kern_ntptime.c revision 65432
1/***********************************************************************
2 *								       *
3 * Copyright (c) David L. Mills 1993-2000			       *
4 *								       *
5 * Permission to use, copy, modify, and distribute this software and   *
6 * its documentation for any purpose and without fee is hereby	       *
7 * granted, provided that the above copyright notice appears in all    *
8 * copies and that both the copyright notice and this permission       *
9 * notice appear in supporting documentation, and that the name	       *
10 * University of Delaware not be used in advertising or publicity      *
11 * pertaining to distribution of the software without specific,	       *
12 * written prior permission. The University of Delaware makes no       *
13 * representations about the suitability this software for any	       *
14 * purpose. It is provided "as is" without express or implied	       *
15 * warranty.							       *
16 *								       *
17 **********************************************************************/
18
19/*
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
22 *
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
26 *
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
30 *
31 * $FreeBSD: head/sys/kern/kern_ntptime.c 65432 2000-09-04 08:19:32Z phk $
32 */
33
34#include "opt_ntp.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/sysproto.h>
39#include <sys/kernel.h>
40#include <sys/proc.h>
41#include <sys/time.h>
42#include <sys/timex.h>
43#include <sys/timetc.h>
44#include <sys/timepps.h>
45#include <sys/sysctl.h>
46
47/*
48 * Single-precision macros for 64-bit machines
49 */
50typedef long long l_fp;
51#define L_ADD(v, u)	((v) += (u))
52#define L_SUB(v, u)	((v) -= (u))
53#define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
54#define L_NEG(v)	((v) = -(v))
55#define L_RSHIFT(v, n) \
56	do { \
57		if ((v) < 0) \
58			(v) = -(-(v) >> (n)); \
59		else \
60			(v) = (v) >> (n); \
61	} while (0)
62#define L_MPY(v, a)	((v) *= (a))
63#define L_CLR(v)	((v) = 0)
64#define L_ISNEG(v)	((v) < 0)
65#define L_LINT(v, a)	((v) = (long long)(a) << 32)
66#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
67
68/*
69 * Generic NTP kernel interface
70 *
71 * These routines constitute the Network Time Protocol (NTP) interfaces
72 * for user and daemon application programs. The ntp_gettime() routine
73 * provides the time, maximum error (synch distance) and estimated error
74 * (dispersion) to client user application programs. The ntp_adjtime()
75 * routine is used by the NTP daemon to adjust the system clock to an
76 * externally derived time. The time offset and related variables set by
77 * this routine are used by other routines in this module to adjust the
78 * phase and frequency of the clock discipline loop which controls the
79 * system clock.
80 *
81 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
82 * defined), the time at each tick interrupt is derived directly from
83 * the kernel time variable. When the kernel time is reckoned in
84 * microseconds, (NTP_NANO undefined), the time is derived from the
85 * kernel time variable together with a variable representing the
86 * leftover nanoseconds at the last tick interrupt. In either case, the
87 * current nanosecond time is reckoned from these values plus an
88 * interpolated value derived by the clock routines in another
89 * architecture-specific module. The interpolation can use either a
90 * dedicated counter or a processor cycle counter (PCC) implemented in
91 * some architectures.
92 *
93 * Note that all routines must run at priority splclock or higher.
94 */
95/*
96 * Phase/frequency-lock loop (PLL/FLL) definitions
97 *
98 * The nanosecond clock discipline uses two variable types, time
99 * variables and frequency variables. Both types are represented as 64-
100 * bit fixed-point quantities with the decimal point between two 32-bit
101 * halves. On a 32-bit machine, each half is represented as a single
102 * word and mathematical operations are done using multiple-precision
103 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
104 * used.
105 *
106 * A time variable is a signed 64-bit fixed-point number in ns and
107 * fraction. It represents the remaining time offset to be amortized
108 * over succeeding tick interrupts. The maximum time offset is about
109 * 0.5 s and the resolution is about 2.3e-10 ns.
110 *
111 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
112 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
113 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
114 * |s s s|			 ns				   |
115 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116 * |			    fraction				   |
117 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118 *
119 * A frequency variable is a signed 64-bit fixed-point number in ns/s
120 * and fraction. It represents the ns and fraction to be added to the
121 * kernel time variable at each second. The maximum frequency offset is
122 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
123 *
124 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
125 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
126 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127 * |s s s s s s s s s s s s s|	          ns/s			   |
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 * |			    fraction				   |
130 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 */
132/*
133 * The following variables establish the state of the PLL/FLL and the
134 * residual time and frequency offset of the local clock.
135 */
136#define SHIFT_PLL	4		/* PLL loop gain (shift) */
137#define SHIFT_FLL	2		/* FLL loop gain (shift) */
138
139static int time_state = TIME_OK;	/* clock state */
140static int time_status = STA_UNSYNC;	/* clock status bits */
141static long time_tai;			/* TAI offset (s) */
142static long time_monitor;		/* last time offset scaled (ns) */
143static long time_constant;		/* poll interval (shift) (s) */
144static long time_precision = 1;		/* clock precision (ns) */
145static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
146static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
147static long time_reftime;		/* time at last adjustment (s) */
148static long time_tick;			/* nanoseconds per tick (ns) */
149static l_fp time_offset;		/* time offset (ns) */
150static l_fp time_freq;			/* frequency offset (ns/s) */
151static l_fp time_adj;			/* tick adjust (ns/s) */
152static l_fp time_phase;			/* time phase (ns) */
153
154#ifdef PPS_SYNC
155/*
156 * The following variables are used when a pulse-per-second (PPS) signal
157 * is available and connected via a modem control lead. They establish
158 * the engineering parameters of the clock discipline loop when
159 * controlled by the PPS signal.
160 */
161#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
162#define PPS_FAVGDEF	7		/* default freq avg int (s) (shift) */
163#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
164#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
165#define PPS_VALID	120		/* PPS signal watchdog max (s) */
166#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
167#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
168
169static struct timespec pps_tf[3];	/* phase median filter */
170static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
171static long pps_lastfreq;		/* last scaled freq offset (ns/s) */
172static long pps_fcount;			/* frequency accumulator */
173static long pps_jitter;			/* nominal jitter (ns) */
174static long pps_stabil;			/* nominal stability (scaled ns/s) */
175static long pps_lastsec;		/* time at last calibration (s) */
176static int pps_valid;			/* signal watchdog counter */
177static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
178static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
179static int pps_intcnt;			/* wander counter */
180
181/*
182 * PPS signal quality monitors
183 */
184static long pps_calcnt;			/* calibration intervals */
185static long pps_jitcnt;			/* jitter limit exceeded */
186static long pps_stbcnt;			/* stability limit exceeded */
187static long pps_errcnt;			/* calibration errors */
188#endif /* PPS_SYNC */
189/*
190 * End of phase/frequency-lock loop (PLL/FLL) definitions
191 */
192
193static void ntp_init(void);
194static void hardupdate(long offset);
195
196/*
197 * ntp_gettime() - NTP user application interface
198 *
199 * See the timex.h header file for synopsis and API description. Note
200 * that the TAI offset is returned in the ntvtimeval.tai structure
201 * member.
202 */
203static int
204ntp_sysctl(SYSCTL_HANDLER_ARGS)
205{
206	struct ntptimeval ntv;	/* temporary structure */
207	struct timespec atv;	/* nanosecond time */
208
209	nanotime(&atv);
210	ntv.time.tv_sec = atv.tv_sec;
211	ntv.time.tv_nsec = atv.tv_nsec;
212	ntv.maxerror = time_maxerror;
213	ntv.esterror = time_esterror;
214	ntv.tai = time_tai;
215
216	/*
217	 * Status word error decode. If any of these conditions occur,
218	 * an error is returned, instead of the status word. Most
219	 * applications will care only about the fact the system clock
220	 * may not be trusted, not about the details.
221	 *
222	 * Hardware or software error
223	 */
224	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
225
226	/*
227	 * PPS signal lost when either time or frequency synchronization
228	 * requested
229	 */
230	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
231	    !(time_status & STA_PPSSIGNAL)) ||
232
233	/*
234	 * PPS jitter exceeded when time synchronization requested
235	 */
236	    (time_status & STA_PPSTIME &&
237	    time_status & STA_PPSJITTER) ||
238
239	/*
240	 * PPS wander exceeded or calibration error when frequency
241	 * synchronization requested
242	 */
243	    (time_status & STA_PPSFREQ &&
244	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
245		ntv.time_state = TIME_ERROR;
246	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
247}
248
249SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
250SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
251	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
252
253#ifdef PPS_SYNC
254SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
255SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
256
257SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
258SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
259#endif
260/*
261 * ntp_adjtime() - NTP daemon application interface
262 *
263 * See the timex.h header file for synopsis and API description. Note
264 * that the timex.constant structure member has a dual purpose to set
265 * the time constant and to set the TAI offset.
266 */
267#ifndef _SYS_SYSPROTO_H_
268struct ntp_adjtime_args {
269	struct timex *tp;
270};
271#endif
272
273int
274ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
275{
276	struct timex ntv;	/* temporary structure */
277	long freq;		/* frequency ns/s) */
278	int modes;		/* mode bits from structure */
279	int s;			/* caller priority */
280	int error;
281
282	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
283	if (error)
284		return(error);
285
286	/*
287	 * Update selected clock variables - only the superuser can
288	 * change anything. Note that there is no error checking here on
289	 * the assumption the superuser should know what it is doing.
290	 * Note that either the time constant or TAI offset are loaded
291	 * from the ntv.constant member, depending on the mode bits.
292	 */
293	modes = ntv.modes;
294	if (modes)
295		error = suser(p);
296	if (error)
297		return (error);
298	s = splclock();
299	if (modes & MOD_FREQUENCY) {
300		freq = (ntv.freq * 1000LL) >> 16;
301		if (freq > MAXFREQ)
302			L_LINT(time_freq, MAXFREQ);
303		else if (freq < -MAXFREQ)
304			L_LINT(time_freq, -MAXFREQ);
305		else
306			L_LINT(time_freq, freq);
307#ifdef PPS_SYNC
308		pps_freq = time_freq;
309#endif /* PPS_SYNC */
310	}
311	if (modes & MOD_MAXERROR)
312		time_maxerror = ntv.maxerror;
313	if (modes & MOD_ESTERROR)
314		time_esterror = ntv.esterror;
315	if (modes & MOD_STATUS) {
316		time_status &= STA_RONLY;
317		time_status |= ntv.status & ~STA_RONLY;
318	}
319	if (modes & MOD_TIMECONST) {
320		if (ntv.constant < 0)
321			time_constant = 0;
322		else if (ntv.constant > MAXTC)
323			time_constant = MAXTC;
324		else
325			time_constant = ntv.constant;
326	}
327	if (modes & MOD_TAI) {
328		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
329			time_tai = ntv.constant;
330	}
331#ifdef PPS_SYNC
332	if (modes & MOD_PPSMAX) {
333		if (ntv.shift < PPS_FAVG)
334			pps_shiftmax = PPS_FAVG;
335		else if (ntv.shift > PPS_FAVGMAX)
336			pps_shiftmax = PPS_FAVGMAX;
337		else
338			pps_shiftmax = ntv.shift;
339	}
340#endif /* PPS_SYNC */
341	if (modes & MOD_NANO)
342		time_status |= STA_NANO;
343	if (modes & MOD_MICRO)
344		time_status &= ~STA_NANO;
345	if (modes & MOD_CLKB)
346		time_status |= STA_CLK;
347	if (modes & MOD_CLKA)
348		time_status &= ~STA_CLK;
349	if (modes & MOD_OFFSET) {
350		if (time_status & STA_NANO)
351			hardupdate(ntv.offset);
352		else
353			hardupdate(ntv.offset * 1000);
354	}
355
356	/*
357	 * Retrieve all clock variables. Note that the TAI offset is
358	 * returned only by ntp_gettime();
359	 */
360	if (time_status & STA_NANO)
361		ntv.offset = time_monitor;
362	else
363		ntv.offset = time_monitor / 1000; /* XXX rounding ? */
364	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
365	ntv.maxerror = time_maxerror;
366	ntv.esterror = time_esterror;
367	ntv.status = time_status;
368	ntv.constant = time_constant;
369	if (time_status & STA_NANO)
370		ntv.precision = time_precision;
371	else
372		ntv.precision = time_precision / 1000;
373	ntv.tolerance = MAXFREQ * SCALE_PPM;
374#ifdef PPS_SYNC
375	ntv.shift = pps_shift;
376	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
377	if (time_status & STA_NANO)
378		ntv.jitter = pps_jitter;
379	else
380		ntv.jitter = pps_jitter / 1000;
381	ntv.stabil = pps_stabil;
382	ntv.calcnt = pps_calcnt;
383	ntv.errcnt = pps_errcnt;
384	ntv.jitcnt = pps_jitcnt;
385	ntv.stbcnt = pps_stbcnt;
386#endif /* PPS_SYNC */
387	splx(s);
388
389	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
390	if (error)
391		return (error);
392
393	/*
394	 * Status word error decode. See comments in
395	 * ntp_gettime() routine.
396	 */
397	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
398	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
399	    !(time_status & STA_PPSSIGNAL)) ||
400	    (time_status & STA_PPSTIME &&
401	    time_status & STA_PPSJITTER) ||
402	    (time_status & STA_PPSFREQ &&
403	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
404		p->p_retval[0] = TIME_ERROR;
405	else
406		p->p_retval[0] = time_state;
407	return (error);
408}
409
410/*
411 * second_overflow() - called after ntp_tick_adjust()
412 *
413 * This routine is ordinarily called immediately following the above
414 * routine ntp_tick_adjust(). While these two routines are normally
415 * combined, they are separated here only for the purposes of
416 * simulation.
417 */
418void
419ntp_update_second(struct timecounter *tcp)
420{
421	u_int32_t *newsec;
422	l_fp ftemp;		/* 32/64-bit temporary */
423
424	newsec = &tcp->tc_offset_sec;
425	/*
426	 * On rollover of the second both the nanosecond and microsecond
427	 * clocks are updated and the state machine cranked as
428	 * necessary. The phase adjustment to be used for the next
429	 * second is calculated and the maximum error is increased by
430	 * the tolerance.
431	 */
432	time_maxerror += MAXFREQ / 1000;
433
434	/*
435	 * Leap second processing. If in leap-insert state at
436	 * the end of the day, the system clock is set back one
437	 * second; if in leap-delete state, the system clock is
438	 * set ahead one second. The nano_time() routine or
439	 * external clock driver will insure that reported time
440	 * is always monotonic.
441	 */
442	switch (time_state) {
443
444		/*
445		 * No warning.
446		 */
447		case TIME_OK:
448		if (time_status & STA_INS)
449			time_state = TIME_INS;
450		else if (time_status & STA_DEL)
451			time_state = TIME_DEL;
452		break;
453
454		/*
455		 * Insert second 23:59:60 following second
456		 * 23:59:59.
457		 */
458		case TIME_INS:
459		if (!(time_status & STA_INS))
460			time_state = TIME_OK;
461		else if ((*newsec) % 86400 == 0) {
462			(*newsec)--;
463			time_state = TIME_OOP;
464		}
465		break;
466
467		/*
468		 * Delete second 23:59:59.
469		 */
470		case TIME_DEL:
471		if (!(time_status & STA_DEL))
472			time_state = TIME_OK;
473		else if (((*newsec) + 1) % 86400 == 0) {
474			(*newsec)++;
475			time_tai--;
476			time_state = TIME_WAIT;
477		}
478		break;
479
480		/*
481		 * Insert second in progress.
482		 */
483		case TIME_OOP:
484			time_tai++;
485			time_state = TIME_WAIT;
486		break;
487
488		/*
489		 * Wait for status bits to clear.
490		 */
491		case TIME_WAIT:
492		if (!(time_status & (STA_INS | STA_DEL)))
493			time_state = TIME_OK;
494	}
495
496	/*
497	 * Compute the total time adjustment for the next second
498	 * in ns. The offset is reduced by a factor depending on
499	 * whether the PPS signal is operating. Note that the
500	 * value is in effect scaled by the clock frequency,
501	 * since the adjustment is added at each tick interrupt.
502	 */
503	ftemp = time_offset;
504#ifdef PPS_SYNC
505	/* XXX even if PPS signal dies we should finish adjustment ? */
506	if (time_status & STA_PPSTIME && time_status &
507	    STA_PPSSIGNAL)
508		L_RSHIFT(ftemp, pps_shift);
509	else
510		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
511#else
512		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
513#endif /* PPS_SYNC */
514	time_adj = ftemp;
515	L_SUB(time_offset, ftemp);
516	L_ADD(time_adj, time_freq);
517	tcp->tc_adjustment = time_adj;
518#ifdef PPS_SYNC
519	if (pps_valid > 0)
520		pps_valid--;
521	else
522		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
523		    STA_PPSWANDER | STA_PPSERROR);
524#endif /* PPS_SYNC */
525}
526
527/*
528 * ntp_init() - initialize variables and structures
529 *
530 * This routine must be called after the kernel variables hz and tick
531 * are set or changed and before the next tick interrupt. In this
532 * particular implementation, these values are assumed set elsewhere in
533 * the kernel. The design allows the clock frequency and tick interval
534 * to be changed while the system is running. So, this routine should
535 * probably be integrated with the code that does that.
536 */
537static void
538ntp_init()
539{
540
541	/*
542	 * The following variable must be initialized any time the
543	 * kernel variable hz is changed.
544	 */
545	time_tick = NANOSECOND / hz;
546
547	/*
548	 * The following variables are initialized only at startup. Only
549	 * those structures not cleared by the compiler need to be
550	 * initialized, and these only in the simulator. In the actual
551	 * kernel, any nonzero values here will quickly evaporate.
552	 */
553	L_CLR(time_offset);
554	L_CLR(time_freq);
555#ifdef PPS_SYNC
556	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
557	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
558	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
559	pps_fcount = 0;
560	L_CLR(pps_freq);
561#endif /* PPS_SYNC */
562}
563
564SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
565
566/*
567 * hardupdate() - local clock update
568 *
569 * This routine is called by ntp_adjtime() to update the local clock
570 * phase and frequency. The implementation is of an adaptive-parameter,
571 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
572 * time and frequency offset estimates for each call. If the kernel PPS
573 * discipline code is configured (PPS_SYNC), the PPS signal itself
574 * determines the new time offset, instead of the calling argument.
575 * Presumably, calls to ntp_adjtime() occur only when the caller
576 * believes the local clock is valid within some bound (+-128 ms with
577 * NTP). If the caller's time is far different than the PPS time, an
578 * argument will ensue, and it's not clear who will lose.
579 *
580 * For uncompensated quartz crystal oscillators and nominal update
581 * intervals less than 256 s, operation should be in phase-lock mode,
582 * where the loop is disciplined to phase. For update intervals greater
583 * than 1024 s, operation should be in frequency-lock mode, where the
584 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
585 * is selected by the STA_MODE status bit.
586 */
587static void
588hardupdate(offset)
589	long offset;		/* clock offset (ns) */
590{
591	long mtemp;
592	l_fp ftemp;
593
594	/*
595	 * Select how the phase is to be controlled and from which
596	 * source. If the PPS signal is present and enabled to
597	 * discipline the time, the PPS offset is used; otherwise, the
598	 * argument offset is used.
599	 */
600	if (!(time_status & STA_PLL))
601		return;
602	if (!(time_status & STA_PPSTIME && time_status &
603	    STA_PPSSIGNAL)) {
604		if (offset > MAXPHASE)
605			time_monitor = MAXPHASE;
606		else if (offset < -MAXPHASE)
607			time_monitor = -MAXPHASE;
608		else
609			time_monitor = offset;
610		L_LINT(time_offset, time_monitor);
611	}
612
613	/*
614	 * Select how the frequency is to be controlled and in which
615	 * mode (PLL or FLL). If the PPS signal is present and enabled
616	 * to discipline the frequency, the PPS frequency is used;
617	 * otherwise, the argument offset is used to compute it.
618	 */
619	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
620		time_reftime = time_second;
621		return;
622	}
623	if (time_status & STA_FREQHOLD || time_reftime == 0)
624		time_reftime = time_second;
625	mtemp = time_second - time_reftime;
626	L_LINT(ftemp, time_monitor);
627	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
628	L_MPY(ftemp, mtemp);
629	L_ADD(time_freq, ftemp);
630	time_status &= ~STA_MODE;
631	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
632	    MAXSEC)) {
633		L_LINT(ftemp, (time_monitor << 4) / mtemp);
634		L_RSHIFT(ftemp, SHIFT_FLL + 4);
635		L_ADD(time_freq, ftemp);
636		time_status |= STA_MODE;
637	}
638	time_reftime = time_second;
639	if (L_GINT(time_freq) > MAXFREQ)
640		L_LINT(time_freq, MAXFREQ);
641	else if (L_GINT(time_freq) < -MAXFREQ)
642		L_LINT(time_freq, -MAXFREQ);
643}
644
645#ifdef PPS_SYNC
646/*
647 * hardpps() - discipline CPU clock oscillator to external PPS signal
648 *
649 * This routine is called at each PPS interrupt in order to discipline
650 * the CPU clock oscillator to the PPS signal. There are two independent
651 * first-order feedback loops, one for the phase, the other for the
652 * frequency. The phase loop measures and grooms the PPS phase offset
653 * and leaves it in a handy spot for the seconds overflow routine. The
654 * frequency loop averages successive PPS phase differences and
655 * calculates the PPS frequency offset, which is also processed by the
656 * seconds overflow routine. The code requires the caller to capture the
657 * time and architecture-dependent hardware counter values in
658 * nanoseconds at the on-time PPS signal transition.
659 *
660 * Note that, on some Unix systems this routine runs at an interrupt
661 * priority level higher than the timer interrupt routine hardclock().
662 * Therefore, the variables used are distinct from the hardclock()
663 * variables, except for the actual time and frequency variables, which
664 * are determined by this routine and updated atomically.
665 */
666void
667hardpps(tsp, nsec)
668	struct timespec *tsp;	/* time at PPS */
669	long nsec;		/* hardware counter at PPS */
670{
671	long u_sec, u_nsec, v_nsec; /* temps */
672	l_fp ftemp;
673
674	/*
675	 * The signal is first processed by a range gate and frequency
676	 * discriminator. The range gate rejects noise spikes outside
677	 * the range +-500 us. The frequency discriminator rejects input
678	 * signals with apparent frequency outside the range 1 +-500
679	 * PPM. If two hits occur in the same second, we ignore the
680	 * later hit; if not and a hit occurs outside the range gate,
681	 * keep the later hit for later comparison, but do not process
682	 * it.
683	 */
684	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
685	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
686	pps_valid = PPS_VALID;
687	u_sec = tsp->tv_sec;
688	u_nsec = tsp->tv_nsec;
689	if (u_nsec >= (NANOSECOND >> 1)) {
690		u_nsec -= NANOSECOND;
691		u_sec++;
692	}
693	v_nsec = u_nsec - pps_tf[0].tv_nsec;
694	/* XXX: This test seems incomplete ? */
695	if (u_sec == pps_tf[0].tv_sec && v_nsec < -MAXFREQ) {
696		return;
697	}
698	pps_tf[2] = pps_tf[1];
699	pps_tf[1] = pps_tf[0];
700	pps_tf[0].tv_sec = u_sec;
701	pps_tf[0].tv_nsec = u_nsec;
702
703	/*
704	 * Compute the difference between the current and previous
705	 * counter values. If the difference exceeds 0.5 s, assume it
706	 * has wrapped around, so correct 1.0 s. If the result exceeds
707	 * the tick interval, the sample point has crossed a tick
708	 * boundary during the last second, so correct the tick. Very
709	 * intricate.
710	 */
711	u_nsec = nsec;
712	if (u_nsec > (NANOSECOND >> 1))
713		u_nsec -= NANOSECOND;
714	else if (u_nsec < -(NANOSECOND >> 1))
715		u_nsec += NANOSECOND;
716	pps_fcount += u_nsec;
717	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ) {
718		return;
719	}
720	time_status &= ~STA_PPSJITTER;
721
722	/*
723	 * A three-stage median filter is used to help denoise the PPS
724	 * time. The median sample becomes the time offset estimate; the
725	 * difference between the other two samples becomes the time
726	 * dispersion (jitter) estimate.
727	 */
728	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
729		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
730			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
731			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
732		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
733			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
734			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
735		} else {
736			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
737			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
738		}
739	} else {
740		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
741			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
742			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
743		} else  if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
744			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
745			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
746		} else {
747			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
748			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
749		}
750	}
751
752	/*
753	 * Nominal jitter is due to PPS signal noise and  interrupt
754	 * latency. If it exceeds the popcorn threshold, the sample is
755	 * discarded. otherwise, if so enabled, the time offset is
756	 * updated. We can tolerate a modest loss of data here without
757	 * much degrading time accuracy.
758	 */
759	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
760		time_status |= STA_PPSJITTER;
761		pps_jitcnt++;
762	} else if (time_status & STA_PPSTIME) {
763		time_monitor = -v_nsec;
764		L_LINT(time_offset, time_monitor);
765	}
766	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
767	u_sec = pps_tf[0].tv_sec - pps_lastsec;
768	if (u_sec < (1 << pps_shift))
769		return;
770
771	/*
772	 * At the end of the calibration interval the difference between
773	 * the first and last counter values becomes the scaled
774	 * frequency. It will later be divided by the length of the
775	 * interval to determine the frequency update. If the frequency
776	 * exceeds a sanity threshold, or if the actual calibration
777	 * interval is not equal to the expected length, the data are
778	 * discarded. We can tolerate a modest loss of data here without
779	 * much degrading frequency accuracy.
780	 */
781	pps_calcnt++;
782	v_nsec = -pps_fcount;
783	pps_lastsec = pps_tf[0].tv_sec;
784	pps_fcount = 0;
785	u_nsec = MAXFREQ << pps_shift;
786	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
787	    pps_shift)) {
788		time_status |= STA_PPSERROR;
789		pps_errcnt++;
790		return;
791	}
792
793	/*
794	 * Here the raw frequency offset and wander (stability) is
795	 * calculated. If the wander is less than the wander threshold
796	 * for four consecutive averaging intervals, the interval is
797	 * doubled; if it is greater than the threshold for four
798	 * consecutive intervals, the interval is halved. The scaled
799	 * frequency offset is converted to frequency offset. The
800	 * stability metric is calculated as the average of recent
801	 * frequency changes, but is used only for performance
802	 * monitoring.
803	 */
804	L_LINT(ftemp, v_nsec);
805	L_RSHIFT(ftemp, pps_shift);
806	L_SUB(ftemp, pps_freq);
807	u_nsec = L_GINT(ftemp);
808	if (u_nsec > PPS_MAXWANDER) {
809		L_LINT(ftemp, PPS_MAXWANDER);
810		pps_intcnt--;
811		time_status |= STA_PPSWANDER;
812		pps_stbcnt++;
813	} else if (u_nsec < -PPS_MAXWANDER) {
814		L_LINT(ftemp, -PPS_MAXWANDER);
815		pps_intcnt--;
816		time_status |= STA_PPSWANDER;
817		pps_stbcnt++;
818	} else {
819		pps_intcnt++;
820	}
821	if (pps_intcnt >= 4) {
822		pps_intcnt = 4;
823		if (pps_shift < pps_shiftmax) {
824			pps_shift++;
825			pps_intcnt = 0;
826		}
827	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
828		pps_intcnt = -4;
829		if (pps_shift > PPS_FAVG) {
830			pps_shift--;
831			pps_intcnt = 0;
832		}
833	}
834	if (u_nsec < 0)
835		u_nsec = -u_nsec;
836	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
837
838	/*
839	 * The PPS frequency is recalculated and clamped to the maximum
840	 * MAXFREQ. If enabled, the system clock frequency is updated as
841	 * well.
842	 */
843	L_ADD(pps_freq, ftemp);
844	u_nsec = L_GINT(pps_freq);
845	if (u_nsec > MAXFREQ)
846		L_LINT(pps_freq, MAXFREQ);
847	else if (u_nsec < -MAXFREQ)
848		L_LINT(pps_freq, -MAXFREQ);
849	if (time_status & STA_PPSFREQ)
850		time_freq = pps_freq;
851}
852#endif /* PPS_SYNC */
853