kern_tc.c revision 210226
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 */
9
10#include <sys/cdefs.h>
11__FBSDID("$FreeBSD: head/sys/kern/kern_tc.c 210226 2010-07-18 20:57:53Z trasz $");
12
13#include "opt_ntp.h"
14
15#include <sys/param.h>
16#include <sys/kernel.h>
17#include <sys/sysctl.h>
18#include <sys/syslog.h>
19#include <sys/systm.h>
20#include <sys/timepps.h>
21#include <sys/timetc.h>
22#include <sys/timex.h>
23
24/*
25 * A large step happens on boot.  This constant detects such steps.
26 * It is relatively small so that ntp_update_second gets called enough
27 * in the typical 'missed a couple of seconds' case, but doesn't loop
28 * forever when the time step is large.
29 */
30#define LARGE_STEP	200
31
32/*
33 * Implement a dummy timecounter which we can use until we get a real one
34 * in the air.  This allows the console and other early stuff to use
35 * time services.
36 */
37
38static u_int
39dummy_get_timecount(struct timecounter *tc)
40{
41	static u_int now;
42
43	return (++now);
44}
45
46static struct timecounter dummy_timecounter = {
47	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48};
49
50struct timehands {
51	/* These fields must be initialized by the driver. */
52	struct timecounter	*th_counter;
53	int64_t			th_adjustment;
54	uint64_t		th_scale;
55	u_int	 		th_offset_count;
56	struct bintime		th_offset;
57	struct timeval		th_microtime;
58	struct timespec		th_nanotime;
59	/* Fields not to be copied in tc_windup start with th_generation. */
60	volatile u_int		th_generation;
61	struct timehands	*th_next;
62};
63
64static struct timehands th0;
65static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74static struct timehands th0 = {
75	&dummy_timecounter,
76	0,
77	(uint64_t)-1 / 1000000,
78	0,
79	{1, 0},
80	{0, 0},
81	{0, 0},
82	1,
83	&th1
84};
85
86static struct timehands *volatile timehands = &th0;
87struct timecounter *timecounter = &dummy_timecounter;
88static struct timecounter *timecounters = &dummy_timecounter;
89
90time_t time_second = 1;
91time_t time_uptime = 1;
92
93struct bintime boottimebin;
94struct timeval boottime;
95static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
96SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
97    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
98
99SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
100SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
101
102static int timestepwarnings;
103SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
104    &timestepwarnings, 0, "");
105
106static void tc_windup(void);
107static void cpu_tick_calibrate(int);
108
109static int
110sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
111{
112#ifdef SCTL_MASK32
113	int tv[2];
114
115	if (req->flags & SCTL_MASK32) {
116		tv[0] = boottime.tv_sec;
117		tv[1] = boottime.tv_usec;
118		return SYSCTL_OUT(req, tv, sizeof(tv));
119	} else
120#endif
121		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
122}
123
124static int
125sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
126{
127	u_int ncount;
128	struct timecounter *tc = arg1;
129
130	ncount = tc->tc_get_timecount(tc);
131	return sysctl_handle_int(oidp, &ncount, 0, req);
132}
133
134static int
135sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
136{
137	uint64_t freq;
138	struct timecounter *tc = arg1;
139
140	freq = tc->tc_frequency;
141	return sysctl_handle_quad(oidp, &freq, 0, req);
142}
143
144/*
145 * Return the difference between the timehands' counter value now and what
146 * was when we copied it to the timehands' offset_count.
147 */
148static __inline u_int
149tc_delta(struct timehands *th)
150{
151	struct timecounter *tc;
152
153	tc = th->th_counter;
154	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
155	    tc->tc_counter_mask);
156}
157
158/*
159 * Functions for reading the time.  We have to loop until we are sure that
160 * the timehands that we operated on was not updated under our feet.  See
161 * the comment in <sys/time.h> for a description of these 12 functions.
162 */
163
164void
165binuptime(struct bintime *bt)
166{
167	struct timehands *th;
168	u_int gen;
169
170	do {
171		th = timehands;
172		gen = th->th_generation;
173		*bt = th->th_offset;
174		bintime_addx(bt, th->th_scale * tc_delta(th));
175	} while (gen == 0 || gen != th->th_generation);
176}
177
178void
179nanouptime(struct timespec *tsp)
180{
181	struct bintime bt;
182
183	binuptime(&bt);
184	bintime2timespec(&bt, tsp);
185}
186
187void
188microuptime(struct timeval *tvp)
189{
190	struct bintime bt;
191
192	binuptime(&bt);
193	bintime2timeval(&bt, tvp);
194}
195
196void
197bintime(struct bintime *bt)
198{
199
200	binuptime(bt);
201	bintime_add(bt, &boottimebin);
202}
203
204void
205nanotime(struct timespec *tsp)
206{
207	struct bintime bt;
208
209	bintime(&bt);
210	bintime2timespec(&bt, tsp);
211}
212
213void
214microtime(struct timeval *tvp)
215{
216	struct bintime bt;
217
218	bintime(&bt);
219	bintime2timeval(&bt, tvp);
220}
221
222void
223getbinuptime(struct bintime *bt)
224{
225	struct timehands *th;
226	u_int gen;
227
228	do {
229		th = timehands;
230		gen = th->th_generation;
231		*bt = th->th_offset;
232	} while (gen == 0 || gen != th->th_generation);
233}
234
235void
236getnanouptime(struct timespec *tsp)
237{
238	struct timehands *th;
239	u_int gen;
240
241	do {
242		th = timehands;
243		gen = th->th_generation;
244		bintime2timespec(&th->th_offset, tsp);
245	} while (gen == 0 || gen != th->th_generation);
246}
247
248void
249getmicrouptime(struct timeval *tvp)
250{
251	struct timehands *th;
252	u_int gen;
253
254	do {
255		th = timehands;
256		gen = th->th_generation;
257		bintime2timeval(&th->th_offset, tvp);
258	} while (gen == 0 || gen != th->th_generation);
259}
260
261void
262getbintime(struct bintime *bt)
263{
264	struct timehands *th;
265	u_int gen;
266
267	do {
268		th = timehands;
269		gen = th->th_generation;
270		*bt = th->th_offset;
271	} while (gen == 0 || gen != th->th_generation);
272	bintime_add(bt, &boottimebin);
273}
274
275void
276getnanotime(struct timespec *tsp)
277{
278	struct timehands *th;
279	u_int gen;
280
281	do {
282		th = timehands;
283		gen = th->th_generation;
284		*tsp = th->th_nanotime;
285	} while (gen == 0 || gen != th->th_generation);
286}
287
288void
289getmicrotime(struct timeval *tvp)
290{
291	struct timehands *th;
292	u_int gen;
293
294	do {
295		th = timehands;
296		gen = th->th_generation;
297		*tvp = th->th_microtime;
298	} while (gen == 0 || gen != th->th_generation);
299}
300
301/*
302 * Initialize a new timecounter and possibly use it.
303 */
304void
305tc_init(struct timecounter *tc)
306{
307	u_int u;
308	struct sysctl_oid *tc_root;
309
310	u = tc->tc_frequency / tc->tc_counter_mask;
311	/* XXX: We need some margin here, 10% is a guess */
312	u *= 11;
313	u /= 10;
314	if (u > hz && tc->tc_quality >= 0) {
315		tc->tc_quality = -2000;
316		if (bootverbose) {
317			printf("Timecounter \"%s\" frequency %ju Hz",
318			    tc->tc_name, (uintmax_t)tc->tc_frequency);
319			printf(" -- Insufficient hz, needs at least %u\n", u);
320		}
321	} else if (tc->tc_quality >= 0 || bootverbose) {
322		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
323		    tc->tc_name, (uintmax_t)tc->tc_frequency,
324		    tc->tc_quality);
325	}
326
327	tc->tc_next = timecounters;
328	timecounters = tc;
329	/*
330	 * Set up sysctl tree for this counter.
331	 */
332	tc_root = SYSCTL_ADD_NODE(NULL,
333	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
334	    CTLFLAG_RW, 0, "timecounter description");
335	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
336	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
337	    "mask for implemented bits");
338	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
339	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
340	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
341	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
342	    "frequency", CTLTYPE_QUAD | CTLFLAG_RD, tc, sizeof(*tc),
343	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
344	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
345	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
346	    "goodness of time counter");
347	/*
348	 * Never automatically use a timecounter with negative quality.
349	 * Even though we run on the dummy counter, switching here may be
350	 * worse since this timecounter may not be monotonous.
351	 */
352	if (tc->tc_quality < 0)
353		return;
354	if (tc->tc_quality < timecounter->tc_quality)
355		return;
356	if (tc->tc_quality == timecounter->tc_quality &&
357	    tc->tc_frequency < timecounter->tc_frequency)
358		return;
359	(void)tc->tc_get_timecount(tc);
360	(void)tc->tc_get_timecount(tc);
361	timecounter = tc;
362}
363
364/* Report the frequency of the current timecounter. */
365uint64_t
366tc_getfrequency(void)
367{
368
369	return (timehands->th_counter->tc_frequency);
370}
371
372/*
373 * Step our concept of UTC.  This is done by modifying our estimate of
374 * when we booted.
375 * XXX: not locked.
376 */
377void
378tc_setclock(struct timespec *ts)
379{
380	struct timespec tbef, taft;
381	struct bintime bt, bt2;
382
383	cpu_tick_calibrate(1);
384	nanotime(&tbef);
385	timespec2bintime(ts, &bt);
386	binuptime(&bt2);
387	bintime_sub(&bt, &bt2);
388	bintime_add(&bt2, &boottimebin);
389	boottimebin = bt;
390	bintime2timeval(&bt, &boottime);
391
392	/* XXX fiddle all the little crinkly bits around the fiords... */
393	tc_windup();
394	nanotime(&taft);
395	if (timestepwarnings) {
396		log(LOG_INFO,
397		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
398		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
399		    (intmax_t)taft.tv_sec, taft.tv_nsec,
400		    (intmax_t)ts->tv_sec, ts->tv_nsec);
401	}
402	cpu_tick_calibrate(1);
403}
404
405/*
406 * Initialize the next struct timehands in the ring and make
407 * it the active timehands.  Along the way we might switch to a different
408 * timecounter and/or do seconds processing in NTP.  Slightly magic.
409 */
410static void
411tc_windup(void)
412{
413	struct bintime bt;
414	struct timehands *th, *tho;
415	uint64_t scale;
416	u_int delta, ncount, ogen;
417	int i;
418	time_t t;
419
420	/*
421	 * Make the next timehands a copy of the current one, but do not
422	 * overwrite the generation or next pointer.  While we update
423	 * the contents, the generation must be zero.
424	 */
425	tho = timehands;
426	th = tho->th_next;
427	ogen = th->th_generation;
428	th->th_generation = 0;
429	bcopy(tho, th, offsetof(struct timehands, th_generation));
430
431	/*
432	 * Capture a timecounter delta on the current timecounter and if
433	 * changing timecounters, a counter value from the new timecounter.
434	 * Update the offset fields accordingly.
435	 */
436	delta = tc_delta(th);
437	if (th->th_counter != timecounter)
438		ncount = timecounter->tc_get_timecount(timecounter);
439	else
440		ncount = 0;
441	th->th_offset_count += delta;
442	th->th_offset_count &= th->th_counter->tc_counter_mask;
443	bintime_addx(&th->th_offset, th->th_scale * delta);
444
445	/*
446	 * Hardware latching timecounters may not generate interrupts on
447	 * PPS events, so instead we poll them.  There is a finite risk that
448	 * the hardware might capture a count which is later than the one we
449	 * got above, and therefore possibly in the next NTP second which might
450	 * have a different rate than the current NTP second.  It doesn't
451	 * matter in practice.
452	 */
453	if (tho->th_counter->tc_poll_pps)
454		tho->th_counter->tc_poll_pps(tho->th_counter);
455
456	/*
457	 * Deal with NTP second processing.  The for loop normally
458	 * iterates at most once, but in extreme situations it might
459	 * keep NTP sane if timeouts are not run for several seconds.
460	 * At boot, the time step can be large when the TOD hardware
461	 * has been read, so on really large steps, we call
462	 * ntp_update_second only twice.  We need to call it twice in
463	 * case we missed a leap second.
464	 */
465	bt = th->th_offset;
466	bintime_add(&bt, &boottimebin);
467	i = bt.sec - tho->th_microtime.tv_sec;
468	if (i > LARGE_STEP)
469		i = 2;
470	for (; i > 0; i--) {
471		t = bt.sec;
472		ntp_update_second(&th->th_adjustment, &bt.sec);
473		if (bt.sec != t)
474			boottimebin.sec += bt.sec - t;
475	}
476	/* Update the UTC timestamps used by the get*() functions. */
477	/* XXX shouldn't do this here.  Should force non-`get' versions. */
478	bintime2timeval(&bt, &th->th_microtime);
479	bintime2timespec(&bt, &th->th_nanotime);
480
481	/* Now is a good time to change timecounters. */
482	if (th->th_counter != timecounter) {
483		th->th_counter = timecounter;
484		th->th_offset_count = ncount;
485	}
486
487	/*-
488	 * Recalculate the scaling factor.  We want the number of 1/2^64
489	 * fractions of a second per period of the hardware counter, taking
490	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
491	 * processing provides us with.
492	 *
493	 * The th_adjustment is nanoseconds per second with 32 bit binary
494	 * fraction and we want 64 bit binary fraction of second:
495	 *
496	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
497	 *
498	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
499	 * we can only multiply by about 850 without overflowing, that
500	 * leaves no suitably precise fractions for multiply before divide.
501	 *
502	 * Divide before multiply with a fraction of 2199/512 results in a
503	 * systematic undercompensation of 10PPM of th_adjustment.  On a
504	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
505 	 *
506	 * We happily sacrifice the lowest of the 64 bits of our result
507	 * to the goddess of code clarity.
508	 *
509	 */
510	scale = (uint64_t)1 << 63;
511	scale += (th->th_adjustment / 1024) * 2199;
512	scale /= th->th_counter->tc_frequency;
513	th->th_scale = scale * 2;
514
515	/*
516	 * Now that the struct timehands is again consistent, set the new
517	 * generation number, making sure to not make it zero.
518	 */
519	if (++ogen == 0)
520		ogen = 1;
521	th->th_generation = ogen;
522
523	/* Go live with the new struct timehands. */
524	time_second = th->th_microtime.tv_sec;
525	time_uptime = th->th_offset.sec;
526	timehands = th;
527}
528
529/* Report or change the active timecounter hardware. */
530static int
531sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
532{
533	char newname[32];
534	struct timecounter *newtc, *tc;
535	int error;
536
537	tc = timecounter;
538	strlcpy(newname, tc->tc_name, sizeof(newname));
539
540	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
541	if (error != 0 || req->newptr == NULL ||
542	    strcmp(newname, tc->tc_name) == 0)
543		return (error);
544	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
545		if (strcmp(newname, newtc->tc_name) != 0)
546			continue;
547
548		/* Warm up new timecounter. */
549		(void)newtc->tc_get_timecount(newtc);
550		(void)newtc->tc_get_timecount(newtc);
551
552		timecounter = newtc;
553		return (0);
554	}
555	return (EINVAL);
556}
557
558SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
559    0, 0, sysctl_kern_timecounter_hardware, "A", "");
560
561
562/* Report or change the active timecounter hardware. */
563static int
564sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
565{
566	char buf[32], *spc;
567	struct timecounter *tc;
568	int error;
569
570	spc = "";
571	error = 0;
572	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
573		sprintf(buf, "%s%s(%d)",
574		    spc, tc->tc_name, tc->tc_quality);
575		error = SYSCTL_OUT(req, buf, strlen(buf));
576		spc = " ";
577	}
578	return (error);
579}
580
581SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
582    0, 0, sysctl_kern_timecounter_choice, "A", "");
583
584/*
585 * RFC 2783 PPS-API implementation.
586 */
587
588int
589pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
590{
591	pps_params_t *app;
592	struct pps_fetch_args *fapi;
593#ifdef PPS_SYNC
594	struct pps_kcbind_args *kapi;
595#endif
596
597	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
598	switch (cmd) {
599	case PPS_IOC_CREATE:
600		return (0);
601	case PPS_IOC_DESTROY:
602		return (0);
603	case PPS_IOC_SETPARAMS:
604		app = (pps_params_t *)data;
605		if (app->mode & ~pps->ppscap)
606			return (EINVAL);
607		pps->ppsparam = *app;
608		return (0);
609	case PPS_IOC_GETPARAMS:
610		app = (pps_params_t *)data;
611		*app = pps->ppsparam;
612		app->api_version = PPS_API_VERS_1;
613		return (0);
614	case PPS_IOC_GETCAP:
615		*(int*)data = pps->ppscap;
616		return (0);
617	case PPS_IOC_FETCH:
618		fapi = (struct pps_fetch_args *)data;
619		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
620			return (EINVAL);
621		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
622			return (EOPNOTSUPP);
623		pps->ppsinfo.current_mode = pps->ppsparam.mode;
624		fapi->pps_info_buf = pps->ppsinfo;
625		return (0);
626	case PPS_IOC_KCBIND:
627#ifdef PPS_SYNC
628		kapi = (struct pps_kcbind_args *)data;
629		/* XXX Only root should be able to do this */
630		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
631			return (EINVAL);
632		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
633			return (EINVAL);
634		if (kapi->edge & ~pps->ppscap)
635			return (EINVAL);
636		pps->kcmode = kapi->edge;
637		return (0);
638#else
639		return (EOPNOTSUPP);
640#endif
641	default:
642		return (ENOIOCTL);
643	}
644}
645
646void
647pps_init(struct pps_state *pps)
648{
649	pps->ppscap |= PPS_TSFMT_TSPEC;
650	if (pps->ppscap & PPS_CAPTUREASSERT)
651		pps->ppscap |= PPS_OFFSETASSERT;
652	if (pps->ppscap & PPS_CAPTURECLEAR)
653		pps->ppscap |= PPS_OFFSETCLEAR;
654}
655
656void
657pps_capture(struct pps_state *pps)
658{
659	struct timehands *th;
660
661	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
662	th = timehands;
663	pps->capgen = th->th_generation;
664	pps->capth = th;
665	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
666	if (pps->capgen != th->th_generation)
667		pps->capgen = 0;
668}
669
670void
671pps_event(struct pps_state *pps, int event)
672{
673	struct bintime bt;
674	struct timespec ts, *tsp, *osp;
675	u_int tcount, *pcount;
676	int foff, fhard;
677	pps_seq_t *pseq;
678
679	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
680	/* If the timecounter was wound up underneath us, bail out. */
681	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
682		return;
683
684	/* Things would be easier with arrays. */
685	if (event == PPS_CAPTUREASSERT) {
686		tsp = &pps->ppsinfo.assert_timestamp;
687		osp = &pps->ppsparam.assert_offset;
688		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
689		fhard = pps->kcmode & PPS_CAPTUREASSERT;
690		pcount = &pps->ppscount[0];
691		pseq = &pps->ppsinfo.assert_sequence;
692	} else {
693		tsp = &pps->ppsinfo.clear_timestamp;
694		osp = &pps->ppsparam.clear_offset;
695		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
696		fhard = pps->kcmode & PPS_CAPTURECLEAR;
697		pcount = &pps->ppscount[1];
698		pseq = &pps->ppsinfo.clear_sequence;
699	}
700
701	/*
702	 * If the timecounter changed, we cannot compare the count values, so
703	 * we have to drop the rest of the PPS-stuff until the next event.
704	 */
705	if (pps->ppstc != pps->capth->th_counter) {
706		pps->ppstc = pps->capth->th_counter;
707		*pcount = pps->capcount;
708		pps->ppscount[2] = pps->capcount;
709		return;
710	}
711
712	/* Convert the count to a timespec. */
713	tcount = pps->capcount - pps->capth->th_offset_count;
714	tcount &= pps->capth->th_counter->tc_counter_mask;
715	bt = pps->capth->th_offset;
716	bintime_addx(&bt, pps->capth->th_scale * tcount);
717	bintime_add(&bt, &boottimebin);
718	bintime2timespec(&bt, &ts);
719
720	/* If the timecounter was wound up underneath us, bail out. */
721	if (pps->capgen != pps->capth->th_generation)
722		return;
723
724	*pcount = pps->capcount;
725	(*pseq)++;
726	*tsp = ts;
727
728	if (foff) {
729		timespecadd(tsp, osp);
730		if (tsp->tv_nsec < 0) {
731			tsp->tv_nsec += 1000000000;
732			tsp->tv_sec -= 1;
733		}
734	}
735#ifdef PPS_SYNC
736	if (fhard) {
737		uint64_t scale;
738
739		/*
740		 * Feed the NTP PLL/FLL.
741		 * The FLL wants to know how many (hardware) nanoseconds
742		 * elapsed since the previous event.
743		 */
744		tcount = pps->capcount - pps->ppscount[2];
745		pps->ppscount[2] = pps->capcount;
746		tcount &= pps->capth->th_counter->tc_counter_mask;
747		scale = (uint64_t)1 << 63;
748		scale /= pps->capth->th_counter->tc_frequency;
749		scale *= 2;
750		bt.sec = 0;
751		bt.frac = 0;
752		bintime_addx(&bt, scale * tcount);
753		bintime2timespec(&bt, &ts);
754		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
755	}
756#endif
757}
758
759/*
760 * Timecounters need to be updated every so often to prevent the hardware
761 * counter from overflowing.  Updating also recalculates the cached values
762 * used by the get*() family of functions, so their precision depends on
763 * the update frequency.
764 */
765
766static int tc_tick;
767SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
768
769void
770tc_ticktock(void)
771{
772	static int count;
773	static time_t last_calib;
774
775	if (++count < tc_tick)
776		return;
777	count = 0;
778	tc_windup();
779	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
780		cpu_tick_calibrate(0);
781		last_calib = time_uptime;
782	}
783}
784
785static void
786inittimecounter(void *dummy)
787{
788	u_int p;
789
790	/*
791	 * Set the initial timeout to
792	 * max(1, <approx. number of hardclock ticks in a millisecond>).
793	 * People should probably not use the sysctl to set the timeout
794	 * to smaller than its inital value, since that value is the
795	 * smallest reasonable one.  If they want better timestamps they
796	 * should use the non-"get"* functions.
797	 */
798	if (hz > 1000)
799		tc_tick = (hz + 500) / 1000;
800	else
801		tc_tick = 1;
802	p = (tc_tick * 1000000) / hz;
803	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
804
805	/* warm up new timecounter (again) and get rolling. */
806	(void)timecounter->tc_get_timecount(timecounter);
807	(void)timecounter->tc_get_timecount(timecounter);
808}
809
810SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
811
812/* Cpu tick handling -------------------------------------------------*/
813
814static int cpu_tick_variable;
815static uint64_t	cpu_tick_frequency;
816
817static uint64_t
818tc_cpu_ticks(void)
819{
820	static uint64_t base;
821	static unsigned last;
822	unsigned u;
823	struct timecounter *tc;
824
825	tc = timehands->th_counter;
826	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
827	if (u < last)
828		base += (uint64_t)tc->tc_counter_mask + 1;
829	last = u;
830	return (u + base);
831}
832
833/*
834 * This function gets called every 16 seconds on only one designated
835 * CPU in the system from hardclock() via tc_ticktock().
836 *
837 * Whenever the real time clock is stepped we get called with reset=1
838 * to make sure we handle suspend/resume and similar events correctly.
839 */
840
841static void
842cpu_tick_calibrate(int reset)
843{
844	static uint64_t c_last;
845	uint64_t c_this, c_delta;
846	static struct bintime  t_last;
847	struct bintime t_this, t_delta;
848	uint32_t divi;
849
850	if (reset) {
851		/* The clock was stepped, abort & reset */
852		t_last.sec = 0;
853		return;
854	}
855
856	/* we don't calibrate fixed rate cputicks */
857	if (!cpu_tick_variable)
858		return;
859
860	getbinuptime(&t_this);
861	c_this = cpu_ticks();
862	if (t_last.sec != 0) {
863		c_delta = c_this - c_last;
864		t_delta = t_this;
865		bintime_sub(&t_delta, &t_last);
866		/*
867		 * Headroom:
868		 * 	2^(64-20) / 16[s] =
869		 * 	2^(44) / 16[s] =
870		 * 	17.592.186.044.416 / 16 =
871		 * 	1.099.511.627.776 [Hz]
872		 */
873		divi = t_delta.sec << 20;
874		divi |= t_delta.frac >> (64 - 20);
875		c_delta <<= 20;
876		c_delta /= divi;
877		if (c_delta > cpu_tick_frequency) {
878			if (0 && bootverbose)
879				printf("cpu_tick increased to %ju Hz\n",
880				    c_delta);
881			cpu_tick_frequency = c_delta;
882		}
883	}
884	c_last = c_this;
885	t_last = t_this;
886}
887
888void
889set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
890{
891
892	if (func == NULL) {
893		cpu_ticks = tc_cpu_ticks;
894	} else {
895		cpu_tick_frequency = freq;
896		cpu_tick_variable = var;
897		cpu_ticks = func;
898	}
899}
900
901uint64_t
902cpu_tickrate(void)
903{
904
905	if (cpu_ticks == tc_cpu_ticks)
906		return (tc_getfrequency());
907	return (cpu_tick_frequency);
908}
909
910/*
911 * We need to be slightly careful converting cputicks to microseconds.
912 * There is plenty of margin in 64 bits of microseconds (half a million
913 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
914 * before divide conversion (to retain precision) we find that the
915 * margin shrinks to 1.5 hours (one millionth of 146y).
916 * With a three prong approach we never lose significant bits, no
917 * matter what the cputick rate and length of timeinterval is.
918 */
919
920uint64_t
921cputick2usec(uint64_t tick)
922{
923
924	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
925		return (tick / (cpu_tickrate() / 1000000LL));
926	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
927		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
928	else
929		return ((tick * 1000000LL) / cpu_tickrate());
930}
931
932cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
933