kern_tc.c revision 160964
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 */
9
10#include <sys/cdefs.h>
11__FBSDID("$FreeBSD: head/sys/kern/kern_tc.c 160964 2006-08-04 07:56:35Z yar $");
12
13#include "opt_ntp.h"
14
15#include <sys/param.h>
16#include <sys/kernel.h>
17#include <sys/sysctl.h>
18#include <sys/syslog.h>
19#include <sys/systm.h>
20#include <sys/timepps.h>
21#include <sys/timetc.h>
22#include <sys/timex.h>
23
24/*
25 * A large step happens on boot.  This constant detects such steps.
26 * It is relatively small so that ntp_update_second gets called enough
27 * in the typical 'missed a couple of seconds' case, but doesn't loop
28 * forever when the time step is large.
29 */
30#define LARGE_STEP	200
31
32/*
33 * Implement a dummy timecounter which we can use until we get a real one
34 * in the air.  This allows the console and other early stuff to use
35 * time services.
36 */
37
38static u_int
39dummy_get_timecount(struct timecounter *tc)
40{
41	static u_int now;
42
43	return (++now);
44}
45
46static struct timecounter dummy_timecounter = {
47	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48};
49
50struct timehands {
51	/* These fields must be initialized by the driver. */
52	struct timecounter	*th_counter;
53	int64_t			th_adjustment;
54	u_int64_t		th_scale;
55	u_int	 		th_offset_count;
56	struct bintime		th_offset;
57	struct timeval		th_microtime;
58	struct timespec		th_nanotime;
59	/* Fields not to be copied in tc_windup start with th_generation. */
60	volatile u_int		th_generation;
61	struct timehands	*th_next;
62};
63
64static struct timehands th0;
65static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74static struct timehands th0 = {
75	&dummy_timecounter,
76	0,
77	(uint64_t)-1 / 1000000,
78	0,
79	{1, 0},
80	{0, 0},
81	{0, 0},
82	1,
83	&th1
84};
85
86static struct timehands *volatile timehands = &th0;
87struct timecounter *timecounter = &dummy_timecounter;
88static struct timecounter *timecounters = &dummy_timecounter;
89
90time_t time_second = 1;
91time_t time_uptime = 1;
92
93static struct bintime boottimebin;
94struct timeval boottime;
95static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
96SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
97    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
98
99SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
100SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
101
102static int timestepwarnings;
103SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
104    &timestepwarnings, 0, "");
105
106#define TC_STATS(foo) \
107	static u_int foo; \
108	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
109	struct __hack
110
111TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
112TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
113TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
114TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
115TC_STATS(nsetclock);
116
117#undef TC_STATS
118
119static void tc_windup(void);
120static void cpu_tick_calibrate(int);
121
122static int
123sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
124{
125#ifdef SCTL_MASK32
126	int tv[2];
127
128	if (req->flags & SCTL_MASK32) {
129		tv[0] = boottime.tv_sec;
130		tv[1] = boottime.tv_usec;
131		return SYSCTL_OUT(req, tv, sizeof(tv));
132	} else
133#endif
134		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
135}
136
137static int
138sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
139{
140	u_int ncount;
141	struct timecounter *tc = arg1;
142
143	ncount = tc->tc_get_timecount(tc);
144	return sysctl_handle_int(oidp, &ncount, sizeof(ncount), req);
145}
146
147static int
148sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
149{
150	u_int64_t freq;
151	struct timecounter *tc = arg1;
152
153	freq = tc->tc_frequency;
154	return sysctl_handle_int(oidp, &freq, sizeof(freq), req);
155}
156
157/*
158 * Return the difference between the timehands' counter value now and what
159 * was when we copied it to the timehands' offset_count.
160 */
161static __inline u_int
162tc_delta(struct timehands *th)
163{
164	struct timecounter *tc;
165
166	tc = th->th_counter;
167	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
168	    tc->tc_counter_mask);
169}
170
171/*
172 * Functions for reading the time.  We have to loop until we are sure that
173 * the timehands that we operated on was not updated under our feet.  See
174 * the comment in <sys/time.h> for a description of these 12 functions.
175 */
176
177void
178binuptime(struct bintime *bt)
179{
180	struct timehands *th;
181	u_int gen;
182
183	nbinuptime++;
184	do {
185		th = timehands;
186		gen = th->th_generation;
187		*bt = th->th_offset;
188		bintime_addx(bt, th->th_scale * tc_delta(th));
189	} while (gen == 0 || gen != th->th_generation);
190}
191
192void
193nanouptime(struct timespec *tsp)
194{
195	struct bintime bt;
196
197	nnanouptime++;
198	binuptime(&bt);
199	bintime2timespec(&bt, tsp);
200}
201
202void
203microuptime(struct timeval *tvp)
204{
205	struct bintime bt;
206
207	nmicrouptime++;
208	binuptime(&bt);
209	bintime2timeval(&bt, tvp);
210}
211
212void
213bintime(struct bintime *bt)
214{
215
216	nbintime++;
217	binuptime(bt);
218	bintime_add(bt, &boottimebin);
219}
220
221void
222nanotime(struct timespec *tsp)
223{
224	struct bintime bt;
225
226	nnanotime++;
227	bintime(&bt);
228	bintime2timespec(&bt, tsp);
229}
230
231void
232microtime(struct timeval *tvp)
233{
234	struct bintime bt;
235
236	nmicrotime++;
237	bintime(&bt);
238	bintime2timeval(&bt, tvp);
239}
240
241void
242getbinuptime(struct bintime *bt)
243{
244	struct timehands *th;
245	u_int gen;
246
247	ngetbinuptime++;
248	do {
249		th = timehands;
250		gen = th->th_generation;
251		*bt = th->th_offset;
252	} while (gen == 0 || gen != th->th_generation);
253}
254
255void
256getnanouptime(struct timespec *tsp)
257{
258	struct timehands *th;
259	u_int gen;
260
261	ngetnanouptime++;
262	do {
263		th = timehands;
264		gen = th->th_generation;
265		bintime2timespec(&th->th_offset, tsp);
266	} while (gen == 0 || gen != th->th_generation);
267}
268
269void
270getmicrouptime(struct timeval *tvp)
271{
272	struct timehands *th;
273	u_int gen;
274
275	ngetmicrouptime++;
276	do {
277		th = timehands;
278		gen = th->th_generation;
279		bintime2timeval(&th->th_offset, tvp);
280	} while (gen == 0 || gen != th->th_generation);
281}
282
283void
284getbintime(struct bintime *bt)
285{
286	struct timehands *th;
287	u_int gen;
288
289	ngetbintime++;
290	do {
291		th = timehands;
292		gen = th->th_generation;
293		*bt = th->th_offset;
294	} while (gen == 0 || gen != th->th_generation);
295	bintime_add(bt, &boottimebin);
296}
297
298void
299getnanotime(struct timespec *tsp)
300{
301	struct timehands *th;
302	u_int gen;
303
304	ngetnanotime++;
305	do {
306		th = timehands;
307		gen = th->th_generation;
308		*tsp = th->th_nanotime;
309	} while (gen == 0 || gen != th->th_generation);
310}
311
312void
313getmicrotime(struct timeval *tvp)
314{
315	struct timehands *th;
316	u_int gen;
317
318	ngetmicrotime++;
319	do {
320		th = timehands;
321		gen = th->th_generation;
322		*tvp = th->th_microtime;
323	} while (gen == 0 || gen != th->th_generation);
324}
325
326/*
327 * Initialize a new timecounter and possibly use it.
328 */
329void
330tc_init(struct timecounter *tc)
331{
332	u_int u;
333	struct sysctl_oid *tc_root;
334
335	u = tc->tc_frequency / tc->tc_counter_mask;
336	/* XXX: We need some margin here, 10% is a guess */
337	u *= 11;
338	u /= 10;
339	if (u > hz && tc->tc_quality >= 0) {
340		tc->tc_quality = -2000;
341		if (bootverbose) {
342			printf("Timecounter \"%s\" frequency %ju Hz",
343			    tc->tc_name, (uintmax_t)tc->tc_frequency);
344			printf(" -- Insufficient hz, needs at least %u\n", u);
345		}
346	} else if (tc->tc_quality >= 0 || bootverbose) {
347		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
348		    tc->tc_name, (uintmax_t)tc->tc_frequency,
349		    tc->tc_quality);
350	}
351
352	tc->tc_next = timecounters;
353	timecounters = tc;
354	/*
355	 * Set up sysctl tree for this counter.
356	 */
357	tc_root = SYSCTL_ADD_NODE(NULL,
358	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
359	    CTLFLAG_RW, 0, "timecounter description");
360	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
361	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
362	    "mask for implemented bits");
363	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
364	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
365	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
366	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
367	    "frequency", CTLTYPE_QUAD | CTLFLAG_RD, tc, sizeof(*tc),
368	     sysctl_kern_timecounter_freq, "IU", "timecounter frequency");
369	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
370	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
371	    "goodness of time counter");
372	/*
373	 * Never automatically use a timecounter with negative quality.
374	 * Even though we run on the dummy counter, switching here may be
375	 * worse since this timecounter may not be monotonous.
376	 */
377	if (tc->tc_quality < 0)
378		return;
379	if (tc->tc_quality < timecounter->tc_quality)
380		return;
381	if (tc->tc_quality == timecounter->tc_quality &&
382	    tc->tc_frequency < timecounter->tc_frequency)
383		return;
384	(void)tc->tc_get_timecount(tc);
385	(void)tc->tc_get_timecount(tc);
386	timecounter = tc;
387}
388
389/* Report the frequency of the current timecounter. */
390u_int64_t
391tc_getfrequency(void)
392{
393
394	return (timehands->th_counter->tc_frequency);
395}
396
397/*
398 * Step our concept of UTC.  This is done by modifying our estimate of
399 * when we booted.
400 * XXX: not locked.
401 */
402void
403tc_setclock(struct timespec *ts)
404{
405	struct timespec tbef, taft;
406	struct bintime bt, bt2;
407
408	cpu_tick_calibrate(1);
409	nsetclock++;
410	nanotime(&tbef);
411	timespec2bintime(ts, &bt);
412	binuptime(&bt2);
413	bintime_sub(&bt, &bt2);
414	bintime_add(&bt2, &boottimebin);
415	boottimebin = bt;
416	bintime2timeval(&bt, &boottime);
417
418	/* XXX fiddle all the little crinkly bits around the fiords... */
419	tc_windup();
420	nanotime(&taft);
421	if (timestepwarnings) {
422		log(LOG_INFO,
423		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
424		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
425		    (intmax_t)taft.tv_sec, taft.tv_nsec,
426		    (intmax_t)ts->tv_sec, ts->tv_nsec);
427	}
428	cpu_tick_calibrate(1);
429}
430
431/*
432 * Initialize the next struct timehands in the ring and make
433 * it the active timehands.  Along the way we might switch to a different
434 * timecounter and/or do seconds processing in NTP.  Slightly magic.
435 */
436static void
437tc_windup(void)
438{
439	struct bintime bt;
440	struct timehands *th, *tho;
441	u_int64_t scale;
442	u_int delta, ncount, ogen;
443	int i;
444	time_t t;
445
446	/*
447	 * Make the next timehands a copy of the current one, but do not
448	 * overwrite the generation or next pointer.  While we update
449	 * the contents, the generation must be zero.
450	 */
451	tho = timehands;
452	th = tho->th_next;
453	ogen = th->th_generation;
454	th->th_generation = 0;
455	bcopy(tho, th, offsetof(struct timehands, th_generation));
456
457	/*
458	 * Capture a timecounter delta on the current timecounter and if
459	 * changing timecounters, a counter value from the new timecounter.
460	 * Update the offset fields accordingly.
461	 */
462	delta = tc_delta(th);
463	if (th->th_counter != timecounter)
464		ncount = timecounter->tc_get_timecount(timecounter);
465	else
466		ncount = 0;
467	th->th_offset_count += delta;
468	th->th_offset_count &= th->th_counter->tc_counter_mask;
469	bintime_addx(&th->th_offset, th->th_scale * delta);
470
471	/*
472	 * Hardware latching timecounters may not generate interrupts on
473	 * PPS events, so instead we poll them.  There is a finite risk that
474	 * the hardware might capture a count which is later than the one we
475	 * got above, and therefore possibly in the next NTP second which might
476	 * have a different rate than the current NTP second.  It doesn't
477	 * matter in practice.
478	 */
479	if (tho->th_counter->tc_poll_pps)
480		tho->th_counter->tc_poll_pps(tho->th_counter);
481
482	/*
483	 * Deal with NTP second processing.  The for loop normally
484	 * iterates at most once, but in extreme situations it might
485	 * keep NTP sane if timeouts are not run for several seconds.
486	 * At boot, the time step can be large when the TOD hardware
487	 * has been read, so on really large steps, we call
488	 * ntp_update_second only twice.  We need to call it twice in
489	 * case we missed a leap second.
490	 */
491	bt = th->th_offset;
492	bintime_add(&bt, &boottimebin);
493	i = bt.sec - tho->th_microtime.tv_sec;
494	if (i > LARGE_STEP)
495		i = 2;
496	for (; i > 0; i--) {
497		t = bt.sec;
498		ntp_update_second(&th->th_adjustment, &bt.sec);
499		if (bt.sec != t)
500			boottimebin.sec += bt.sec - t;
501	}
502	/* Update the UTC timestamps used by the get*() functions. */
503	/* XXX shouldn't do this here.  Should force non-`get' versions. */
504	bintime2timeval(&bt, &th->th_microtime);
505	bintime2timespec(&bt, &th->th_nanotime);
506
507	/* Now is a good time to change timecounters. */
508	if (th->th_counter != timecounter) {
509		th->th_counter = timecounter;
510		th->th_offset_count = ncount;
511	}
512
513	/*-
514	 * Recalculate the scaling factor.  We want the number of 1/2^64
515	 * fractions of a second per period of the hardware counter, taking
516	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
517	 * processing provides us with.
518	 *
519	 * The th_adjustment is nanoseconds per second with 32 bit binary
520	 * fraction and we want 64 bit binary fraction of second:
521	 *
522	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
523	 *
524	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
525	 * we can only multiply by about 850 without overflowing, that
526	 * leaves no suitably precise fractions for multiply before divide.
527	 *
528	 * Divide before multiply with a fraction of 2199/512 results in a
529	 * systematic undercompensation of 10PPM of th_adjustment.  On a
530	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
531 	 *
532	 * We happily sacrifice the lowest of the 64 bits of our result
533	 * to the goddess of code clarity.
534	 *
535	 */
536	scale = (u_int64_t)1 << 63;
537	scale += (th->th_adjustment / 1024) * 2199;
538	scale /= th->th_counter->tc_frequency;
539	th->th_scale = scale * 2;
540
541	/*
542	 * Now that the struct timehands is again consistent, set the new
543	 * generation number, making sure to not make it zero.
544	 */
545	if (++ogen == 0)
546		ogen = 1;
547	th->th_generation = ogen;
548
549	/* Go live with the new struct timehands. */
550	time_second = th->th_microtime.tv_sec;
551	time_uptime = th->th_offset.sec;
552	timehands = th;
553}
554
555/* Report or change the active timecounter hardware. */
556static int
557sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
558{
559	char newname[32];
560	struct timecounter *newtc, *tc;
561	int error;
562
563	tc = timecounter;
564	strlcpy(newname, tc->tc_name, sizeof(newname));
565
566	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
567	if (error != 0 || req->newptr == NULL ||
568	    strcmp(newname, tc->tc_name) == 0)
569		return (error);
570	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
571		if (strcmp(newname, newtc->tc_name) != 0)
572			continue;
573
574		/* Warm up new timecounter. */
575		(void)newtc->tc_get_timecount(newtc);
576		(void)newtc->tc_get_timecount(newtc);
577
578		timecounter = newtc;
579		return (0);
580	}
581	return (EINVAL);
582}
583
584SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
585    0, 0, sysctl_kern_timecounter_hardware, "A", "");
586
587
588/* Report or change the active timecounter hardware. */
589static int
590sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
591{
592	char buf[32], *spc;
593	struct timecounter *tc;
594	int error;
595
596	spc = "";
597	error = 0;
598	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
599		sprintf(buf, "%s%s(%d)",
600		    spc, tc->tc_name, tc->tc_quality);
601		error = SYSCTL_OUT(req, buf, strlen(buf));
602		spc = " ";
603	}
604	return (error);
605}
606
607SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
608    0, 0, sysctl_kern_timecounter_choice, "A", "");
609
610/*
611 * RFC 2783 PPS-API implementation.
612 */
613
614int
615pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
616{
617	pps_params_t *app;
618	struct pps_fetch_args *fapi;
619#ifdef PPS_SYNC
620	struct pps_kcbind_args *kapi;
621#endif
622
623	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
624	switch (cmd) {
625	case PPS_IOC_CREATE:
626		return (0);
627	case PPS_IOC_DESTROY:
628		return (0);
629	case PPS_IOC_SETPARAMS:
630		app = (pps_params_t *)data;
631		if (app->mode & ~pps->ppscap)
632			return (EINVAL);
633		pps->ppsparam = *app;
634		return (0);
635	case PPS_IOC_GETPARAMS:
636		app = (pps_params_t *)data;
637		*app = pps->ppsparam;
638		app->api_version = PPS_API_VERS_1;
639		return (0);
640	case PPS_IOC_GETCAP:
641		*(int*)data = pps->ppscap;
642		return (0);
643	case PPS_IOC_FETCH:
644		fapi = (struct pps_fetch_args *)data;
645		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
646			return (EINVAL);
647		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
648			return (EOPNOTSUPP);
649		pps->ppsinfo.current_mode = pps->ppsparam.mode;
650		fapi->pps_info_buf = pps->ppsinfo;
651		return (0);
652	case PPS_IOC_KCBIND:
653#ifdef PPS_SYNC
654		kapi = (struct pps_kcbind_args *)data;
655		/* XXX Only root should be able to do this */
656		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
657			return (EINVAL);
658		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
659			return (EINVAL);
660		if (kapi->edge & ~pps->ppscap)
661			return (EINVAL);
662		pps->kcmode = kapi->edge;
663		return (0);
664#else
665		return (EOPNOTSUPP);
666#endif
667	default:
668		return (ENOIOCTL);
669	}
670}
671
672void
673pps_init(struct pps_state *pps)
674{
675	pps->ppscap |= PPS_TSFMT_TSPEC;
676	if (pps->ppscap & PPS_CAPTUREASSERT)
677		pps->ppscap |= PPS_OFFSETASSERT;
678	if (pps->ppscap & PPS_CAPTURECLEAR)
679		pps->ppscap |= PPS_OFFSETCLEAR;
680}
681
682void
683pps_capture(struct pps_state *pps)
684{
685	struct timehands *th;
686
687	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
688	th = timehands;
689	pps->capgen = th->th_generation;
690	pps->capth = th;
691	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
692	if (pps->capgen != th->th_generation)
693		pps->capgen = 0;
694}
695
696void
697pps_event(struct pps_state *pps, int event)
698{
699	struct bintime bt;
700	struct timespec ts, *tsp, *osp;
701	u_int tcount, *pcount;
702	int foff, fhard;
703	pps_seq_t *pseq;
704
705	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
706	/* If the timecounter was wound up underneath us, bail out. */
707	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
708		return;
709
710	/* Things would be easier with arrays. */
711	if (event == PPS_CAPTUREASSERT) {
712		tsp = &pps->ppsinfo.assert_timestamp;
713		osp = &pps->ppsparam.assert_offset;
714		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
715		fhard = pps->kcmode & PPS_CAPTUREASSERT;
716		pcount = &pps->ppscount[0];
717		pseq = &pps->ppsinfo.assert_sequence;
718	} else {
719		tsp = &pps->ppsinfo.clear_timestamp;
720		osp = &pps->ppsparam.clear_offset;
721		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
722		fhard = pps->kcmode & PPS_CAPTURECLEAR;
723		pcount = &pps->ppscount[1];
724		pseq = &pps->ppsinfo.clear_sequence;
725	}
726
727	/*
728	 * If the timecounter changed, we cannot compare the count values, so
729	 * we have to drop the rest of the PPS-stuff until the next event.
730	 */
731	if (pps->ppstc != pps->capth->th_counter) {
732		pps->ppstc = pps->capth->th_counter;
733		*pcount = pps->capcount;
734		pps->ppscount[2] = pps->capcount;
735		return;
736	}
737
738	/* Convert the count to a timespec. */
739	tcount = pps->capcount - pps->capth->th_offset_count;
740	tcount &= pps->capth->th_counter->tc_counter_mask;
741	bt = pps->capth->th_offset;
742	bintime_addx(&bt, pps->capth->th_scale * tcount);
743	bintime_add(&bt, &boottimebin);
744	bintime2timespec(&bt, &ts);
745
746	/* If the timecounter was wound up underneath us, bail out. */
747	if (pps->capgen != pps->capth->th_generation)
748		return;
749
750	*pcount = pps->capcount;
751	(*pseq)++;
752	*tsp = ts;
753
754	if (foff) {
755		timespecadd(tsp, osp);
756		if (tsp->tv_nsec < 0) {
757			tsp->tv_nsec += 1000000000;
758			tsp->tv_sec -= 1;
759		}
760	}
761#ifdef PPS_SYNC
762	if (fhard) {
763		u_int64_t scale;
764
765		/*
766		 * Feed the NTP PLL/FLL.
767		 * The FLL wants to know how many (hardware) nanoseconds
768		 * elapsed since the previous event.
769		 */
770		tcount = pps->capcount - pps->ppscount[2];
771		pps->ppscount[2] = pps->capcount;
772		tcount &= pps->capth->th_counter->tc_counter_mask;
773		scale = (u_int64_t)1 << 63;
774		scale /= pps->capth->th_counter->tc_frequency;
775		scale *= 2;
776		bt.sec = 0;
777		bt.frac = 0;
778		bintime_addx(&bt, scale * tcount);
779		bintime2timespec(&bt, &ts);
780		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
781	}
782#endif
783}
784
785/*
786 * Timecounters need to be updated every so often to prevent the hardware
787 * counter from overflowing.  Updating also recalculates the cached values
788 * used by the get*() family of functions, so their precision depends on
789 * the update frequency.
790 */
791
792static int tc_tick;
793SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
794
795void
796tc_ticktock(void)
797{
798	static int count;
799	static time_t last_calib;
800
801	if (++count < tc_tick)
802		return;
803	count = 0;
804	tc_windup();
805	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
806		cpu_tick_calibrate(0);
807		last_calib = time_uptime;
808	}
809}
810
811static void
812inittimecounter(void *dummy)
813{
814	u_int p;
815
816	/*
817	 * Set the initial timeout to
818	 * max(1, <approx. number of hardclock ticks in a millisecond>).
819	 * People should probably not use the sysctl to set the timeout
820	 * to smaller than its inital value, since that value is the
821	 * smallest reasonable one.  If they want better timestamps they
822	 * should use the non-"get"* functions.
823	 */
824	if (hz > 1000)
825		tc_tick = (hz + 500) / 1000;
826	else
827		tc_tick = 1;
828	p = (tc_tick * 1000000) / hz;
829	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
830
831	/* warm up new timecounter (again) and get rolling. */
832	(void)timecounter->tc_get_timecount(timecounter);
833	(void)timecounter->tc_get_timecount(timecounter);
834}
835
836SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
837
838/* Cpu tick handling -------------------------------------------------*/
839
840static int cpu_tick_variable;
841static uint64_t	cpu_tick_frequency;
842
843static uint64_t
844tc_cpu_ticks(void)
845{
846	static uint64_t base;
847	static unsigned last;
848	unsigned u;
849	struct timecounter *tc;
850
851	tc = timehands->th_counter;
852	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
853	if (u < last)
854		base += (uint64_t)tc->tc_counter_mask + 1;
855	last = u;
856	return (u + base);
857}
858
859/*
860 * This function gets called ever 16 seconds on only one designated
861 * CPU in the system from hardclock() via tc_ticktock().
862 *
863 * Whenever the real time clock is stepped we get called with reset=1
864 * to make sure we handle suspend/resume and similar events correctly.
865 */
866
867static void
868cpu_tick_calibrate(int reset)
869{
870	static uint64_t c_last;
871	uint64_t c_this, c_delta;
872	static struct bintime  t_last;
873	struct bintime t_this, t_delta;
874	uint32_t divi;
875
876	if (reset) {
877		/* The clock was stepped, abort & reset */
878		t_last.sec = 0;
879		return;
880	}
881
882	/* we don't calibrate fixed rate cputicks */
883	if (!cpu_tick_variable)
884		return;
885
886	getbinuptime(&t_this);
887	c_this = cpu_ticks();
888	if (t_last.sec != 0) {
889		c_delta = c_this - c_last;
890		t_delta = t_this;
891		bintime_sub(&t_delta, &t_last);
892		/*
893		 * Validate that 16 +/- 1/256 seconds passed.
894		 * After division by 16 this gives us a precision of
895		 * roughly 250PPM which is sufficient
896		 */
897		if (t_delta.sec > 16 || (
898		    t_delta.sec == 16 && t_delta.frac >= (0x01LL << 56))) {
899			/* too long */
900			if (bootverbose)
901				printf("%ju.%016jx too long\n",
902				    (uintmax_t)t_delta.sec,
903				    (uintmax_t)t_delta.frac);
904		} else if (t_delta.sec < 15 ||
905		    (t_delta.sec == 15 && t_delta.frac <= (0xffLL << 56))) {
906			/* too short */
907			if (bootverbose)
908				printf("%ju.%016jx too short\n",
909				    (uintmax_t)t_delta.sec,
910				    (uintmax_t)t_delta.frac);
911		} else {
912			/* just right */
913			/*
914			 * Headroom:
915			 * 	2^(64-20) / 16[s] =
916			 * 	2^(44) / 16[s] =
917			 * 	17.592.186.044.416 / 16 =
918			 * 	1.099.511.627.776 [Hz]
919			 */
920			divi = t_delta.sec << 20;
921			divi |= t_delta.frac >> (64 - 20);
922			c_delta <<= 20;
923			c_delta /= divi;
924			if (c_delta  > cpu_tick_frequency) {
925				if (0 && bootverbose)
926					printf("cpu_tick increased to %ju Hz\n",
927					    c_delta);
928				cpu_tick_frequency = c_delta;
929			}
930		}
931	}
932	c_last = c_this;
933	t_last = t_this;
934}
935
936void
937set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
938{
939
940	if (func == NULL) {
941		cpu_ticks = tc_cpu_ticks;
942	} else {
943		cpu_tick_frequency = freq;
944		cpu_tick_variable = var;
945		cpu_ticks = func;
946	}
947}
948
949uint64_t
950cpu_tickrate(void)
951{
952
953	if (cpu_ticks == tc_cpu_ticks)
954		return (tc_getfrequency());
955	return (cpu_tick_frequency);
956}
957
958/*
959 * We need to be slightly careful converting cputicks to microseconds.
960 * There is plenty of margin in 64 bits of microseconds (half a million
961 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
962 * before divide conversion (to retain precision) we find that the
963 * margin shrinks to 1.5 hours (one millionth of 146y).
964 * With a three prong approach we never lose significant bits, no
965 * matter what the cputick rate and length of timeinterval is.
966 */
967
968uint64_t
969cputick2usec(uint64_t tick)
970{
971
972	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
973		return (tick / (cpu_tickrate() / 1000000LL));
974	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
975		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
976	else
977		return ((tick * 1000000LL) / cpu_tickrate());
978}
979
980cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
981