kern_tc.c revision 155534
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 */
9
10#include <sys/cdefs.h>
11__FBSDID("$FreeBSD: head/sys/kern/kern_tc.c 155534 2006-02-11 09:33:07Z phk $");
12
13#include "opt_ntp.h"
14
15#include <sys/param.h>
16#include <sys/kernel.h>
17#include <sys/sysctl.h>
18#include <sys/syslog.h>
19#include <sys/systm.h>
20#include <sys/timepps.h>
21#include <sys/timetc.h>
22#include <sys/timex.h>
23
24/*
25 * A large step happens on boot.  This constant detects such steps.
26 * It is relatively small so that ntp_update_second gets called enough
27 * in the typical 'missed a couple of seconds' case, but doesn't loop
28 * forever when the time step is large.
29 */
30#define LARGE_STEP	200
31
32/*
33 * Implement a dummy timecounter which we can use until we get a real one
34 * in the air.  This allows the console and other early stuff to use
35 * time services.
36 */
37
38static u_int
39dummy_get_timecount(struct timecounter *tc)
40{
41	static u_int now;
42
43	return (++now);
44}
45
46static struct timecounter dummy_timecounter = {
47	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48};
49
50struct timehands {
51	/* These fields must be initialized by the driver. */
52	struct timecounter	*th_counter;
53	int64_t			th_adjustment;
54	u_int64_t		th_scale;
55	u_int	 		th_offset_count;
56	struct bintime		th_offset;
57	struct timeval		th_microtime;
58	struct timespec		th_nanotime;
59	/* Fields not to be copied in tc_windup start with th_generation. */
60	volatile u_int		th_generation;
61	struct timehands	*th_next;
62};
63
64static struct timehands th0;
65static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74static struct timehands th0 = {
75	&dummy_timecounter,
76	0,
77	(uint64_t)-1 / 1000000,
78	0,
79	{1, 0},
80	{0, 0},
81	{0, 0},
82	1,
83	&th1
84};
85
86static struct timehands *volatile timehands = &th0;
87struct timecounter *timecounter = &dummy_timecounter;
88static struct timecounter *timecounters = &dummy_timecounter;
89
90time_t time_second = 1;
91time_t time_uptime = 1;
92
93static struct bintime boottimebin;
94struct timeval boottime;
95static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
96SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
97    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
98
99SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
100
101static int timestepwarnings;
102SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
103    &timestepwarnings, 0, "");
104
105#define TC_STATS(foo) \
106	static u_int foo; \
107	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
108	struct __hack
109
110TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
111TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
112TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
113TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
114TC_STATS(nsetclock);
115
116#undef TC_STATS
117
118static void tc_windup(void);
119static void cpu_tick_calibrate(int);
120
121static int
122sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
123{
124#ifdef SCTL_MASK32
125	int tv[2];
126
127	if (req->flags & SCTL_MASK32) {
128		tv[0] = boottime.tv_sec;
129		tv[1] = boottime.tv_usec;
130		return SYSCTL_OUT(req, tv, sizeof(tv));
131	} else
132#endif
133		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
134}
135
136/*
137 * Return the difference between the timehands' counter value now and what
138 * was when we copied it to the timehands' offset_count.
139 */
140static __inline u_int
141tc_delta(struct timehands *th)
142{
143	struct timecounter *tc;
144
145	tc = th->th_counter;
146	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
147	    tc->tc_counter_mask);
148}
149
150/*
151 * Functions for reading the time.  We have to loop until we are sure that
152 * the timehands that we operated on was not updated under our feet.  See
153 * the comment in <sys/time.h> for a description of these 12 functions.
154 */
155
156void
157binuptime(struct bintime *bt)
158{
159	struct timehands *th;
160	u_int gen;
161
162	nbinuptime++;
163	do {
164		th = timehands;
165		gen = th->th_generation;
166		*bt = th->th_offset;
167		bintime_addx(bt, th->th_scale * tc_delta(th));
168	} while (gen == 0 || gen != th->th_generation);
169}
170
171void
172nanouptime(struct timespec *tsp)
173{
174	struct bintime bt;
175
176	nnanouptime++;
177	binuptime(&bt);
178	bintime2timespec(&bt, tsp);
179}
180
181void
182microuptime(struct timeval *tvp)
183{
184	struct bintime bt;
185
186	nmicrouptime++;
187	binuptime(&bt);
188	bintime2timeval(&bt, tvp);
189}
190
191void
192bintime(struct bintime *bt)
193{
194
195	nbintime++;
196	binuptime(bt);
197	bintime_add(bt, &boottimebin);
198}
199
200void
201nanotime(struct timespec *tsp)
202{
203	struct bintime bt;
204
205	nnanotime++;
206	bintime(&bt);
207	bintime2timespec(&bt, tsp);
208}
209
210void
211microtime(struct timeval *tvp)
212{
213	struct bintime bt;
214
215	nmicrotime++;
216	bintime(&bt);
217	bintime2timeval(&bt, tvp);
218}
219
220void
221getbinuptime(struct bintime *bt)
222{
223	struct timehands *th;
224	u_int gen;
225
226	ngetbinuptime++;
227	do {
228		th = timehands;
229		gen = th->th_generation;
230		*bt = th->th_offset;
231	} while (gen == 0 || gen != th->th_generation);
232}
233
234void
235getnanouptime(struct timespec *tsp)
236{
237	struct timehands *th;
238	u_int gen;
239
240	ngetnanouptime++;
241	do {
242		th = timehands;
243		gen = th->th_generation;
244		bintime2timespec(&th->th_offset, tsp);
245	} while (gen == 0 || gen != th->th_generation);
246}
247
248void
249getmicrouptime(struct timeval *tvp)
250{
251	struct timehands *th;
252	u_int gen;
253
254	ngetmicrouptime++;
255	do {
256		th = timehands;
257		gen = th->th_generation;
258		bintime2timeval(&th->th_offset, tvp);
259	} while (gen == 0 || gen != th->th_generation);
260}
261
262void
263getbintime(struct bintime *bt)
264{
265	struct timehands *th;
266	u_int gen;
267
268	ngetbintime++;
269	do {
270		th = timehands;
271		gen = th->th_generation;
272		*bt = th->th_offset;
273	} while (gen == 0 || gen != th->th_generation);
274	bintime_add(bt, &boottimebin);
275}
276
277void
278getnanotime(struct timespec *tsp)
279{
280	struct timehands *th;
281	u_int gen;
282
283	ngetnanotime++;
284	do {
285		th = timehands;
286		gen = th->th_generation;
287		*tsp = th->th_nanotime;
288	} while (gen == 0 || gen != th->th_generation);
289}
290
291void
292getmicrotime(struct timeval *tvp)
293{
294	struct timehands *th;
295	u_int gen;
296
297	ngetmicrotime++;
298	do {
299		th = timehands;
300		gen = th->th_generation;
301		*tvp = th->th_microtime;
302	} while (gen == 0 || gen != th->th_generation);
303}
304
305/*
306 * Initialize a new timecounter and possibly use it.
307 */
308void
309tc_init(struct timecounter *tc)
310{
311	u_int u;
312
313	u = tc->tc_frequency / tc->tc_counter_mask;
314	/* XXX: We need some margin here, 10% is a guess */
315	u *= 11;
316	u /= 10;
317	if (u > hz && tc->tc_quality >= 0) {
318		tc->tc_quality = -2000;
319		if (bootverbose) {
320			printf("Timecounter \"%s\" frequency %ju Hz",
321			    tc->tc_name, (uintmax_t)tc->tc_frequency);
322			printf(" -- Insufficient hz, needs at least %u\n", u);
323		}
324	} else if (tc->tc_quality >= 0 || bootverbose) {
325		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
326		    tc->tc_name, (uintmax_t)tc->tc_frequency,
327		    tc->tc_quality);
328	}
329
330	tc->tc_next = timecounters;
331	timecounters = tc;
332	/*
333	 * Never automatically use a timecounter with negative quality.
334	 * Even though we run on the dummy counter, switching here may be
335	 * worse since this timecounter may not be monotonous.
336	 */
337	if (tc->tc_quality < 0)
338		return;
339	if (tc->tc_quality < timecounter->tc_quality)
340		return;
341	if (tc->tc_quality == timecounter->tc_quality &&
342	    tc->tc_frequency < timecounter->tc_frequency)
343		return;
344	(void)tc->tc_get_timecount(tc);
345	(void)tc->tc_get_timecount(tc);
346	timecounter = tc;
347}
348
349/* Report the frequency of the current timecounter. */
350u_int64_t
351tc_getfrequency(void)
352{
353
354	return (timehands->th_counter->tc_frequency);
355}
356
357/*
358 * Step our concept of UTC.  This is done by modifying our estimate of
359 * when we booted.
360 * XXX: not locked.
361 */
362void
363tc_setclock(struct timespec *ts)
364{
365	struct timespec ts2;
366	struct bintime bt, bt2;
367
368	cpu_tick_calibrate(1);
369	nsetclock++;
370	binuptime(&bt2);
371	timespec2bintime(ts, &bt);
372	bintime_sub(&bt, &bt2);
373	bintime_add(&bt2, &boottimebin);
374	boottimebin = bt;
375	bintime2timeval(&bt, &boottime);
376
377	/* XXX fiddle all the little crinkly bits around the fiords... */
378	tc_windup();
379	if (timestepwarnings) {
380		bintime2timespec(&bt2, &ts2);
381		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
382		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
383		    (intmax_t)ts->tv_sec, ts->tv_nsec);
384	}
385	cpu_tick_calibrate(1);
386}
387
388/*
389 * Initialize the next struct timehands in the ring and make
390 * it the active timehands.  Along the way we might switch to a different
391 * timecounter and/or do seconds processing in NTP.  Slightly magic.
392 */
393static void
394tc_windup(void)
395{
396	struct bintime bt;
397	struct timehands *th, *tho;
398	u_int64_t scale;
399	u_int delta, ncount, ogen;
400	int i;
401	time_t t;
402
403	/*
404	 * Make the next timehands a copy of the current one, but do not
405	 * overwrite the generation or next pointer.  While we update
406	 * the contents, the generation must be zero.
407	 */
408	tho = timehands;
409	th = tho->th_next;
410	ogen = th->th_generation;
411	th->th_generation = 0;
412	bcopy(tho, th, offsetof(struct timehands, th_generation));
413
414	/*
415	 * Capture a timecounter delta on the current timecounter and if
416	 * changing timecounters, a counter value from the new timecounter.
417	 * Update the offset fields accordingly.
418	 */
419	delta = tc_delta(th);
420	if (th->th_counter != timecounter)
421		ncount = timecounter->tc_get_timecount(timecounter);
422	else
423		ncount = 0;
424	th->th_offset_count += delta;
425	th->th_offset_count &= th->th_counter->tc_counter_mask;
426	bintime_addx(&th->th_offset, th->th_scale * delta);
427
428	/*
429	 * Hardware latching timecounters may not generate interrupts on
430	 * PPS events, so instead we poll them.  There is a finite risk that
431	 * the hardware might capture a count which is later than the one we
432	 * got above, and therefore possibly in the next NTP second which might
433	 * have a different rate than the current NTP second.  It doesn't
434	 * matter in practice.
435	 */
436	if (tho->th_counter->tc_poll_pps)
437		tho->th_counter->tc_poll_pps(tho->th_counter);
438
439	/*
440	 * Deal with NTP second processing.  The for loop normally
441	 * iterates at most once, but in extreme situations it might
442	 * keep NTP sane if timeouts are not run for several seconds.
443	 * At boot, the time step can be large when the TOD hardware
444	 * has been read, so on really large steps, we call
445	 * ntp_update_second only twice.  We need to call it twice in
446	 * case we missed a leap second.
447	 */
448	bt = th->th_offset;
449	bintime_add(&bt, &boottimebin);
450	i = bt.sec - tho->th_microtime.tv_sec;
451	if (i > LARGE_STEP)
452		i = 2;
453	for (; i > 0; i--) {
454		t = bt.sec;
455		ntp_update_second(&th->th_adjustment, &bt.sec);
456		if (bt.sec != t)
457			boottimebin.sec += bt.sec - t;
458	}
459	/* Update the UTC timestamps used by the get*() functions. */
460	/* XXX shouldn't do this here.  Should force non-`get' versions. */
461	bintime2timeval(&bt, &th->th_microtime);
462	bintime2timespec(&bt, &th->th_nanotime);
463
464	/* Now is a good time to change timecounters. */
465	if (th->th_counter != timecounter) {
466		th->th_counter = timecounter;
467		th->th_offset_count = ncount;
468	}
469
470	/*-
471	 * Recalculate the scaling factor.  We want the number of 1/2^64
472	 * fractions of a second per period of the hardware counter, taking
473	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
474	 * processing provides us with.
475	 *
476	 * The th_adjustment is nanoseconds per second with 32 bit binary
477	 * fraction and we want 64 bit binary fraction of second:
478	 *
479	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
480	 *
481	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
482	 * we can only multiply by about 850 without overflowing, that
483	 * leaves no suitably precise fractions for multiply before divide.
484	 *
485	 * Divide before multiply with a fraction of 2199/512 results in a
486	 * systematic undercompensation of 10PPM of th_adjustment.  On a
487	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
488 	 *
489	 * We happily sacrifice the lowest of the 64 bits of our result
490	 * to the goddess of code clarity.
491	 *
492	 */
493	scale = (u_int64_t)1 << 63;
494	scale += (th->th_adjustment / 1024) * 2199;
495	scale /= th->th_counter->tc_frequency;
496	th->th_scale = scale * 2;
497
498	/*
499	 * Now that the struct timehands is again consistent, set the new
500	 * generation number, making sure to not make it zero.
501	 */
502	if (++ogen == 0)
503		ogen = 1;
504	th->th_generation = ogen;
505
506	/* Go live with the new struct timehands. */
507	time_second = th->th_microtime.tv_sec;
508	time_uptime = th->th_offset.sec;
509	timehands = th;
510}
511
512/* Report or change the active timecounter hardware. */
513static int
514sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
515{
516	char newname[32];
517	struct timecounter *newtc, *tc;
518	int error;
519
520	tc = timecounter;
521	strlcpy(newname, tc->tc_name, sizeof(newname));
522
523	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
524	if (error != 0 || req->newptr == NULL ||
525	    strcmp(newname, tc->tc_name) == 0)
526		return (error);
527	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
528		if (strcmp(newname, newtc->tc_name) != 0)
529			continue;
530
531		/* Warm up new timecounter. */
532		(void)newtc->tc_get_timecount(newtc);
533		(void)newtc->tc_get_timecount(newtc);
534
535		timecounter = newtc;
536		return (0);
537	}
538	return (EINVAL);
539}
540
541SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
542    0, 0, sysctl_kern_timecounter_hardware, "A", "");
543
544
545/* Report or change the active timecounter hardware. */
546static int
547sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
548{
549	char buf[32], *spc;
550	struct timecounter *tc;
551	int error;
552
553	spc = "";
554	error = 0;
555	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
556		sprintf(buf, "%s%s(%d)",
557		    spc, tc->tc_name, tc->tc_quality);
558		error = SYSCTL_OUT(req, buf, strlen(buf));
559		spc = " ";
560	}
561	return (error);
562}
563
564SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
565    0, 0, sysctl_kern_timecounter_choice, "A", "");
566
567/*
568 * RFC 2783 PPS-API implementation.
569 */
570
571int
572pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
573{
574	pps_params_t *app;
575	struct pps_fetch_args *fapi;
576#ifdef PPS_SYNC
577	struct pps_kcbind_args *kapi;
578#endif
579
580	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
581	switch (cmd) {
582	case PPS_IOC_CREATE:
583		return (0);
584	case PPS_IOC_DESTROY:
585		return (0);
586	case PPS_IOC_SETPARAMS:
587		app = (pps_params_t *)data;
588		if (app->mode & ~pps->ppscap)
589			return (EINVAL);
590		pps->ppsparam = *app;
591		return (0);
592	case PPS_IOC_GETPARAMS:
593		app = (pps_params_t *)data;
594		*app = pps->ppsparam;
595		app->api_version = PPS_API_VERS_1;
596		return (0);
597	case PPS_IOC_GETCAP:
598		*(int*)data = pps->ppscap;
599		return (0);
600	case PPS_IOC_FETCH:
601		fapi = (struct pps_fetch_args *)data;
602		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
603			return (EINVAL);
604		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
605			return (EOPNOTSUPP);
606		pps->ppsinfo.current_mode = pps->ppsparam.mode;
607		fapi->pps_info_buf = pps->ppsinfo;
608		return (0);
609	case PPS_IOC_KCBIND:
610#ifdef PPS_SYNC
611		kapi = (struct pps_kcbind_args *)data;
612		/* XXX Only root should be able to do this */
613		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
614			return (EINVAL);
615		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
616			return (EINVAL);
617		if (kapi->edge & ~pps->ppscap)
618			return (EINVAL);
619		pps->kcmode = kapi->edge;
620		return (0);
621#else
622		return (EOPNOTSUPP);
623#endif
624	default:
625		return (ENOIOCTL);
626	}
627}
628
629void
630pps_init(struct pps_state *pps)
631{
632	pps->ppscap |= PPS_TSFMT_TSPEC;
633	if (pps->ppscap & PPS_CAPTUREASSERT)
634		pps->ppscap |= PPS_OFFSETASSERT;
635	if (pps->ppscap & PPS_CAPTURECLEAR)
636		pps->ppscap |= PPS_OFFSETCLEAR;
637}
638
639void
640pps_capture(struct pps_state *pps)
641{
642	struct timehands *th;
643
644	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
645	th = timehands;
646	pps->capgen = th->th_generation;
647	pps->capth = th;
648	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
649	if (pps->capgen != th->th_generation)
650		pps->capgen = 0;
651}
652
653void
654pps_event(struct pps_state *pps, int event)
655{
656	struct bintime bt;
657	struct timespec ts, *tsp, *osp;
658	u_int tcount, *pcount;
659	int foff, fhard;
660	pps_seq_t *pseq;
661
662	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
663	/* If the timecounter was wound up underneath us, bail out. */
664	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
665		return;
666
667	/* Things would be easier with arrays. */
668	if (event == PPS_CAPTUREASSERT) {
669		tsp = &pps->ppsinfo.assert_timestamp;
670		osp = &pps->ppsparam.assert_offset;
671		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
672		fhard = pps->kcmode & PPS_CAPTUREASSERT;
673		pcount = &pps->ppscount[0];
674		pseq = &pps->ppsinfo.assert_sequence;
675	} else {
676		tsp = &pps->ppsinfo.clear_timestamp;
677		osp = &pps->ppsparam.clear_offset;
678		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
679		fhard = pps->kcmode & PPS_CAPTURECLEAR;
680		pcount = &pps->ppscount[1];
681		pseq = &pps->ppsinfo.clear_sequence;
682	}
683
684	/*
685	 * If the timecounter changed, we cannot compare the count values, so
686	 * we have to drop the rest of the PPS-stuff until the next event.
687	 */
688	if (pps->ppstc != pps->capth->th_counter) {
689		pps->ppstc = pps->capth->th_counter;
690		*pcount = pps->capcount;
691		pps->ppscount[2] = pps->capcount;
692		return;
693	}
694
695	/* Convert the count to a timespec. */
696	tcount = pps->capcount - pps->capth->th_offset_count;
697	tcount &= pps->capth->th_counter->tc_counter_mask;
698	bt = pps->capth->th_offset;
699	bintime_addx(&bt, pps->capth->th_scale * tcount);
700	bintime_add(&bt, &boottimebin);
701	bintime2timespec(&bt, &ts);
702
703	/* If the timecounter was wound up underneath us, bail out. */
704	if (pps->capgen != pps->capth->th_generation)
705		return;
706
707	*pcount = pps->capcount;
708	(*pseq)++;
709	*tsp = ts;
710
711	if (foff) {
712		timespecadd(tsp, osp);
713		if (tsp->tv_nsec < 0) {
714			tsp->tv_nsec += 1000000000;
715			tsp->tv_sec -= 1;
716		}
717	}
718#ifdef PPS_SYNC
719	if (fhard) {
720		u_int64_t scale;
721
722		/*
723		 * Feed the NTP PLL/FLL.
724		 * The FLL wants to know how many (hardware) nanoseconds
725		 * elapsed since the previous event.
726		 */
727		tcount = pps->capcount - pps->ppscount[2];
728		pps->ppscount[2] = pps->capcount;
729		tcount &= pps->capth->th_counter->tc_counter_mask;
730		scale = (u_int64_t)1 << 63;
731		scale /= pps->capth->th_counter->tc_frequency;
732		scale *= 2;
733		bt.sec = 0;
734		bt.frac = 0;
735		bintime_addx(&bt, scale * tcount);
736		bintime2timespec(&bt, &ts);
737		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
738	}
739#endif
740}
741
742/*
743 * Timecounters need to be updated every so often to prevent the hardware
744 * counter from overflowing.  Updating also recalculates the cached values
745 * used by the get*() family of functions, so their precision depends on
746 * the update frequency.
747 */
748
749static int tc_tick;
750SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
751
752void
753tc_ticktock(void)
754{
755	static int count;
756	static time_t last_calib;
757
758	if (++count < tc_tick)
759		return;
760	count = 0;
761	tc_windup();
762	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
763		cpu_tick_calibrate(0);
764		last_calib = time_uptime;
765	}
766}
767
768static void
769inittimecounter(void *dummy)
770{
771	u_int p;
772
773	/*
774	 * Set the initial timeout to
775	 * max(1, <approx. number of hardclock ticks in a millisecond>).
776	 * People should probably not use the sysctl to set the timeout
777	 * to smaller than its inital value, since that value is the
778	 * smallest reasonable one.  If they want better timestamps they
779	 * should use the non-"get"* functions.
780	 */
781	if (hz > 1000)
782		tc_tick = (hz + 500) / 1000;
783	else
784		tc_tick = 1;
785	p = (tc_tick * 1000000) / hz;
786	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
787
788	/* warm up new timecounter (again) and get rolling. */
789	(void)timecounter->tc_get_timecount(timecounter);
790	(void)timecounter->tc_get_timecount(timecounter);
791}
792
793SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
794
795/* Cpu tick handling -------------------------------------------------*/
796
797static int cpu_tick_variable;
798static uint64_t	cpu_tick_frequency;
799
800static
801uint64_t
802tc_cpu_ticks(void)
803{
804	static uint64_t base;
805	static unsigned last;
806	unsigned u;
807	struct timecounter *tc;
808
809	tc = timehands->th_counter;
810	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
811	if (u < last)
812		base += tc->tc_counter_mask + 1;
813	last = u;
814	return (u + base);
815}
816
817/*
818 * This function gets called ever 16 seconds on only one designated
819 * CPU in the system from hardclock() via tc_ticktock().
820 *
821 * Whenever the real time clock is stepped we get called with reset=1
822 * to make sure we handle suspend/resume and similar events correctly.
823 */
824
825static void
826cpu_tick_calibrate(int reset)
827{
828	static uint64_t c_last;
829	uint64_t c_this, c_delta;
830	static struct bintime  t_last;
831	struct bintime t_this, t_delta;
832
833	if (reset) {
834		/* The clock was stepped, abort & reset */
835		t_last.sec = 0;
836		return;
837	}
838
839	/* we don't calibrate fixed rate cputicks */
840	if (!cpu_tick_variable)
841		return;
842
843	getbinuptime(&t_this);
844	c_this = cpu_ticks();
845	if (t_last.sec != 0) {
846		c_delta = c_this - c_last;
847		t_delta = t_this;
848		bintime_sub(&t_delta, &t_last);
849		if (0 && bootverbose) {
850			struct timespec ts;
851			bintime2timespec(&t_delta, &ts);
852			printf("%ju  %ju.%016jx %ju.%09ju",
853			    (uintmax_t)c_delta >> 4,
854			    (uintmax_t)t_delta.sec, (uintmax_t)t_delta.frac,
855			    (uintmax_t)ts.tv_sec, (uintmax_t)ts.tv_nsec);
856		}
857		/*
858		 * Validate that 16 +/- 1/256 seconds passed.
859		 * After division by 16 this gives us a precision of
860		 * roughly 250PPM which is sufficient
861		 */
862		if (t_delta.sec > 16 || (
863		    t_delta.sec == 16 && t_delta.frac >= (0x01LL << 56))) {
864			/* too long */
865			if (0 && bootverbose)
866				printf("\ttoo long\n");
867		} else if (t_delta.sec < 15 ||
868		    (t_delta.sec == 15 && t_delta.frac <= (0xffLL << 56))) {
869			/* too short */
870			if (0 && bootverbose)
871				printf("\ttoo short\n");
872		} else {
873			/* just right */
874			c_delta >>= 4;
875			if (c_delta  > cpu_tick_frequency) {
876				if (0 && bootverbose)
877					printf("\thigher\n");
878				cpu_tick_frequency = c_delta;
879			} else {
880				if (0 && bootverbose)
881					printf("\tlower\n");
882			}
883		}
884	}
885	c_last = c_this;
886	t_last = t_this;
887}
888
889void
890set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
891{
892
893	if (func == NULL) {
894		cpu_ticks = tc_cpu_ticks;
895	} else {
896		cpu_tick_frequency = freq;
897		cpu_tick_variable = var;
898		cpu_ticks = func;
899	}
900}
901
902uint64_t
903cpu_tickrate(void)
904{
905
906	if (cpu_ticks == tc_cpu_ticks)
907		return (tc_getfrequency());
908	return (cpu_tick_frequency);
909}
910
911/*
912 * We need to be slightly careful converting cputicks to microseconds.
913 * There is plenty of margin in 64 bits of microseconds (half a million
914 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
915 * before divide conversion (to retain precision) we find that the
916 * margin shrinks to 1.5 hours (one millionth of 146y).
917 * With a three prong approach we never loose significant bits, no
918 * matter what the cputick rate and length of timeinterval is.
919 */
920
921uint64_t
922cputick2usec(uint64_t tick)
923{
924
925	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
926		return (tick / (cpu_tickrate() / 1000000LL));
927	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
928		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
929	else
930		return ((tick * 1000000LL) / cpu_tickrate());
931}
932
933cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
934