483	sbuf_new_for_sysctl(&sb, NULL, 0, req);
1484	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1485		if (tc != timecounters)
1486			sbuf_putc(&sb, ' ');
1487		sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1488	}
1489	error = sbuf_finish(&sb);
1490	sbuf_delete(&sb);
1491	return (error);
1492}
1493
1494SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1495    0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1496
1497/*
1498 * RFC 2783 PPS-API implementation.
1499 */
1500
1501/*
1502 *  Return true if the driver is aware of the abi version extensions in the
1503 *  pps_state structure, and it supports at least the given abi version number.
1504 */
1505static inline int
1506abi_aware(struct pps_state *pps, int vers)
1507{
1508
1509	return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1510}
1511
1512static int
1513pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1514{
1515	int err, timo;
1516	pps_seq_t aseq, cseq;
1517	struct timeval tv;
1518
1519	if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1520		return (EINVAL);
1521
1522	/*
1523	 * If no timeout is requested, immediately return whatever values were
1524	 * most recently captured.  If timeout seconds is -1, that's a request
1525	 * to block without a timeout.  WITNESS won't let us sleep forever
1526	 * without a lock (we really don't need a lock), so just repeatedly
1527	 * sleep a long time.
1528	 */
1529	if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1530		if (fapi->timeout.tv_sec == -1)
1531			timo = 0x7fffffff;
1532		else {
1533			tv.tv_sec = fapi->timeout.tv_sec;
1534			tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1535			timo = tvtohz(&tv);
1536		}
1537		aseq = pps->ppsinfo.assert_sequence;
1538		cseq = pps->ppsinfo.clear_sequence;
1539		while (aseq == pps->ppsinfo.assert_sequence &&
1540		    cseq == pps->ppsinfo.clear_sequence) {
1541			if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1542				if (pps->flags & PPSFLAG_MTX_SPIN) {
1543					err = msleep_spin(pps, pps->driver_mtx,
1544					    "ppsfch", timo);
1545				} else {
1546					err = msleep(pps, pps->driver_mtx, PCATCH,
1547					    "ppsfch", timo);
1548				}
1549			} else {
1550				err = tsleep(pps, PCATCH, "ppsfch", timo);
1551			}
1552			if (err == EWOULDBLOCK) {
1553				if (fapi->timeout.tv_sec == -1) {
1554					continue;
1555				} else {
1556					return (ETIMEDOUT);
1557				}
1558			} else if (err != 0) {
1559				return (err);
1560			}
1561		}
1562	}
1563
1564	pps->ppsinfo.current_mode = pps->ppsparam.mode;
1565	fapi->pps_info_buf = pps->ppsinfo;
1566
1567	return (0);
1568}
1569
1570int
1571pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1572{
1573	pps_params_t *app;
1574	struct pps_fetch_args *fapi;
1575#ifdef FFCLOCK
1576	struct pps_fetch_ffc_args *fapi_ffc;
1577#endif
1578#ifdef PPS_SYNC
1579	struct pps_kcbind_args *kapi;
1580#endif
1581
1582	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1583	switch (cmd) {
1584	case PPS_IOC_CREATE:
1585		return (0);
1586	case PPS_IOC_DESTROY:
1587		return (0);
1588	case PPS_IOC_SETPARAMS:
1589		app = (pps_params_t *)data;
1590		if (app->mode & ~pps->ppscap)
1591			return (EINVAL);
1592#ifdef FFCLOCK
1593		/* Ensure only a single clock is selected for ffc timestamp. */
1594		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1595			return (EINVAL);
1596#endif
1597		pps->ppsparam = *app;
1598		return (0);
1599	case PPS_IOC_GETPARAMS:
1600		app = (pps_params_t *)data;
1601		*app = pps->ppsparam;
1602		app->api_version = PPS_API_VERS_1;
1603		return (0);
1604	case PPS_IOC_GETCAP:
1605		*(int*)data = pps->ppscap;
1606		return (0);
1607	case PPS_IOC_FETCH:
1608		fapi = (struct pps_fetch_args *)data;
1609		return (pps_fetch(fapi, pps));
1610#ifdef FFCLOCK
1611	case PPS_IOC_FETCH_FFCOUNTER:
1612		fapi_ffc = (struct pps_fetch_ffc_args *)data;
1613		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1614		    PPS_TSFMT_TSPEC)
1615			return (EINVAL);
1616		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1617			return (EOPNOTSUPP);
1618		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1619		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1620		/* Overwrite timestamps if feedback clock selected. */
1621		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1622		case PPS_TSCLK_FBCK:
1623			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1624			    pps->ppsinfo.assert_timestamp;
1625			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1626			    pps->ppsinfo.clear_timestamp;
1627			break;
1628		case PPS_TSCLK_FFWD:
1629			break;
1630		default:
1631			break;
1632		}
1633		return (0);
1634#endif /* FFCLOCK */
1635	case PPS_IOC_KCBIND:
1636#ifdef PPS_SYNC
1637		kapi = (struct pps_kcbind_args *)data;
1638		/* XXX Only root should be able to do this */
1639		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1640			return (EINVAL);
1641		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1642			return (EINVAL);
1643		if (kapi->edge & ~pps->ppscap)
1644			return (EINVAL);
1645		pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1646		    (pps->kcmode & KCMODE_ABIFLAG);
1647		return (0);
1648#else
1649		return (EOPNOTSUPP);
1650#endif
1651	default:
1652		return (ENOIOCTL);
1653	}
1654}
1655
1656void
1657pps_init(struct pps_state *pps)
1658{
1659	pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1660	if (pps->ppscap & PPS_CAPTUREASSERT)
1661		pps->ppscap |= PPS_OFFSETASSERT;
1662	if (pps->ppscap & PPS_CAPTURECLEAR)
1663		pps->ppscap |= PPS_OFFSETCLEAR;
1664#ifdef FFCLOCK
1665	pps->ppscap |= PPS_TSCLK_MASK;
1666#endif
1667	pps->kcmode &= ~KCMODE_ABIFLAG;
1668}
1669
1670void
1671pps_init_abi(struct pps_state *pps)
1672{
1673
1674	pps_init(pps);
1675	if (pps->driver_abi > 0) {
1676		pps->kcmode |= KCMODE_ABIFLAG;
1677		pps->kernel_abi = PPS_ABI_VERSION;
1678	}
1679}
1680
1681void
1682pps_capture(struct pps_state *pps)
1683{
1684	struct timehands *th;
1685
1686	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1687	th = timehands;
1688	pps->capgen = atomic_load_acq_int(&th->th_generation);
1689	pps->capth = th;
1690#ifdef FFCLOCK
1691	pps->capffth = fftimehands;
1692#endif
1693	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1694	atomic_thread_fence_acq();
1695	if (pps->capgen != th->th_generation)
1696		pps->capgen = 0;
1697}
1698
1699void
1700pps_event(struct pps_state *pps, int event)
1701{
1702	struct bintime bt;
1703	struct timespec ts, *tsp, *osp;
1704	u_int tcount, *pcount;
1705	int foff, fhard;
1706	pps_seq_t *pseq;
1707#ifdef FFCLOCK
1708	struct timespec *tsp_ffc;
1709	pps_seq_t *pseq_ffc;
1710	ffcounter *ffcount;
1711#endif
1712
1713	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1714	/* Nothing to do if not currently set to capture this event type. */
1715	if ((event & pps->ppsparam.mode) == 0)
1716		return;
1717	/* If the timecounter was wound up underneath us, bail out. */
1718	if (pps->capgen == 0 || pps->capgen !=
1719	    atomic_load_acq_int(&pps->capth->th_generation))
1720		return;
1721
1722	/* Things would be easier with arrays. */
1723	if (event == PPS_CAPTUREASSERT) {
1724		tsp = &pps->ppsinfo.assert_timestamp;
1725		osp = &pps->ppsparam.assert_offset;
1726		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1727		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1728		pcount = &pps->ppscount[0];
1729		pseq = &pps->ppsinfo.assert_sequence;
1730#ifdef FFCLOCK
1731		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1732		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1733		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1734#endif
1735	} else {
1736		tsp = &pps->ppsinfo.clear_timestamp;
1737		osp = &pps->ppsparam.clear_offset;
1738		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1739		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1740		pcount = &pps->ppscount[1];
1741		pseq = &pps->ppsinfo.clear_sequence;
1742#ifdef FFCLOCK
1743		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1744		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1745		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1746#endif
1747	}
1748
1749	/*
1750	 * If the timecounter changed, we cannot compare the count values, so
1751	 * we have to drop the rest of the PPS-stuff until the next event.
1752	 */
1753	if (pps->ppstc != pps->capth->th_counter) {
1754		pps->ppstc = pps->capth->th_counter;
1755		*pcount = pps->capcount;
1756		pps->ppscount[2] = pps->capcount;
1757		return;
1758	}
1759
1760	/* Convert the count to a timespec. */
1761	tcount = pps->capcount - pps->capth->th_offset_count;
1762	tcount &= pps->capth->th_counter->tc_counter_mask;
1763	bt = pps->capth->th_offset;
1764	bintime_addx(&bt, pps->capth->th_scale * tcount);
1765	bintime_add(&bt, &boottimebin);
1766	bintime2timespec(&bt, &ts);
1767
1768	/* If the timecounter was wound up underneath us, bail out. */
1769	atomic_thread_fence_acq();
1770	if (pps->capgen != pps->capth->th_generation)
1771		return;
1772
1773	*pcount = pps->capcount;
1774	(*pseq)++;
1775	*tsp = ts;
1776
1777	if (foff) {
1778		timespecadd(tsp, osp);
1779		if (tsp->tv_nsec < 0) {
1780			tsp->tv_nsec += 1000000000;
1781			tsp->tv_sec -= 1;
1782		}
1783	}
1784
1785#ifdef FFCLOCK
1786	*ffcount = pps->capffth->tick_ffcount + tcount;
1787	bt = pps->capffth->tick_time;
1788	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1789	bintime_add(&bt, &pps->capffth->tick_time);
1790	bintime2timespec(&bt, &ts);
1791	(*pseq_ffc)++;
1792	*tsp_ffc = ts;
1793#endif
1794
1795#ifdef PPS_SYNC
1796	if (fhard) {
1797		uint64_t scale;
1798
1799		/*
1800		 * Feed the NTP PLL/FLL.
1801		 * The FLL wants to know how many (hardware) nanoseconds
1802		 * elapsed since the previous event.
1803		 */
1804		tcount = pps->capcount - pps->ppscount[2];
1805		pps->ppscount[2] = pps->capcount;
1806		tcount &= pps->capth->th_counter->tc_counter_mask;
1807		scale = (uint64_t)1 << 63;
1808		scale /= pps->capth->th_counter->tc_frequency;
1809		scale *= 2;
1810		bt.sec = 0;
1811		bt.frac = 0;
1812		bintime_addx(&bt, scale * tcount);
1813		bintime2timespec(&bt, &ts);
1814		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1815	}
1816#endif
1817
1818	/* Wakeup anyone sleeping in pps_fetch().  */
1819	wakeup(pps);
1820}
1821
1822/*
1823 * Timecounters need to be updated every so often to prevent the hardware
1824 * counter from overflowing.  Updating also recalculates the cached values
1825 * used by the get*() family of functions, so their precision depends on
1826 * the update frequency.
1827 */
1828
1829static int tc_tick;
1830SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1831    "Approximate number of hardclock ticks in a millisecond");
1832
1833void
1834tc_ticktock(int cnt)
1835{
1836	static int count;
1837
1838	count += cnt;
1839	if (count < tc_tick)
1840		return;
1841	count = 0;
1842	tc_windup();
1843}
1844
1845static void __inline
1846tc_adjprecision(void)
1847{
1848	int t;
1849
1850	if (tc_timepercentage > 0) {
1851		t = (99 + tc_timepercentage) / tc_timepercentage;
1852		tc_precexp = fls(t + (t >> 1)) - 1;
1853		FREQ2BT(hz / tc_tick, &bt_timethreshold);
1854		FREQ2BT(hz, &bt_tickthreshold);
1855		bintime_shift(&bt_timethreshold, tc_precexp);
1856		bintime_shift(&bt_tickthreshold, tc_precexp);
1857	} else {
1858		tc_precexp = 31;
1859		bt_timethreshold.sec = INT_MAX;
1860		bt_timethreshold.frac = ~(uint64_t)0;
1861		bt_tickthreshold = bt_timethreshold;
1862	}
1863	sbt_timethreshold = bttosbt(bt_timethreshold);
1864	sbt_tickthreshold = bttosbt(bt_tickthreshold);
1865}
1866
1867static int
1868sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1869{
1870	int error, val;
1871
1872	val = tc_timepercentage;
1873	error = sysctl_handle_int(oidp, &val, 0, req);
1874	if (error != 0 || req->newptr == NULL)
1875		return (error);
1876	tc_timepercentage = val;
1877	if (cold)
1878		goto done;
1879	tc_adjprecision();
1880done:
1881	return (0);
1882}
1883
1884static void
1885inittimecounter(void *dummy)
1886{
1887	u_int p;
1888	int tick_rate;
1889
1890	/*
1891	 * Set the initial timeout to
1892	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1893	 * People should probably not use the sysctl to set the timeout
1894	 * to smaller than its inital value, since that value is the
1895	 * smallest reasonable one.  If they want better timestamps they
1896	 * should use the non-"get"* functions.
1897	 */
1898	if (hz > 1000)
1899		tc_tick = (hz + 500) / 1000;
1900	else
1901		tc_tick = 1;
1902	tc_adjprecision();
1903	FREQ2BT(hz, &tick_bt);
1904	tick_sbt = bttosbt(tick_bt);
1905	tick_rate = hz / tc_tick;
1906	FREQ2BT(tick_rate, &tc_tick_bt);
1907	tc_tick_sbt = bttosbt(tc_tick_bt);
1908	p = (tc_tick * 1000000) / hz;
1909	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1910
1911#ifdef FFCLOCK
1912	ffclock_init();
1913#endif
1914	/* warm up new timecounter (again) and get rolling. */
1915	(void)timecounter->tc_get_timecount(timecounter);
1916	(void)timecounter->tc_get_timecount(timecounter);
1917	tc_windup();
1918}
1919
1920SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1921
1922/* Cpu tick handling -------------------------------------------------*/
1923
1924static int cpu_tick_variable;
1925static uint64_t	cpu_tick_frequency;
1926
1927static DPCPU_DEFINE(uint64_t, tc_cpu_ticks_base);
1928static DPCPU_DEFINE(unsigned, tc_cpu_ticks_last);
1929
1930static uint64_t
1931tc_cpu_ticks(void)
1932{
1933	struct timecounter *tc;
1934	uint64_t res, *base;
1935	unsigned u, *last;
1936
1937	critical_enter();
1938	base = DPCPU_PTR(tc_cpu_ticks_base);
1939	last = DPCPU_PTR(tc_cpu_ticks_last);
1940	tc = timehands->th_counter;
1941	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1942	if (u < *last)
1943		*base += (uint64_t)tc->tc_counter_mask + 1;
1944	*last = u;
1945	res = u + *base;
1946	critical_exit();
1947	return (res);
1948}
1949
1950void
1951cpu_tick_calibration(void)
1952{
1953	static time_t last_calib;
1954
1955	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1956		cpu_tick_calibrate(0);
1957		last_calib = time_uptime;
1958	}
1959}
1960
1961/*
1962 * This function gets called every 16 seconds on only one designated
1963 * CPU in the system from hardclock() via cpu_tick_calibration()().
1964 *
1965 * Whenever the real time clock is stepped we get called with reset=1
1966 * to make sure we handle suspend/resume and similar events correctly.
1967 */
1968
1969static void
1970cpu_tick_calibrate(int reset)
1971{
1972	static uint64_t c_last;
1973	uint64_t c_this, c_delta;
1974	static struct bintime  t_last;
1975	struct bintime t_this, t_delta;
1976	uint32_t divi;
1977
1978	if (reset) {
1979		/* The clock was stepped, abort & reset */
1980		t_last.sec = 0;
1981		return;
1982	}
1983
1984	/* we don't calibrate fixed rate cputicks */
1985	if (!cpu_tick_variable)
1986		return;
1987
1988	getbinuptime(&t_this);
1989	c_this = cpu_ticks();
1990	if (t_last.sec != 0) {
1991		c_delta = c_this - c_last;
1992		t_delta = t_this;
1993		bintime_sub(&t_delta, &t_last);
1994		/*
1995		 * Headroom:
1996		 * 	2^(64-20) / 16[s] =
1997		 * 	2^(44) / 16[s] =
1998		 * 	17.592.186.044.416 / 16 =
1999		 * 	1.099.511.627.776 [Hz]
2000		 */
2001		divi = t_delta.sec << 20;
2002		divi |= t_delta.frac >> (64 - 20);
2003		c_delta <<= 20;
2004		c_delta /= divi;
2005		if (c_delta > cpu_tick_frequency) {
2006			if (0 && bootverbose)
2007				printf("cpu_tick increased to %ju Hz\n",
2008				    c_delta);
2009			cpu_tick_frequency = c_delta;
2010		}
2011	}
2012	c_last = c_this;
2013	t_last = t_this;
2014}
2015
2016void
2017set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2018{
2019
2020	if (func == NULL) {
2021		cpu_ticks = tc_cpu_ticks;
2022	} else {
2023		cpu_tick_frequency = freq;
2024		cpu_tick_variable = var;
2025		cpu_ticks = func;
2026	}
2027}
2028
2029uint64_t
2030cpu_tickrate(void)
2031{
2032
2033	if (cpu_ticks == tc_cpu_ticks)
2034		return (tc_getfrequency());
2035	return (cpu_tick_frequency);
2036}
2037
2038/*
2039 * We need to be slightly careful converting cputicks to microseconds.
2040 * There is plenty of margin in 64 bits of microseconds (half a million
2041 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2042 * before divide conversion (to retain precision) we find that the
2043 * margin shrinks to 1.5 hours (one millionth of 146y).
2044 * With a three prong approach we never lose significant bits, no
2045 * matter what the cputick rate and length of timeinterval is.
2046 */
2047
2048uint64_t
2049cputick2usec(uint64_t tick)
2050{
2051
2052	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
2053		return (tick / (cpu_tickrate() / 1000000LL));
2054	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
2055		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2056	else
2057		return ((tick * 1000000LL) / cpu_tickrate());
2058}
2059
2060cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
2061
2062static int vdso_th_enable = 1;
2063static int
2064sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2065{
2066	int old_vdso_th_enable, error;
2067
2068	old_vdso_th_enable = vdso_th_enable;
2069	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2070	if (error != 0)
2071		return (error);
2072	vdso_th_enable = old_vdso_th_enable;
2073	return (0);
2074}
2075SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2076    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2077    NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2078
2079uint32_t
2080tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2081{
2082	struct timehands *th;
2083	uint32_t enabled;
2084
2085	th = timehands;
2086	vdso_th->th_algo = VDSO_TH_ALGO_1;
2087	vdso_th->th_scale = th->th_scale;
2088	vdso_th->th_offset_count = th->th_offset_count;
2089	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2090	vdso_th->th_offset = th->th_offset;
2091	vdso_th->th_boottime = boottimebin;
2092	enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter);
2093	if (!vdso_th_enable)
2094		enabled = 0;
2095	return (enabled);
2096}
2097
2098#ifdef COMPAT_FREEBSD32
2099uint32_t
2100tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2101{
2102	struct timehands *th;
2103	uint32_t enabled;
2104
2105	th = timehands;
2106	vdso_th32->th_algo = VDSO_TH_ALGO_1;
2107	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2108	vdso_th32->th_offset_count = th->th_offset_count;
2109	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2110	vdso_th32->th_offset.sec = th->th_offset.sec;
2111	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2112	vdso_th32->th_boottime.sec = boottimebin.sec;
2113	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
2114	enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter);
2115	if (!vdso_th_enable)
2116		enabled = 0;
2117	return (enabled);
2118}
2119#endif
2120