kern_tc.c revision 224042
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 */
9
10#include <sys/cdefs.h>
11__FBSDID("$FreeBSD: head/sys/kern/kern_tc.c 224042 2011-07-14 21:00:26Z jkim $");
12
13#include "opt_ntp.h"
14
15#include <sys/param.h>
16#include <sys/kernel.h>
17#include <sys/sysctl.h>
18#include <sys/syslog.h>
19#include <sys/systm.h>
20#include <sys/timepps.h>
21#include <sys/timetc.h>
22#include <sys/timex.h>
23
24/*
25 * A large step happens on boot.  This constant detects such steps.
26 * It is relatively small so that ntp_update_second gets called enough
27 * in the typical 'missed a couple of seconds' case, but doesn't loop
28 * forever when the time step is large.
29 */
30#define LARGE_STEP	200
31
32/*
33 * Implement a dummy timecounter which we can use until we get a real one
34 * in the air.  This allows the console and other early stuff to use
35 * time services.
36 */
37
38static u_int
39dummy_get_timecount(struct timecounter *tc)
40{
41	static u_int now;
42
43	return (++now);
44}
45
46static struct timecounter dummy_timecounter = {
47	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48};
49
50struct timehands {
51	/* These fields must be initialized by the driver. */
52	struct timecounter	*th_counter;
53	int64_t			th_adjustment;
54	uint64_t		th_scale;
55	u_int	 		th_offset_count;
56	struct bintime		th_offset;
57	struct timeval		th_microtime;
58	struct timespec		th_nanotime;
59	/* Fields not to be copied in tc_windup start with th_generation. */
60	volatile u_int		th_generation;
61	struct timehands	*th_next;
62};
63
64static struct timehands th0;
65static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74static struct timehands th0 = {
75	&dummy_timecounter,
76	0,
77	(uint64_t)-1 / 1000000,
78	0,
79	{1, 0},
80	{0, 0},
81	{0, 0},
82	1,
83	&th1
84};
85
86static struct timehands *volatile timehands = &th0;
87struct timecounter *timecounter = &dummy_timecounter;
88static struct timecounter *timecounters = &dummy_timecounter;
89
90int tc_min_ticktock_freq = 1;
91
92time_t time_second = 1;
93time_t time_uptime = 1;
94
95struct bintime boottimebin;
96struct timeval boottime;
97static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
98SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
99    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
100
101SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
102SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
103
104static int timestepwarnings;
105SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106    &timestepwarnings, 0, "Log time steps");
107
108static void tc_windup(void);
109static void cpu_tick_calibrate(int);
110
111static int
112sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
113{
114#ifdef SCTL_MASK32
115	int tv[2];
116
117	if (req->flags & SCTL_MASK32) {
118		tv[0] = boottime.tv_sec;
119		tv[1] = boottime.tv_usec;
120		return SYSCTL_OUT(req, tv, sizeof(tv));
121	} else
122#endif
123		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
124}
125
126static int
127sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
128{
129	u_int ncount;
130	struct timecounter *tc = arg1;
131
132	ncount = tc->tc_get_timecount(tc);
133	return sysctl_handle_int(oidp, &ncount, 0, req);
134}
135
136static int
137sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
138{
139	uint64_t freq;
140	struct timecounter *tc = arg1;
141
142	freq = tc->tc_frequency;
143	return sysctl_handle_64(oidp, &freq, 0, req);
144}
145
146/*
147 * Return the difference between the timehands' counter value now and what
148 * was when we copied it to the timehands' offset_count.
149 */
150static __inline u_int
151tc_delta(struct timehands *th)
152{
153	struct timecounter *tc;
154
155	tc = th->th_counter;
156	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
157	    tc->tc_counter_mask);
158}
159
160/*
161 * Functions for reading the time.  We have to loop until we are sure that
162 * the timehands that we operated on was not updated under our feet.  See
163 * the comment in <sys/time.h> for a description of these 12 functions.
164 */
165
166void
167binuptime(struct bintime *bt)
168{
169	struct timehands *th;
170	u_int gen;
171
172	do {
173		th = timehands;
174		gen = th->th_generation;
175		*bt = th->th_offset;
176		bintime_addx(bt, th->th_scale * tc_delta(th));
177	} while (gen == 0 || gen != th->th_generation);
178}
179
180void
181nanouptime(struct timespec *tsp)
182{
183	struct bintime bt;
184
185	binuptime(&bt);
186	bintime2timespec(&bt, tsp);
187}
188
189void
190microuptime(struct timeval *tvp)
191{
192	struct bintime bt;
193
194	binuptime(&bt);
195	bintime2timeval(&bt, tvp);
196}
197
198void
199bintime(struct bintime *bt)
200{
201
202	binuptime(bt);
203	bintime_add(bt, &boottimebin);
204}
205
206void
207nanotime(struct timespec *tsp)
208{
209	struct bintime bt;
210
211	bintime(&bt);
212	bintime2timespec(&bt, tsp);
213}
214
215void
216microtime(struct timeval *tvp)
217{
218	struct bintime bt;
219
220	bintime(&bt);
221	bintime2timeval(&bt, tvp);
222}
223
224void
225getbinuptime(struct bintime *bt)
226{
227	struct timehands *th;
228	u_int gen;
229
230	do {
231		th = timehands;
232		gen = th->th_generation;
233		*bt = th->th_offset;
234	} while (gen == 0 || gen != th->th_generation);
235}
236
237void
238getnanouptime(struct timespec *tsp)
239{
240	struct timehands *th;
241	u_int gen;
242
243	do {
244		th = timehands;
245		gen = th->th_generation;
246		bintime2timespec(&th->th_offset, tsp);
247	} while (gen == 0 || gen != th->th_generation);
248}
249
250void
251getmicrouptime(struct timeval *tvp)
252{
253	struct timehands *th;
254	u_int gen;
255
256	do {
257		th = timehands;
258		gen = th->th_generation;
259		bintime2timeval(&th->th_offset, tvp);
260	} while (gen == 0 || gen != th->th_generation);
261}
262
263void
264getbintime(struct bintime *bt)
265{
266	struct timehands *th;
267	u_int gen;
268
269	do {
270		th = timehands;
271		gen = th->th_generation;
272		*bt = th->th_offset;
273	} while (gen == 0 || gen != th->th_generation);
274	bintime_add(bt, &boottimebin);
275}
276
277void
278getnanotime(struct timespec *tsp)
279{
280	struct timehands *th;
281	u_int gen;
282
283	do {
284		th = timehands;
285		gen = th->th_generation;
286		*tsp = th->th_nanotime;
287	} while (gen == 0 || gen != th->th_generation);
288}
289
290void
291getmicrotime(struct timeval *tvp)
292{
293	struct timehands *th;
294	u_int gen;
295
296	do {
297		th = timehands;
298		gen = th->th_generation;
299		*tvp = th->th_microtime;
300	} while (gen == 0 || gen != th->th_generation);
301}
302
303/*
304 * Initialize a new timecounter and possibly use it.
305 */
306void
307tc_init(struct timecounter *tc)
308{
309	u_int u;
310	struct sysctl_oid *tc_root;
311
312	u = tc->tc_frequency / tc->tc_counter_mask;
313	/* XXX: We need some margin here, 10% is a guess */
314	u *= 11;
315	u /= 10;
316	if (u > hz && tc->tc_quality >= 0) {
317		tc->tc_quality = -2000;
318		if (bootverbose) {
319			printf("Timecounter \"%s\" frequency %ju Hz",
320			    tc->tc_name, (uintmax_t)tc->tc_frequency);
321			printf(" -- Insufficient hz, needs at least %u\n", u);
322		}
323	} else if (tc->tc_quality >= 0 || bootverbose) {
324		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
325		    tc->tc_name, (uintmax_t)tc->tc_frequency,
326		    tc->tc_quality);
327	}
328
329	tc->tc_next = timecounters;
330	timecounters = tc;
331	/*
332	 * Set up sysctl tree for this counter.
333	 */
334	tc_root = SYSCTL_ADD_NODE(NULL,
335	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
336	    CTLFLAG_RW, 0, "timecounter description");
337	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
338	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
339	    "mask for implemented bits");
340	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
341	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
342	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
343	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
344	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
345	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
346	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
347	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
348	    "goodness of time counter");
349	/*
350	 * Never automatically use a timecounter with negative quality.
351	 * Even though we run on the dummy counter, switching here may be
352	 * worse since this timecounter may not be monotonous.
353	 */
354	if (tc->tc_quality < 0)
355		return;
356	if (tc->tc_quality < timecounter->tc_quality)
357		return;
358	if (tc->tc_quality == timecounter->tc_quality &&
359	    tc->tc_frequency < timecounter->tc_frequency)
360		return;
361	(void)tc->tc_get_timecount(tc);
362	(void)tc->tc_get_timecount(tc);
363	timecounter = tc;
364}
365
366/* Report the frequency of the current timecounter. */
367uint64_t
368tc_getfrequency(void)
369{
370
371	return (timehands->th_counter->tc_frequency);
372}
373
374/*
375 * Step our concept of UTC.  This is done by modifying our estimate of
376 * when we booted.
377 * XXX: not locked.
378 */
379void
380tc_setclock(struct timespec *ts)
381{
382	struct timespec tbef, taft;
383	struct bintime bt, bt2;
384
385	cpu_tick_calibrate(1);
386	nanotime(&tbef);
387	timespec2bintime(ts, &bt);
388	binuptime(&bt2);
389	bintime_sub(&bt, &bt2);
390	bintime_add(&bt2, &boottimebin);
391	boottimebin = bt;
392	bintime2timeval(&bt, &boottime);
393
394	/* XXX fiddle all the little crinkly bits around the fiords... */
395	tc_windup();
396	nanotime(&taft);
397	if (timestepwarnings) {
398		log(LOG_INFO,
399		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
400		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
401		    (intmax_t)taft.tv_sec, taft.tv_nsec,
402		    (intmax_t)ts->tv_sec, ts->tv_nsec);
403	}
404	cpu_tick_calibrate(1);
405}
406
407/*
408 * Initialize the next struct timehands in the ring and make
409 * it the active timehands.  Along the way we might switch to a different
410 * timecounter and/or do seconds processing in NTP.  Slightly magic.
411 */
412static void
413tc_windup(void)
414{
415	struct bintime bt;
416	struct timehands *th, *tho;
417	uint64_t scale;
418	u_int delta, ncount, ogen;
419	int i;
420	time_t t;
421
422	/*
423	 * Make the next timehands a copy of the current one, but do not
424	 * overwrite the generation or next pointer.  While we update
425	 * the contents, the generation must be zero.
426	 */
427	tho = timehands;
428	th = tho->th_next;
429	ogen = th->th_generation;
430	th->th_generation = 0;
431	bcopy(tho, th, offsetof(struct timehands, th_generation));
432
433	/*
434	 * Capture a timecounter delta on the current timecounter and if
435	 * changing timecounters, a counter value from the new timecounter.
436	 * Update the offset fields accordingly.
437	 */
438	delta = tc_delta(th);
439	if (th->th_counter != timecounter)
440		ncount = timecounter->tc_get_timecount(timecounter);
441	else
442		ncount = 0;
443	th->th_offset_count += delta;
444	th->th_offset_count &= th->th_counter->tc_counter_mask;
445	while (delta > th->th_counter->tc_frequency) {
446		/* Eat complete unadjusted seconds. */
447		delta -= th->th_counter->tc_frequency;
448		th->th_offset.sec++;
449	}
450	if ((delta > th->th_counter->tc_frequency / 2) &&
451	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
452		/* The product th_scale * delta just barely overflows. */
453		th->th_offset.sec++;
454	}
455	bintime_addx(&th->th_offset, th->th_scale * delta);
456
457	/*
458	 * Hardware latching timecounters may not generate interrupts on
459	 * PPS events, so instead we poll them.  There is a finite risk that
460	 * the hardware might capture a count which is later than the one we
461	 * got above, and therefore possibly in the next NTP second which might
462	 * have a different rate than the current NTP second.  It doesn't
463	 * matter in practice.
464	 */
465	if (tho->th_counter->tc_poll_pps)
466		tho->th_counter->tc_poll_pps(tho->th_counter);
467
468	/*
469	 * Deal with NTP second processing.  The for loop normally
470	 * iterates at most once, but in extreme situations it might
471	 * keep NTP sane if timeouts are not run for several seconds.
472	 * At boot, the time step can be large when the TOD hardware
473	 * has been read, so on really large steps, we call
474	 * ntp_update_second only twice.  We need to call it twice in
475	 * case we missed a leap second.
476	 */
477	bt = th->th_offset;
478	bintime_add(&bt, &boottimebin);
479	i = bt.sec - tho->th_microtime.tv_sec;
480	if (i > LARGE_STEP)
481		i = 2;
482	for (; i > 0; i--) {
483		t = bt.sec;
484		ntp_update_second(&th->th_adjustment, &bt.sec);
485		if (bt.sec != t)
486			boottimebin.sec += bt.sec - t;
487	}
488	/* Update the UTC timestamps used by the get*() functions. */
489	/* XXX shouldn't do this here.  Should force non-`get' versions. */
490	bintime2timeval(&bt, &th->th_microtime);
491	bintime2timespec(&bt, &th->th_nanotime);
492
493	/* Now is a good time to change timecounters. */
494	if (th->th_counter != timecounter) {
495#ifndef __arm__
496		if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0)
497			cpu_disable_deep_sleep++;
498		if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0)
499			cpu_disable_deep_sleep--;
500#endif
501		th->th_counter = timecounter;
502		th->th_offset_count = ncount;
503		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
504		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
505	}
506
507	/*-
508	 * Recalculate the scaling factor.  We want the number of 1/2^64
509	 * fractions of a second per period of the hardware counter, taking
510	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
511	 * processing provides us with.
512	 *
513	 * The th_adjustment is nanoseconds per second with 32 bit binary
514	 * fraction and we want 64 bit binary fraction of second:
515	 *
516	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
517	 *
518	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
519	 * we can only multiply by about 850 without overflowing, that
520	 * leaves no suitably precise fractions for multiply before divide.
521	 *
522	 * Divide before multiply with a fraction of 2199/512 results in a
523	 * systematic undercompensation of 10PPM of th_adjustment.  On a
524	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
525 	 *
526	 * We happily sacrifice the lowest of the 64 bits of our result
527	 * to the goddess of code clarity.
528	 *
529	 */
530	scale = (uint64_t)1 << 63;
531	scale += (th->th_adjustment / 1024) * 2199;
532	scale /= th->th_counter->tc_frequency;
533	th->th_scale = scale * 2;
534
535	/*
536	 * Now that the struct timehands is again consistent, set the new
537	 * generation number, making sure to not make it zero.
538	 */
539	if (++ogen == 0)
540		ogen = 1;
541	th->th_generation = ogen;
542
543	/* Go live with the new struct timehands. */
544	time_second = th->th_microtime.tv_sec;
545	time_uptime = th->th_offset.sec;
546	timehands = th;
547}
548
549/* Report or change the active timecounter hardware. */
550static int
551sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
552{
553	char newname[32];
554	struct timecounter *newtc, *tc;
555	int error;
556
557	tc = timecounter;
558	strlcpy(newname, tc->tc_name, sizeof(newname));
559
560	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
561	if (error != 0 || req->newptr == NULL ||
562	    strcmp(newname, tc->tc_name) == 0)
563		return (error);
564	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
565		if (strcmp(newname, newtc->tc_name) != 0)
566			continue;
567
568		/* Warm up new timecounter. */
569		(void)newtc->tc_get_timecount(newtc);
570		(void)newtc->tc_get_timecount(newtc);
571
572		timecounter = newtc;
573		return (0);
574	}
575	return (EINVAL);
576}
577
578SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
579    0, 0, sysctl_kern_timecounter_hardware, "A",
580    "Timecounter hardware selected");
581
582
583/* Report or change the active timecounter hardware. */
584static int
585sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
586{
587	char buf[32], *spc;
588	struct timecounter *tc;
589	int error;
590
591	spc = "";
592	error = 0;
593	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
594		sprintf(buf, "%s%s(%d)",
595		    spc, tc->tc_name, tc->tc_quality);
596		error = SYSCTL_OUT(req, buf, strlen(buf));
597		spc = " ";
598	}
599	return (error);
600}
601
602SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
603    0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
604
605/*
606 * RFC 2783 PPS-API implementation.
607 */
608
609int
610pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
611{
612	pps_params_t *app;
613	struct pps_fetch_args *fapi;
614#ifdef PPS_SYNC
615	struct pps_kcbind_args *kapi;
616#endif
617
618	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
619	switch (cmd) {
620	case PPS_IOC_CREATE:
621		return (0);
622	case PPS_IOC_DESTROY:
623		return (0);
624	case PPS_IOC_SETPARAMS:
625		app = (pps_params_t *)data;
626		if (app->mode & ~pps->ppscap)
627			return (EINVAL);
628		pps->ppsparam = *app;
629		return (0);
630	case PPS_IOC_GETPARAMS:
631		app = (pps_params_t *)data;
632		*app = pps->ppsparam;
633		app->api_version = PPS_API_VERS_1;
634		return (0);
635	case PPS_IOC_GETCAP:
636		*(int*)data = pps->ppscap;
637		return (0);
638	case PPS_IOC_FETCH:
639		fapi = (struct pps_fetch_args *)data;
640		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
641			return (EINVAL);
642		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
643			return (EOPNOTSUPP);
644		pps->ppsinfo.current_mode = pps->ppsparam.mode;
645		fapi->pps_info_buf = pps->ppsinfo;
646		return (0);
647	case PPS_IOC_KCBIND:
648#ifdef PPS_SYNC
649		kapi = (struct pps_kcbind_args *)data;
650		/* XXX Only root should be able to do this */
651		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
652			return (EINVAL);
653		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
654			return (EINVAL);
655		if (kapi->edge & ~pps->ppscap)
656			return (EINVAL);
657		pps->kcmode = kapi->edge;
658		return (0);
659#else
660		return (EOPNOTSUPP);
661#endif
662	default:
663		return (ENOIOCTL);
664	}
665}
666
667void
668pps_init(struct pps_state *pps)
669{
670	pps->ppscap |= PPS_TSFMT_TSPEC;
671	if (pps->ppscap & PPS_CAPTUREASSERT)
672		pps->ppscap |= PPS_OFFSETASSERT;
673	if (pps->ppscap & PPS_CAPTURECLEAR)
674		pps->ppscap |= PPS_OFFSETCLEAR;
675}
676
677void
678pps_capture(struct pps_state *pps)
679{
680	struct timehands *th;
681
682	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
683	th = timehands;
684	pps->capgen = th->th_generation;
685	pps->capth = th;
686	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
687	if (pps->capgen != th->th_generation)
688		pps->capgen = 0;
689}
690
691void
692pps_event(struct pps_state *pps, int event)
693{
694	struct bintime bt;
695	struct timespec ts, *tsp, *osp;
696	u_int tcount, *pcount;
697	int foff, fhard;
698	pps_seq_t *pseq;
699
700	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
701	/* If the timecounter was wound up underneath us, bail out. */
702	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
703		return;
704
705	/* Things would be easier with arrays. */
706	if (event == PPS_CAPTUREASSERT) {
707		tsp = &pps->ppsinfo.assert_timestamp;
708		osp = &pps->ppsparam.assert_offset;
709		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
710		fhard = pps->kcmode & PPS_CAPTUREASSERT;
711		pcount = &pps->ppscount[0];
712		pseq = &pps->ppsinfo.assert_sequence;
713	} else {
714		tsp = &pps->ppsinfo.clear_timestamp;
715		osp = &pps->ppsparam.clear_offset;
716		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
717		fhard = pps->kcmode & PPS_CAPTURECLEAR;
718		pcount = &pps->ppscount[1];
719		pseq = &pps->ppsinfo.clear_sequence;
720	}
721
722	/*
723	 * If the timecounter changed, we cannot compare the count values, so
724	 * we have to drop the rest of the PPS-stuff until the next event.
725	 */
726	if (pps->ppstc != pps->capth->th_counter) {
727		pps->ppstc = pps->capth->th_counter;
728		*pcount = pps->capcount;
729		pps->ppscount[2] = pps->capcount;
730		return;
731	}
732
733	/* Convert the count to a timespec. */
734	tcount = pps->capcount - pps->capth->th_offset_count;
735	tcount &= pps->capth->th_counter->tc_counter_mask;
736	bt = pps->capth->th_offset;
737	bintime_addx(&bt, pps->capth->th_scale * tcount);
738	bintime_add(&bt, &boottimebin);
739	bintime2timespec(&bt, &ts);
740
741	/* If the timecounter was wound up underneath us, bail out. */
742	if (pps->capgen != pps->capth->th_generation)
743		return;
744
745	*pcount = pps->capcount;
746	(*pseq)++;
747	*tsp = ts;
748
749	if (foff) {
750		timespecadd(tsp, osp);
751		if (tsp->tv_nsec < 0) {
752			tsp->tv_nsec += 1000000000;
753			tsp->tv_sec -= 1;
754		}
755	}
756#ifdef PPS_SYNC
757	if (fhard) {
758		uint64_t scale;
759
760		/*
761		 * Feed the NTP PLL/FLL.
762		 * The FLL wants to know how many (hardware) nanoseconds
763		 * elapsed since the previous event.
764		 */
765		tcount = pps->capcount - pps->ppscount[2];
766		pps->ppscount[2] = pps->capcount;
767		tcount &= pps->capth->th_counter->tc_counter_mask;
768		scale = (uint64_t)1 << 63;
769		scale /= pps->capth->th_counter->tc_frequency;
770		scale *= 2;
771		bt.sec = 0;
772		bt.frac = 0;
773		bintime_addx(&bt, scale * tcount);
774		bintime2timespec(&bt, &ts);
775		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
776	}
777#endif
778}
779
780/*
781 * Timecounters need to be updated every so often to prevent the hardware
782 * counter from overflowing.  Updating also recalculates the cached values
783 * used by the get*() family of functions, so their precision depends on
784 * the update frequency.
785 */
786
787static int tc_tick;
788SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
789    "Approximate number of hardclock ticks in a millisecond");
790
791void
792tc_ticktock(int cnt)
793{
794	static int count;
795
796	count += cnt;
797	if (count < tc_tick)
798		return;
799	count = 0;
800	tc_windup();
801}
802
803static void
804inittimecounter(void *dummy)
805{
806	u_int p;
807
808	/*
809	 * Set the initial timeout to
810	 * max(1, <approx. number of hardclock ticks in a millisecond>).
811	 * People should probably not use the sysctl to set the timeout
812	 * to smaller than its inital value, since that value is the
813	 * smallest reasonable one.  If they want better timestamps they
814	 * should use the non-"get"* functions.
815	 */
816	if (hz > 1000)
817		tc_tick = (hz + 500) / 1000;
818	else
819		tc_tick = 1;
820	p = (tc_tick * 1000000) / hz;
821	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
822
823	/* warm up new timecounter (again) and get rolling. */
824	(void)timecounter->tc_get_timecount(timecounter);
825	(void)timecounter->tc_get_timecount(timecounter);
826	tc_windup();
827}
828
829SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
830
831/* Cpu tick handling -------------------------------------------------*/
832
833static int cpu_tick_variable;
834static uint64_t	cpu_tick_frequency;
835
836static uint64_t
837tc_cpu_ticks(void)
838{
839	static uint64_t base;
840	static unsigned last;
841	unsigned u;
842	struct timecounter *tc;
843
844	tc = timehands->th_counter;
845	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
846	if (u < last)
847		base += (uint64_t)tc->tc_counter_mask + 1;
848	last = u;
849	return (u + base);
850}
851
852void
853cpu_tick_calibration(void)
854{
855	static time_t last_calib;
856
857	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
858		cpu_tick_calibrate(0);
859		last_calib = time_uptime;
860	}
861}
862
863/*
864 * This function gets called every 16 seconds on only one designated
865 * CPU in the system from hardclock() via cpu_tick_calibration()().
866 *
867 * Whenever the real time clock is stepped we get called with reset=1
868 * to make sure we handle suspend/resume and similar events correctly.
869 */
870
871static void
872cpu_tick_calibrate(int reset)
873{
874	static uint64_t c_last;
875	uint64_t c_this, c_delta;
876	static struct bintime  t_last;
877	struct bintime t_this, t_delta;
878	uint32_t divi;
879
880	if (reset) {
881		/* The clock was stepped, abort & reset */
882		t_last.sec = 0;
883		return;
884	}
885
886	/* we don't calibrate fixed rate cputicks */
887	if (!cpu_tick_variable)
888		return;
889
890	getbinuptime(&t_this);
891	c_this = cpu_ticks();
892	if (t_last.sec != 0) {
893		c_delta = c_this - c_last;
894		t_delta = t_this;
895		bintime_sub(&t_delta, &t_last);
896		/*
897		 * Headroom:
898		 * 	2^(64-20) / 16[s] =
899		 * 	2^(44) / 16[s] =
900		 * 	17.592.186.044.416 / 16 =
901		 * 	1.099.511.627.776 [Hz]
902		 */
903		divi = t_delta.sec << 20;
904		divi |= t_delta.frac >> (64 - 20);
905		c_delta <<= 20;
906		c_delta /= divi;
907		if (c_delta > cpu_tick_frequency) {
908			if (0 && bootverbose)
909				printf("cpu_tick increased to %ju Hz\n",
910				    c_delta);
911			cpu_tick_frequency = c_delta;
912		}
913	}
914	c_last = c_this;
915	t_last = t_this;
916}
917
918void
919set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
920{
921
922	if (func == NULL) {
923		cpu_ticks = tc_cpu_ticks;
924	} else {
925		cpu_tick_frequency = freq;
926		cpu_tick_variable = var;
927		cpu_ticks = func;
928	}
929}
930
931uint64_t
932cpu_tickrate(void)
933{
934
935	if (cpu_ticks == tc_cpu_ticks)
936		return (tc_getfrequency());
937	return (cpu_tick_frequency);
938}
939
940/*
941 * We need to be slightly careful converting cputicks to microseconds.
942 * There is plenty of margin in 64 bits of microseconds (half a million
943 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
944 * before divide conversion (to retain precision) we find that the
945 * margin shrinks to 1.5 hours (one millionth of 146y).
946 * With a three prong approach we never lose significant bits, no
947 * matter what the cputick rate and length of timeinterval is.
948 */
949
950uint64_t
951cputick2usec(uint64_t tick)
952{
953
954	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
955		return (tick / (cpu_tickrate() / 1000000LL));
956	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
957		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
958	else
959		return ((tick * 1000000LL) / cpu_tickrate());
960}
961
962cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
963