kern_tc.c revision 119160
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 */
9
10#include <sys/cdefs.h>
11__FBSDID("$FreeBSD: head/sys/kern/kern_tc.c 119160 2003-08-20 05:34:27Z imp $");
12
13#include "opt_ntp.h"
14
15#include <sys/param.h>
16#include <sys/kernel.h>
17#include <sys/sysctl.h>
18#include <sys/systm.h>
19#include <sys/timepps.h>
20#include <sys/timetc.h>
21#include <sys/timex.h>
22
23/*
24 * a large step happens on boot.  This constant detects such
25 * a steps.  It is relatively small so that ntp_update_second gets called
26 * enough in the typical 'missed a couple of seconds' case, but doesn't
27 * loop forever when the time step is large.
28 */
29#define LARGE_STEP	200
30
31/*
32 * Implement a dummy timecounter which we can use until we get a real one
33 * in the air.  This allows the console and other early stuff to use
34 * time services.
35 */
36
37static u_int
38dummy_get_timecount(struct timecounter *tc)
39{
40	static u_int now;
41
42	return (++now);
43}
44
45static struct timecounter dummy_timecounter = {
46	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
47};
48
49struct timehands {
50	/* These fields must be initialized by the driver. */
51	struct timecounter	*th_counter;
52	int64_t			th_adjustment;
53	u_int64_t		th_scale;
54	u_int	 		th_offset_count;
55	struct bintime		th_offset;
56	struct timeval		th_microtime;
57	struct timespec		th_nanotime;
58	/* Fields not to be copied in tc_windup start with th_generation. */
59	volatile u_int		th_generation;
60	struct timehands	*th_next;
61};
62
63extern struct timehands th0;
64static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
65static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
66static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
67static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
68static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
69static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
70static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
71static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
72static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
73static struct timehands th0 = {
74	&dummy_timecounter,
75	0,
76	(uint64_t)-1 / 1000000,
77	0,
78	{1, 0},
79	{0, 0},
80	{0, 0},
81	1,
82	&th1
83};
84
85static struct timehands *volatile timehands = &th0;
86struct timecounter *timecounter = &dummy_timecounter;
87static struct timecounter *timecounters = &dummy_timecounter;
88
89time_t time_second = 1;
90time_t time_uptime = 0;
91
92static struct bintime boottimebin;
93struct timeval boottime;
94SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
95    &boottime, timeval, "System boottime");
96
97SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
98
99#define TC_STATS(foo) \
100	static u_int foo; \
101	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
102	struct __hack
103
104TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
105TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
106TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
107TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
108TC_STATS(nsetclock);
109
110#undef TC_STATS
111
112static void tc_windup(void);
113
114/*
115 * Return the difference between the timehands' counter value now and what
116 * was when we copied it to the timehands' offset_count.
117 */
118static __inline u_int
119tc_delta(struct timehands *th)
120{
121	struct timecounter *tc;
122
123	tc = th->th_counter;
124	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
125	    tc->tc_counter_mask);
126}
127
128/*
129 * Functions for reading the time.  We have to loop until we are sure that
130 * the timehands that we operated on was not updated under our feet.  See
131 * the comment in <sys/time.h> for a description of these 12 functions.
132 */
133
134void
135binuptime(struct bintime *bt)
136{
137	struct timehands *th;
138	u_int gen;
139
140	nbinuptime++;
141	do {
142		th = timehands;
143		gen = th->th_generation;
144		*bt = th->th_offset;
145		bintime_addx(bt, th->th_scale * tc_delta(th));
146	} while (gen == 0 || gen != th->th_generation);
147}
148
149void
150nanouptime(struct timespec *tsp)
151{
152	struct bintime bt;
153
154	nnanouptime++;
155	binuptime(&bt);
156	bintime2timespec(&bt, tsp);
157}
158
159void
160microuptime(struct timeval *tvp)
161{
162	struct bintime bt;
163
164	nmicrouptime++;
165	binuptime(&bt);
166	bintime2timeval(&bt, tvp);
167}
168
169void
170bintime(struct bintime *bt)
171{
172
173	nbintime++;
174	binuptime(bt);
175	bintime_add(bt, &boottimebin);
176}
177
178void
179nanotime(struct timespec *tsp)
180{
181	struct bintime bt;
182
183	nnanotime++;
184	bintime(&bt);
185	bintime2timespec(&bt, tsp);
186}
187
188void
189microtime(struct timeval *tvp)
190{
191	struct bintime bt;
192
193	nmicrotime++;
194	bintime(&bt);
195	bintime2timeval(&bt, tvp);
196}
197
198void
199getbinuptime(struct bintime *bt)
200{
201	struct timehands *th;
202	u_int gen;
203
204	ngetbinuptime++;
205	do {
206		th = timehands;
207		gen = th->th_generation;
208		*bt = th->th_offset;
209	} while (gen == 0 || gen != th->th_generation);
210}
211
212void
213getnanouptime(struct timespec *tsp)
214{
215	struct timehands *th;
216	u_int gen;
217
218	ngetnanouptime++;
219	do {
220		th = timehands;
221		gen = th->th_generation;
222		bintime2timespec(&th->th_offset, tsp);
223	} while (gen == 0 || gen != th->th_generation);
224}
225
226void
227getmicrouptime(struct timeval *tvp)
228{
229	struct timehands *th;
230	u_int gen;
231
232	ngetmicrouptime++;
233	do {
234		th = timehands;
235		gen = th->th_generation;
236		bintime2timeval(&th->th_offset, tvp);
237	} while (gen == 0 || gen != th->th_generation);
238}
239
240void
241getbintime(struct bintime *bt)
242{
243	struct timehands *th;
244	u_int gen;
245
246	ngetbintime++;
247	do {
248		th = timehands;
249		gen = th->th_generation;
250		*bt = th->th_offset;
251	} while (gen == 0 || gen != th->th_generation);
252	bintime_add(bt, &boottimebin);
253}
254
255void
256getnanotime(struct timespec *tsp)
257{
258	struct timehands *th;
259	u_int gen;
260
261	ngetnanotime++;
262	do {
263		th = timehands;
264		gen = th->th_generation;
265		*tsp = th->th_nanotime;
266	} while (gen == 0 || gen != th->th_generation);
267}
268
269void
270getmicrotime(struct timeval *tvp)
271{
272	struct timehands *th;
273	u_int gen;
274
275	ngetmicrotime++;
276	do {
277		th = timehands;
278		gen = th->th_generation;
279		*tvp = th->th_microtime;
280	} while (gen == 0 || gen != th->th_generation);
281}
282
283/*
284 * Initialize a new timecounter and possibly use it.
285 */
286void
287tc_init(struct timecounter *tc)
288{
289	unsigned u;
290
291	if (tc->tc_quality >= 0 || bootverbose)
292		printf("Timecounter \"%s\" frequency %ju Hz quality %d",
293		    tc->tc_name, (intmax_t)tc->tc_frequency,
294		    tc->tc_quality);
295
296	u = tc->tc_frequency / tc->tc_counter_mask;
297	if (u > hz) {
298		printf(" -- Insufficient hz, needs at least %u\n", u);
299		return;
300	}
301	printf("\n");
302	tc->tc_next = timecounters;
303	timecounters = tc;
304	(void)tc->tc_get_timecount(tc);
305	(void)tc->tc_get_timecount(tc);
306	/* Never automatically use a timecounter with negative quality */
307	if (tc->tc_quality < 0)
308		return;
309	if (tc->tc_quality < timecounter->tc_quality)
310		return;
311	timecounter = tc;
312}
313
314/* Report the frequency of the current timecounter. */
315u_int64_t
316tc_getfrequency(void)
317{
318
319	return (timehands->th_counter->tc_frequency);
320}
321
322/*
323 * Step our concept of UTC.  This is done by modifying our estimate of
324 * when we booted.  XXX: needs futher work.
325 */
326void
327tc_setclock(struct timespec *ts)
328{
329	struct timespec ts2;
330
331	nsetclock++;
332	nanouptime(&ts2);
333	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
334	/* XXX boottime should probably be a timespec. */
335	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
336	if (boottime.tv_usec < 0) {
337		boottime.tv_usec += 1000000;
338		boottime.tv_sec--;
339	}
340	timeval2bintime(&boottime, &boottimebin);
341
342	/* XXX fiddle all the little crinkly bits around the fiords... */
343	tc_windup();
344}
345
346/*
347 * Initialize the next struct timehands in the ring and make
348 * it the active timehands.  Along the way we might switch to a different
349 * timecounter and/or do seconds processing in NTP.  Slightly magic.
350 */
351static void
352tc_windup(void)
353{
354	struct bintime bt;
355	struct timehands *th, *tho;
356	u_int64_t scale;
357	u_int delta, ncount, ogen;
358	int i;
359	time_t t;
360
361	/*
362	 * Make the next timehands a copy of the current one, but do not
363	 * overwrite the generation or next pointer.  While we update
364	 * the contents, the generation must be zero.
365	 */
366	tho = timehands;
367	th = tho->th_next;
368	ogen = th->th_generation;
369	th->th_generation = 0;
370	bcopy(tho, th, offsetof(struct timehands, th_generation));
371
372	/*
373	 * Capture a timecounter delta on the current timecounter and if
374	 * changing timecounters, a counter value from the new timecounter.
375	 * Update the offset fields accordingly.
376	 */
377	delta = tc_delta(th);
378	if (th->th_counter != timecounter)
379		ncount = timecounter->tc_get_timecount(timecounter);
380	else
381		ncount = 0;
382	th->th_offset_count += delta;
383	th->th_offset_count &= th->th_counter->tc_counter_mask;
384	bintime_addx(&th->th_offset, th->th_scale * delta);
385
386	/*
387	 * Hardware latching timecounters may not generate interrupts on
388	 * PPS events, so instead we poll them.  There is a finite risk that
389	 * the hardware might capture a count which is later than the one we
390	 * got above, and therefore possibly in the next NTP second which might
391	 * have a different rate than the current NTP second.  It doesn't
392	 * matter in practice.
393	 */
394	if (tho->th_counter->tc_poll_pps)
395		tho->th_counter->tc_poll_pps(tho->th_counter);
396
397 	/*
398	 * Compute the UTC time, before any leapsecond adjustments, are
399	 * made.
400	 */
401	bt = th->th_offset;
402	bintime_add(&bt, &boottimebin);
403
404	/*
405	 * Deal with NTP second processing.  The for loop normally only
406	 * iterates once, but in extreme situations it might keep NTP sane
407	 * if timeouts are not run for several seconds.  At boot, the
408	 * time step can be large when the TOD hardware has been read, so
409	 * on really large steps, we call ntp_update_second only twice.
410	 * We need to call it twice in case we missed a leap second.
411	 */
412	i = bt.sec - tho->th_microtime.tv_sec;
413	if (i > LARGE_STEP)
414		i = 2;
415	for (; i > 0; i--) {
416		t = bt.sec;
417		ntp_update_second(&th->th_adjustment, &bt.sec);
418		if (bt.sec != t)
419			boottimebin.sec += bt.sec - t;
420	}
421
422	/* Now is a good time to change timecounters. */
423	if (th->th_counter != timecounter) {
424		th->th_counter = timecounter;
425		th->th_offset_count = ncount;
426	}
427
428	/*-
429	 * Recalculate the scaling factor.  We want the number of 1/2^64
430	 * fractions of a second per period of the hardware counter, taking
431	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
432	 * processing provides us with.
433	 *
434	 * The th_adjustment is nanoseconds per second with 32 bit binary
435	 * fraction and we want 64 bit binary fraction of second:
436	 *
437	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
438	 *
439	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
440	 * we can only multiply by about 850 without overflowing, but that
441	 * leaves suitably precise fractions for multiply before divide.
442	 *
443	 * Divide before multiply with a fraction of 2199/512 results in a
444	 * systematic undercompensation of 10PPM of th_adjustment.  On a
445	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
446 	 *
447	 * We happily sacrifice the lowest of the 64 bits of our result
448	 * to the goddess of code clarity.
449	 *
450	 */
451	scale = (u_int64_t)1 << 63;
452	scale += (th->th_adjustment / 1024) * 2199;
453	scale /= th->th_counter->tc_frequency;
454	th->th_scale = scale * 2;
455
456	bintime2timeval(&bt, &th->th_microtime);
457	bintime2timespec(&bt, &th->th_nanotime);
458
459	/*
460	 * Now that the struct timehands is again consistent, set the new
461	 * generation number, making sure to not make it zero.
462	 */
463	if (++ogen == 0)
464		ogen = 1;
465	th->th_generation = ogen;
466
467	/* Go live with the new struct timehands. */
468	time_second = th->th_microtime.tv_sec;
469	time_uptime = th->th_offset.sec;
470	timehands = th;
471}
472
473/* Report or change the active timecounter hardware. */
474static int
475sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
476{
477	char newname[32];
478	struct timecounter *newtc, *tc;
479	int error;
480
481	tc = timecounter;
482	strlcpy(newname, tc->tc_name, sizeof(newname));
483
484	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
485	if (error != 0 || req->newptr == NULL ||
486	    strcmp(newname, tc->tc_name) == 0)
487		return (error);
488	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
489		if (strcmp(newname, newtc->tc_name) != 0)
490			continue;
491
492		/* Warm up new timecounter. */
493		(void)newtc->tc_get_timecount(newtc);
494		(void)newtc->tc_get_timecount(newtc);
495
496		timecounter = newtc;
497		return (0);
498	}
499	return (EINVAL);
500}
501
502SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
503    0, 0, sysctl_kern_timecounter_hardware, "A", "");
504
505
506/* Report or change the active timecounter hardware. */
507static int
508sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
509{
510	char buf[32], *spc;
511	struct timecounter *tc;
512	int error;
513
514	spc = "";
515	error = 0;
516	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
517		sprintf(buf, "%s%s(%d)",
518		    spc, tc->tc_name, tc->tc_quality);
519		error = SYSCTL_OUT(req, buf, strlen(buf));
520		spc = " ";
521	}
522	return (error);
523}
524
525SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
526    0, 0, sysctl_kern_timecounter_choice, "A", "");
527
528/*
529 * RFC 2783 PPS-API implementation.
530 */
531
532int
533pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
534{
535	pps_params_t *app;
536	struct pps_fetch_args *fapi;
537#ifdef PPS_SYNC
538	struct pps_kcbind_args *kapi;
539#endif
540
541	switch (cmd) {
542	case PPS_IOC_CREATE:
543		return (0);
544	case PPS_IOC_DESTROY:
545		return (0);
546	case PPS_IOC_SETPARAMS:
547		app = (pps_params_t *)data;
548		if (app->mode & ~pps->ppscap)
549			return (EINVAL);
550		pps->ppsparam = *app;
551		return (0);
552	case PPS_IOC_GETPARAMS:
553		app = (pps_params_t *)data;
554		*app = pps->ppsparam;
555		app->api_version = PPS_API_VERS_1;
556		return (0);
557	case PPS_IOC_GETCAP:
558		*(int*)data = pps->ppscap;
559		return (0);
560	case PPS_IOC_FETCH:
561		fapi = (struct pps_fetch_args *)data;
562		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
563			return (EINVAL);
564		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
565			return (EOPNOTSUPP);
566		pps->ppsinfo.current_mode = pps->ppsparam.mode;
567		fapi->pps_info_buf = pps->ppsinfo;
568		return (0);
569	case PPS_IOC_KCBIND:
570#ifdef PPS_SYNC
571		kapi = (struct pps_kcbind_args *)data;
572		/* XXX Only root should be able to do this */
573		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
574			return (EINVAL);
575		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
576			return (EINVAL);
577		if (kapi->edge & ~pps->ppscap)
578			return (EINVAL);
579		pps->kcmode = kapi->edge;
580		return (0);
581#else
582		return (EOPNOTSUPP);
583#endif
584	default:
585		return (ENOTTY);
586	}
587}
588
589void
590pps_init(struct pps_state *pps)
591{
592	pps->ppscap |= PPS_TSFMT_TSPEC;
593	if (pps->ppscap & PPS_CAPTUREASSERT)
594		pps->ppscap |= PPS_OFFSETASSERT;
595	if (pps->ppscap & PPS_CAPTURECLEAR)
596		pps->ppscap |= PPS_OFFSETCLEAR;
597}
598
599void
600pps_capture(struct pps_state *pps)
601{
602	struct timehands *th;
603
604	th = timehands;
605	pps->capgen = th->th_generation;
606	pps->capth = th;
607	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
608	if (pps->capgen != th->th_generation)
609		pps->capgen = 0;
610}
611
612void
613pps_event(struct pps_state *pps, int event)
614{
615	struct bintime bt;
616	struct timespec ts, *tsp, *osp;
617	u_int tcount, *pcount;
618	int foff, fhard;
619	pps_seq_t *pseq;
620
621	/* If the timecounter was wound up underneath us, bail out. */
622	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
623		return;
624
625	/* Things would be easier with arrays. */
626	if (event == PPS_CAPTUREASSERT) {
627		tsp = &pps->ppsinfo.assert_timestamp;
628		osp = &pps->ppsparam.assert_offset;
629		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
630		fhard = pps->kcmode & PPS_CAPTUREASSERT;
631		pcount = &pps->ppscount[0];
632		pseq = &pps->ppsinfo.assert_sequence;
633	} else {
634		tsp = &pps->ppsinfo.clear_timestamp;
635		osp = &pps->ppsparam.clear_offset;
636		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
637		fhard = pps->kcmode & PPS_CAPTURECLEAR;
638		pcount = &pps->ppscount[1];
639		pseq = &pps->ppsinfo.clear_sequence;
640	}
641
642	/*
643	 * If the timecounter changed, we cannot compare the count values, so
644	 * we have to drop the rest of the PPS-stuff until the next event.
645	 */
646	if (pps->ppstc != pps->capth->th_counter) {
647		pps->ppstc = pps->capth->th_counter;
648		*pcount = pps->capcount;
649		pps->ppscount[2] = pps->capcount;
650		return;
651	}
652
653	/* Return if nothing really happened. */
654	if (*pcount == pps->capcount)
655		return;
656
657	/* Convert the count to a timespec. */
658	tcount = pps->capcount - pps->capth->th_offset_count;
659	tcount &= pps->capth->th_counter->tc_counter_mask;
660	bt = pps->capth->th_offset;
661	bintime_addx(&bt, pps->capth->th_scale * tcount);
662	bintime_add(&bt, &boottimebin);
663	bintime2timespec(&bt, &ts);
664
665	/* If the timecounter was wound up underneath us, bail out. */
666	if (pps->capgen != pps->capth->th_generation)
667		return;
668
669	*pcount = pps->capcount;
670	(*pseq)++;
671	*tsp = ts;
672
673	if (foff) {
674		timespecadd(tsp, osp);
675		if (tsp->tv_nsec < 0) {
676			tsp->tv_nsec += 1000000000;
677			tsp->tv_sec -= 1;
678		}
679	}
680#ifdef PPS_SYNC
681	if (fhard) {
682		u_int64_t scale;
683
684		/*
685		 * Feed the NTP PLL/FLL.
686		 * The FLL wants to know how many (hardware) nanoseconds
687		 * elapsed since the previous event.
688		 */
689		tcount = pps->capcount - pps->ppscount[2];
690		pps->ppscount[2] = pps->capcount;
691		tcount &= pps->capth->th_counter->tc_counter_mask;
692		scale = (u_int64_t)1 << 63;
693		scale /= pps->capth->th_counter->tc_frequency;
694		scale *= 2;
695		bt.sec = 0;
696		bt.frac = 0;
697		bintime_addx(&bt, scale * tcount);
698		bintime2timespec(&bt, &ts);
699		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
700	}
701#endif
702}
703
704/*
705 * Timecounters need to be updated every so often to prevent the hardware
706 * counter from overflowing.  Updating also recalculates the cached values
707 * used by the get*() family of functions, so their precision depends on
708 * the update frequency.
709 */
710
711static int tc_tick;
712SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
713
714void
715tc_ticktock(void)
716{
717	static int count;
718
719	if (++count < tc_tick)
720		return;
721	count = 0;
722	tc_windup();
723}
724
725static void
726inittimecounter(void *dummy)
727{
728	u_int p;
729
730	/*
731	 * Set the initial timeout to
732	 * max(1, <approx. number of hardclock ticks in a millisecond>).
733	 * People should probably not use the sysctl to set the timeout
734	 * to smaller than its inital value, since that value is the
735	 * smallest reasonable one.  If they want better timestamps they
736	 * should use the non-"get"* functions.
737	 */
738	if (hz > 1000)
739		tc_tick = (hz + 500) / 1000;
740	else
741		tc_tick = 1;
742	p = (tc_tick * 1000000) / hz;
743	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
744
745	/* warm up new timecounter (again) and get rolling. */
746	(void)timecounter->tc_get_timecount(timecounter);
747	(void)timecounter->tc_get_timecount(timecounter);
748}
749
750SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
751