kern_tc.c revision 238537
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 *
9 * Copyright (c) 2011 The FreeBSD Foundation
10 * All rights reserved.
11 *
12 * Portions of this software were developed by Julien Ridoux at the University
13 * of Melbourne under sponsorship from the FreeBSD Foundation.
14 */
15
16#include <sys/cdefs.h>
17__FBSDID("$FreeBSD: head/sys/kern/kern_tc.c 238537 2012-07-16 20:17:19Z gnn $");
18
19#include "opt_compat.h"
20#include "opt_ntp.h"
21#include "opt_ffclock.h"
22
23#include <sys/param.h>
24#include <sys/kernel.h>
25#ifdef FFCLOCK
26#include <sys/lock.h>
27#include <sys/mutex.h>
28#endif
29#include <sys/sysctl.h>
30#include <sys/syslog.h>
31#include <sys/systm.h>
32#include <sys/timeffc.h>
33#include <sys/timepps.h>
34#include <sys/timetc.h>
35#include <sys/timex.h>
36#include <sys/vdso.h>
37
38/*
39 * A large step happens on boot.  This constant detects such steps.
40 * It is relatively small so that ntp_update_second gets called enough
41 * in the typical 'missed a couple of seconds' case, but doesn't loop
42 * forever when the time step is large.
43 */
44#define LARGE_STEP	200
45
46/*
47 * Implement a dummy timecounter which we can use until we get a real one
48 * in the air.  This allows the console and other early stuff to use
49 * time services.
50 */
51
52static u_int
53dummy_get_timecount(struct timecounter *tc)
54{
55	static u_int now;
56
57	return (++now);
58}
59
60static struct timecounter dummy_timecounter = {
61	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
62};
63
64struct timehands {
65	/* These fields must be initialized by the driver. */
66	struct timecounter	*th_counter;
67	int64_t			th_adjustment;
68	uint64_t		th_scale;
69	u_int	 		th_offset_count;
70	struct bintime		th_offset;
71	struct timeval		th_microtime;
72	struct timespec		th_nanotime;
73	/* Fields not to be copied in tc_windup start with th_generation. */
74	volatile u_int		th_generation;
75	struct timehands	*th_next;
76};
77
78static struct timehands th0;
79static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
80static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
81static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
82static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
83static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
84static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
85static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
86static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
87static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
88static struct timehands th0 = {
89	&dummy_timecounter,
90	0,
91	(uint64_t)-1 / 1000000,
92	0,
93	{1, 0},
94	{0, 0},
95	{0, 0},
96	1,
97	&th1
98};
99
100static struct timehands *volatile timehands = &th0;
101struct timecounter *timecounter = &dummy_timecounter;
102static struct timecounter *timecounters = &dummy_timecounter;
103
104int tc_min_ticktock_freq = 1;
105
106time_t time_second = 1;
107time_t time_uptime = 1;
108
109struct bintime boottimebin;
110struct timeval boottime;
111static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
112SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
113    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
114
115SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
116static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
117
118static int timestepwarnings;
119SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
120    &timestepwarnings, 0, "Log time steps");
121
122static void tc_windup(void);
123static void cpu_tick_calibrate(int);
124
125void dtrace_getnanotime(struct timespec *tsp);
126
127static int
128sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
129{
130#ifndef __mips__
131#ifdef SCTL_MASK32
132	int tv[2];
133
134	if (req->flags & SCTL_MASK32) {
135		tv[0] = boottime.tv_sec;
136		tv[1] = boottime.tv_usec;
137		return SYSCTL_OUT(req, tv, sizeof(tv));
138	} else
139#endif
140#endif
141		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
142}
143
144static int
145sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
146{
147	u_int ncount;
148	struct timecounter *tc = arg1;
149
150	ncount = tc->tc_get_timecount(tc);
151	return sysctl_handle_int(oidp, &ncount, 0, req);
152}
153
154static int
155sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
156{
157	uint64_t freq;
158	struct timecounter *tc = arg1;
159
160	freq = tc->tc_frequency;
161	return sysctl_handle_64(oidp, &freq, 0, req);
162}
163
164/*
165 * Return the difference between the timehands' counter value now and what
166 * was when we copied it to the timehands' offset_count.
167 */
168static __inline u_int
169tc_delta(struct timehands *th)
170{
171	struct timecounter *tc;
172
173	tc = th->th_counter;
174	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
175	    tc->tc_counter_mask);
176}
177
178/*
179 * Functions for reading the time.  We have to loop until we are sure that
180 * the timehands that we operated on was not updated under our feet.  See
181 * the comment in <sys/time.h> for a description of these 12 functions.
182 */
183
184#ifdef FFCLOCK
185void
186fbclock_binuptime(struct bintime *bt)
187{
188	struct timehands *th;
189	unsigned int gen;
190
191	do {
192		th = timehands;
193		gen = th->th_generation;
194		*bt = th->th_offset;
195		bintime_addx(bt, th->th_scale * tc_delta(th));
196	} while (gen == 0 || gen != th->th_generation);
197}
198
199void
200fbclock_nanouptime(struct timespec *tsp)
201{
202	struct bintime bt;
203
204	fbclock_binuptime(&bt);
205	bintime2timespec(&bt, tsp);
206}
207
208void
209fbclock_microuptime(struct timeval *tvp)
210{
211	struct bintime bt;
212
213	fbclock_binuptime(&bt);
214	bintime2timeval(&bt, tvp);
215}
216
217void
218fbclock_bintime(struct bintime *bt)
219{
220
221	fbclock_binuptime(bt);
222	bintime_add(bt, &boottimebin);
223}
224
225void
226fbclock_nanotime(struct timespec *tsp)
227{
228	struct bintime bt;
229
230	fbclock_bintime(&bt);
231	bintime2timespec(&bt, tsp);
232}
233
234void
235fbclock_microtime(struct timeval *tvp)
236{
237	struct bintime bt;
238
239	fbclock_bintime(&bt);
240	bintime2timeval(&bt, tvp);
241}
242
243void
244fbclock_getbinuptime(struct bintime *bt)
245{
246	struct timehands *th;
247	unsigned int gen;
248
249	do {
250		th = timehands;
251		gen = th->th_generation;
252		*bt = th->th_offset;
253	} while (gen == 0 || gen != th->th_generation);
254}
255
256void
257fbclock_getnanouptime(struct timespec *tsp)
258{
259	struct timehands *th;
260	unsigned int gen;
261
262	do {
263		th = timehands;
264		gen = th->th_generation;
265		bintime2timespec(&th->th_offset, tsp);
266	} while (gen == 0 || gen != th->th_generation);
267}
268
269void
270fbclock_getmicrouptime(struct timeval *tvp)
271{
272	struct timehands *th;
273	unsigned int gen;
274
275	do {
276		th = timehands;
277		gen = th->th_generation;
278		bintime2timeval(&th->th_offset, tvp);
279	} while (gen == 0 || gen != th->th_generation);
280}
281
282void
283fbclock_getbintime(struct bintime *bt)
284{
285	struct timehands *th;
286	unsigned int gen;
287
288	do {
289		th = timehands;
290		gen = th->th_generation;
291		*bt = th->th_offset;
292	} while (gen == 0 || gen != th->th_generation);
293	bintime_add(bt, &boottimebin);
294}
295
296void
297fbclock_getnanotime(struct timespec *tsp)
298{
299	struct timehands *th;
300	unsigned int gen;
301
302	do {
303		th = timehands;
304		gen = th->th_generation;
305		*tsp = th->th_nanotime;
306	} while (gen == 0 || gen != th->th_generation);
307}
308
309void
310fbclock_getmicrotime(struct timeval *tvp)
311{
312	struct timehands *th;
313	unsigned int gen;
314
315	do {
316		th = timehands;
317		gen = th->th_generation;
318		*tvp = th->th_microtime;
319	} while (gen == 0 || gen != th->th_generation);
320}
321#else /* !FFCLOCK */
322void
323binuptime(struct bintime *bt)
324{
325	struct timehands *th;
326	u_int gen;
327
328	do {
329		th = timehands;
330		gen = th->th_generation;
331		*bt = th->th_offset;
332		bintime_addx(bt, th->th_scale * tc_delta(th));
333	} while (gen == 0 || gen != th->th_generation);
334}
335
336void
337nanouptime(struct timespec *tsp)
338{
339	struct bintime bt;
340
341	binuptime(&bt);
342	bintime2timespec(&bt, tsp);
343}
344
345void
346microuptime(struct timeval *tvp)
347{
348	struct bintime bt;
349
350	binuptime(&bt);
351	bintime2timeval(&bt, tvp);
352}
353
354void
355bintime(struct bintime *bt)
356{
357
358	binuptime(bt);
359	bintime_add(bt, &boottimebin);
360}
361
362void
363nanotime(struct timespec *tsp)
364{
365	struct bintime bt;
366
367	bintime(&bt);
368	bintime2timespec(&bt, tsp);
369}
370
371void
372microtime(struct timeval *tvp)
373{
374	struct bintime bt;
375
376	bintime(&bt);
377	bintime2timeval(&bt, tvp);
378}
379
380void
381getbinuptime(struct bintime *bt)
382{
383	struct timehands *th;
384	u_int gen;
385
386	do {
387		th = timehands;
388		gen = th->th_generation;
389		*bt = th->th_offset;
390	} while (gen == 0 || gen != th->th_generation);
391}
392
393void
394getnanouptime(struct timespec *tsp)
395{
396	struct timehands *th;
397	u_int gen;
398
399	do {
400		th = timehands;
401		gen = th->th_generation;
402		bintime2timespec(&th->th_offset, tsp);
403	} while (gen == 0 || gen != th->th_generation);
404}
405
406void
407getmicrouptime(struct timeval *tvp)
408{
409	struct timehands *th;
410	u_int gen;
411
412	do {
413		th = timehands;
414		gen = th->th_generation;
415		bintime2timeval(&th->th_offset, tvp);
416	} while (gen == 0 || gen != th->th_generation);
417}
418
419void
420getbintime(struct bintime *bt)
421{
422	struct timehands *th;
423	u_int gen;
424
425	do {
426		th = timehands;
427		gen = th->th_generation;
428		*bt = th->th_offset;
429	} while (gen == 0 || gen != th->th_generation);
430	bintime_add(bt, &boottimebin);
431}
432
433void
434getnanotime(struct timespec *tsp)
435{
436	struct timehands *th;
437	u_int gen;
438
439	do {
440		th = timehands;
441		gen = th->th_generation;
442		*tsp = th->th_nanotime;
443	} while (gen == 0 || gen != th->th_generation);
444}
445
446void
447getmicrotime(struct timeval *tvp)
448{
449	struct timehands *th;
450	u_int gen;
451
452	do {
453		th = timehands;
454		gen = th->th_generation;
455		*tvp = th->th_microtime;
456	} while (gen == 0 || gen != th->th_generation);
457}
458#endif /* FFCLOCK */
459
460#ifdef FFCLOCK
461/*
462 * Support for feed-forward synchronization algorithms. This is heavily inspired
463 * by the timehands mechanism but kept independent from it. *_windup() functions
464 * have some connection to avoid accessing the timecounter hardware more than
465 * necessary.
466 */
467
468/* Feed-forward clock estimates kept updated by the synchronization daemon. */
469struct ffclock_estimate ffclock_estimate;
470struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
471uint32_t ffclock_status;		/* Feed-forward clock status. */
472int8_t ffclock_updated;			/* New estimates are available. */
473struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
474
475struct fftimehands {
476	struct ffclock_estimate	cest;
477	struct bintime		tick_time;
478	struct bintime		tick_time_lerp;
479	ffcounter		tick_ffcount;
480	uint64_t		period_lerp;
481	volatile uint8_t	gen;
482	struct fftimehands	*next;
483};
484
485#define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
486
487static struct fftimehands ffth[10];
488static struct fftimehands *volatile fftimehands = ffth;
489
490static void
491ffclock_init(void)
492{
493	struct fftimehands *cur;
494	struct fftimehands *last;
495
496	memset(ffth, 0, sizeof(ffth));
497
498	last = ffth + NUM_ELEMENTS(ffth) - 1;
499	for (cur = ffth; cur < last; cur++)
500		cur->next = cur + 1;
501	last->next = ffth;
502
503	ffclock_updated = 0;
504	ffclock_status = FFCLOCK_STA_UNSYNC;
505	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
506}
507
508/*
509 * Reset the feed-forward clock estimates. Called from inittodr() to get things
510 * kick started and uses the timecounter nominal frequency as a first period
511 * estimate. Note: this function may be called several time just after boot.
512 * Note: this is the only function that sets the value of boot time for the
513 * monotonic (i.e. uptime) version of the feed-forward clock.
514 */
515void
516ffclock_reset_clock(struct timespec *ts)
517{
518	struct timecounter *tc;
519	struct ffclock_estimate cest;
520
521	tc = timehands->th_counter;
522	memset(&cest, 0, sizeof(struct ffclock_estimate));
523
524	timespec2bintime(ts, &ffclock_boottime);
525	timespec2bintime(ts, &(cest.update_time));
526	ffclock_read_counter(&cest.update_ffcount);
527	cest.leapsec_next = 0;
528	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
529	cest.errb_abs = 0;
530	cest.errb_rate = 0;
531	cest.status = FFCLOCK_STA_UNSYNC;
532	cest.leapsec_total = 0;
533	cest.leapsec = 0;
534
535	mtx_lock(&ffclock_mtx);
536	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
537	ffclock_updated = INT8_MAX;
538	mtx_unlock(&ffclock_mtx);
539
540	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
541	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
542	    (unsigned long)ts->tv_nsec);
543}
544
545/*
546 * Sub-routine to convert a time interval measured in RAW counter units to time
547 * in seconds stored in bintime format.
548 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
549 * larger than the max value of u_int (on 32 bit architecture). Loop to consume
550 * extra cycles.
551 */
552static void
553ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
554{
555	struct bintime bt2;
556	ffcounter delta, delta_max;
557
558	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
559	bintime_clear(bt);
560	do {
561		if (ffdelta > delta_max)
562			delta = delta_max;
563		else
564			delta = ffdelta;
565		bt2.sec = 0;
566		bt2.frac = period;
567		bintime_mul(&bt2, (unsigned int)delta);
568		bintime_add(bt, &bt2);
569		ffdelta -= delta;
570	} while (ffdelta > 0);
571}
572
573/*
574 * Update the fftimehands.
575 * Push the tick ffcount and time(s) forward based on current clock estimate.
576 * The conversion from ffcounter to bintime relies on the difference clock
577 * principle, whose accuracy relies on computing small time intervals. If a new
578 * clock estimate has been passed by the synchronisation daemon, make it
579 * current, and compute the linear interpolation for monotonic time if needed.
580 */
581static void
582ffclock_windup(unsigned int delta)
583{
584	struct ffclock_estimate *cest;
585	struct fftimehands *ffth;
586	struct bintime bt, gap_lerp;
587	ffcounter ffdelta;
588	uint64_t frac;
589	unsigned int polling;
590	uint8_t forward_jump, ogen;
591
592	/*
593	 * Pick the next timehand, copy current ffclock estimates and move tick
594	 * times and counter forward.
595	 */
596	forward_jump = 0;
597	ffth = fftimehands->next;
598	ogen = ffth->gen;
599	ffth->gen = 0;
600	cest = &ffth->cest;
601	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
602	ffdelta = (ffcounter)delta;
603	ffth->period_lerp = fftimehands->period_lerp;
604
605	ffth->tick_time = fftimehands->tick_time;
606	ffclock_convert_delta(ffdelta, cest->period, &bt);
607	bintime_add(&ffth->tick_time, &bt);
608
609	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
610	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
611	bintime_add(&ffth->tick_time_lerp, &bt);
612
613	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
614
615	/*
616	 * Assess the status of the clock, if the last update is too old, it is
617	 * likely the synchronisation daemon is dead and the clock is free
618	 * running.
619	 */
620	if (ffclock_updated == 0) {
621		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
622		ffclock_convert_delta(ffdelta, cest->period, &bt);
623		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
624			ffclock_status |= FFCLOCK_STA_UNSYNC;
625	}
626
627	/*
628	 * If available, grab updated clock estimates and make them current.
629	 * Recompute time at this tick using the updated estimates. The clock
630	 * estimates passed the feed-forward synchronisation daemon may result
631	 * in time conversion that is not monotonically increasing (just after
632	 * the update). time_lerp is a particular linear interpolation over the
633	 * synchronisation algo polling period that ensures monotonicity for the
634	 * clock ids requesting it.
635	 */
636	if (ffclock_updated > 0) {
637		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
638		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
639		ffth->tick_time = cest->update_time;
640		ffclock_convert_delta(ffdelta, cest->period, &bt);
641		bintime_add(&ffth->tick_time, &bt);
642
643		/* ffclock_reset sets ffclock_updated to INT8_MAX */
644		if (ffclock_updated == INT8_MAX)
645			ffth->tick_time_lerp = ffth->tick_time;
646
647		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
648			forward_jump = 1;
649		else
650			forward_jump = 0;
651
652		bintime_clear(&gap_lerp);
653		if (forward_jump) {
654			gap_lerp = ffth->tick_time;
655			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
656		} else {
657			gap_lerp = ffth->tick_time_lerp;
658			bintime_sub(&gap_lerp, &ffth->tick_time);
659		}
660
661		/*
662		 * The reset from the RTC clock may be far from accurate, and
663		 * reducing the gap between real time and interpolated time
664		 * could take a very long time if the interpolated clock insists
665		 * on strict monotonicity. The clock is reset under very strict
666		 * conditions (kernel time is known to be wrong and
667		 * synchronization daemon has been restarted recently.
668		 * ffclock_boottime absorbs the jump to ensure boot time is
669		 * correct and uptime functions stay consistent.
670		 */
671		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
672		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
673		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
674			if (forward_jump)
675				bintime_add(&ffclock_boottime, &gap_lerp);
676			else
677				bintime_sub(&ffclock_boottime, &gap_lerp);
678			ffth->tick_time_lerp = ffth->tick_time;
679			bintime_clear(&gap_lerp);
680		}
681
682		ffclock_status = cest->status;
683		ffth->period_lerp = cest->period;
684
685		/*
686		 * Compute corrected period used for the linear interpolation of
687		 * time. The rate of linear interpolation is capped to 5000PPM
688		 * (5ms/s).
689		 */
690		if (bintime_isset(&gap_lerp)) {
691			ffdelta = cest->update_ffcount;
692			ffdelta -= fftimehands->cest.update_ffcount;
693			ffclock_convert_delta(ffdelta, cest->period, &bt);
694			polling = bt.sec;
695			bt.sec = 0;
696			bt.frac = 5000000 * (uint64_t)18446744073LL;
697			bintime_mul(&bt, polling);
698			if (bintime_cmp(&gap_lerp, &bt, >))
699				gap_lerp = bt;
700
701			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
702			frac = 0;
703			if (gap_lerp.sec > 0) {
704				frac -= 1;
705				frac /= ffdelta / gap_lerp.sec;
706			}
707			frac += gap_lerp.frac / ffdelta;
708
709			if (forward_jump)
710				ffth->period_lerp += frac;
711			else
712				ffth->period_lerp -= frac;
713		}
714
715		ffclock_updated = 0;
716	}
717	if (++ogen == 0)
718		ogen = 1;
719	ffth->gen = ogen;
720	fftimehands = ffth;
721}
722
723/*
724 * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
725 * the old and new hardware counter cannot be read simultaneously. tc_windup()
726 * does read the two counters 'back to back', but a few cycles are effectively
727 * lost, and not accumulated in tick_ffcount. This is a fairly radical
728 * operation for a feed-forward synchronization daemon, and it is its job to not
729 * pushing irrelevant data to the kernel. Because there is no locking here,
730 * simply force to ignore pending or next update to give daemon a chance to
731 * realize the counter has changed.
732 */
733static void
734ffclock_change_tc(struct timehands *th)
735{
736	struct fftimehands *ffth;
737	struct ffclock_estimate *cest;
738	struct timecounter *tc;
739	uint8_t ogen;
740
741	tc = th->th_counter;
742	ffth = fftimehands->next;
743	ogen = ffth->gen;
744	ffth->gen = 0;
745
746	cest = &ffth->cest;
747	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
748	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
749	cest->errb_abs = 0;
750	cest->errb_rate = 0;
751	cest->status |= FFCLOCK_STA_UNSYNC;
752
753	ffth->tick_ffcount = fftimehands->tick_ffcount;
754	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
755	ffth->tick_time = fftimehands->tick_time;
756	ffth->period_lerp = cest->period;
757
758	/* Do not lock but ignore next update from synchronization daemon. */
759	ffclock_updated--;
760
761	if (++ogen == 0)
762		ogen = 1;
763	ffth->gen = ogen;
764	fftimehands = ffth;
765}
766
767/*
768 * Retrieve feed-forward counter and time of last kernel tick.
769 */
770void
771ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
772{
773	struct fftimehands *ffth;
774	uint8_t gen;
775
776	/*
777	 * No locking but check generation has not changed. Also need to make
778	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
779	 */
780	do {
781		ffth = fftimehands;
782		gen = ffth->gen;
783		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
784			*bt = ffth->tick_time_lerp;
785		else
786			*bt = ffth->tick_time;
787		*ffcount = ffth->tick_ffcount;
788	} while (gen == 0 || gen != ffth->gen);
789}
790
791/*
792 * Absolute clock conversion. Low level function to convert ffcounter to
793 * bintime. The ffcounter is converted using the current ffclock period estimate
794 * or the "interpolated period" to ensure monotonicity.
795 * NOTE: this conversion may have been deferred, and the clock updated since the
796 * hardware counter has been read.
797 */
798void
799ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
800{
801	struct fftimehands *ffth;
802	struct bintime bt2;
803	ffcounter ffdelta;
804	uint8_t gen;
805
806	/*
807	 * No locking but check generation has not changed. Also need to make
808	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
809	 */
810	do {
811		ffth = fftimehands;
812		gen = ffth->gen;
813		if (ffcount > ffth->tick_ffcount)
814			ffdelta = ffcount - ffth->tick_ffcount;
815		else
816			ffdelta = ffth->tick_ffcount - ffcount;
817
818		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
819			*bt = ffth->tick_time_lerp;
820			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
821		} else {
822			*bt = ffth->tick_time;
823			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
824		}
825
826		if (ffcount > ffth->tick_ffcount)
827			bintime_add(bt, &bt2);
828		else
829			bintime_sub(bt, &bt2);
830	} while (gen == 0 || gen != ffth->gen);
831}
832
833/*
834 * Difference clock conversion.
835 * Low level function to Convert a time interval measured in RAW counter units
836 * into bintime. The difference clock allows measuring small intervals much more
837 * reliably than the absolute clock.
838 */
839void
840ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
841{
842	struct fftimehands *ffth;
843	uint8_t gen;
844
845	/* No locking but check generation has not changed. */
846	do {
847		ffth = fftimehands;
848		gen = ffth->gen;
849		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
850	} while (gen == 0 || gen != ffth->gen);
851}
852
853/*
854 * Access to current ffcounter value.
855 */
856void
857ffclock_read_counter(ffcounter *ffcount)
858{
859	struct timehands *th;
860	struct fftimehands *ffth;
861	unsigned int gen, delta;
862
863	/*
864	 * ffclock_windup() called from tc_windup(), safe to rely on
865	 * th->th_generation only, for correct delta and ffcounter.
866	 */
867	do {
868		th = timehands;
869		gen = th->th_generation;
870		ffth = fftimehands;
871		delta = tc_delta(th);
872		*ffcount = ffth->tick_ffcount;
873	} while (gen == 0 || gen != th->th_generation);
874
875	*ffcount += delta;
876}
877
878void
879binuptime(struct bintime *bt)
880{
881
882	binuptime_fromclock(bt, sysclock_active);
883}
884
885void
886nanouptime(struct timespec *tsp)
887{
888
889	nanouptime_fromclock(tsp, sysclock_active);
890}
891
892void
893microuptime(struct timeval *tvp)
894{
895
896	microuptime_fromclock(tvp, sysclock_active);
897}
898
899void
900bintime(struct bintime *bt)
901{
902
903	bintime_fromclock(bt, sysclock_active);
904}
905
906void
907nanotime(struct timespec *tsp)
908{
909
910	nanotime_fromclock(tsp, sysclock_active);
911}
912
913void
914microtime(struct timeval *tvp)
915{
916
917	microtime_fromclock(tvp, sysclock_active);
918}
919
920void
921getbinuptime(struct bintime *bt)
922{
923
924	getbinuptime_fromclock(bt, sysclock_active);
925}
926
927void
928getnanouptime(struct timespec *tsp)
929{
930
931	getnanouptime_fromclock(tsp, sysclock_active);
932}
933
934void
935getmicrouptime(struct timeval *tvp)
936{
937
938	getmicrouptime_fromclock(tvp, sysclock_active);
939}
940
941void
942getbintime(struct bintime *bt)
943{
944
945	getbintime_fromclock(bt, sysclock_active);
946}
947
948void
949getnanotime(struct timespec *tsp)
950{
951
952	getnanotime_fromclock(tsp, sysclock_active);
953}
954
955void
956getmicrotime(struct timeval *tvp)
957{
958
959	getmicrouptime_fromclock(tvp, sysclock_active);
960}
961
962#endif /* FFCLOCK */
963
964/*
965 * This is a clone of getnanotime and used for walltimestamps.
966 * The dtrace_ prefix prevents fbt from creating probes for
967 * it so walltimestamp can be safely used in all fbt probes.
968 */
969void
970dtrace_getnanotime(struct timespec *tsp)
971{
972	struct timehands *th;
973	u_int gen;
974
975	do {
976		th = timehands;
977		gen = th->th_generation;
978		*tsp = th->th_nanotime;
979	} while (gen == 0 || gen != th->th_generation);
980}
981
982/*
983 * System clock currently providing time to the system. Modifiable via sysctl
984 * when the FFCLOCK option is defined.
985 */
986int sysclock_active = SYSCLOCK_FBCK;
987
988/* Internal NTP status and error estimates. */
989extern int time_status;
990extern long time_esterror;
991
992/*
993 * Take a snapshot of sysclock data which can be used to compare system clocks
994 * and generate timestamps after the fact.
995 */
996void
997sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
998{
999	struct fbclock_info *fbi;
1000	struct timehands *th;
1001	struct bintime bt;
1002	unsigned int delta, gen;
1003#ifdef FFCLOCK
1004	ffcounter ffcount;
1005	struct fftimehands *ffth;
1006	struct ffclock_info *ffi;
1007	struct ffclock_estimate cest;
1008
1009	ffi = &clock_snap->ff_info;
1010#endif
1011
1012	fbi = &clock_snap->fb_info;
1013	delta = 0;
1014
1015	do {
1016		th = timehands;
1017		gen = th->th_generation;
1018		fbi->th_scale = th->th_scale;
1019		fbi->tick_time = th->th_offset;
1020#ifdef FFCLOCK
1021		ffth = fftimehands;
1022		ffi->tick_time = ffth->tick_time_lerp;
1023		ffi->tick_time_lerp = ffth->tick_time_lerp;
1024		ffi->period = ffth->cest.period;
1025		ffi->period_lerp = ffth->period_lerp;
1026		clock_snap->ffcount = ffth->tick_ffcount;
1027		cest = ffth->cest;
1028#endif
1029		if (!fast)
1030			delta = tc_delta(th);
1031	} while (gen == 0 || gen != th->th_generation);
1032
1033	clock_snap->delta = delta;
1034	clock_snap->sysclock_active = sysclock_active;
1035
1036	/* Record feedback clock status and error. */
1037	clock_snap->fb_info.status = time_status;
1038	/* XXX: Very crude estimate of feedback clock error. */
1039	bt.sec = time_esterror / 1000000;
1040	bt.frac = ((time_esterror - bt.sec) * 1000000) *
1041	    (uint64_t)18446744073709ULL;
1042	clock_snap->fb_info.error = bt;
1043
1044#ifdef FFCLOCK
1045	if (!fast)
1046		clock_snap->ffcount += delta;
1047
1048	/* Record feed-forward clock leap second adjustment. */
1049	ffi->leapsec_adjustment = cest.leapsec_total;
1050	if (clock_snap->ffcount > cest.leapsec_next)
1051		ffi->leapsec_adjustment -= cest.leapsec;
1052
1053	/* Record feed-forward clock status and error. */
1054	clock_snap->ff_info.status = cest.status;
1055	ffcount = clock_snap->ffcount - cest.update_ffcount;
1056	ffclock_convert_delta(ffcount, cest.period, &bt);
1057	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1058	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1059	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1060	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1061	clock_snap->ff_info.error = bt;
1062#endif
1063}
1064
1065/*
1066 * Convert a sysclock snapshot into a struct bintime based on the specified
1067 * clock source and flags.
1068 */
1069int
1070sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1071    int whichclock, uint32_t flags)
1072{
1073#ifdef FFCLOCK
1074	struct bintime bt2;
1075	uint64_t period;
1076#endif
1077
1078	switch (whichclock) {
1079	case SYSCLOCK_FBCK:
1080		*bt = cs->fb_info.tick_time;
1081
1082		/* If snapshot was created with !fast, delta will be >0. */
1083		if (cs->delta > 0)
1084			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1085
1086		if ((flags & FBCLOCK_UPTIME) == 0)
1087			bintime_add(bt, &boottimebin);
1088		break;
1089#ifdef FFCLOCK
1090	case SYSCLOCK_FFWD:
1091		if (flags & FFCLOCK_LERP) {
1092			*bt = cs->ff_info.tick_time_lerp;
1093			period = cs->ff_info.period_lerp;
1094		} else {
1095			*bt = cs->ff_info.tick_time;
1096			period = cs->ff_info.period;
1097		}
1098
1099		/* If snapshot was created with !fast, delta will be >0. */
1100		if (cs->delta > 0) {
1101			ffclock_convert_delta(cs->delta, period, &bt2);
1102			bintime_add(bt, &bt2);
1103		}
1104
1105		/* Leap second adjustment. */
1106		if (flags & FFCLOCK_LEAPSEC)
1107			bt->sec -= cs->ff_info.leapsec_adjustment;
1108
1109		/* Boot time adjustment, for uptime/monotonic clocks. */
1110		if (flags & FFCLOCK_UPTIME)
1111			bintime_sub(bt, &ffclock_boottime);
1112		break;
1113#endif
1114	default:
1115		return (EINVAL);
1116		break;
1117	}
1118
1119	return (0);
1120}
1121
1122/*
1123 * Initialize a new timecounter and possibly use it.
1124 */
1125void
1126tc_init(struct timecounter *tc)
1127{
1128	u_int u;
1129	struct sysctl_oid *tc_root;
1130
1131	u = tc->tc_frequency / tc->tc_counter_mask;
1132	/* XXX: We need some margin here, 10% is a guess */
1133	u *= 11;
1134	u /= 10;
1135	if (u > hz && tc->tc_quality >= 0) {
1136		tc->tc_quality = -2000;
1137		if (bootverbose) {
1138			printf("Timecounter \"%s\" frequency %ju Hz",
1139			    tc->tc_name, (uintmax_t)tc->tc_frequency);
1140			printf(" -- Insufficient hz, needs at least %u\n", u);
1141		}
1142	} else if (tc->tc_quality >= 0 || bootverbose) {
1143		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1144		    tc->tc_name, (uintmax_t)tc->tc_frequency,
1145		    tc->tc_quality);
1146	}
1147
1148	tc->tc_next = timecounters;
1149	timecounters = tc;
1150	/*
1151	 * Set up sysctl tree for this counter.
1152	 */
1153	tc_root = SYSCTL_ADD_NODE(NULL,
1154	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1155	    CTLFLAG_RW, 0, "timecounter description");
1156	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1157	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1158	    "mask for implemented bits");
1159	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1160	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1161	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
1162	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1163	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1164	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1165	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1166	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1167	    "goodness of time counter");
1168	/*
1169	 * Never automatically use a timecounter with negative quality.
1170	 * Even though we run on the dummy counter, switching here may be
1171	 * worse since this timecounter may not be monotonous.
1172	 */
1173	if (tc->tc_quality < 0)
1174		return;
1175	if (tc->tc_quality < timecounter->tc_quality)
1176		return;
1177	if (tc->tc_quality == timecounter->tc_quality &&
1178	    tc->tc_frequency < timecounter->tc_frequency)
1179		return;
1180	(void)tc->tc_get_timecount(tc);
1181	(void)tc->tc_get_timecount(tc);
1182	timecounter = tc;
1183}
1184
1185/* Report the frequency of the current timecounter. */
1186uint64_t
1187tc_getfrequency(void)
1188{
1189
1190	return (timehands->th_counter->tc_frequency);
1191}
1192
1193/*
1194 * Step our concept of UTC.  This is done by modifying our estimate of
1195 * when we booted.
1196 * XXX: not locked.
1197 */
1198void
1199tc_setclock(struct timespec *ts)
1200{
1201	struct timespec tbef, taft;
1202	struct bintime bt, bt2;
1203
1204	cpu_tick_calibrate(1);
1205	nanotime(&tbef);
1206	timespec2bintime(ts, &bt);
1207	binuptime(&bt2);
1208	bintime_sub(&bt, &bt2);
1209	bintime_add(&bt2, &boottimebin);
1210	boottimebin = bt;
1211	bintime2timeval(&bt, &boottime);
1212
1213	/* XXX fiddle all the little crinkly bits around the fiords... */
1214	tc_windup();
1215	nanotime(&taft);
1216	if (timestepwarnings) {
1217		log(LOG_INFO,
1218		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1219		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1220		    (intmax_t)taft.tv_sec, taft.tv_nsec,
1221		    (intmax_t)ts->tv_sec, ts->tv_nsec);
1222	}
1223	cpu_tick_calibrate(1);
1224}
1225
1226/*
1227 * Initialize the next struct timehands in the ring and make
1228 * it the active timehands.  Along the way we might switch to a different
1229 * timecounter and/or do seconds processing in NTP.  Slightly magic.
1230 */
1231static void
1232tc_windup(void)
1233{
1234	struct bintime bt;
1235	struct timehands *th, *tho;
1236	uint64_t scale;
1237	u_int delta, ncount, ogen;
1238	int i;
1239	time_t t;
1240
1241	/*
1242	 * Make the next timehands a copy of the current one, but do not
1243	 * overwrite the generation or next pointer.  While we update
1244	 * the contents, the generation must be zero.
1245	 */
1246	tho = timehands;
1247	th = tho->th_next;
1248	ogen = th->th_generation;
1249	th->th_generation = 0;
1250	bcopy(tho, th, offsetof(struct timehands, th_generation));
1251
1252	/*
1253	 * Capture a timecounter delta on the current timecounter and if
1254	 * changing timecounters, a counter value from the new timecounter.
1255	 * Update the offset fields accordingly.
1256	 */
1257	delta = tc_delta(th);
1258	if (th->th_counter != timecounter)
1259		ncount = timecounter->tc_get_timecount(timecounter);
1260	else
1261		ncount = 0;
1262#ifdef FFCLOCK
1263	ffclock_windup(delta);
1264#endif
1265	th->th_offset_count += delta;
1266	th->th_offset_count &= th->th_counter->tc_counter_mask;
1267	while (delta > th->th_counter->tc_frequency) {
1268		/* Eat complete unadjusted seconds. */
1269		delta -= th->th_counter->tc_frequency;
1270		th->th_offset.sec++;
1271	}
1272	if ((delta > th->th_counter->tc_frequency / 2) &&
1273	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
1274		/* The product th_scale * delta just barely overflows. */
1275		th->th_offset.sec++;
1276	}
1277	bintime_addx(&th->th_offset, th->th_scale * delta);
1278
1279	/*
1280	 * Hardware latching timecounters may not generate interrupts on
1281	 * PPS events, so instead we poll them.  There is a finite risk that
1282	 * the hardware might capture a count which is later than the one we
1283	 * got above, and therefore possibly in the next NTP second which might
1284	 * have a different rate than the current NTP second.  It doesn't
1285	 * matter in practice.
1286	 */
1287	if (tho->th_counter->tc_poll_pps)
1288		tho->th_counter->tc_poll_pps(tho->th_counter);
1289
1290	/*
1291	 * Deal with NTP second processing.  The for loop normally
1292	 * iterates at most once, but in extreme situations it might
1293	 * keep NTP sane if timeouts are not run for several seconds.
1294	 * At boot, the time step can be large when the TOD hardware
1295	 * has been read, so on really large steps, we call
1296	 * ntp_update_second only twice.  We need to call it twice in
1297	 * case we missed a leap second.
1298	 */
1299	bt = th->th_offset;
1300	bintime_add(&bt, &boottimebin);
1301	i = bt.sec - tho->th_microtime.tv_sec;
1302	if (i > LARGE_STEP)
1303		i = 2;
1304	for (; i > 0; i--) {
1305		t = bt.sec;
1306		ntp_update_second(&th->th_adjustment, &bt.sec);
1307		if (bt.sec != t)
1308			boottimebin.sec += bt.sec - t;
1309	}
1310	/* Update the UTC timestamps used by the get*() functions. */
1311	/* XXX shouldn't do this here.  Should force non-`get' versions. */
1312	bintime2timeval(&bt, &th->th_microtime);
1313	bintime2timespec(&bt, &th->th_nanotime);
1314
1315	/* Now is a good time to change timecounters. */
1316	if (th->th_counter != timecounter) {
1317#ifndef __arm__
1318		if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0)
1319			cpu_disable_deep_sleep++;
1320		if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0)
1321			cpu_disable_deep_sleep--;
1322#endif
1323		th->th_counter = timecounter;
1324		th->th_offset_count = ncount;
1325		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1326		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1327#ifdef FFCLOCK
1328		ffclock_change_tc(th);
1329#endif
1330	}
1331
1332	/*-
1333	 * Recalculate the scaling factor.  We want the number of 1/2^64
1334	 * fractions of a second per period of the hardware counter, taking
1335	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1336	 * processing provides us with.
1337	 *
1338	 * The th_adjustment is nanoseconds per second with 32 bit binary
1339	 * fraction and we want 64 bit binary fraction of second:
1340	 *
1341	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
1342	 *
1343	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1344	 * we can only multiply by about 850 without overflowing, that
1345	 * leaves no suitably precise fractions for multiply before divide.
1346	 *
1347	 * Divide before multiply with a fraction of 2199/512 results in a
1348	 * systematic undercompensation of 10PPM of th_adjustment.  On a
1349	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1350 	 *
1351	 * We happily sacrifice the lowest of the 64 bits of our result
1352	 * to the goddess of code clarity.
1353	 *
1354	 */
1355	scale = (uint64_t)1 << 63;
1356	scale += (th->th_adjustment / 1024) * 2199;
1357	scale /= th->th_counter->tc_frequency;
1358	th->th_scale = scale * 2;
1359
1360	/*
1361	 * Now that the struct timehands is again consistent, set the new
1362	 * generation number, making sure to not make it zero.
1363	 */
1364	if (++ogen == 0)
1365		ogen = 1;
1366	th->th_generation = ogen;
1367
1368	/* Go live with the new struct timehands. */
1369#ifdef FFCLOCK
1370	switch (sysclock_active) {
1371	case SYSCLOCK_FBCK:
1372#endif
1373		time_second = th->th_microtime.tv_sec;
1374		time_uptime = th->th_offset.sec;
1375#ifdef FFCLOCK
1376		break;
1377	case SYSCLOCK_FFWD:
1378		time_second = fftimehands->tick_time_lerp.sec;
1379		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1380		break;
1381	}
1382#endif
1383
1384	timehands = th;
1385	timekeep_push_vdso();
1386}
1387
1388/* Report or change the active timecounter hardware. */
1389static int
1390sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1391{
1392	char newname[32];
1393	struct timecounter *newtc, *tc;
1394	int error;
1395
1396	tc = timecounter;
1397	strlcpy(newname, tc->tc_name, sizeof(newname));
1398
1399	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1400	if (error != 0 || req->newptr == NULL ||
1401	    strcmp(newname, tc->tc_name) == 0)
1402		return (error);
1403	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1404		if (strcmp(newname, newtc->tc_name) != 0)
1405			continue;
1406
1407		/* Warm up new timecounter. */
1408		(void)newtc->tc_get_timecount(newtc);
1409		(void)newtc->tc_get_timecount(newtc);
1410
1411		timecounter = newtc;
1412		timekeep_push_vdso();
1413		return (0);
1414	}
1415	return (EINVAL);
1416}
1417
1418SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1419    0, 0, sysctl_kern_timecounter_hardware, "A",
1420    "Timecounter hardware selected");
1421
1422
1423/* Report or change the active timecounter hardware. */
1424static int
1425sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1426{
1427	char buf[32], *spc;
1428	struct timecounter *tc;
1429	int error;
1430
1431	spc = "";
1432	error = 0;
1433	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
1434		sprintf(buf, "%s%s(%d)",
1435		    spc, tc->tc_name, tc->tc_quality);
1436		error = SYSCTL_OUT(req, buf, strlen(buf));
1437		spc = " ";
1438	}
1439	return (error);
1440}
1441
1442SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1443    0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1444
1445/*
1446 * RFC 2783 PPS-API implementation.
1447 */
1448
1449int
1450pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1451{
1452	pps_params_t *app;
1453	struct pps_fetch_args *fapi;
1454#ifdef FFCLOCK
1455	struct pps_fetch_ffc_args *fapi_ffc;
1456#endif
1457#ifdef PPS_SYNC
1458	struct pps_kcbind_args *kapi;
1459#endif
1460
1461	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1462	switch (cmd) {
1463	case PPS_IOC_CREATE:
1464		return (0);
1465	case PPS_IOC_DESTROY:
1466		return (0);
1467	case PPS_IOC_SETPARAMS:
1468		app = (pps_params_t *)data;
1469		if (app->mode & ~pps->ppscap)
1470			return (EINVAL);
1471#ifdef FFCLOCK
1472		/* Ensure only a single clock is selected for ffc timestamp. */
1473		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1474			return (EINVAL);
1475#endif
1476		pps->ppsparam = *app;
1477		return (0);
1478	case PPS_IOC_GETPARAMS:
1479		app = (pps_params_t *)data;
1480		*app = pps->ppsparam;
1481		app->api_version = PPS_API_VERS_1;
1482		return (0);
1483	case PPS_IOC_GETCAP:
1484		*(int*)data = pps->ppscap;
1485		return (0);
1486	case PPS_IOC_FETCH:
1487		fapi = (struct pps_fetch_args *)data;
1488		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1489			return (EINVAL);
1490		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1491			return (EOPNOTSUPP);
1492		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1493		fapi->pps_info_buf = pps->ppsinfo;
1494		return (0);
1495#ifdef FFCLOCK
1496	case PPS_IOC_FETCH_FFCOUNTER:
1497		fapi_ffc = (struct pps_fetch_ffc_args *)data;
1498		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1499		    PPS_TSFMT_TSPEC)
1500			return (EINVAL);
1501		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1502			return (EOPNOTSUPP);
1503		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1504		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1505		/* Overwrite timestamps if feedback clock selected. */
1506		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1507		case PPS_TSCLK_FBCK:
1508			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1509			    pps->ppsinfo.assert_timestamp;
1510			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1511			    pps->ppsinfo.clear_timestamp;
1512			break;
1513		case PPS_TSCLK_FFWD:
1514			break;
1515		default:
1516			break;
1517		}
1518		return (0);
1519#endif /* FFCLOCK */
1520	case PPS_IOC_KCBIND:
1521#ifdef PPS_SYNC
1522		kapi = (struct pps_kcbind_args *)data;
1523		/* XXX Only root should be able to do this */
1524		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1525			return (EINVAL);
1526		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1527			return (EINVAL);
1528		if (kapi->edge & ~pps->ppscap)
1529			return (EINVAL);
1530		pps->kcmode = kapi->edge;
1531		return (0);
1532#else
1533		return (EOPNOTSUPP);
1534#endif
1535	default:
1536		return (ENOIOCTL);
1537	}
1538}
1539
1540void
1541pps_init(struct pps_state *pps)
1542{
1543	pps->ppscap |= PPS_TSFMT_TSPEC;
1544	if (pps->ppscap & PPS_CAPTUREASSERT)
1545		pps->ppscap |= PPS_OFFSETASSERT;
1546	if (pps->ppscap & PPS_CAPTURECLEAR)
1547		pps->ppscap |= PPS_OFFSETCLEAR;
1548#ifdef FFCLOCK
1549	pps->ppscap |= PPS_TSCLK_MASK;
1550#endif
1551}
1552
1553void
1554pps_capture(struct pps_state *pps)
1555{
1556	struct timehands *th;
1557
1558	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1559	th = timehands;
1560	pps->capgen = th->th_generation;
1561	pps->capth = th;
1562#ifdef FFCLOCK
1563	pps->capffth = fftimehands;
1564#endif
1565	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1566	if (pps->capgen != th->th_generation)
1567		pps->capgen = 0;
1568}
1569
1570void
1571pps_event(struct pps_state *pps, int event)
1572{
1573	struct bintime bt;
1574	struct timespec ts, *tsp, *osp;
1575	u_int tcount, *pcount;
1576	int foff, fhard;
1577	pps_seq_t *pseq;
1578#ifdef FFCLOCK
1579	struct timespec *tsp_ffc;
1580	pps_seq_t *pseq_ffc;
1581	ffcounter *ffcount;
1582#endif
1583
1584	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1585	/* If the timecounter was wound up underneath us, bail out. */
1586	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
1587		return;
1588
1589	/* Things would be easier with arrays. */
1590	if (event == PPS_CAPTUREASSERT) {
1591		tsp = &pps->ppsinfo.assert_timestamp;
1592		osp = &pps->ppsparam.assert_offset;
1593		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1594		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1595		pcount = &pps->ppscount[0];
1596		pseq = &pps->ppsinfo.assert_sequence;
1597#ifdef FFCLOCK
1598		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1599		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1600		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1601#endif
1602	} else {
1603		tsp = &pps->ppsinfo.clear_timestamp;
1604		osp = &pps->ppsparam.clear_offset;
1605		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1606		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1607		pcount = &pps->ppscount[1];
1608		pseq = &pps->ppsinfo.clear_sequence;
1609#ifdef FFCLOCK
1610		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1611		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1612		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1613#endif
1614	}
1615
1616	/*
1617	 * If the timecounter changed, we cannot compare the count values, so
1618	 * we have to drop the rest of the PPS-stuff until the next event.
1619	 */
1620	if (pps->ppstc != pps->capth->th_counter) {
1621		pps->ppstc = pps->capth->th_counter;
1622		*pcount = pps->capcount;
1623		pps->ppscount[2] = pps->capcount;
1624		return;
1625	}
1626
1627	/* Convert the count to a timespec. */
1628	tcount = pps->capcount - pps->capth->th_offset_count;
1629	tcount &= pps->capth->th_counter->tc_counter_mask;
1630	bt = pps->capth->th_offset;
1631	bintime_addx(&bt, pps->capth->th_scale * tcount);
1632	bintime_add(&bt, &boottimebin);
1633	bintime2timespec(&bt, &ts);
1634
1635	/* If the timecounter was wound up underneath us, bail out. */
1636	if (pps->capgen != pps->capth->th_generation)
1637		return;
1638
1639	*pcount = pps->capcount;
1640	(*pseq)++;
1641	*tsp = ts;
1642
1643	if (foff) {
1644		timespecadd(tsp, osp);
1645		if (tsp->tv_nsec < 0) {
1646			tsp->tv_nsec += 1000000000;
1647			tsp->tv_sec -= 1;
1648		}
1649	}
1650
1651#ifdef FFCLOCK
1652	*ffcount = pps->capffth->tick_ffcount + tcount;
1653	bt = pps->capffth->tick_time;
1654	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1655	bintime_add(&bt, &pps->capffth->tick_time);
1656	bintime2timespec(&bt, &ts);
1657	(*pseq_ffc)++;
1658	*tsp_ffc = ts;
1659#endif
1660
1661#ifdef PPS_SYNC
1662	if (fhard) {
1663		uint64_t scale;
1664
1665		/*
1666		 * Feed the NTP PLL/FLL.
1667		 * The FLL wants to know how many (hardware) nanoseconds
1668		 * elapsed since the previous event.
1669		 */
1670		tcount = pps->capcount - pps->ppscount[2];
1671		pps->ppscount[2] = pps->capcount;
1672		tcount &= pps->capth->th_counter->tc_counter_mask;
1673		scale = (uint64_t)1 << 63;
1674		scale /= pps->capth->th_counter->tc_frequency;
1675		scale *= 2;
1676		bt.sec = 0;
1677		bt.frac = 0;
1678		bintime_addx(&bt, scale * tcount);
1679		bintime2timespec(&bt, &ts);
1680		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1681	}
1682#endif
1683}
1684
1685/*
1686 * Timecounters need to be updated every so often to prevent the hardware
1687 * counter from overflowing.  Updating also recalculates the cached values
1688 * used by the get*() family of functions, so their precision depends on
1689 * the update frequency.
1690 */
1691
1692static int tc_tick;
1693SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1694    "Approximate number of hardclock ticks in a millisecond");
1695
1696void
1697tc_ticktock(int cnt)
1698{
1699	static int count;
1700
1701	count += cnt;
1702	if (count < tc_tick)
1703		return;
1704	count = 0;
1705	tc_windup();
1706}
1707
1708static void
1709inittimecounter(void *dummy)
1710{
1711	u_int p;
1712
1713	/*
1714	 * Set the initial timeout to
1715	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1716	 * People should probably not use the sysctl to set the timeout
1717	 * to smaller than its inital value, since that value is the
1718	 * smallest reasonable one.  If they want better timestamps they
1719	 * should use the non-"get"* functions.
1720	 */
1721	if (hz > 1000)
1722		tc_tick = (hz + 500) / 1000;
1723	else
1724		tc_tick = 1;
1725	p = (tc_tick * 1000000) / hz;
1726	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1727
1728#ifdef FFCLOCK
1729	ffclock_init();
1730#endif
1731	/* warm up new timecounter (again) and get rolling. */
1732	(void)timecounter->tc_get_timecount(timecounter);
1733	(void)timecounter->tc_get_timecount(timecounter);
1734	tc_windup();
1735}
1736
1737SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1738
1739/* Cpu tick handling -------------------------------------------------*/
1740
1741static int cpu_tick_variable;
1742static uint64_t	cpu_tick_frequency;
1743
1744static uint64_t
1745tc_cpu_ticks(void)
1746{
1747	static uint64_t base;
1748	static unsigned last;
1749	unsigned u;
1750	struct timecounter *tc;
1751
1752	tc = timehands->th_counter;
1753	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1754	if (u < last)
1755		base += (uint64_t)tc->tc_counter_mask + 1;
1756	last = u;
1757	return (u + base);
1758}
1759
1760void
1761cpu_tick_calibration(void)
1762{
1763	static time_t last_calib;
1764
1765	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1766		cpu_tick_calibrate(0);
1767		last_calib = time_uptime;
1768	}
1769}
1770
1771/*
1772 * This function gets called every 16 seconds on only one designated
1773 * CPU in the system from hardclock() via cpu_tick_calibration()().
1774 *
1775 * Whenever the real time clock is stepped we get called with reset=1
1776 * to make sure we handle suspend/resume and similar events correctly.
1777 */
1778
1779static void
1780cpu_tick_calibrate(int reset)
1781{
1782	static uint64_t c_last;
1783	uint64_t c_this, c_delta;
1784	static struct bintime  t_last;
1785	struct bintime t_this, t_delta;
1786	uint32_t divi;
1787
1788	if (reset) {
1789		/* The clock was stepped, abort & reset */
1790		t_last.sec = 0;
1791		return;
1792	}
1793
1794	/* we don't calibrate fixed rate cputicks */
1795	if (!cpu_tick_variable)
1796		return;
1797
1798	getbinuptime(&t_this);
1799	c_this = cpu_ticks();
1800	if (t_last.sec != 0) {
1801		c_delta = c_this - c_last;
1802		t_delta = t_this;
1803		bintime_sub(&t_delta, &t_last);
1804		/*
1805		 * Headroom:
1806		 * 	2^(64-20) / 16[s] =
1807		 * 	2^(44) / 16[s] =
1808		 * 	17.592.186.044.416 / 16 =
1809		 * 	1.099.511.627.776 [Hz]
1810		 */
1811		divi = t_delta.sec << 20;
1812		divi |= t_delta.frac >> (64 - 20);
1813		c_delta <<= 20;
1814		c_delta /= divi;
1815		if (c_delta > cpu_tick_frequency) {
1816			if (0 && bootverbose)
1817				printf("cpu_tick increased to %ju Hz\n",
1818				    c_delta);
1819			cpu_tick_frequency = c_delta;
1820		}
1821	}
1822	c_last = c_this;
1823	t_last = t_this;
1824}
1825
1826void
1827set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
1828{
1829
1830	if (func == NULL) {
1831		cpu_ticks = tc_cpu_ticks;
1832	} else {
1833		cpu_tick_frequency = freq;
1834		cpu_tick_variable = var;
1835		cpu_ticks = func;
1836	}
1837}
1838
1839uint64_t
1840cpu_tickrate(void)
1841{
1842
1843	if (cpu_ticks == tc_cpu_ticks)
1844		return (tc_getfrequency());
1845	return (cpu_tick_frequency);
1846}
1847
1848/*
1849 * We need to be slightly careful converting cputicks to microseconds.
1850 * There is plenty of margin in 64 bits of microseconds (half a million
1851 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
1852 * before divide conversion (to retain precision) we find that the
1853 * margin shrinks to 1.5 hours (one millionth of 146y).
1854 * With a three prong approach we never lose significant bits, no
1855 * matter what the cputick rate and length of timeinterval is.
1856 */
1857
1858uint64_t
1859cputick2usec(uint64_t tick)
1860{
1861
1862	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
1863		return (tick / (cpu_tickrate() / 1000000LL));
1864	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
1865		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
1866	else
1867		return ((tick * 1000000LL) / cpu_tickrate());
1868}
1869
1870cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
1871
1872static int vdso_th_enable = 1;
1873static int
1874sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
1875{
1876	int old_vdso_th_enable, error;
1877
1878	old_vdso_th_enable = vdso_th_enable;
1879	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
1880	if (error != 0)
1881		return (error);
1882	vdso_th_enable = old_vdso_th_enable;
1883	timekeep_push_vdso();
1884	return (0);
1885}
1886SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
1887    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1888    NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
1889
1890uint32_t
1891tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
1892{
1893	struct timehands *th;
1894	uint32_t enabled;
1895
1896	th = timehands;
1897	vdso_th->th_algo = VDSO_TH_ALGO_1;
1898	vdso_th->th_scale = th->th_scale;
1899	vdso_th->th_offset_count = th->th_offset_count;
1900	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
1901	vdso_th->th_offset = th->th_offset;
1902	vdso_th->th_boottime = boottimebin;
1903	enabled = cpu_fill_vdso_timehands(vdso_th);
1904	if (!vdso_th_enable)
1905		enabled = 0;
1906	return (enabled);
1907}
1908
1909#ifdef COMPAT_FREEBSD32
1910uint32_t
1911tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
1912{
1913	struct timehands *th;
1914	uint32_t enabled;
1915
1916	th = timehands;
1917	vdso_th32->th_algo = VDSO_TH_ALGO_1;
1918	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
1919	vdso_th32->th_offset_count = th->th_offset_count;
1920	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
1921	vdso_th32->th_offset.sec = th->th_offset.sec;
1922	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
1923	vdso_th32->th_boottime.sec = boottimebin.sec;
1924	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
1925	enabled = cpu_fill_vdso_timehands32(vdso_th32);
1926	if (!vdso_th_enable)
1927		enabled = 0;
1928	return (enabled);
1929}
1930#endif
1931