kern_tc.c revision 189545
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 */
9
10#include <sys/cdefs.h>
11__FBSDID("$FreeBSD: head/sys/kern/kern_tc.c 189545 2009-03-08 22:19:28Z rwatson $");
12
13#include "opt_ntp.h"
14
15#include <sys/param.h>
16#include <sys/kernel.h>
17#include <sys/sysctl.h>
18#include <sys/syslog.h>
19#include <sys/systm.h>
20#include <sys/timepps.h>
21#include <sys/timetc.h>
22#include <sys/timex.h>
23
24/*
25 * A large step happens on boot.  This constant detects such steps.
26 * It is relatively small so that ntp_update_second gets called enough
27 * in the typical 'missed a couple of seconds' case, but doesn't loop
28 * forever when the time step is large.
29 */
30#define LARGE_STEP	200
31
32/*
33 * Implement a dummy timecounter which we can use until we get a real one
34 * in the air.  This allows the console and other early stuff to use
35 * time services.
36 */
37
38static u_int
39dummy_get_timecount(struct timecounter *tc)
40{
41	static u_int now;
42
43	return (++now);
44}
45
46static struct timecounter dummy_timecounter = {
47	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48};
49
50struct timehands {
51	/* These fields must be initialized by the driver. */
52	struct timecounter	*th_counter;
53	int64_t			th_adjustment;
54	u_int64_t		th_scale;
55	u_int	 		th_offset_count;
56	struct bintime		th_offset;
57	struct timeval		th_microtime;
58	struct timespec		th_nanotime;
59	/* Fields not to be copied in tc_windup start with th_generation. */
60	volatile u_int		th_generation;
61	struct timehands	*th_next;
62};
63
64static struct timehands th0;
65static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74static struct timehands th0 = {
75	&dummy_timecounter,
76	0,
77	(uint64_t)-1 / 1000000,
78	0,
79	{1, 0},
80	{0, 0},
81	{0, 0},
82	1,
83	&th1
84};
85
86static struct timehands *volatile timehands = &th0;
87struct timecounter *timecounter = &dummy_timecounter;
88static struct timecounter *timecounters = &dummy_timecounter;
89
90time_t time_second = 1;
91time_t time_uptime = 1;
92
93static struct bintime boottimebin;
94struct timeval boottime;
95static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
96SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
97    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
98
99SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
100SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
101
102static int timestepwarnings;
103SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
104    &timestepwarnings, 0, "");
105
106#ifdef TC_COUNTERS
107#define TC_STATS(foo) \
108	static u_int foo; \
109	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
110	struct __hack
111
112TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
113TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
114TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
115TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
116TC_STATS(nsetclock);
117
118#define	TC_COUNT(var)	var++
119#undef TC_STATS
120#else
121#define	TC_COUNT(var)	/* nothing */
122#endif /* TC_COUNTERS */
123
124static void tc_windup(void);
125static void cpu_tick_calibrate(int);
126
127static int
128sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
129{
130#ifdef SCTL_MASK32
131	int tv[2];
132
133	if (req->flags & SCTL_MASK32) {
134		tv[0] = boottime.tv_sec;
135		tv[1] = boottime.tv_usec;
136		return SYSCTL_OUT(req, tv, sizeof(tv));
137	} else
138#endif
139		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
140}
141
142static int
143sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
144{
145	u_int ncount;
146	struct timecounter *tc = arg1;
147
148	ncount = tc->tc_get_timecount(tc);
149	return sysctl_handle_int(oidp, &ncount, 0, req);
150}
151
152static int
153sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
154{
155	u_int64_t freq;
156	struct timecounter *tc = arg1;
157
158	freq = tc->tc_frequency;
159	return sysctl_handle_quad(oidp, &freq, 0, req);
160}
161
162/*
163 * Return the difference between the timehands' counter value now and what
164 * was when we copied it to the timehands' offset_count.
165 */
166static __inline u_int
167tc_delta(struct timehands *th)
168{
169	struct timecounter *tc;
170
171	tc = th->th_counter;
172	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
173	    tc->tc_counter_mask);
174}
175
176/*
177 * Functions for reading the time.  We have to loop until we are sure that
178 * the timehands that we operated on was not updated under our feet.  See
179 * the comment in <sys/time.h> for a description of these 12 functions.
180 */
181
182void
183binuptime(struct bintime *bt)
184{
185	struct timehands *th;
186	u_int gen;
187
188	TC_COUNT(nbinuptime);
189	do {
190		th = timehands;
191		gen = th->th_generation;
192		*bt = th->th_offset;
193		bintime_addx(bt, th->th_scale * tc_delta(th));
194	} while (gen == 0 || gen != th->th_generation);
195}
196
197void
198nanouptime(struct timespec *tsp)
199{
200	struct bintime bt;
201
202	TC_COUNT(nnanouptime);
203	binuptime(&bt);
204	bintime2timespec(&bt, tsp);
205}
206
207void
208microuptime(struct timeval *tvp)
209{
210	struct bintime bt;
211
212	TC_COUNT(nmicrouptime);
213	binuptime(&bt);
214	bintime2timeval(&bt, tvp);
215}
216
217void
218bintime(struct bintime *bt)
219{
220
221	TC_COUNT(nbintime);
222	binuptime(bt);
223	bintime_add(bt, &boottimebin);
224}
225
226void
227nanotime(struct timespec *tsp)
228{
229	struct bintime bt;
230
231	TC_COUNT(nnanotime);
232	bintime(&bt);
233	bintime2timespec(&bt, tsp);
234}
235
236void
237microtime(struct timeval *tvp)
238{
239	struct bintime bt;
240
241	TC_COUNT(nmicrotime);
242	bintime(&bt);
243	bintime2timeval(&bt, tvp);
244}
245
246void
247getbinuptime(struct bintime *bt)
248{
249	struct timehands *th;
250	u_int gen;
251
252	TC_COUNT(ngetbinuptime);
253	do {
254		th = timehands;
255		gen = th->th_generation;
256		*bt = th->th_offset;
257	} while (gen == 0 || gen != th->th_generation);
258}
259
260void
261getnanouptime(struct timespec *tsp)
262{
263	struct timehands *th;
264	u_int gen;
265
266	TC_COUNT(ngetnanouptime);
267	do {
268		th = timehands;
269		gen = th->th_generation;
270		bintime2timespec(&th->th_offset, tsp);
271	} while (gen == 0 || gen != th->th_generation);
272}
273
274void
275getmicrouptime(struct timeval *tvp)
276{
277	struct timehands *th;
278	u_int gen;
279
280	TC_COUNT(ngetmicrouptime);
281	do {
282		th = timehands;
283		gen = th->th_generation;
284		bintime2timeval(&th->th_offset, tvp);
285	} while (gen == 0 || gen != th->th_generation);
286}
287
288void
289getbintime(struct bintime *bt)
290{
291	struct timehands *th;
292	u_int gen;
293
294	TC_COUNT(ngetbintime);
295	do {
296		th = timehands;
297		gen = th->th_generation;
298		*bt = th->th_offset;
299	} while (gen == 0 || gen != th->th_generation);
300	bintime_add(bt, &boottimebin);
301}
302
303void
304getnanotime(struct timespec *tsp)
305{
306	struct timehands *th;
307	u_int gen;
308
309	TC_COUNT(ngetnanotime);
310	do {
311		th = timehands;
312		gen = th->th_generation;
313		*tsp = th->th_nanotime;
314	} while (gen == 0 || gen != th->th_generation);
315}
316
317void
318getmicrotime(struct timeval *tvp)
319{
320	struct timehands *th;
321	u_int gen;
322
323	TC_COUNT(ngetmicrotime);
324	do {
325		th = timehands;
326		gen = th->th_generation;
327		*tvp = th->th_microtime;
328	} while (gen == 0 || gen != th->th_generation);
329}
330
331/*
332 * Initialize a new timecounter and possibly use it.
333 */
334void
335tc_init(struct timecounter *tc)
336{
337	u_int u;
338	struct sysctl_oid *tc_root;
339
340	u = tc->tc_frequency / tc->tc_counter_mask;
341	/* XXX: We need some margin here, 10% is a guess */
342	u *= 11;
343	u /= 10;
344	if (u > hz && tc->tc_quality >= 0) {
345		tc->tc_quality = -2000;
346		if (bootverbose) {
347			printf("Timecounter \"%s\" frequency %ju Hz",
348			    tc->tc_name, (uintmax_t)tc->tc_frequency);
349			printf(" -- Insufficient hz, needs at least %u\n", u);
350		}
351	} else if (tc->tc_quality >= 0 || bootverbose) {
352		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
353		    tc->tc_name, (uintmax_t)tc->tc_frequency,
354		    tc->tc_quality);
355	}
356
357	tc->tc_next = timecounters;
358	timecounters = tc;
359	/*
360	 * Set up sysctl tree for this counter.
361	 */
362	tc_root = SYSCTL_ADD_NODE(NULL,
363	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
364	    CTLFLAG_RW, 0, "timecounter description");
365	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
366	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
367	    "mask for implemented bits");
368	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
369	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
370	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
371	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
372	    "frequency", CTLTYPE_QUAD | CTLFLAG_RD, tc, sizeof(*tc),
373	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
374	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
375	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
376	    "goodness of time counter");
377	/*
378	 * Never automatically use a timecounter with negative quality.
379	 * Even though we run on the dummy counter, switching here may be
380	 * worse since this timecounter may not be monotonous.
381	 */
382	if (tc->tc_quality < 0)
383		return;
384	if (tc->tc_quality < timecounter->tc_quality)
385		return;
386	if (tc->tc_quality == timecounter->tc_quality &&
387	    tc->tc_frequency < timecounter->tc_frequency)
388		return;
389	(void)tc->tc_get_timecount(tc);
390	(void)tc->tc_get_timecount(tc);
391	timecounter = tc;
392}
393
394/* Report the frequency of the current timecounter. */
395u_int64_t
396tc_getfrequency(void)
397{
398
399	return (timehands->th_counter->tc_frequency);
400}
401
402/*
403 * Step our concept of UTC.  This is done by modifying our estimate of
404 * when we booted.
405 * XXX: not locked.
406 */
407void
408tc_setclock(struct timespec *ts)
409{
410	struct timespec tbef, taft;
411	struct bintime bt, bt2;
412
413	cpu_tick_calibrate(1);
414	TC_COUNT(nsetclock);
415	nanotime(&tbef);
416	timespec2bintime(ts, &bt);
417	binuptime(&bt2);
418	bintime_sub(&bt, &bt2);
419	bintime_add(&bt2, &boottimebin);
420	boottimebin = bt;
421	bintime2timeval(&bt, &boottime);
422
423	/* XXX fiddle all the little crinkly bits around the fiords... */
424	tc_windup();
425	nanotime(&taft);
426	if (timestepwarnings) {
427		log(LOG_INFO,
428		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
429		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
430		    (intmax_t)taft.tv_sec, taft.tv_nsec,
431		    (intmax_t)ts->tv_sec, ts->tv_nsec);
432	}
433	cpu_tick_calibrate(1);
434}
435
436/*
437 * Initialize the next struct timehands in the ring and make
438 * it the active timehands.  Along the way we might switch to a different
439 * timecounter and/or do seconds processing in NTP.  Slightly magic.
440 */
441static void
442tc_windup(void)
443{
444	struct bintime bt;
445	struct timehands *th, *tho;
446	u_int64_t scale;
447	u_int delta, ncount, ogen;
448	int i;
449	time_t t;
450
451	/*
452	 * Make the next timehands a copy of the current one, but do not
453	 * overwrite the generation or next pointer.  While we update
454	 * the contents, the generation must be zero.
455	 */
456	tho = timehands;
457	th = tho->th_next;
458	ogen = th->th_generation;
459	th->th_generation = 0;
460	bcopy(tho, th, offsetof(struct timehands, th_generation));
461
462	/*
463	 * Capture a timecounter delta on the current timecounter and if
464	 * changing timecounters, a counter value from the new timecounter.
465	 * Update the offset fields accordingly.
466	 */
467	delta = tc_delta(th);
468	if (th->th_counter != timecounter)
469		ncount = timecounter->tc_get_timecount(timecounter);
470	else
471		ncount = 0;
472	th->th_offset_count += delta;
473	th->th_offset_count &= th->th_counter->tc_counter_mask;
474	bintime_addx(&th->th_offset, th->th_scale * delta);
475
476	/*
477	 * Hardware latching timecounters may not generate interrupts on
478	 * PPS events, so instead we poll them.  There is a finite risk that
479	 * the hardware might capture a count which is later than the one we
480	 * got above, and therefore possibly in the next NTP second which might
481	 * have a different rate than the current NTP second.  It doesn't
482	 * matter in practice.
483	 */
484	if (tho->th_counter->tc_poll_pps)
485		tho->th_counter->tc_poll_pps(tho->th_counter);
486
487	/*
488	 * Deal with NTP second processing.  The for loop normally
489	 * iterates at most once, but in extreme situations it might
490	 * keep NTP sane if timeouts are not run for several seconds.
491	 * At boot, the time step can be large when the TOD hardware
492	 * has been read, so on really large steps, we call
493	 * ntp_update_second only twice.  We need to call it twice in
494	 * case we missed a leap second.
495	 */
496	bt = th->th_offset;
497	bintime_add(&bt, &boottimebin);
498	i = bt.sec - tho->th_microtime.tv_sec;
499	if (i > LARGE_STEP)
500		i = 2;
501	for (; i > 0; i--) {
502		t = bt.sec;
503		ntp_update_second(&th->th_adjustment, &bt.sec);
504		if (bt.sec != t)
505			boottimebin.sec += bt.sec - t;
506	}
507	/* Update the UTC timestamps used by the get*() functions. */
508	/* XXX shouldn't do this here.  Should force non-`get' versions. */
509	bintime2timeval(&bt, &th->th_microtime);
510	bintime2timespec(&bt, &th->th_nanotime);
511
512	/* Now is a good time to change timecounters. */
513	if (th->th_counter != timecounter) {
514		th->th_counter = timecounter;
515		th->th_offset_count = ncount;
516	}
517
518	/*-
519	 * Recalculate the scaling factor.  We want the number of 1/2^64
520	 * fractions of a second per period of the hardware counter, taking
521	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
522	 * processing provides us with.
523	 *
524	 * The th_adjustment is nanoseconds per second with 32 bit binary
525	 * fraction and we want 64 bit binary fraction of second:
526	 *
527	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
528	 *
529	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
530	 * we can only multiply by about 850 without overflowing, that
531	 * leaves no suitably precise fractions for multiply before divide.
532	 *
533	 * Divide before multiply with a fraction of 2199/512 results in a
534	 * systematic undercompensation of 10PPM of th_adjustment.  On a
535	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
536 	 *
537	 * We happily sacrifice the lowest of the 64 bits of our result
538	 * to the goddess of code clarity.
539	 *
540	 */
541	scale = (u_int64_t)1 << 63;
542	scale += (th->th_adjustment / 1024) * 2199;
543	scale /= th->th_counter->tc_frequency;
544	th->th_scale = scale * 2;
545
546	/*
547	 * Now that the struct timehands is again consistent, set the new
548	 * generation number, making sure to not make it zero.
549	 */
550	if (++ogen == 0)
551		ogen = 1;
552	th->th_generation = ogen;
553
554	/* Go live with the new struct timehands. */
555	time_second = th->th_microtime.tv_sec;
556	time_uptime = th->th_offset.sec;
557	timehands = th;
558}
559
560/* Report or change the active timecounter hardware. */
561static int
562sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
563{
564	char newname[32];
565	struct timecounter *newtc, *tc;
566	int error;
567
568	tc = timecounter;
569	strlcpy(newname, tc->tc_name, sizeof(newname));
570
571	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
572	if (error != 0 || req->newptr == NULL ||
573	    strcmp(newname, tc->tc_name) == 0)
574		return (error);
575	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
576		if (strcmp(newname, newtc->tc_name) != 0)
577			continue;
578
579		/* Warm up new timecounter. */
580		(void)newtc->tc_get_timecount(newtc);
581		(void)newtc->tc_get_timecount(newtc);
582
583		timecounter = newtc;
584		return (0);
585	}
586	return (EINVAL);
587}
588
589SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
590    0, 0, sysctl_kern_timecounter_hardware, "A", "");
591
592
593/* Report or change the active timecounter hardware. */
594static int
595sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
596{
597	char buf[32], *spc;
598	struct timecounter *tc;
599	int error;
600
601	spc = "";
602	error = 0;
603	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
604		sprintf(buf, "%s%s(%d)",
605		    spc, tc->tc_name, tc->tc_quality);
606		error = SYSCTL_OUT(req, buf, strlen(buf));
607		spc = " ";
608	}
609	return (error);
610}
611
612SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
613    0, 0, sysctl_kern_timecounter_choice, "A", "");
614
615/*
616 * RFC 2783 PPS-API implementation.
617 */
618
619int
620pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
621{
622	pps_params_t *app;
623	struct pps_fetch_args *fapi;
624#ifdef PPS_SYNC
625	struct pps_kcbind_args *kapi;
626#endif
627
628	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
629	switch (cmd) {
630	case PPS_IOC_CREATE:
631		return (0);
632	case PPS_IOC_DESTROY:
633		return (0);
634	case PPS_IOC_SETPARAMS:
635		app = (pps_params_t *)data;
636		if (app->mode & ~pps->ppscap)
637			return (EINVAL);
638		pps->ppsparam = *app;
639		return (0);
640	case PPS_IOC_GETPARAMS:
641		app = (pps_params_t *)data;
642		*app = pps->ppsparam;
643		app->api_version = PPS_API_VERS_1;
644		return (0);
645	case PPS_IOC_GETCAP:
646		*(int*)data = pps->ppscap;
647		return (0);
648	case PPS_IOC_FETCH:
649		fapi = (struct pps_fetch_args *)data;
650		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
651			return (EINVAL);
652		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
653			return (EOPNOTSUPP);
654		pps->ppsinfo.current_mode = pps->ppsparam.mode;
655		fapi->pps_info_buf = pps->ppsinfo;
656		return (0);
657	case PPS_IOC_KCBIND:
658#ifdef PPS_SYNC
659		kapi = (struct pps_kcbind_args *)data;
660		/* XXX Only root should be able to do this */
661		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
662			return (EINVAL);
663		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
664			return (EINVAL);
665		if (kapi->edge & ~pps->ppscap)
666			return (EINVAL);
667		pps->kcmode = kapi->edge;
668		return (0);
669#else
670		return (EOPNOTSUPP);
671#endif
672	default:
673		return (ENOIOCTL);
674	}
675}
676
677void
678pps_init(struct pps_state *pps)
679{
680	pps->ppscap |= PPS_TSFMT_TSPEC;
681	if (pps->ppscap & PPS_CAPTUREASSERT)
682		pps->ppscap |= PPS_OFFSETASSERT;
683	if (pps->ppscap & PPS_CAPTURECLEAR)
684		pps->ppscap |= PPS_OFFSETCLEAR;
685}
686
687void
688pps_capture(struct pps_state *pps)
689{
690	struct timehands *th;
691
692	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
693	th = timehands;
694	pps->capgen = th->th_generation;
695	pps->capth = th;
696	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
697	if (pps->capgen != th->th_generation)
698		pps->capgen = 0;
699}
700
701void
702pps_event(struct pps_state *pps, int event)
703{
704	struct bintime bt;
705	struct timespec ts, *tsp, *osp;
706	u_int tcount, *pcount;
707	int foff, fhard;
708	pps_seq_t *pseq;
709
710	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
711	/* If the timecounter was wound up underneath us, bail out. */
712	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
713		return;
714
715	/* Things would be easier with arrays. */
716	if (event == PPS_CAPTUREASSERT) {
717		tsp = &pps->ppsinfo.assert_timestamp;
718		osp = &pps->ppsparam.assert_offset;
719		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
720		fhard = pps->kcmode & PPS_CAPTUREASSERT;
721		pcount = &pps->ppscount[0];
722		pseq = &pps->ppsinfo.assert_sequence;
723	} else {
724		tsp = &pps->ppsinfo.clear_timestamp;
725		osp = &pps->ppsparam.clear_offset;
726		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
727		fhard = pps->kcmode & PPS_CAPTURECLEAR;
728		pcount = &pps->ppscount[1];
729		pseq = &pps->ppsinfo.clear_sequence;
730	}
731
732	/*
733	 * If the timecounter changed, we cannot compare the count values, so
734	 * we have to drop the rest of the PPS-stuff until the next event.
735	 */
736	if (pps->ppstc != pps->capth->th_counter) {
737		pps->ppstc = pps->capth->th_counter;
738		*pcount = pps->capcount;
739		pps->ppscount[2] = pps->capcount;
740		return;
741	}
742
743	/* Convert the count to a timespec. */
744	tcount = pps->capcount - pps->capth->th_offset_count;
745	tcount &= pps->capth->th_counter->tc_counter_mask;
746	bt = pps->capth->th_offset;
747	bintime_addx(&bt, pps->capth->th_scale * tcount);
748	bintime_add(&bt, &boottimebin);
749	bintime2timespec(&bt, &ts);
750
751	/* If the timecounter was wound up underneath us, bail out. */
752	if (pps->capgen != pps->capth->th_generation)
753		return;
754
755	*pcount = pps->capcount;
756	(*pseq)++;
757	*tsp = ts;
758
759	if (foff) {
760		timespecadd(tsp, osp);
761		if (tsp->tv_nsec < 0) {
762			tsp->tv_nsec += 1000000000;
763			tsp->tv_sec -= 1;
764		}
765	}
766#ifdef PPS_SYNC
767	if (fhard) {
768		u_int64_t scale;
769
770		/*
771		 * Feed the NTP PLL/FLL.
772		 * The FLL wants to know how many (hardware) nanoseconds
773		 * elapsed since the previous event.
774		 */
775		tcount = pps->capcount - pps->ppscount[2];
776		pps->ppscount[2] = pps->capcount;
777		tcount &= pps->capth->th_counter->tc_counter_mask;
778		scale = (u_int64_t)1 << 63;
779		scale /= pps->capth->th_counter->tc_frequency;
780		scale *= 2;
781		bt.sec = 0;
782		bt.frac = 0;
783		bintime_addx(&bt, scale * tcount);
784		bintime2timespec(&bt, &ts);
785		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
786	}
787#endif
788}
789
790/*
791 * Timecounters need to be updated every so often to prevent the hardware
792 * counter from overflowing.  Updating also recalculates the cached values
793 * used by the get*() family of functions, so their precision depends on
794 * the update frequency.
795 */
796
797static int tc_tick;
798SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
799
800void
801tc_ticktock(void)
802{
803	static int count;
804	static time_t last_calib;
805
806	if (++count < tc_tick)
807		return;
808	count = 0;
809	tc_windup();
810	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
811		cpu_tick_calibrate(0);
812		last_calib = time_uptime;
813	}
814}
815
816static void
817inittimecounter(void *dummy)
818{
819	u_int p;
820
821	/*
822	 * Set the initial timeout to
823	 * max(1, <approx. number of hardclock ticks in a millisecond>).
824	 * People should probably not use the sysctl to set the timeout
825	 * to smaller than its inital value, since that value is the
826	 * smallest reasonable one.  If they want better timestamps they
827	 * should use the non-"get"* functions.
828	 */
829	if (hz > 1000)
830		tc_tick = (hz + 500) / 1000;
831	else
832		tc_tick = 1;
833	p = (tc_tick * 1000000) / hz;
834	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
835
836	/* warm up new timecounter (again) and get rolling. */
837	(void)timecounter->tc_get_timecount(timecounter);
838	(void)timecounter->tc_get_timecount(timecounter);
839}
840
841SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
842
843/* Cpu tick handling -------------------------------------------------*/
844
845static int cpu_tick_variable;
846static uint64_t	cpu_tick_frequency;
847
848static uint64_t
849tc_cpu_ticks(void)
850{
851	static uint64_t base;
852	static unsigned last;
853	unsigned u;
854	struct timecounter *tc;
855
856	tc = timehands->th_counter;
857	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
858	if (u < last)
859		base += (uint64_t)tc->tc_counter_mask + 1;
860	last = u;
861	return (u + base);
862}
863
864/*
865 * This function gets called every 16 seconds on only one designated
866 * CPU in the system from hardclock() via tc_ticktock().
867 *
868 * Whenever the real time clock is stepped we get called with reset=1
869 * to make sure we handle suspend/resume and similar events correctly.
870 */
871
872static void
873cpu_tick_calibrate(int reset)
874{
875	static uint64_t c_last;
876	uint64_t c_this, c_delta;
877	static struct bintime  t_last;
878	struct bintime t_this, t_delta;
879	uint32_t divi;
880
881	if (reset) {
882		/* The clock was stepped, abort & reset */
883		t_last.sec = 0;
884		return;
885	}
886
887	/* we don't calibrate fixed rate cputicks */
888	if (!cpu_tick_variable)
889		return;
890
891	getbinuptime(&t_this);
892	c_this = cpu_ticks();
893	if (t_last.sec != 0) {
894		c_delta = c_this - c_last;
895		t_delta = t_this;
896		bintime_sub(&t_delta, &t_last);
897		/*
898		 * Validate that 16 +/- 1/256 seconds passed.
899		 * After division by 16 this gives us a precision of
900		 * roughly 250PPM which is sufficient
901		 */
902		if (t_delta.sec > 16 || (
903		    t_delta.sec == 16 && t_delta.frac >= (0x01LL << 56))) {
904			/* too long */
905			if (bootverbose)
906				printf("t_delta %ju.%016jx too long\n",
907				    (uintmax_t)t_delta.sec,
908				    (uintmax_t)t_delta.frac);
909		} else if (t_delta.sec < 15 ||
910		    (t_delta.sec == 15 && t_delta.frac <= (0xffLL << 56))) {
911			/* too short */
912			if (bootverbose)
913				printf("t_delta %ju.%016jx too short\n",
914				    (uintmax_t)t_delta.sec,
915				    (uintmax_t)t_delta.frac);
916		} else {
917			/* just right */
918			/*
919			 * Headroom:
920			 * 	2^(64-20) / 16[s] =
921			 * 	2^(44) / 16[s] =
922			 * 	17.592.186.044.416 / 16 =
923			 * 	1.099.511.627.776 [Hz]
924			 */
925			divi = t_delta.sec << 20;
926			divi |= t_delta.frac >> (64 - 20);
927			c_delta <<= 20;
928			c_delta /= divi;
929			if (c_delta  > cpu_tick_frequency) {
930				if (0 && bootverbose)
931					printf("cpu_tick increased to %ju Hz\n",
932					    c_delta);
933				cpu_tick_frequency = c_delta;
934			}
935		}
936	}
937	c_last = c_this;
938	t_last = t_this;
939}
940
941void
942set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
943{
944
945	if (func == NULL) {
946		cpu_ticks = tc_cpu_ticks;
947	} else {
948		cpu_tick_frequency = freq;
949		cpu_tick_variable = var;
950		cpu_ticks = func;
951	}
952}
953
954uint64_t
955cpu_tickrate(void)
956{
957
958	if (cpu_ticks == tc_cpu_ticks)
959		return (tc_getfrequency());
960	return (cpu_tick_frequency);
961}
962
963/*
964 * We need to be slightly careful converting cputicks to microseconds.
965 * There is plenty of margin in 64 bits of microseconds (half a million
966 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
967 * before divide conversion (to retain precision) we find that the
968 * margin shrinks to 1.5 hours (one millionth of 146y).
969 * With a three prong approach we never lose significant bits, no
970 * matter what the cputick rate and length of timeinterval is.
971 */
972
973uint64_t
974cputick2usec(uint64_t tick)
975{
976
977	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
978		return (tick / (cpu_tickrate() / 1000000LL));
979	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
980		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
981	else
982		return ((tick * 1000000LL) / cpu_tickrate());
983}
984
985cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
986