kern_tc.c revision 217616
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 */
9
10#include <sys/cdefs.h>
11__FBSDID("$FreeBSD: head/sys/kern/kern_tc.c 217616 2011-01-19 23:00:25Z mdf $");
12
13#include "opt_ntp.h"
14
15#include <sys/param.h>
16#include <sys/kernel.h>
17#include <sys/sysctl.h>
18#include <sys/syslog.h>
19#include <sys/systm.h>
20#include <sys/timepps.h>
21#include <sys/timetc.h>
22#include <sys/timex.h>
23
24/*
25 * A large step happens on boot.  This constant detects such steps.
26 * It is relatively small so that ntp_update_second gets called enough
27 * in the typical 'missed a couple of seconds' case, but doesn't loop
28 * forever when the time step is large.
29 */
30#define LARGE_STEP	200
31
32/*
33 * Implement a dummy timecounter which we can use until we get a real one
34 * in the air.  This allows the console and other early stuff to use
35 * time services.
36 */
37
38static u_int
39dummy_get_timecount(struct timecounter *tc)
40{
41	static u_int now;
42
43	return (++now);
44}
45
46static struct timecounter dummy_timecounter = {
47	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48};
49
50struct timehands {
51	/* These fields must be initialized by the driver. */
52	struct timecounter	*th_counter;
53	int64_t			th_adjustment;
54	uint64_t		th_scale;
55	u_int	 		th_offset_count;
56	struct bintime		th_offset;
57	struct timeval		th_microtime;
58	struct timespec		th_nanotime;
59	/* Fields not to be copied in tc_windup start with th_generation. */
60	volatile u_int		th_generation;
61	struct timehands	*th_next;
62};
63
64static struct timehands th0;
65static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74static struct timehands th0 = {
75	&dummy_timecounter,
76	0,
77	(uint64_t)-1 / 1000000,
78	0,
79	{1, 0},
80	{0, 0},
81	{0, 0},
82	1,
83	&th1
84};
85
86static struct timehands *volatile timehands = &th0;
87struct timecounter *timecounter = &dummy_timecounter;
88static struct timecounter *timecounters = &dummy_timecounter;
89
90int tc_min_ticktock_freq = 1;
91
92time_t time_second = 1;
93time_t time_uptime = 1;
94
95struct bintime boottimebin;
96struct timeval boottime;
97static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
98SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
99    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
100
101SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
102SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
103
104static int timestepwarnings;
105SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106    &timestepwarnings, 0, "Log time steps");
107
108static void tc_windup(void);
109static void cpu_tick_calibrate(int);
110
111static int
112sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
113{
114#ifdef SCTL_MASK32
115	int tv[2];
116
117	if (req->flags & SCTL_MASK32) {
118		tv[0] = boottime.tv_sec;
119		tv[1] = boottime.tv_usec;
120		return SYSCTL_OUT(req, tv, sizeof(tv));
121	} else
122#endif
123		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
124}
125
126static int
127sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
128{
129	u_int ncount;
130	struct timecounter *tc = arg1;
131
132	ncount = tc->tc_get_timecount(tc);
133	return sysctl_handle_int(oidp, &ncount, 0, req);
134}
135
136static int
137sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
138{
139	uint64_t freq;
140	struct timecounter *tc = arg1;
141
142	freq = tc->tc_frequency;
143	return sysctl_handle_64(oidp, &freq, 0, req);
144}
145
146/*
147 * Return the difference between the timehands' counter value now and what
148 * was when we copied it to the timehands' offset_count.
149 */
150static __inline u_int
151tc_delta(struct timehands *th)
152{
153	struct timecounter *tc;
154
155	tc = th->th_counter;
156	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
157	    tc->tc_counter_mask);
158}
159
160/*
161 * Functions for reading the time.  We have to loop until we are sure that
162 * the timehands that we operated on was not updated under our feet.  See
163 * the comment in <sys/time.h> for a description of these 12 functions.
164 */
165
166void
167binuptime(struct bintime *bt)
168{
169	struct timehands *th;
170	u_int gen;
171
172	do {
173		th = timehands;
174		gen = th->th_generation;
175		*bt = th->th_offset;
176		bintime_addx(bt, th->th_scale * tc_delta(th));
177	} while (gen == 0 || gen != th->th_generation);
178}
179
180void
181nanouptime(struct timespec *tsp)
182{
183	struct bintime bt;
184
185	binuptime(&bt);
186	bintime2timespec(&bt, tsp);
187}
188
189void
190microuptime(struct timeval *tvp)
191{
192	struct bintime bt;
193
194	binuptime(&bt);
195	bintime2timeval(&bt, tvp);
196}
197
198void
199bintime(struct bintime *bt)
200{
201
202	binuptime(bt);
203	bintime_add(bt, &boottimebin);
204}
205
206void
207nanotime(struct timespec *tsp)
208{
209	struct bintime bt;
210
211	bintime(&bt);
212	bintime2timespec(&bt, tsp);
213}
214
215void
216microtime(struct timeval *tvp)
217{
218	struct bintime bt;
219
220	bintime(&bt);
221	bintime2timeval(&bt, tvp);
222}
223
224void
225getbinuptime(struct bintime *bt)
226{
227	struct timehands *th;
228	u_int gen;
229
230	do {
231		th = timehands;
232		gen = th->th_generation;
233		*bt = th->th_offset;
234	} while (gen == 0 || gen != th->th_generation);
235}
236
237void
238getnanouptime(struct timespec *tsp)
239{
240	struct timehands *th;
241	u_int gen;
242
243	do {
244		th = timehands;
245		gen = th->th_generation;
246		bintime2timespec(&th->th_offset, tsp);
247	} while (gen == 0 || gen != th->th_generation);
248}
249
250void
251getmicrouptime(struct timeval *tvp)
252{
253	struct timehands *th;
254	u_int gen;
255
256	do {
257		th = timehands;
258		gen = th->th_generation;
259		bintime2timeval(&th->th_offset, tvp);
260	} while (gen == 0 || gen != th->th_generation);
261}
262
263void
264getbintime(struct bintime *bt)
265{
266	struct timehands *th;
267	u_int gen;
268
269	do {
270		th = timehands;
271		gen = th->th_generation;
272		*bt = th->th_offset;
273	} while (gen == 0 || gen != th->th_generation);
274	bintime_add(bt, &boottimebin);
275}
276
277void
278getnanotime(struct timespec *tsp)
279{
280	struct timehands *th;
281	u_int gen;
282
283	do {
284		th = timehands;
285		gen = th->th_generation;
286		*tsp = th->th_nanotime;
287	} while (gen == 0 || gen != th->th_generation);
288}
289
290void
291getmicrotime(struct timeval *tvp)
292{
293	struct timehands *th;
294	u_int gen;
295
296	do {
297		th = timehands;
298		gen = th->th_generation;
299		*tvp = th->th_microtime;
300	} while (gen == 0 || gen != th->th_generation);
301}
302
303/*
304 * Initialize a new timecounter and possibly use it.
305 */
306void
307tc_init(struct timecounter *tc)
308{
309	u_int u;
310	struct sysctl_oid *tc_root;
311
312	u = tc->tc_frequency / tc->tc_counter_mask;
313	/* XXX: We need some margin here, 10% is a guess */
314	u *= 11;
315	u /= 10;
316	if (u > hz && tc->tc_quality >= 0) {
317		tc->tc_quality = -2000;
318		if (bootverbose) {
319			printf("Timecounter \"%s\" frequency %ju Hz",
320			    tc->tc_name, (uintmax_t)tc->tc_frequency);
321			printf(" -- Insufficient hz, needs at least %u\n", u);
322		}
323	} else if (tc->tc_quality >= 0 || bootverbose) {
324		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
325		    tc->tc_name, (uintmax_t)tc->tc_frequency,
326		    tc->tc_quality);
327	}
328
329	tc->tc_next = timecounters;
330	timecounters = tc;
331	/*
332	 * Set up sysctl tree for this counter.
333	 */
334	tc_root = SYSCTL_ADD_NODE(NULL,
335	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
336	    CTLFLAG_RW, 0, "timecounter description");
337	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
338	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
339	    "mask for implemented bits");
340	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
341	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
342	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
343	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
344	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
345	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
346	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
347	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
348	    "goodness of time counter");
349	/*
350	 * Never automatically use a timecounter with negative quality.
351	 * Even though we run on the dummy counter, switching here may be
352	 * worse since this timecounter may not be monotonous.
353	 */
354	if (tc->tc_quality < 0)
355		return;
356	if (tc->tc_quality < timecounter->tc_quality)
357		return;
358	if (tc->tc_quality == timecounter->tc_quality &&
359	    tc->tc_frequency < timecounter->tc_frequency)
360		return;
361	(void)tc->tc_get_timecount(tc);
362	(void)tc->tc_get_timecount(tc);
363	timecounter = tc;
364}
365
366/* Report the frequency of the current timecounter. */
367uint64_t
368tc_getfrequency(void)
369{
370
371	return (timehands->th_counter->tc_frequency);
372}
373
374/*
375 * Step our concept of UTC.  This is done by modifying our estimate of
376 * when we booted.
377 * XXX: not locked.
378 */
379void
380tc_setclock(struct timespec *ts)
381{
382	struct timespec tbef, taft;
383	struct bintime bt, bt2;
384
385	cpu_tick_calibrate(1);
386	nanotime(&tbef);
387	timespec2bintime(ts, &bt);
388	binuptime(&bt2);
389	bintime_sub(&bt, &bt2);
390	bintime_add(&bt2, &boottimebin);
391	boottimebin = bt;
392	bintime2timeval(&bt, &boottime);
393
394	/* XXX fiddle all the little crinkly bits around the fiords... */
395	tc_windup();
396	nanotime(&taft);
397	if (timestepwarnings) {
398		log(LOG_INFO,
399		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
400		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
401		    (intmax_t)taft.tv_sec, taft.tv_nsec,
402		    (intmax_t)ts->tv_sec, ts->tv_nsec);
403	}
404	cpu_tick_calibrate(1);
405}
406
407/*
408 * Initialize the next struct timehands in the ring and make
409 * it the active timehands.  Along the way we might switch to a different
410 * timecounter and/or do seconds processing in NTP.  Slightly magic.
411 */
412static void
413tc_windup(void)
414{
415	struct bintime bt;
416	struct timehands *th, *tho;
417	uint64_t scale;
418	u_int delta, ncount, ogen;
419	int i;
420	time_t t;
421
422	/*
423	 * Make the next timehands a copy of the current one, but do not
424	 * overwrite the generation or next pointer.  While we update
425	 * the contents, the generation must be zero.
426	 */
427	tho = timehands;
428	th = tho->th_next;
429	ogen = th->th_generation;
430	th->th_generation = 0;
431	bcopy(tho, th, offsetof(struct timehands, th_generation));
432
433	/*
434	 * Capture a timecounter delta on the current timecounter and if
435	 * changing timecounters, a counter value from the new timecounter.
436	 * Update the offset fields accordingly.
437	 */
438	delta = tc_delta(th);
439	if (th->th_counter != timecounter)
440		ncount = timecounter->tc_get_timecount(timecounter);
441	else
442		ncount = 0;
443	th->th_offset_count += delta;
444	th->th_offset_count &= th->th_counter->tc_counter_mask;
445	while (delta > th->th_counter->tc_frequency) {
446		/* Eat complete unadjusted seconds. */
447		delta -= th->th_counter->tc_frequency;
448		th->th_offset.sec++;
449	}
450	if ((delta > th->th_counter->tc_frequency / 2) &&
451	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
452		/* The product th_scale * delta just barely overflows. */
453		th->th_offset.sec++;
454	}
455	bintime_addx(&th->th_offset, th->th_scale * delta);
456
457	/*
458	 * Hardware latching timecounters may not generate interrupts on
459	 * PPS events, so instead we poll them.  There is a finite risk that
460	 * the hardware might capture a count which is later than the one we
461	 * got above, and therefore possibly in the next NTP second which might
462	 * have a different rate than the current NTP second.  It doesn't
463	 * matter in practice.
464	 */
465	if (tho->th_counter->tc_poll_pps)
466		tho->th_counter->tc_poll_pps(tho->th_counter);
467
468	/*
469	 * Deal with NTP second processing.  The for loop normally
470	 * iterates at most once, but in extreme situations it might
471	 * keep NTP sane if timeouts are not run for several seconds.
472	 * At boot, the time step can be large when the TOD hardware
473	 * has been read, so on really large steps, we call
474	 * ntp_update_second only twice.  We need to call it twice in
475	 * case we missed a leap second.
476	 */
477	bt = th->th_offset;
478	bintime_add(&bt, &boottimebin);
479	i = bt.sec - tho->th_microtime.tv_sec;
480	if (i > LARGE_STEP)
481		i = 2;
482	for (; i > 0; i--) {
483		t = bt.sec;
484		ntp_update_second(&th->th_adjustment, &bt.sec);
485		if (bt.sec != t)
486			boottimebin.sec += bt.sec - t;
487	}
488	/* Update the UTC timestamps used by the get*() functions. */
489	/* XXX shouldn't do this here.  Should force non-`get' versions. */
490	bintime2timeval(&bt, &th->th_microtime);
491	bintime2timespec(&bt, &th->th_nanotime);
492
493	/* Now is a good time to change timecounters. */
494	if (th->th_counter != timecounter) {
495		th->th_counter = timecounter;
496		th->th_offset_count = ncount;
497		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
498		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
499	}
500
501	/*-
502	 * Recalculate the scaling factor.  We want the number of 1/2^64
503	 * fractions of a second per period of the hardware counter, taking
504	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
505	 * processing provides us with.
506	 *
507	 * The th_adjustment is nanoseconds per second with 32 bit binary
508	 * fraction and we want 64 bit binary fraction of second:
509	 *
510	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
511	 *
512	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
513	 * we can only multiply by about 850 without overflowing, that
514	 * leaves no suitably precise fractions for multiply before divide.
515	 *
516	 * Divide before multiply with a fraction of 2199/512 results in a
517	 * systematic undercompensation of 10PPM of th_adjustment.  On a
518	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
519 	 *
520	 * We happily sacrifice the lowest of the 64 bits of our result
521	 * to the goddess of code clarity.
522	 *
523	 */
524	scale = (uint64_t)1 << 63;
525	scale += (th->th_adjustment / 1024) * 2199;
526	scale /= th->th_counter->tc_frequency;
527	th->th_scale = scale * 2;
528
529	/*
530	 * Now that the struct timehands is again consistent, set the new
531	 * generation number, making sure to not make it zero.
532	 */
533	if (++ogen == 0)
534		ogen = 1;
535	th->th_generation = ogen;
536
537	/* Go live with the new struct timehands. */
538	time_second = th->th_microtime.tv_sec;
539	time_uptime = th->th_offset.sec;
540	timehands = th;
541}
542
543/* Report or change the active timecounter hardware. */
544static int
545sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
546{
547	char newname[32];
548	struct timecounter *newtc, *tc;
549	int error;
550
551	tc = timecounter;
552	strlcpy(newname, tc->tc_name, sizeof(newname));
553
554	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
555	if (error != 0 || req->newptr == NULL ||
556	    strcmp(newname, tc->tc_name) == 0)
557		return (error);
558	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
559		if (strcmp(newname, newtc->tc_name) != 0)
560			continue;
561
562		/* Warm up new timecounter. */
563		(void)newtc->tc_get_timecount(newtc);
564		(void)newtc->tc_get_timecount(newtc);
565
566		timecounter = newtc;
567		return (0);
568	}
569	return (EINVAL);
570}
571
572SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
573    0, 0, sysctl_kern_timecounter_hardware, "A",
574    "Timecounter hardware selected");
575
576
577/* Report or change the active timecounter hardware. */
578static int
579sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
580{
581	char buf[32], *spc;
582	struct timecounter *tc;
583	int error;
584
585	spc = "";
586	error = 0;
587	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
588		sprintf(buf, "%s%s(%d)",
589		    spc, tc->tc_name, tc->tc_quality);
590		error = SYSCTL_OUT(req, buf, strlen(buf));
591		spc = " ";
592	}
593	return (error);
594}
595
596SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
597    0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
598
599/*
600 * RFC 2783 PPS-API implementation.
601 */
602
603int
604pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
605{
606	pps_params_t *app;
607	struct pps_fetch_args *fapi;
608#ifdef PPS_SYNC
609	struct pps_kcbind_args *kapi;
610#endif
611
612	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
613	switch (cmd) {
614	case PPS_IOC_CREATE:
615		return (0);
616	case PPS_IOC_DESTROY:
617		return (0);
618	case PPS_IOC_SETPARAMS:
619		app = (pps_params_t *)data;
620		if (app->mode & ~pps->ppscap)
621			return (EINVAL);
622		pps->ppsparam = *app;
623		return (0);
624	case PPS_IOC_GETPARAMS:
625		app = (pps_params_t *)data;
626		*app = pps->ppsparam;
627		app->api_version = PPS_API_VERS_1;
628		return (0);
629	case PPS_IOC_GETCAP:
630		*(int*)data = pps->ppscap;
631		return (0);
632	case PPS_IOC_FETCH:
633		fapi = (struct pps_fetch_args *)data;
634		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
635			return (EINVAL);
636		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
637			return (EOPNOTSUPP);
638		pps->ppsinfo.current_mode = pps->ppsparam.mode;
639		fapi->pps_info_buf = pps->ppsinfo;
640		return (0);
641	case PPS_IOC_KCBIND:
642#ifdef PPS_SYNC
643		kapi = (struct pps_kcbind_args *)data;
644		/* XXX Only root should be able to do this */
645		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
646			return (EINVAL);
647		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
648			return (EINVAL);
649		if (kapi->edge & ~pps->ppscap)
650			return (EINVAL);
651		pps->kcmode = kapi->edge;
652		return (0);
653#else
654		return (EOPNOTSUPP);
655#endif
656	default:
657		return (ENOIOCTL);
658	}
659}
660
661void
662pps_init(struct pps_state *pps)
663{
664	pps->ppscap |= PPS_TSFMT_TSPEC;
665	if (pps->ppscap & PPS_CAPTUREASSERT)
666		pps->ppscap |= PPS_OFFSETASSERT;
667	if (pps->ppscap & PPS_CAPTURECLEAR)
668		pps->ppscap |= PPS_OFFSETCLEAR;
669}
670
671void
672pps_capture(struct pps_state *pps)
673{
674	struct timehands *th;
675
676	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
677	th = timehands;
678	pps->capgen = th->th_generation;
679	pps->capth = th;
680	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
681	if (pps->capgen != th->th_generation)
682		pps->capgen = 0;
683}
684
685void
686pps_event(struct pps_state *pps, int event)
687{
688	struct bintime bt;
689	struct timespec ts, *tsp, *osp;
690	u_int tcount, *pcount;
691	int foff, fhard;
692	pps_seq_t *pseq;
693
694	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
695	/* If the timecounter was wound up underneath us, bail out. */
696	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
697		return;
698
699	/* Things would be easier with arrays. */
700	if (event == PPS_CAPTUREASSERT) {
701		tsp = &pps->ppsinfo.assert_timestamp;
702		osp = &pps->ppsparam.assert_offset;
703		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
704		fhard = pps->kcmode & PPS_CAPTUREASSERT;
705		pcount = &pps->ppscount[0];
706		pseq = &pps->ppsinfo.assert_sequence;
707	} else {
708		tsp = &pps->ppsinfo.clear_timestamp;
709		osp = &pps->ppsparam.clear_offset;
710		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
711		fhard = pps->kcmode & PPS_CAPTURECLEAR;
712		pcount = &pps->ppscount[1];
713		pseq = &pps->ppsinfo.clear_sequence;
714	}
715
716	/*
717	 * If the timecounter changed, we cannot compare the count values, so
718	 * we have to drop the rest of the PPS-stuff until the next event.
719	 */
720	if (pps->ppstc != pps->capth->th_counter) {
721		pps->ppstc = pps->capth->th_counter;
722		*pcount = pps->capcount;
723		pps->ppscount[2] = pps->capcount;
724		return;
725	}
726
727	/* Convert the count to a timespec. */
728	tcount = pps->capcount - pps->capth->th_offset_count;
729	tcount &= pps->capth->th_counter->tc_counter_mask;
730	bt = pps->capth->th_offset;
731	bintime_addx(&bt, pps->capth->th_scale * tcount);
732	bintime_add(&bt, &boottimebin);
733	bintime2timespec(&bt, &ts);
734
735	/* If the timecounter was wound up underneath us, bail out. */
736	if (pps->capgen != pps->capth->th_generation)
737		return;
738
739	*pcount = pps->capcount;
740	(*pseq)++;
741	*tsp = ts;
742
743	if (foff) {
744		timespecadd(tsp, osp);
745		if (tsp->tv_nsec < 0) {
746			tsp->tv_nsec += 1000000000;
747			tsp->tv_sec -= 1;
748		}
749	}
750#ifdef PPS_SYNC
751	if (fhard) {
752		uint64_t scale;
753
754		/*
755		 * Feed the NTP PLL/FLL.
756		 * The FLL wants to know how many (hardware) nanoseconds
757		 * elapsed since the previous event.
758		 */
759		tcount = pps->capcount - pps->ppscount[2];
760		pps->ppscount[2] = pps->capcount;
761		tcount &= pps->capth->th_counter->tc_counter_mask;
762		scale = (uint64_t)1 << 63;
763		scale /= pps->capth->th_counter->tc_frequency;
764		scale *= 2;
765		bt.sec = 0;
766		bt.frac = 0;
767		bintime_addx(&bt, scale * tcount);
768		bintime2timespec(&bt, &ts);
769		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
770	}
771#endif
772}
773
774/*
775 * Timecounters need to be updated every so often to prevent the hardware
776 * counter from overflowing.  Updating also recalculates the cached values
777 * used by the get*() family of functions, so their precision depends on
778 * the update frequency.
779 */
780
781static int tc_tick;
782SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
783    "Approximate number of hardclock ticks in a millisecond");
784
785void
786tc_ticktock(int cnt)
787{
788	static int count;
789
790	count += cnt;
791	if (count < tc_tick)
792		return;
793	count = 0;
794	tc_windup();
795}
796
797static void
798inittimecounter(void *dummy)
799{
800	u_int p;
801
802	/*
803	 * Set the initial timeout to
804	 * max(1, <approx. number of hardclock ticks in a millisecond>).
805	 * People should probably not use the sysctl to set the timeout
806	 * to smaller than its inital value, since that value is the
807	 * smallest reasonable one.  If they want better timestamps they
808	 * should use the non-"get"* functions.
809	 */
810	if (hz > 1000)
811		tc_tick = (hz + 500) / 1000;
812	else
813		tc_tick = 1;
814	p = (tc_tick * 1000000) / hz;
815	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
816
817	/* warm up new timecounter (again) and get rolling. */
818	(void)timecounter->tc_get_timecount(timecounter);
819	(void)timecounter->tc_get_timecount(timecounter);
820	tc_windup();
821}
822
823SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
824
825/* Cpu tick handling -------------------------------------------------*/
826
827static int cpu_tick_variable;
828static uint64_t	cpu_tick_frequency;
829
830static uint64_t
831tc_cpu_ticks(void)
832{
833	static uint64_t base;
834	static unsigned last;
835	unsigned u;
836	struct timecounter *tc;
837
838	tc = timehands->th_counter;
839	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
840	if (u < last)
841		base += (uint64_t)tc->tc_counter_mask + 1;
842	last = u;
843	return (u + base);
844}
845
846void
847cpu_tick_calibration(void)
848{
849	static time_t last_calib;
850
851	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
852		cpu_tick_calibrate(0);
853		last_calib = time_uptime;
854	}
855}
856
857/*
858 * This function gets called every 16 seconds on only one designated
859 * CPU in the system from hardclock() via cpu_tick_calibration()().
860 *
861 * Whenever the real time clock is stepped we get called with reset=1
862 * to make sure we handle suspend/resume and similar events correctly.
863 */
864
865static void
866cpu_tick_calibrate(int reset)
867{
868	static uint64_t c_last;
869	uint64_t c_this, c_delta;
870	static struct bintime  t_last;
871	struct bintime t_this, t_delta;
872	uint32_t divi;
873
874	if (reset) {
875		/* The clock was stepped, abort & reset */
876		t_last.sec = 0;
877		return;
878	}
879
880	/* we don't calibrate fixed rate cputicks */
881	if (!cpu_tick_variable)
882		return;
883
884	getbinuptime(&t_this);
885	c_this = cpu_ticks();
886	if (t_last.sec != 0) {
887		c_delta = c_this - c_last;
888		t_delta = t_this;
889		bintime_sub(&t_delta, &t_last);
890		/*
891		 * Headroom:
892		 * 	2^(64-20) / 16[s] =
893		 * 	2^(44) / 16[s] =
894		 * 	17.592.186.044.416 / 16 =
895		 * 	1.099.511.627.776 [Hz]
896		 */
897		divi = t_delta.sec << 20;
898		divi |= t_delta.frac >> (64 - 20);
899		c_delta <<= 20;
900		c_delta /= divi;
901		if (c_delta > cpu_tick_frequency) {
902			if (0 && bootverbose)
903				printf("cpu_tick increased to %ju Hz\n",
904				    c_delta);
905			cpu_tick_frequency = c_delta;
906		}
907	}
908	c_last = c_this;
909	t_last = t_this;
910}
911
912void
913set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
914{
915
916	if (func == NULL) {
917		cpu_ticks = tc_cpu_ticks;
918	} else {
919		cpu_tick_frequency = freq;
920		cpu_tick_variable = var;
921		cpu_ticks = func;
922	}
923}
924
925uint64_t
926cpu_tickrate(void)
927{
928
929	if (cpu_ticks == tc_cpu_ticks)
930		return (tc_getfrequency());
931	return (cpu_tick_frequency);
932}
933
934/*
935 * We need to be slightly careful converting cputicks to microseconds.
936 * There is plenty of margin in 64 bits of microseconds (half a million
937 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
938 * before divide conversion (to retain precision) we find that the
939 * margin shrinks to 1.5 hours (one millionth of 146y).
940 * With a three prong approach we never lose significant bits, no
941 * matter what the cputick rate and length of timeinterval is.
942 */
943
944uint64_t
945cputick2usec(uint64_t tick)
946{
947
948	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
949		return (tick / (cpu_tickrate() / 1000000LL));
950	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
951		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
952	else
953		return ((tick * 1000000LL) / cpu_tickrate());
954}
955
956cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
957